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Abstract. This paper presents a new method – which does not rely on the cut-elimination theorem –

for characterizing the provably total functions of certain intuitionistic subsystems of arithmetic. The new

method hinges on a realizability argument within an infinitary language. We illustrate the method for

the intuitionistic counterpart of Buss’s theory S1
2 , and we briefly sketch it for the other levels of bounded

arithmetic and for the theory IΣ1.
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1 Introduction

Given A(x, y) an arbitrary formula with two free variables x and y, an intuitionistic proof of a
sentence of the form ∀x∃yA(x, y) in a given subsystem of arithmetic yields a computable function
f such that ∀xA(x, f(x)). Moreover, if the subsystem of arithmetic is suitably expanded by
definitions, the assertion ∀xA(x, f(x)) should be provable in the system itself. As we vary along
subsystems of arithmetic (say, vary along subsystems of Heyting’s arithmetic HA), the classes of
witness functions become more inclusive the stronger the systems considered. For example, if the
assertion ∀x∃yA(x, y) is provable in the intuitionistic counterpart of Buss’s well-known system S1

2

– the so-called system IS1
2 defined in [2] – then f is polynomial time computable. If the assertion

is provable in the intuitionistic counterpart of the theory IΣ1, then f is primitive recursive.
The above cited result on IS1

2 was proved by Cook and Urquhart in [3], whereas the result
on the intuitionist version of IΣ1 was recently obtained by Kai Wehmeier in [15]. The argument
of Wehmeier is indirect: it reduces, via a realizability argument, the intuitionistic case to the
classical case for Π2 sentences. The proof of Cook and Urquhart hinges on a realizability argument
which takes place within a higher-order version of IS1

2 requiring the use of (feasible) functionals
of higher type. At a crucial point one must use a cut-elimination theorem in order to show that
this higher-order version is conservative over IS1

2 . Our argument is also a realizability argument,
but it circumvents the cut-elimination theorem. Instead of enlarging to a theory of higher types,
we enlarge to a theory which permits infinite disjunctions. A conspicuous case of the main axiom
schema of this theory is the blatantly false,

∀x
∨

n

{e}n(x) ↓→
∨

n

∀x {e}n(x) ↓
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where {e}n(x) ↓ means that the Turing calculation of the machine with Gödel number e for the
input x halts in less than (l1 + l2 + 2)n steps, where l1 and l2 are, respectively, the lengths of the
binary representations of the numbers e and x.

Although this scheme is false, the enlarged infinitary theory is consistent. Moreover, it is
conservative over IS1

2 . This result is obtained by a quite simple saturation argument for Kripke-
structures (this is what replaces the cut-elimination argument in our setting). The above strategy
was first outlined in [5] and, suitably implemented, also yields the characterization of the provably
total functions of the upper levels of intuitionistic bounded arithmetic and of the intuitionistic
version of IΣ1.

The paper is organized as follows. In the section 2 we deal with Buss’s theory IS1
2 . Actually,

we shall use the binary string framework of Ferreira [6], and work with the intuitionistic version of
the theory Σb

1−NIA and its extension by definitions PTCA+. To make the paper reasonably self-
contained, we briefly describe these theories and leave to an appendix some peculiarities of working
in intuitionistic logic. Next, we introduce an infinitary (intuitionistic) false extension PTCA+

∞ of
PTCA+ and define, within it, the pertinent notion of realizability. The characterization of the
(intuitionistically) provably total functions of Σb

1 − NIA is now a consequence of the soundness
theorem for this notion of realizability plus the fact that the infinitary theory is conservative over
the finitary one. The proof of this latter fact is the business of section 3. In the last section we
briefly sketch how to adapt the proof of section 2 in order to obtain the (intuitionistically) provably
total functions of the upper levels of Buss’s hierarchy of bounded theories and of the theory IΣ1.

2 Infinitary realizability

In the sequel we briefly describe the first-order theory Σb
1 − NIA, which is a reformulation of

Buss’s well-known theory S1
2 (see [1] or [10]). This reformulation takes place in a stringlanguage L

consisting of three constant symbols ε, 0 and 1, two binary function symbols � (for concatenation,
sometimes omitted) and ×, and a binary relation symbol ⊆ (for initial subwordness). There are
fourteen basic open axioms:

Ax1. x � ε = x
Ax2. x � (y � 0) = (x � y)� 0
Ax3. x � (y � 1) = (x � y)� 1
Ax4. x � 0 = y � 0 → x = y
Ax5. x× ε = ε
Ax6. x× (y � 0) = (x× y)� x
Ax7. x× (y � 1) = (x× y)� x
Ax8. x � 1 = y � 1 → x = y
Ax9. x ⊆ ε↔ x = ε
Ax10. x ⊆ y � 0 ↔ x ⊆ y ∨ x = y � 0
Ax11. x ⊆ y � 1 ↔ x ⊆ y ∨ x = y � 1
Ax12. x � 0 �= y � 1
Ax13. x � 0 �= ε
Ax14. x � 1 �= ε

The standard model of these axioms is the binary tree {0, 1}∗, and the interpretations of the
symbols of the stringlanguage in the standard model are immediately clear, except (perhaps) for
×: x × y is the string x concatenated with itself length of y times. We often use x ⊆∗ y for
∃z ⊆ y (z � x ⊆ y), and abbreviate 1×x ⊆ 1× y by x ≤ y (the length of x is less than or equal to
the length of y), and x ⊆ y ∧ x �= y by x ⊂ y. The class of swq-formulas (“subword quantification
formulae”) is the smallest class of formulae containing the atomic formulae and closed under

2



Boolean operations and subword quantification, i.e., quantification of the form ∀x ⊆∗ t(. . .) or
∃x ⊆∗ t(. . .), where t is a term in which the variable x does not occur. A (strict) Σb

1-formula is a
formula of the form ∃x ≤ tA, where t is a term in which the variable x does not occur and A is a
swq-formula. In the standard model these formulas define exactly the sets of the complexity class
NP . The theory Σb

1 − NIA (for Notation Induction Axioms) consists of the fourteen basic open
axioms plus the following induction scheme:

F (ε) ∧ ∀x(F (x) → F (x0) ∧ F (x1)) → ∀xF (x)

where F is a Σb
1-formula. This theory is equivalent, in a sense that could be made precise, to Buss’s

theory S1
2 . Buss’s main theorem of his thesis [1] says that whenever Σb

1 − NIA � ∀x∃yA(x, y),
where A is a Σb

1 formula, there is a polynomial time computable function f such that A(σ, f(σ)),
for all σ ∈ {0, 1}∗. Moreover, Buss showed that, if suitably reformulated, the previous conclusion
still holds in the theory itself. More specifically, there is a term t(x) of the language L and a
Σb

1-formula Gf (x, y) such that,

1. Σb
1 −NIA � ∀x∀y (Gf (x, y) → A(x, y))

2. Σb
1 −NIA � ∀x∃y ≤ t(x)Gf (x, y)

3. Σb
1 −NIA � ∀x∀y∀z (Gf (x, y) ∧Gf (x, z) → y = z)

4. for all σ ∈ {0, 1}∗, {0, 1}∗ |= Gf (σ, f(σ))

In fact, it is possible to extend the theory Σb
1 − NIA with function symbols and appropriate

axioms for each (description) of a polynomial time computable function, resulting in the so-called
theory PTCA+. This possibility hinges on the fact that, for each polynomial time computable
(description of a) function f , there is a Σb

1-formula Gf (x, y) satisfying the above conditions 2 and 3
plus some simple definitional properties within the theory. This was shown in the above mentioned
dissertation of Buss, and an account of the result within the framework of the stringlanguage
appeared in [6]. Hence, the theory PTCA+ is formulated in a language extension LP of the L,
the new open axioms describe simple definitional properties of the new function symbols, and the
induction scheme consists of the notation induction axioms NIA for Σb

1-formulas F : in our context
of the extended language LP we may take the Σb

1-formulas to be of the form ∃x ≤ tA, where t is
a term in which the variable x does not occur and A is an open formula of LP . Buss’s theorem
can be reformulated thus: if Σb

1 − NIA � ∀x∃yA(x, y), where A is a Σb
1 formula, then there is a

function symbol f of LP such that PTCA+ � ∀xA(x, f(x)).
The point we want to make is that this extension can also be accomplished intuitionistically.

In effect, the argument for the classical case is purely intuitionistic except for some uses of the
law of excluded middle for swq-formulas. However, it is a theorem that these particular instances
of excluded middle are provable intuitionistically in Σb

1 − NIA (see the appendix). [We do not
rename the intuitionistic versions of classical theories. When we are working intuitionistically, this
will be stated explicitly or it will show up by the use of the subscripted turnstile �i.] Similarly,
the law of excluded middle holds for open formulas of PTCA+ (see, once again, the appendix).

We often abuse language and speak of a polynomial time computable function f within the
language LP . We really mean a function symbol of LP associated with a convenient description
of the polynomial time computable function f . Similarly, we sometimes call members of {0, 1}∗
terms. What happens is that given an element e ∈ {0, 1}∗ there is a closed term of the language
of L obtained by concatenating (via the function symbol �) the constants 0 and 1 according to
the order of the bits in e (for determinateness, we always associate � to the left).

We shall need an infinitary version PTCA+
∞ of the (intuitionistic) theory PTCA+. The lan-

guage of this version is LP , and one extends the language of first-order logic to include denumerable
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disjunctions. The semantics is Kripkean, with the usual clauses of forcing for the first-order logical
symbols, plus the following extra clause defining what it means for a node α of a Kripke model to
force an infinitary disjunction:

�α

∨

n

Fn := ∃m ∈ ω �α Fm

The axioms of PTCA+
∞ are those of PTCA+ plus the following infinitary scheme:

∀x
∨

n

Fn(x) →
∨

n

∀x
∨

k≤n

Fk(x)

where F0(x), F1(x), F2(x), . . . is any recursive enumeration of first-order formulas of LP with only
a finite number of parameters.

The following fact will be crucial in the sequel. Its proof is the business of the next section.

Theorem (Conservativity). Let A0, A1, A2, . . . be a sequence of (first-order) sentences of LP .
If

PTCA+
∞ �

∨

n

An

then there is m ∈ ω such that,
PTCA+ �i Am

The notions {z}n(x) and {z}n(x) ↓ will play a central role in our definition of realizability (x
abbreviates the k-tuple x1, . . . , xk). These notions are familiar: {z}n(x) is the output of the Turing
calculation of the machine with Gödel number z for the input x, provided that this calculation is
done in less than (�1+�2+2)n steps, where �1 and �2 are, respectively, the lengths of z and x (when
the calculation exceeds this number of steps, i.e., when {z}n(x) ↓ does not hold, the default value ε
is given). To be completely clear, the symbolic notation of these notions requires an extra index k
to show their dependence on the number of inputs; however, we will omit this. More importantly,
both these notions can be formalized within intuitionistic PTCA+ via open formulas. This is done
(albeit in another notation) for the classical case in Pudlak’s monograph [8]. Pudlak’s construction
also goes throught in the intuitionistic case since the construction only uses instances of excluded
middle for open formulas (of the extended language). A remark is in order. We must be careful
in defining the meaning of {z}n(x) when there are no variables x: by stipulation, {z}n( ) is the
output of the Turing calculation of the machine with Gödel number z when it starts on an empty
tape, provided that this calculation is done in less than (�+ 2)n steps, where � is the length of the
string z (when the calculation exceeds this number of steps the default value ε is given).

We are now ready to define the pertinent notion of realizability for (first-order) formulas of LP .
This notion is a suitable modification of the so-called q-realizability, described on page 243 of [14].

Definition (q-realizability). To every (first-order) formula A of Lp we associate a new formula
zqA of the extended language in such a way that FV (zqA) ⊆ FV (A) ∪ {z}, and z �∈ FV (A),
according to the following clauses:

1. zqA is A, if A is an open formula;
2. zq(A ∧B) is (z)0qA ∧ (z)1qB;
3. zq(A ∨B) is ((z)0 = ε→ (z)1qA) ∧ ((z)0 �= ε→ (z)1qB);
4. zq(A→ B) is (A→ B) ∧ ∀x(xqA→ ∨n({z}n(x) ↓ ∧{z}n(x)qB));
5. zq∀xA(x) is ∀x ∨n ({z}n(x) ↓ ∧{z}n(x)qA(x));
6. zq∃xA(x) is (z)0qA((z)1);

where z =< (z)0, (z)1 > is a suitable pairing coding.
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The following mimics a similar result for the usual notion of q-realizability:

Theorem. If z does not occur in A then

PCTA+
∞ � (zqA) → A

In order to prove a soundness theorem for our notion of realizability, we must use certain results
pertaining to the notions of {z}n(x) and {z}n(x) ↓. All these results are true universal assertions
of the language LP which could have been introduced by fiat in the axiomatics of PTCA+ without
much ado. We concede that this would have been inelegant. In fact, the desired results are
intuitionistically provable in PTCA+. Results 0, 1 and 2 readily follow from Pudlak’s discussions
in [8], and a version of the crucial last result 5 is also discussed there. Concerning the other two
results, we follow Pudlak’s common sensical approach: “(. . . ) the proofs in the standard model
can be carried out in the fragments of Bounded Arithmetic. We omit the proofs since they are not
difficult and contain no essential new ideas.”

Result 0. Given natural numbers k < s, the theory PTCA+ proves the following intuitionistically,

{x}k(y) ↓→ {x}s(y) ↓ ∧{x}s(y) = {x}k(y)

Result 1. Given f a polynomial time computable function, there is a term e ∈ {0, 1}∗ and an
element m ∈ ω such that the theory PTCA+ proves the following intuitionistically,

∀x ({e}m(x) ↓ ∧f(x) = {e}m(x))

Result 2. Given n ∈ ω, there is a term µn ∈ {0, 1}∗ with the following property: for every k ∈ ω
there is p ∈ ω such that the theory PTCA+ proves the following intuitionistically,

{x}k(y) ↓→ {µn}p(x, y) ↓ ∧{µn}p(x, y) = {x}k(y)

where y is a n-tuple of variables.

Result 3. Given n,m ∈ ω, there is a (n+1)-ary polynomial time computable function Cn,m with
the following property: for every k, s1, . . . , sn ∈ ω there is p ∈ ω such that the theory PTCA+

proves the following intuitionistically,

{y1}s1(z) ↓ ∧ . . . ∧ {yn}sn
(z) ↓ ∧{x}k({y1}s1(z), . . . , {yn}sn

(z)) ↓→

→ {Cn,m(x, y1, . . . , yn)}p(z) ↓ ∧{Cn,m(x, y1, . . . , yn)}p(z) = {x}k({y1}s1(z), . . . , {yn}sn(z))

where z is an m-tuple of variables.

The next result is a version of the so-called s-m-n-theorem:

Result 4. Given n ∈ ω, there is a polynomial time computable function Sn with the following
property: for every k ∈ ω there is p ∈ ω such that the theory PTCA+ proves the following
intuitionistically,

{x}k(w, y) ↓→ {Sn(x,w)}p(y) ↓ ∧{Sn(x,w)}p(y) = {x}k(w, y)

where y is a n-tuple of variables.
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Result 5. Given m ∈ ω and t a term of the language L, there is a ternary polynomial time
computable function R = Rm,t with the following property: for every n, s ∈ ω there is p ∈ ω such
that the theory PTCA+ proves the following intuitionistically,

{v}n(z) ↓→ {R(v, w0, w1)}p(z, ε) ↓ ∧{R(v, w0, w1)}p(z, ε) = {v}n(z)

and
{R(v, w0, w1)}p(z, x) ↓ ∧{w0}s(z, x, {R(v, w0, w1)}p(z, x) |t(z,x)) ↓→

→ {R(v, w0, w1)}p(z, x0) ↓ ∧{R(v, w0, w1)}p(z, x0) = {w0}s(z, x, {R(v, w0, w1)}p(z, x) |t(z,x))

and
{R(v, w0, w1)}p(z, x) ↓ ∧{w1}s(z, x, {R(v, w0, w1)}p(z, x) |t(z,x)) ↓→

→ {R(v, w0, w1)}p(z, x1) ↓ ∧{R(v, w0, w1)}p(z, x1) = {w1}s(z, x, {R(v, w0, w1)}p(z, x) |t(z,x))

where z is a m-tuple of variables and a |b is the truncation of the string a at the length of b.

We are now ready to state and prove a soundness theorem about our notion of q-realizability.

Theorem (Soundness of q-realizability). If PTCA+ �i A(x) then there is a term e ∈ {0, 1}∗
such that

PTCA+
∞ � ∀x

∨

m

({e}m(x) ↓ ∧{e}m(x)qA(x))

where the free variables of A are among the variables occurring in x.

Proof : The proof is by induction on the length of deductions in PTCA+. For determinateness,
we work with the deductive system described on page 126 of Dummett’s book [4] on intuitionism.
In such a scenario we must find realizing terms in {0, 1}∗ for the logical and non-logical axioms and,
given a rule of the form Γ ⇒ A, we must be able to associate to every realization of Γ a realization
of A. With the exception of the realizability of the induction axioms, the usual arguments for the
HA case work for our case with some suitable modifications (remark: in these cases the infinitary
axioms are not used). We shall only consider a few typical axioms and rules and, to keep the
notation simple, we will usually avoid the consideration of free variables.

The logical axiom A → (B → A) is q-realized if we can find a term e ∈ {0, 1}∗ such that
PTCA+

∞ forces

∀x(xqA→ (B → A) ∧ ∨n({e}n(x) ↓ ∧∀y(yqB → ∨p({{e}n(x)}p(y) ↓ ∧{{e}n(x)}p(y)qA))))

First note that we need not worry about the conclusion B → A, since A→ (B → A) is provable
and xqA implies A. According to result 1, there exists e′ ∈ {0, 1}∗ and m ∈ ω such that,

PTCA+ �i ∀x∀y ({e′}m(x, y) ↓ ∧{e′}m(x, y) = x)

By result 4 there is p ∈ ω such that PTCA+ �i ∀x∀y ({S1(e′, x)}p(y) ↓ ∧{S1(e′, x)}p(y) = x).
Using again result 1, we can take e ∈ {0, 1}∗ and n ∈ ω such that,

PTCA+ �i ∀x ({e}n(x) ↓ ∧{e}n(x) = S1(e′, x))

Thus, for k = max{n, p},

PTCA+ �i ∀x∀y ({e}k(x) ↓ ∧{{e}k(x)}k(y) ↓ ∧{{e}k(x)}k(y) = x)

It is easy to check that this e does the job.

6



Now let us consider the axiom (A→ B) → ((A→ (B → C)) → (A→ C)). It is enough to find
a term e ∈ {0, 1}∗ such that the following complicated condition obtains:

∀a[(A→ B) ∧ ∀y(yqA→ ∨n({a}n(y) ↓ ∧{a}n(y)qB)) → ∨m[{e}m(a) ↓ ∧

∧((A→ (B → C)) → (A→ C)) ∧ ∀z[zq(A→ (B → C)) → ∨k({{e}m(a)}k(z) ↓ ∧
∧(A→ C) ∧ ∀u(uqA→ ∨s({{{e}m(a)}k(z)}s(u) ↓ ∧{{{e}m(a)}k(z)}s(u)qC)))]]]

where zq(A→ (B → C)) is the conjunction of A→ (B → C) with

∀w[wqA→ (B → C) ∧ ∨r[{z}r(w) ↓ ∧∀v(vqB → ∨t({{z}r(u)}t(v) ↓ ∧{{z}r(w)}t(v)qC))]]

A judicious calculation using the above results shows the following: there exists a term e ∈
{0, 1}∗ and there are m, k ∈ ω such that

PTCA+ �i ∀a∀z({e}m(a) ↓ ∧{{e}m(a)}k(z) ↓)

and such that for all n, r, t ∈ ω there exists s ∈ ω in such a way that the next implication is
provable intuitionistically in PTCA+,

{z}r(u) ↓ ∧{a}n(u) ↓ ∧{{z}r(u)}t({a}n(u)}t ↓→

→ {{{e}m(a)}k(z)}s(u) ↓ ∧{{{e}m(a)}k(z)}s(u) = {{z}r(u)}t({a}n(u))

A careful checking shows that the above e realizes our axiom.
Let us now consider the rule Modus Ponens. Suppose there are e1, e2 ∈ {0, 1}∗ such that the

following two conditions are forced by PTCA+
∞:

∀x
∨

m1

({e1}m1(x) ↓ ∧{e1}m1(x)qA(x))

and

∀x
∨

m2

[{e2}m2(x) ↓ ∧∀z (zqA(x) →
∨

k

({{e2}m2(x)}k(z) ↓ ∧{{e2}m2(x)}k(z)qB(x)))]

A straightforward calculation using the above results yields a term e ∈ {0, 1}∗ such that,
for all m1,m2, k ∈ ω there is s ∈ ω in such a way that the following implication is provable
intuitionistically in PTCA+,

{e1}m1(x) ↓ ∧{e2}m2(x) ↓ ∧{{e2}m2(x)}k({e1}m1(x)) ↓→

→ {e}s(x) ↓ ∧{e}s(x) = {{e2}m2(x)}k({e1}m1(x))

It is easy to check that the above e does the job for B(x).
The other rule that we will consider is the rule “C → A(y) ⇒ C → ∀xA(x)”, where y is free

for x in A(x), and does not occur free in C or in A(x) (A(y) is formed by replacing every free
occurence of x in A(x) by y). Hence, by hypothesis, there is a term e ∈ ω such that PTCA+

∞
forces,

∀y
∨

m

[{e}m(y) ↓ ∧∀z (zqC →
∨

n

({{e}m(y)}n(z) ↓ ∧{{e}m(y)}n(z)qA(y)))]

In particular, using some intuitionistic logic and the fact that y does not occur free in zqC, we
get

∀z(zqC → ∀y
∨

m

∨

n

({{e}m(y)}n(z) ↓ ∧{{e}m(y)}n(z)qA(y)))
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A straightforward calculation shows the following: there is a term e′ ∈ {0, 1}∗ and s ∈ ω such
that,

PTCA+ �i ∀z ({e′}s(z) ↓)
and such that, for all m,n ∈ ω, there exists p ∈ ω in such a way that,

PTCA+ �i {e}m(y) ↓ ∧{{e}m(y)}n(z) ↓→ {{e′}s(z)}p(y) ↓ ∧{{e′}s(z)}p(y) = {{e}m(y)}n(z)

This entails what we want, i.e., that PTCA+
∞ forces,

∀z [zqC →
∨

s

({e′}s(z) ↓ ∧∀x
∨

p

({{e′}s(z)}p(x) ↓ ∧{{e′}s(z)}p(x)qA(x)))]

Finally, we study the induction axioms,

F (ε) ∧ ∀x(F (x) → F (x0) ∧ F (x1)) → ∀xF (x)

where F is a Σb
1-formula, i.e., a formula of the form ∃w(w ≤ t(x)∧G(x,w)), with G an open formula

of the language of LP . These axioms are implications, and a q-realization of an implication is the
conjunction of the implication itself with a certain other statement. The implication itself comes
for free, since PTCA+

∞ forces the induction axioms. (Actually, it is only at this step that we use
the full power of the induction axioms in PTCA+

∞; apart from this instance, in all other steps we
only need induction for open formulas of LP .) Hence, an induction axiom is q-realized if we can
find a term e ∈ {0, 1}∗ such that PTCA+

∞ forces,

∀y∀z(yqF (ε) ∧ zq∀x(F (x) → F (x0) ∧ F (x1)) →
∨

p

({e}p(y, z) ↓ ∧{e}p(y, z)q∀xF (x)))

The second conjunction in the antecedent of the main implication of the above formula is,

∀x
∨

m

({z}m(x) ↓ ∧∀w(wqF (x) →
∨

l

({{z}m(x)}l(w) ↓ ∧{{z}m(x)}l(w)q(F (x0) ∧ F (x1)))))

where we have omitted the condition F (x) → F (x0) ∧ F (x1) since it will not be needed in the
sequel.

The formula “wqF (x)” is “(w)1 ≤ t(x) ∧ G(x, (w)1)”; thus, it is an open formula and, hence,
decidable (see the last result of the appendix). This permits to export the disjunction “∨l” across
“wqF (x)”, and get the intuitionistically equivalent,

∀x
∨

m

({z}m(x) ↓ ∧∀w
∨

l

(wqF (x) → {{z}m(x)}l(w) ↓ ∧{{z}m(x)}l(w)q(F (x0) ∧ F (x1))))

At this point (with the aid of result 0) we apply the infinitary axiom scheme of PTCA+
∞ and

argue intuitionistically to get,

∀x
∨

m

∨

l

({z}m(x) ↓ ∧∀w(wqF (x) → {{z}m(x)}l(w) ↓ ∧{{z}m(x)}l(w)q(F (x0) ∧ F (x1))))

By result 0, we may conflate the two infinitary “ors” into a single “or”:

∀x
∨

k

({z}k(x) ↓ ∧∀w(wqF (x) → {{z}k(x)}k(w) ↓ ∧{{z}k(x)}k(w)q(F (x0) ∧ F (x1))))
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Applying once more the infinitary axiom scheme, we conclude that,
∨

k

∀x({z}k(x) ↓ ∧∀w(wqF (x) → {{z}k(x)}k(w) ↓ ∧{{z}k(x)}k(w)q(F (x0) ∧ F (x1))))

Let us remind ourselves that, in realizing an induction axiom, the aim is to obtain,
∨

p

({e}p(y, z) ↓ ∧∀x
∨

r

({{e}p(y, z)}r(x) ↓ ∧{{e}p(y, z)}r(x)qF (x)))

and, in order to accomplish this, we may use the conclusion of the discussion above.
It is easy to find a term v ∈ {0, 1}∗ and n ∈ ω such that,

PTCA+ � ∀y∀z ({v}n(y, z) ↓ ∧{v}n(y, z) = y1)

A straightforward calculation shows the following: there are terms w0, w1 ∈ {0, 1}∗ such that,
for any k ∈ ω, there exists s ∈ ω in such a way that PTCA+ proves intuitionistically both

{z}k(x) ↓ ∧{{z}k(x)}k(w) ↓→ {w0}s(y, z, x, w) ↓ ∧{w0}s(y, z, x, w) = ({{z}k(x)}k(< ε,w >))01

and

{z}k(x) ↓ ∧{{z}k(x)}k(w) ↓→ {w0}s(y, z, x, w) ↓ ∧{w0}s(y, z, x, w) = ({{z)}k(x)}k(< ε,w >))11

where, for ease of reading, (w)ij abbreviates ((w)i)j .
We now use result 5. Let R = R2,t(v, w0, w1). Thus, given n, s ∈ ω as above, there is q ∈ ω

such that,
{v}n(y, z) ↓→ {R}q(y, z, ε) ↓ ∧{R}q(y, z, ε) = {v}n(y, z)

and
{R}q(y, z, x) ↓ ∧{w0}s(y, z, x, {R}q(y, z, x) |t(x)) ↓→

→ {R}q(y, z, x0) ↓ ∧{R}q(y, z, x0) = {w0}s(y, z, x, {R}q(y, z, x) |t(x))

and
{R}q(y, z, x) ↓ ∧{w1}s(y, z, x, {R}q(y, z, x) |t(x)) ↓→

→ {R}q(y, z, x1) ↓ ∧{R}q(y, z, x1) = {w1}s(y, z, x, {R}q(y, z, x) |t(x))

It is now easy to show, by notation induction on x, that

∀x({R}q(y, z, x) ↓ ∧{R}q(y, z, x) ≤ t(x) ∧G(x, {R}q(y, z, x)))

A simple calculation obtains a term e ∈ {0, 1}∗ and p ∈ ω such that, for any q ∈ ω, there exists
r ∈ ω in such a way that PTCA+ proves intuitionistically,

∀y∀z {e}p(y, z) ↓

and
{R}q(y, z, x) ↓→ {{e}p(y, z)}r(x) ↓ ∧{{e}p(y, z)}r(x) =< ε, {R}q(y, z, x) >

Clearly, this e does the job. ✷
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Corollary (Cook & Urquhart [3]). Suppose that Σb
1 − NIA �i ∀x∃yA(x, y), where A is an

arbitrary formula of the language L whose free variables are among x and y. Then there is a
polynomial time computable function f such that,

PTCA+ �i ∀xA(x, f(x))

Proof : Suppose Σb
1−NIA �i ∃y A(x, y) and, a fortiori, PTCA+ �i ∃y A(x, y). By the soundness

theorem, there is a term e ∈ {0, 1}∗ such that,

PTCA+
∞ � ∀x

∨

m

({e}m(x) ↓ ∧({e}m(x))0qA(x, ({e}m(x))1))

Since the q-realizability of a formula implies that formula, we may conclude that,

PTCA+
∞ � ∀x

∨

m

({e}m(x) ↓ ∧A(x, ({e}m(x))1))

Notice that the disjuncts of the above infinitary disjunction are first-order formulas. Hence, by
result 0 and the infinitary axiom of PTCA+

∞,

PTCA+
∞ �

∨

m

∀x ({e}m(x) ↓ ∧A(x, ({e}m(x))1))

By the conservativeness result there is n ∈ ω such that,

PTCA+ �i ∀x ({e}n(x) ↓ ∧A(x, ({e}n(x))1))

Thus, we may put f(x) := ({e}n(x))1. ✷

Corollary. Suppose that

Σb
1 −NIA �i ∀x1∃y1∀x2∃y2 . . .∀xn∃ynA(x1, y1, x2, y2, . . . , xn, yn)

where A is an arbitrary formula of the language L whose free variables are among x1, x2, . . . , xn

and y1, y2, . . . , yn. Then there are polynomial time computable functions f1, f2, . . . , fn such that,

PTCA+ �i ∀x1∀x2 . . .∀xnA(x1, f(x1), x2, f(x1, x2), . . . , xn, f(x1, x2, . . . , xn))

Proof : This corollary is a consequence of n applications of the previous corollary. ✷

3 The saturation argument

The aim of this section is to prove the conservativeness result stated on the previous section. The
method of proof is best explained by the words of Dirk van Dalen [13]: “If one looks at a Kripke
model from the outside, then it appears as a complicated concoction of classical structures, and
hence as a classical structure itself. Such a structure has its own language and we can handle it by
ordinary, classical, model-theoretic means.” With a view of establishing the relevant notation, we
will briefly sketch the procedure that associates a classical structure to a given Kripke structure.
For more details, the reader is referred to the above mentioned work of van Dalen.

Unless otherwise stated, our Kripke structures have a least element, usually denoted by 0. Let
M be a Kripke structure for a certain language L. We will associate to M a classical structure
Mc, formulated in a certain language Lc, according to the following specifications. The language
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Lc is two-sorted: one sort α, β, γ, . . . for referring to the nodes of M, and the other sort x, y, z, . . .
for referring to the elements of the worlds of M. This two-sorted language is obtained from L by
replacing each n-ary predicate symbol P (each function symbol f , respectively) by an (n+ 1)-ary
predicate symbol P c (by an (n+ 1)-ary function symbol fc, respectively), and by adding two new
binary predicate symbols ≤ and D and a constant 0. The structure Mc validates the following
laws (referred to by Θ):

1. 0 ≤ α ∧ α ≤ α

2. α ≤ β ∧ β ≤ γ → α ≤ γ

3. α ≤ β ∧ β ≤ α→ α = β

4. D(α, x) ∧ α ≤ β → D(β, x)

5. P c(α, x) ∧ α ≤ β → P c(β, x)

6. D(α, x) → D(α, fc(α, x))

7. α ≤ β → fc(α, x) = f c(β, x)

where D(α, x) abbreviates ∧1≤i≤nD(α, xi), on the supposition that x stands for the n-tuple
x1, x2, . . . , xn. Note that Θ is such that every model of Θ corresponds uniquely to a Kripke
structure.

It is straightforward to translate the forcing clauses into the extended language. Firstly we
must define tcα, for t a term of L and α a variable of the node-sort. If t is a variable x, xc

α is x.
If t is f(t1, . . . , tn), then tcα is f c(α, (t1)c

α, . . . , (tn)c
α). We are now ready to give the clauses for

translating the forcing relation:

1. (�α P (t1, . . . , tn))c is P c(α, (t1)c
α, . . . , (tn)c

α)

2. (�α A ∧B)c is (�α A)c ∧ (�α B)c

3. (�α A ∨B)c is (�α A)c ∨ (�α B)c

4. (�α A→ B)c is ∀β ≥ α((�β A)c → (�β B)c)

5. (�α ∃xA(x))c is ∃x(D(α, x) ∧ (�α A(x))c)

6. (�α ∀xA(x))c is ∀β ≥ α∀x(D(β, x) → (�β A(x))c)

The following is straightforward:

M �α A if, and only if, Mc |= (�α A)c

Lemma. For any countable Kripke model M of PTCA+ there is a countable Kripke model M∞

of PTCA+
∞ which forces exactly the same first-order sentences.

Proof : Let M be a countable Kripke model of PTCA+, and consider Mc its associated classical
structure, as described above. Take N a (countable) recursively saturated structure elementarily
equivalent to Mc, and read-off from N the unique Kripke structure M∞ associated with it. We
must check that for any recursive enumeration F0(x), F1(x), . . . of first-order formulas of Lp with
only a finite number of parameters,

M∞ � ∀x
∨

n

Fn(x) →
∨

n

∀x
∨

k≤n

Fk(x)

11



In order to show this, let α be an arbitrary node of M∞ such that,

M∞ �α ∀x
∨

n

Fn(x)

This means that,
N |= ∀β ≥ α∀x(D(β, x) →

∨

n

(�β Fn(x))c)

It is clear that the sequence of formulas (�β F0(x))c, (�β F1(x))c, . . . is still a recursive enu-
meration. Hence, due to the recursive saturation of N , we may conclude that,

N |=
∨

n

∀β ≥ α∀x(D(β, x) →
∨

k≤n

(�β Fk(x))c)

This shows that,
M∞ �α

∨

n

∀x
∨

k≤n

Fk(x)

✷

The next ingredient that we need is the operation ( ) → (Σ)′ described by Smorynski in
[12]. We briefly sketch this (two-stage) operation. The first stage consists in defining the disjoint
sum

∑
i∈I Mi of a family (Mi)i∈I of Kripke structures. This disjoint sum is the natural Kripke

structure obtained from the family (Mi)i∈I whose underlying partial ordering is the disjoint sum
of the partial orderings of the members of the family (note that if the family has more than one
member, its disjoint union does not have a least element). It is a simple fact that if (Mi)i∈I is a
family of models of PTCA+, then so is its disjoint sum. The second stage of the operation is a
slash construction. Given M a Kripke model (not necessarily with a least element) of PTCA+,
M′ is obtained from M by adding a new node below all the nodes of M, and by putting there
the standard model {0, 1}∗. This construction is well defined, since atomic formulas are decidable
in PTCA+ (see the last result of the appendix). The following lemma can be proved like theorem
5.2.4 of [12]:

Lemma. Let (Mi)i∈I be a family of Kripke models of PTCA+. Then (
∑

i∈I Mi)′ is a model of
PTCA+.

We are now ready to prove the conservativity result of the previous section.

Proof (of conservativity result): Let A0, A1, . . . be a sequence of (first-order) sentences of
LP , and suppose that PTCA+

∞ � ∨nAn. In order to get a contradiction, assume that there is no
m ∈ ω such that PTCA+ �i Am. By the completeness theorem of intuitionistic logic, for each
m ∈ ω, there is a Kripke model Mm of PTCA+ which does not force Am. Let M be (

∑
n Mn)′.

According to the previous lemma, this is a model of PTCA+ and it is a simple exercise to show
that, for any m ∈ ω, M �� Am. Now, by the first lemma above, let M∞ be a Kripke model of
PTCA+

∞ which forces the same first-order sentences as M. Thus, in particular, for every m ∈ ω,
M∞ �� Am. This contradicts the fact that M∞ forces ∨nAn. ✷

4 Two more applications

The method of section 2 generalizes naturally to the other levels of Buss’s hierarchy of theories,
thus providing alternative proofs of the results of Victor Harnik in [9]. Let us describe these results
in our stringlanguage notation. Given j ≥ 2, Σb

j-NIA is the stringlanguage analogue of the theory
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Sj
2 of Buss, and ∃≤∆b

j-NIA is the analogue of (what may be called) Sj
2(PVj) (see [10]). The theory

∃≤∆b
j-NIA and its language are fully described in [7]. We briefly discuss them here. In order to

introduce the language Lj (j ≥ 2), it is better to start with L1. This is just the language LP of
section 2. The language Lj is obtained from Lj−1 by adding a new function symbol K∃≤A(x, y) for
each open formula A(x, z) of Lj−1 – with the intended meaning of being the characteristic function
of the set defined by the predicate ∃z ≤ y A(x, z) – and, then, by permitting the construction of
new function symbols by means of composition and bounded iteration on notation (thus obtaining
a function symbol for each function in ✷

p
j ). The theory ∃≤∆b

1-NIA is just PTCA+. The theory
∃≤∆b

j-NIA is obtained from ∃≤∆b
j−1-NIA by adding the following three classes of axioms:

(1) If A(x, z) is an open formula of Lj−1, then

K∃≤A(x, y) = 0 ∨K∃≤A(x, y) = 1

K∃≤A(x, y) = 1 → ∃z ≤ y A(x, z)

K∃≤A(x, y) = 0 → ∀z ≤ y ¬A(x, z)

are axioms. (Note that the above slightly departs from the definition in [7], although both
definitions are classically equivalent.)

(2) Open axioms describing simple definitional properties of the other new function symbols
(other than the K’s).

(3) The scheme of induction on notation for formulas of the form ∃x ≤ t A, where t is a term in
which the variable x does not occur and A is an open formula of the language Lj (note that
these formulas define exactly the Σp

j -sets in the standard model).

In classical logic it is well-known that the theory ∃≤∆b
j-NIA is a conservative extension of the

theory Σb
j-NIA (see, for instance, [10]). However, as Harnik remarked, this requires application of

excluded middle for Σb
j−1-formulas and for Πb

j−1-formulas (this is on a par with the case j = 1,
notwithstanding the fact that in the base case the required instances of excluded middle come
automatically). Let Ωj be the set of all formulas of the form φ ∨ ¬φ, where φ ∈ Σb

j−1 ∪ Πb
j−1.

By the previous discussion, the intuitionistic theory ∃≤∆b
j-NIA is conservative over intuitionistic

Σb
j-NIA. Harnik’s result can be reformulated thus:

Theorem (Harnik [9]). Let j ≥ 2. Suppose that the theory Σb
j − NIA + Ωj �i ∀x∃yA(x, y),

where A is an arbitrary formula of the language of L whose free variables are among x and y. Then
there is a ✷

p
j -function f such that,

∃≤∆b
j −NIA �i ∀xA(x, f(x))

Proof (sketch): Given A(w) a Σb
j−1-formula, we introduce the notions {z}A

n (x) ↓ and {z}A
n (x),

which can be “smoothly” formalized within intuitionistic ∃≤∆b
j-NIA by an open formula of Lj ,

respectively, a function symbol of Lj . These are familiar notions: {z}A
n (x) is the output of the

Turing calculation with Gödel number z and oracle A(w) for the input x, provided that this
calculation is done in less than (�1 + �2 +2)n steps, where �1 and �2 are, respectively, the lengths of
z and x (when the calculation exceeds this number of steps, i.e., when {z}A

n (x) ↓ does not hold, the
default value ε is given). Let Kj−1(w) be a natural Σb

j−1 complete set. We shall use the following
result:
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Result. Given f a ✷
p
j -function, there is a term e ∈ {0, 1}∗ and an element m ∈ ω such that the

theory ∃≤∆b
j-NIA proves the following intuitionistically,

∀x ({e}Kj−1
m (x) ↓ ∧f(x) = {e}Kj−1

m (x))

A proof of a reformulation of the above result appears in Pudlak’s monograph [8] for the classical
case. However, it is easy to see that Pudlak’s arguments also go through in the intuitionistic case
since they only use excluded middle for open formulas of Lj (and these are, of course, decidable).

Given j ≥ 2, we will work with the concept of q-realizability obtained from that of section 2
by modifying the first clause to,

zqA is A, if A is an open formula of Lj

and by changing, throughout, {z}n(x) ↓ and {z}n(x) for {z}Kj−1
n (x) ↓ and {z}Kj−1

n (x), respec-
tively. A straightforward reformulation of the soundness theorem holds (the proof uses suitable
modifications of the six results mentioned in section 2; for instance, the above result is the modified
version of result 1 that is now needed). The only novelty in the proof of the soundness theorem
is the q-realizability of the axioms in (1) above. The first and last groups of these axioms pose
no trouble (note that the q-realizability of ∀z ≤ y ¬A(x, z) reduces to ∀z ≤ y ¬A(x, z) itself). We
only need to be concerned with the q-realizability of the statements,

K∃≤A(x, y) = 1 → ∃z ≤ y A(x, z)

where A(x, z) is an open formula of Lj−1. This easily follows from the fact that there is a function
symbol wA of Lj such that the theory ∃≤∆b

j-NIA proves intuitionistically,

∀x∀y (∃z ≤ y A(x, z) → wA(x, y) ≤ y ∧A(x,wA(x, y)))

This result was proved in [7] for the classical case, but the same proof also holds intuitionistically.
The result of Harnik now follows from the soundness theorem and a suitable conservativity

result. There are no problems in proving such a conservativity result by the methods of section 3.
✷

Finally, we briefly describe the case of the theory IΣ1, the fragment of PA whose induction
scheme is restricted to (strict) Σ1-formulas. It is well-known that the primitive recursive functions
can be smoothly introduced in IΣ1, even intuitionistically. If we extend the language of arithmetic
L in order to contain function symbols for each (description of a) primitive recursive function, we
thus obtain the theory PRA+. In short, this theory is formulated in the extended language LP of
primitive recursive arithmetic and its non-logical axioms are the defining equations for all primitive
recursive functions plus the axiom scheme of induction restricted to Σ1-formulas. Recently, Kai
Wehmeier proved the following theorem:

Theorem (Wehmeier [15]). Suppose that IΣ1 �i ∀x∃yA(x, y), where A is an arbitrary formula
of the language of L whose free variables are among x and y. Then there is a primitive recursive
function f such that,

PRA+ �i ∀xA(x, f(x))

The method of proof of section 2 yields this result if we suitably modify the notions of {x}n(y)
and {x}n(y) ↓. For each n, let En be the nth Grzegorczyk function (we are following the notation
of [11]). We define {x}n(y) as the output of the Turing machine calculation with Gödel number x
for the input y, provided that this calculation is done in less than En(max(x, y)) steps (when the
calculation exceeds this number of steps, i.e., when {x}n(y) ↓ does not hold, the default value 0
is given). These two notions can be formalized within intuitionistic PRA+ via an open formula,
respectively, a function symbol of the extended language LP . With these definitions, we have
available suitable modifications of results 1 and 5 of section 2 (the other results are immediate).
These modified results are, respectively,
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Result. Given f a primitive recursive function, there is a term e ∈ ω and an element m ∈ ω such
that the theory PRA+ proves the following intuitionistically,

∀x ({e}m(x) ↓ ∧f(x) = {e}m(x))

Result. Given m ∈ ω, there is a binary primitive recursive function R = Rm with the following
property: for every n, s ∈ ω there is p ∈ ω such that the theory PRA+ proves the following
intuitionistically,

{v}n(z) ↓→ {R(v, w)}p(z, 0) ↓ ∧{R(v, w)}p(z, 0) = {v}n(z)

and
{R(v, w)}p(z, x) ↓ ∧{w}s(z, x, {R(v, w)}p(z, x)) ↓→

→ {R(v, w)}p(z, x+ 1) ↓ ∧{R(v, w)}p(z, x+ 1) = {w}s(z, x, {R(v, w)}p(z, x))

where z is a m-tuple of variables.

With the above, the proof proceeds like in section 2.
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Appendix
A formula φ is decidable in the theory Γ if the formula φ∨¬φ is intuitionistically derivable from

Γ. The aim of this appendix is to show that the swq-formulas are decidable in the theory Σb
1−NIA.

The following proof actually shows that the swq-formulas are decidable in the theory consisting of
the fourteen basic open axioms together with the notation induction scheme for swq-formulas.

Proposition 1. The formula x = ε is decidable.

Proof : By notation induction on x applied to the formula x = ε ∨ x �= ε, using axioms 13 and
14. ✷

Lemma 2. The following are intuitionistically derivable in Σb
1 −NIA:

(2.1) (xy)z = x(yz)
(2.2) εx = x
(2.3) ε �= 0 ∧ ε �= 1
(2.4) x ⊆ x
(2.5) x ⊆ x0 ∧ x ⊆ x1
(2.6) x ⊆ xz
(2.7) x �= ε→ 0 ⊆ x ∨ 1 ⊆ x
(2.8) x ⊆ y → x = y ∨ x0 ⊆ y ∨ x1 ⊆ y
(2.9) x ⊆ y ∧ y ⊆ z → x ⊆ z
(2.10) x ⊆ z ∧ y ⊆ z → x ⊆ y ∨ y ⊆ x
(2.11) x �= ε→ ∃z(z0 = x ∨ z1 = x)
(2.12) xy = ε→ x = ε ∧ y = ε
(2.13) x ⊆ y → ∃z(xz = y)

Proof : (2.1) is proved by notation induction on z using axioms 1, 2 and 3. (2.2) is proved by
notation induction on x using axiom 1 and (2.1). (2.3) is a consequnce of axioms 13 and 14 and
of (2.2). (2.4) is proved by induction on x using axioms 9, 10 and 11. (2.5) is an immediate
consequence of (2.4) and axioms 10 and 11. Similarly, (2.7), (2.8), (2.9) and (2.10) are proven
by notation induction on x, y, z and z, respectively. (2.11) is proven by notation induction on x
applied to the swq-formula x �= ε → ∃z ⊆ x(z0 = x ∨ z1 = x). To show (2.12) we firstly note
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that the implication y �= ε → xy �= ε is an immediate consequence of (2.11) plus axioms 13 and
14. Since “being equal to ε” is decidable, the assertion xy = ε entails y = ε and, henceforth,
x = ε as well. Finallly, (2.13) is proven by notation induction on y applied to the swq-formula
x ⊆ y → ∃z ⊆∗ y (xz = y). ✷

Lemma 3. The following are intuitionistically derivable in Σb
1 −NIA:

(3.1) 1 × zx = (1 × z)(1 × x)
(3.2) (1 × x)1 = 1(1 × x)
(3.3) (1 × x)(1 × y) = (1 × x)(1 × z) → 1 × y = 1 × z
(3.4) 1 × x = ε→ x = ε
(3.5) x ⊆ y ∧ 1 × x = 1 × y → x = y
(3.6) xy = x→ y = ε
(3.7) x ⊆ y ∧ y ⊆ x→ x = y

Proof : (3.1) and (3.2) are straightforward by notation induction. (3.3) is also proved by notation
induction on x. The base case x = ε is immediate by (2.2), since 1 × ε = ε by axiom 5. Assume
that (1 × x0)(1 × y) = (1 × x0)(1 × z). Then, by axiom 6, (1 × x)1(1 × y) = (1 × x)1(1 × z).
Hence, by (3.2), (1 × x)(1 × y)1 = (1 × x)(1 × z)1. Thus, by axiom 8, we may conclude that
(1 × x)(1 × y) = (1 × x)(1 × z). By induction hypothesis we get 1 × y = 1 × z. The case x1 is
similar.

Since “being equal to ε” is decidable, (3.4) is equivalent to x �= ε→ 1 × x �= ε. Suppose x �= ε.
By (2.11) there is z such that x = z0 (the case x = z1 is similar). Hence, 1×x = 1×z0 = (1×z)1,
and this last term is not equal to ε by axiom 14. In order to show (3.5), assume that x ⊆ y and
1 × x = 1 × y. By (2.13), take z such that y = xz. By (3.1) we get 1 × y = (1 × x)(1 × z). By
(3.3) this entails 1× z = ε. We may conclude that z = ε by (3.4). (3.5) is also easy: if xy = x then
1× xy = 1× x and so, by (3.1), we get (1× x)(1× y) = 1× x. This entails 1× y = ε, and so – by
(3.4) – y = ε.

Finally, assume that x ⊆ y and y ⊆ x. By (2.13) take z and w such that y = xz and x = yw.
We get y = ywz and so, by (3.6), wz = ε. Hence, by (2.12), w = z = ε, i.e., x = y.

✷

Definition. x ⊥ y abbreviates the following formula:

∃z((z0 ⊆ x ∧ z1 ⊆ y) ∨ (z1 ⊆ x ∧ z0 ⊆ y))

Lemma 4. The following are intuitionistically derivable in Σb
1 −NIA:

(4.1) x ⊥ y ∨ x ⊆ y ∨ y ⊆ x
(4.2) x ⊥ y → x � y

Proof : The proof of (4.1) is by notation induction on y (this is permissible since the formula
x ⊥ y is readily equivalent to a swq-formula). The base case x = ε makes the second disjunct true.
Assume, by induction hypothesis, that x ⊥ y or x ⊆ y or y ⊆ x (in order to conclude a similar
disjunct for y0 – the case for y1 is similar). If either the first or the second of theses disjuncts is
true, the same applies to the disjunct x ⊥ y0 ∨ x ⊆ y0. Otherwise, y ⊆ x. In this case, by (2.8),
either y0 ⊆ x or y1 ⊆ x or y = x. We respectively conclude either y0 ⊆ x or x ⊥ y0 or x ⊆ y0.

To show (4.2), assume that x ⊥ y and x ⊆ y. Take, without loss of generality, an element z
such that z0 ⊆ x (thus, z0 ⊆ y) and z1 ⊆ y. By (2.10) either z0 ⊆ z1 or z1 ⊆ z0. In either case
we get a contradiction by (3.5) and axiom 12. ✷

Proposition 5. The formulas x ⊆ y and x = y are decidable.
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Proof : Take x and y. By (4.1), either x ⊥ y or x ⊆ y or y ⊆ x. We saw in the last lemma
that the first disjunct implies x � y. Hence, we need only consider the case y ⊆ x. By (2.8),
either y0 ⊆ x or y1 ⊆ x or y = x. The last case poses no trouble. Anyone one of the first two
cases in conjunction with x ⊆ y gives rise to a contradiction (i.e., in these cases x � y holds
intuitionistically). Let us see, for instance, that y0 ⊆ x and x ⊆ y gives rise to a contradiction. By
(2.9) these two statements imply y0 ⊆ y. Hence, y = y0z, for some z. By (3.6) this implies that
0z = ε, which in turn implies 0 = ε, a contradiction with (2.3).

By (2.4) and (3.7), x = y is equivalent to x ⊆ y ∧ y ⊆ x. Hence, x = y is equivalent to a
Boolean combination of decidable formulas, and hence it is decidable. ✷

Proposition 6. Let A(x) be a decidable swq-formula in which the variable y does not occur.
Then the formulas ∃x ⊆ y A(x) and ∀x ⊆ y A(x) are decidable. As a consequence, the statement
x ⊆∗ y is decidable.

Proof : We show by notation induction on y that the swq-formula

(4) ∃x ⊆ y A(x) ∨ ¬∃x ⊆ y A(x)

is intuitionistically derivable from the theory Σb
1 − NIA. The base case y = ε reduces to the

decidability of A(ε). Now, assume by induction hypothesis that (4) holds. Well, the formula
∃x ⊆ y0A(x) is equivalent to A(y0) ∨ ∃x ⊆ y A(x). This last statement is a Boolean combination
of decidable statements and, hence, is decidable. Similarly for y1 instead of y0. The universal case
is analogous.

By the above, the formula F (x, y, z) := ∃w ⊆ y (wx ⊆ z) is decidable. In particular, x ⊆∗ y –
which is F (x, y, y) – is decidable.

✷

Lemma 7. The following are intuitionistically derivable in Σb
1 −NIA:

(7.1) x0 ⊆ xy → 0 ⊆ y
(7.2) x1 ⊆ xy → 1 ⊆ y
(7.3) xy ⊆ xw → y ⊆ w
(7.4) xy = xw → y = w

Proof : In order to prove (7.1), assume that x0 ⊆ xy. Then there is z such that x0z = xy and,
henceforth, 1× x0z = 1× xy. Since 1× 0z = (1× 0)(1× z) = 1(1× z), we may conclude by (3.19,
(3,3) and (2.6) that 1 ⊆ 1 × y and, fortiori, that y �= ε. By (2.7) either 0 ⊆ y or 1 ⊆ y. We show
that the latter alternative does not hold. In fact, if this alternative were the case, y = 1w for some
w. Hence x0 ⊆ x1w. This implies, by (2.10) and (3.5) that x0 = x1, which contradicts axiom 12.
The proof of (7.2) is similar. (7.3) is proved by notation induction on y. The base case y = ε is
trivial. Suppose that xy0 ⊆ xw. Then xy ⊆ xw and, by induction hypothesis, y ⊆ w. So, w = yu,
for a certain u. We get xy0 ⊆ xyu and, according to (7.1), 0 ⊆ u, i.e., u = 0v for some v. Hence
w = y0v, getting y0 ⊆ w. Tha case for y1 is similar. Finally, (7.4) is a consequence of (7.3) and
(3.7). ✷

Proposition 9. Let A(x) be a decidable swq-formula in which the variable y does not occur.
Then the formulas ∃x ⊆∗ y A(x) and ∀x ⊆∗ y A(x) are decidable.
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Proof : Notice that the formula ∃x ⊆∗ y A(x) is equivalent to:

∃z ⊆ y∃w ⊆∗ y (zw = y ∧ ∃x ⊆ wA(x))

Hence, by proposition 6 it is enough to show that the formula,

∃w ⊆∗ y (zw = y ∧ ∃x ⊆ wA(x))

is decidable. This is a consequence of propositions 5 and 6 and lemma (7.4).
The case of the universal quantifier is similar. ✷

The latter proposition together with proposition 5 and the fact that Boolean combinations of
decidable formulas are decidable yield,

Theorem. Every swq-formula is decidable in Σb
1 −NIA.

From proposition 5, it is also clear that,

Theorem. Every open formula of LP is decidable in PTCA+.
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