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Abstract

It is known that there is a sound and faithful translation of the full
intuitionistic propositional calculus into the atomic polymorphic system
F.t, a predicative calculus with only two connectives: the conditional and
the second-order universal quantifier. The faithfulness of the embedding
was established quite recently via a model-theoretic argument based in
Kripke structures. In this paper we present a purely proof-theoretic proof
of faithfulness. As an application, we give a purely proof-theoretic proof of
the disjunction property of the intuitionistic propositional logic in which
commuting conversions are not needed.

1 Introduction

A propositional formula is a formula built from a stock of propositional letters
(or constants) P, @, R, etc using the propositional connectives L, A, V and —.
In [6], Prawitz defined the following translation:

Py*: , with P a propositional constant

1) =VX.X

ANAB)* =YX ((A* = (B* = X)) = X)

(

(

(A— B)*:= A* —» B*

(

(AVB)* =VX((A* = X)— (B* = X) > X)),

where X is a second-order propositional variable which does not occur in A* or
B*. The target language is the language of Girard’s (polymorphic) system F (cf.
[5]). It consists of the smallest class of expressions which includes the atomic
formulas (propositional constants P, @, R, ... and second-order propositional
variables X, Y, Z, ...) and is closed under implication and second-order uni-
versal quantification. Note that the translation A* of a propositional formula A
is, clearly, a formula without second-order free variables. Prawitz’s translation
is actually an embedding of the propositional intuitionistic calculus into system
F in the sense that if ; A then Fg A* (here F; denotes provability in the
intuitionistic propositional calculus and Fg denotes provability in the system



In 2006, the first author noticed (cf. [1]) that the above embedding still
works if the target system F is restricted to a predicative system nowadays
known as F,¢ (an acronym for atomic polymorphism). The atomic polymorphic
system F,¢ has the same formulas as F, but replaces the second-order universal
elimination rule by a predicative variant. For definiteness, we describe the
(natural deduction) rules of F,¢. The introduction rules are as in F:

(4)
B A
a-p F vx.A

where the notation (A) says that the formula A is being discharged and, in
the universal rule, X does not occur free in any undischarged hypothesis. The
elimination rules of F,; are, however,

A B A VX.A
= —E “aic/x] "E

where C' is an atomic formula (free for X in A), and A[C/X] is the result of
replacing in A all the free occurrences of X by C'. Note that only atomic instan-
tiations are permitted in the VE rule. This contrasts with the (impredicative)
system F, where C can be any formula.

The reason why, despite the restriction of the VE-rule, the system F¢ is still
able to embed full intuitionistic propositional calculus lies in the availability of
instantiation overflow, i.e., for the three types of universal formulas occurring
in Prawitz’s translation, it is possible to derive in F,¢ the formulas resulting
from instantiations of the second-order variable X by any formula, not only the
atomic ones. For a complete description of instantiation overflow and of the
embedding see [1, 2]. In the former reference, it is also shown that F,¢ has both
the subformula property (for normal derivations) and an appropriate form of
the disjunction property. (The notion of subformula only needs explanation for
universal formulas. The proper subformulas of a formula of the form VX.A[X]
are the subformulas of the formulas of the form A[C/X], for C an atomic formula
free for X in A.) The latter reference is a study on the translation of the
commuting conversions of the intuitionistic propositional calculus into F,¢. Note
that, since the connectives 1, V and 3 are absent from Fy¢, this system has no
commuting conversions. For more on F,¢, including a proof that the system is
strongly normalizable for Sn-conversions, see [3].

As we have discussed, Prawitz’s translation (-)* gives a sound embedding of
the intuitionistic propositional calculus into Fa¢, that is: If -; A then Fg,, A*.
The translation is also faithful. I.e.:

If kg, A* then H; A.



This latter fact was recently proved using a model-theoretic argument in [4].
In the present paper, we give a pure proof-theoretic proof of the faithfulness of
F.t. We believe that this approach is interesting in its own right. Furthermore,
it shows how to obtain a proof-theoretic proof of the disjunction property for
the intuitionistic propositional calculus via natural deduction without the need
of commuting conversions. As we have suggested in previous papers (cf. [2, 3]),
the need for the ad hoc commuting conversions is a reflection of the fact that
we are not considering intuitionistic propositional logic in its proper setting, viz
the wider setting of F,¢.

The paper is organized in three sections. After this introduction, Section 2
presents the new proof-theoretic proof of the faithfulness of F,;. The alternative
proof of the disjunction property of the intuitionistic propositional calculus is
presented in Section 3.

2 A proof-theoretic proof of faithfulness

A second-order universal formula which is a subformula of a formula of the
form A* (A a propositional formula) must take one of three forms: VX.X,
VX(C* = (D" = X)) - X) or VX((C* = X) = ((D* - X) — X)), with
C' and D propositional formulas. Hence, the following definition is in good
standing:

Definition 2.1. Let A be a propositional formula. For B any subformula of
A*, we define a formula B in the language of propositional calculus (L, AV, =)
extended with second-order variables (but without second-order quantifications)
in the following way:

If B is atomic, then B := B.

If B:=C — D, then B:=C — D.

If B:=VX.X, then B:= 1.

If B:=VX((C* = (D* = X)) — X), then B:=CAD.

If B:=VX((C* = X) = ((D* = X) = X)), then B:=C V D.

Note that B and B have the same free variables. Also, when C' is a propo-
sitional formula, C* is just C.

Lemma 2.2. Let I be a tuple of formulas in Fay and A be a formula in Fag
with their free variables among the variables in X. If there is a proof (say D)
in Foy of A[X] from I'[X] in which all formulas (occurring in D and T'[X]) are
subformulas of formulas of the form D* (D a propositional formula), then

L[F/X] i A[F/X]



for any tuple of propositional formulas F. For T'[X] := A[X],..., A,[X],
[[F/X] denotes the tuple of propositional formulas A;[F/X], ..., A,[F/X].
(Of course, the reading of A[F/X] is to first consider the transformed formula
A and, afterwards, effect the substitution [F/X] in it. The alternative reading
does not make sense in general.)

Proof. By induction on the length of the derivation D.

If D is a one node proof-tree, then A[X]is in ['[X]. The result is trivial since
for any tuple F of propositional formulas we have A[F/X]F; A[F/X].

e Case where the last rule is a —I:

BIX]

A[X] — BIX]

Fix F a tuple of propositional formulas. The aim is to prove that f[F/)_(] Fi
A[F/X] — B[F/X]. According to the induction hypothesis, we have A[F/X],T[F/X] t;
B[F/X]. Thus, adding an introduction rule for implication which discharges
A[F/X], we get the desired result.

e Case where the last rule is a —E:

AIX]  A[X] - BIX]
BIX]

Fix F a tuple of propositional formulas. By induction hypothesis, we have
both T[F/X] +; A[F/X] and T[F/X] ; A[F/X] — B[F/X]. Applying the
elimination rule for implication, we get T[F/X] ; B[F/X].

e Case where the last rule is a VI:

Y]

A[?, X]
VX.A[Y, X]

Since VX.A[Y, X] is a subformula of a translated formula D*, with D a
propositional formula, we know that only three cases may occur: (i) A is X;
(ii) A has the form (C* — (E* — X)) — X or (iii) A has the form (C* —
X) = (F* —- X) — X) with C and E propositional formulas. In any of the
cases, the only free variable in 4 is X. So, in the scheme above, A[Y, X] and
VX.A[Y, X] may be replaced by A[X] and VX.A[X] respectively.



In case (i), fix F a tuple of propositional formulas and let us prove that
[[F/Y] F; L. By induction hypothesis we know that T[F/Y] F; X[G/X] for
every propositional formula G. Just take G as being L.

In case (ii), we need to prove that T[F/Y] F; C A E, for every tuple F
of propositional formulas. Fix F. By induction hypothesis, we know that
T[F/Y] F; A[G/X] for any propositional formula G. In particular, for G' :=
C A E, we have

T[F/Y]F; (C = (E—CAE)) = CAE.

Thus, in the natural deduction calculus for the intuitionistic propositional
calculus, we have the following proof

(€  (E) [[F/Y]
__ChE :
E—-CAE .
C—(E—-CAE) (C—-(E—-CAFE))—-CAFE
CAE

Therefore, f[F/Y] FH, CNE.

In case (iii), we need to prove that f[F/}_’] F; C V E, for every tuple F
of propositional formulas. Fix F. By induction hypothesis, we know that
[[F/Y] F; A[G/X], for any propositional formula G. In particular, for G :=
CV E, we have

[[F/Y]F (C—-CVE)— ((E—-CVE)—CVE).

Thus, in the intuitionistic propositional calculus, we have the following proof

IF/Y
©) [./ ]
CVE : (E)
C—-CVE (C—>CVE)-»(E—-CVE)—CVE) CVE
(FE—-CVE)—-CVE E—-CVE
CVE

Therefore, f[F/Y] H, CVE.
e Case where the last rule is a VE:

T[Y]

VX.A[X,Y]
A[C/X,Y]



with C' an atomic formula in Fa, i.e., C is a propositional constant or a second-
order variable. We assume w.l.o.g that if C' is a second-order variable then C' is
among the variables Y, say Y;.

By hypothesis, since YX.A[X,Y] is a subformula of a translated formula,
we know that this formula falls into one of the following three cases: (i) it is
the translation of L; (ii) it is the translation of a conjunction; or (iii) it is the
translation of a disjunction. Moreover, ¥X.A[X,Y] has no free variables and
s0, in the scheme above we can replace VX.A[X,Y] and A[C/X,Y] by VX.A[X]
and A[C/X], respectively.

In case (i), we have the following proof in F,¢

Y]

VX.X
C

and we want to prove that T[F /Y] \; C[F;/Y;], for any tuple F' of propositional
formulas. By F; we denote the formula of the tuple F' which instantiates Y; in

T[F/Y].
Fix F. By induction hypothesis we know that I'[F/Y] ; L. As a conse-
quence, in the intuitionistic propositional calculus we have the following proof

L[F/Y]
L
C[F;/Yi]

Hence, f‘[F'/Y] F, C[F;/Y:].
In case (ii), we have the following proof in F 44

Y]

VX((H* — (E.* - X)) = X)
(H* = (E* = (C)) = C

We want to prove that T'[F/Y] +; (H — (E — C[F;/Yi])) — C|F;/Y], for
any tuple F of propositional formulas. Fix F. By induction hypothesis we know
that f‘[F‘ /Y] F; HA E. Thus, we have the following proof in the intuitionistic
propositional calculus



: PIF /Y]
HAE :
(H = (E = C[F/Yi])) H HAE
E— C[F/Yi] E
C[F;/Yi]

(H = (E — C[F;/Yi])) = C[Fi/Y]
This is what we want.
In case (iii), we have the following proof in Fat
Y]
VX(H* - X) = (B - X) = X))
(HF - C)— (E*—=C)—0C)

Given any tuple F of propositional formulas, the aim is to show that T[F/Y] F;
(H — C[F;/Y;]) — (B — C[F;/Yi]) — C[F;/Y:]). Fix F. By induction hy-
pothesis, [[F/Y] F; H V E. Thus, we have the following proof in the intuition-
istic propositional calculus

T[F/Y]
ﬁ (H—CIFR/Y]) (H) (E=C[R/Y)) (B
HVE C[F;/Y] C[F;/Yi]
C[F;/Y;]
(E — C[F;/Y;]) = C[F;/Yi]
(H — C[Fi/Yi]) — (E — C[Fi/Yi]) — C[F;/Yi))
We are done. O

Theorem 2.3 (Faithfulness). Let T := Ay,..., A, and A be propositional for-
mulas and consider their translations I'* := A7, ..., A% and A* into Fay.

If T*tp,, A* then I'k; A.

Proof. Suppose that I'* Fg_, A*. Since F,¢ has the normalization property (see
[3]), we know that there is a proof, say D, in normal form of A* with premises
I'*. By the subformula property (see [1], page 5), all formulas that occur in D
are subformulas of A* or are subformulas of formulas in I'*. Therefore, we are in
the conditions of application of Lemma 2.2. Applying such lemma, we conclude
that T F; A*, ie., T'H; A. O



3 Application

An advantage of having a sound and faithful embedding between two systems is
the possibility to transfer certain results from one system to the other. In this
section, as an application of the (proof-theoretic proof of the) faithfulness of F,¢,
we give a new proof of the disjunction property of the intuitionistic propositional
calculus. Note that the usual proof-theoretic proof of the disjunction property
requires the introduction of extra conversions associated with the connectives |
and V: the so called commuting conversions or permutative conversions. They
are needed to ensure that a proof in normal form has the subformula property.
The proof-theoretic proof that we present below does not rely on commuting
conversions.

Theorem 3.1. If +; AV B thent; A ort; B.

Proof. Suppose that -; AV B. Since the embedding of the full intuitionistic
propositional calculus into F,¢ is sound, we have g, (A V B)*. Applying
the disjunction property of Fa¢ (see [1], pages 5-7), we know that Fg_, A* or
Fg,, B*. By Theorem 2.3 (faithfulness), we conclude F; A or t; B. O
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