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Abstract

We construct a weak second-order theory of arithmetic which includes Weak

König’s Lemma (WKL) for trees defined by bounded formulae. The provably to-

tal functions (with Σb
1-graphs) of this theory are the polynomial time computable

functions. It is shown that the first-order strength of this version of WKL is exactly

that of the scheme of collection for bounded formulae.

1 Introduction

At the end of 1985, during a symposium on Hilbert’s Program, Wilfried Sieg posed the

following interesting problem : to find a mathematically significant subsystem of analysis

whose class of provably recursive functions consists only of the computationally “feasible”

ones1. (We thank Stephen Simpson for bringing this problem to our attention.) In the

present paper we set up a system for analysis – with Sieg’s “feasibility” condition fulfilled

by the polynomial time computable functions – which permitts induction on notation for

∗This work was partially supported by project 6E91 of CMAF (Portugal)
1See Sieg’s paper “Hilbert’s Program Sixty Years Later” in The Journal of Symbolic Logic, vol. 53, no2

(1988).
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NP-predicates and which includes the highly nonconstructive axiom asserting that every

infinite tree of finite sequences of zeros and ones has an infinite path. (This principle is

known as Weak König’s Lemma.)

The reader will notice that our whole set-up owes much to work of Harvey Friedman,

Stephen Simpson and others in the context of Reverse Mathematics with base induction

for Σ0
1-predicates and primitive recursiveness for the provably total functions.2 There

are, of course, differences. Most conspicuous is the special role played by the scheme

of collection for bounded formulae, whose strength is exactly the first-order strength of

Weak König’s Lemma for trees defined by bounded formulae (see Theorem 7). Since this

collection scheme is conservative over any bounded theory with respect to Π0
2-sentences3,

it may be included in our feasible theory for analysis. Hence, contrary to the ordinary

framework of Reverse Mathematics, our setting permitts the application of Weak König’s

Lemma, not only to set trees, but also to some definable trees. A case worth noting is the

following: although, in general, bounded formulae do not define sets in our system, they

do so provided these formulae happen to define infinite paths through the binary tree of

zeros and ones.
2For an explanation and achievements (up to 1986) of Reverse Mathematics see Simpson’s report

“Subsystems of Z2 and Reverse Mathematics” in the appendix to Gaisi Takeuti’s Proof Theory, North-

Holland 1987.
3This result is due to Samuel Buss in “A conservation result concerning bounded theories and the col-

lection axiom”, Proc. Amer. Math. Soc. 100, pp. 709-715 (1987). A very simple proof of a generalization

of this result can be found in Fernando Ferreira’s “A note on a result of Buss concerning bounded theories

and the collection scheme”, submitted to Portugaliae Mathematica. This proof is distilled from the proof

of a particular case stated in corollary 6 of the present paper.
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The question whether our system is mathematically significant is not dealt with in this

paper. Nonetheless, it seems worthwhile to pin down more precisely what this question

amounts to. We take it as requiring an investigation on how much of ordinary mathemat-

ics can be formalized within the system (or appropriate conservative extensions). More

specifically, we can ask whether our framework is suitable for doing Reverse Mathematics

with feasibility taken as basis, i.e., whether our framework provides an adequate vantage

point from which to measure the non-feasible contents of ordinary theorems of mathemat-

ics. Some tentative work in this direction was done in [F88] and a new report is under

way, in which we propose to consider the intermediate value theorem, the Heine-Borel

principle, the uniform continuity theorem and the existence (or not) of the maximum of a

continuos real function defined on a compact interval.

2 Basic Setup

As a guiding principle, we maintain that in weak systems of arithmetic with computational

significance it is more perspicuous to have the class of 0-1 words (set-theoretically, the

binary tree 2<ω) as the standard model, instead of the more traditional setting of the

natural numbers. Additionally, for the present purposes of presenting a second-order

theory with WKL, the binary tree setting is ideally transparent. Hence, we shall build

upon the binary tree theory Σb
1-PIND introduced in [F90].4 To make the paper relatively

self-contained we briefly describe this theory. Its language consists of three constant

symbols ε, 0 and 1, two binary function symbols (for concatenation, usually omitted)

4Henceforth, following [BS90], this theory will be called Σb
1-NIA (for Notation Induction Axiom).
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and ×, and a binary relation symbol ⊆ (for initial subwordness). There are fourteen basic

open axioms:

xε = x x × ε = ε

x(y0) = (xy)0 x × y0 = (x × y)x

x(y1) = (xy)1 x × y1 = (x × y)x

x0 = y0 → x = y x1 = y1 → x = y

x ⊆ ε ↔ x = ε

x ⊆ y0 ↔ x ⊆ y ∨ x = y0

x ⊆ y1 ↔ x ⊆ y ∨ x = y1

x0 �= y1

x0 �= ε

x1 �= ε

Note that, in the standard model, x× y is the word x concatenated with itself length of y

times.5 Subwordness of x with respect to y, denoted by x ⊆∗ y, is defined by ∃z ⊆ y(zx ⊆

y). The class of sw.q.-formulae is the smallest class of formulae of the language containing

the atomic formulae and closed under Boolean operations and subword quantification, i.e.,

quantification of the form ∀x ⊆∗ t(...) or ∃x ⊆∗ t(...), where the variable x does not occur

in the term t.6 The relation of x being of length less than or equal to the length of y,
5The growth rate of × corresponds exactly to the growth rate of Buss’ smash function �, as defined in

[B85].
6These formulae define exactly the FO sets, a notion introduced by N. Immerman: see his paper

“Descriptive and Computational Complexity” in Computational Complexity Theory, AMS Short Course

4



denoted by x ≤ y, is defined by 1× x ⊆ 1× y. The class of bounded formulae, also named

the class of Σb
∞-formulae, is the smallest class of formulae containing the sw.q.-formulae

and closed under Boolean operations and bounded quantification, i.e., quantification of

the form ∀x ≤ t(...) or ∃x ≤ t(...), where the variable x does not occur in the term t. In the

standard model these formulae define exactly the sets of the Meyer-Stockmeyer hierarchy.

We are interested in the particular fragment of the bounded formulae consisting of those

of the form ∃x ≤ tA, where A is a sw.q.-formula and t is a term in which the variable x

does not occur: these are called the Σb
1-formulae. In the standard model these formulae

define exactly the sets of the complexity class NP. The theory Σb
1-NIA consists of the basic

axioms plus the following induction scheme :

A(ε) ∧ ∀x (A(x) → A(x0) ∧ A(x1)) → ∀x A(x)

where A is a Σb
1-formula, possibly with parameters. This theory is equivalent, in a sense

that could be made precise, to Samuel Buss’ well-known theory S1
2 (see [B85] for the

definition) and, hence, has the following main property: whenever Σb
1-NIA 
 ∀x∃yA(x, y),

where A is a Σb
1-formula, there is a polynomial time computable function f such that

A(σ, f(σ)), for all σ ∈ 2<ω.7 This is the precise sense of saying that the provably total

functions of Σb
1-NIA are computationally feasible.

The second-order theories that we shall be concerned with are formulated in a two-

sorted language with word variables x, y, z, . . . and set variables X, Y , Z, . . . (the latter

ones intended to vary over subsets of 2<ω). The terms of this language are the same as the

Lecture Notes, vol. 38, 1989.

7Direct proofs of this result which bypass Buss’ formalism can be found in [F90] or [BS90].
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terms of the above first-order language ; for atomic formulae, we also allow expressions of

the form t ∈ X, where t is a term and X is a set variable. Note that equality between set

variables is not a basic notion, but rather defined by ∀x (x ∈ X ↔ x ∈ Y ). Exactly as in

the first-order case we define the usual classes of formulae : Σb
1, bounded, Π0

1, Π0
2, et al.

We just have to keep in mind that there are new atomic formulae to start with (in other

words, set parameters are permitted).

Our basic second-order theory is Σb
1-NIA plus the following comprehension scheme :

∀x (A(x) ↔ ¬B(x)) → ∃X ∀x (x ∈ X ↔ A(x))

where A and B are Σb
1-formulae, possibly with parameters, and X is a new set variable.

This scheme says that sets in NP∩co-NP exist : call it the ∇b
1-CA scheme.

Lemma 1. The second-order theory Σb
1-NIA + ∇b

1-CA is first-order conservative over

Σb
1-NIA.

Proof : This follows from the completeness theorems if one shows that for every first-

order model M of Σb
1-NIA (for convenience we will identify the model with its domain)

there is S ⊆ P(M) such that (M, S) is a second-order model of Σb
1-NIA+∇b

1-CA. Actually

a little more is true : if (M, S) |= Σb
1-NIA then (M, S∗) |= Σb

1-NIA + ∇b
1-CA, where S∗ is

the class of the subsets of M that are simultaneously definable in (M, S) by a Σb
1 and a

Πb
1 formula. That is, W is in S∗ iff there are Σb

1-formulae A(w, x,X) and B(w, y, Y ) and

elements a, b in M and U , V in S such that,

W = {c ∈ M : (M, S) |= A(c, a, U)} = {c ∈ M : (M, S) |= ¬B(c, b, V )}.

The checking is routine.
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Given a formula A of the second-order language and x a distinguished (word) variable

occuring free in A, we denote by Tree∞(Ax) the following formula,

∀x ∀y (A(x) ∧ y ⊆ x → A(y)) ∧ ∀u ∃x ≡ u A(x).8

Note that (1) x is a bound variable in the formula Tree∞(Ax) and (2) if A is a bounded

formula, then Tree∞(Ax) ∈ Π0
1. Let X be a set variable; Path(X) is the Π0

1-formula,

Tree∞((x ∈ X)x) ∧ ∀x ∀y(x ∈ X ∧ y ∈ X → x ⊆ y ∨ y ⊆ x).

Weak König’s lemma for trees defined by bounded formulae is the following scheme :

Tree∞(Ax) → ∃X (Path(X) ∧ ∀x (x ∈ X → A(x)))

where A is a Σb
∞-formula and X is a new variable. This principle will be known as

Σb
∞-WKL.

Theorem 2. The theory Σb
1-NIA+∇b

1-CA+Σb
∞-WKL is conservative over Σb

1-NIA with

respect to Π0
2-formulae.

Before proving this theorem we need to introduce some new concepts. We say that

(M, S) is a substructure of (N, T ) with set identification Φ, and write (M, S) ⊆Φ (N, T )9,

if M ⊆ N , i.e., M is a first-order substructure of N (henceforth we shall assume that the

domain of M is a subset of the domain of N), and Φ is a subset of S × T such that (1)

for each V ∈ S there is W ∈ T with (V, W ) ∈ Φ and (2) for all V ∈ S and W ∈ T , if

(V, W ) ∈ Φ then W ∩M = V . In case (V, W ) ∈ Φ we say that the set W already occurs in

8The expression x ≡ u means that x and u have the same length, that is, it abbreviates x ≤ u∧ u ≤ x.

9When there is no confusion, we write (M, S) ⊆ (N, T ).
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S. The following will also be used: given a third structure (P, R), with (N, T ) ⊆Θ (P, R),

then (M, S) ⊆Φ◦Θ (P, R); moreover, if Z ∈ R already occurs in S then Z already occurs

in T .

Consider a chain of structures (M0, S0) ⊆Φ0 (M1, S1) ⊆Φ1 (M2, S2) ⊆Φ2 . . . . The

union of this chain, represented by (M∞, S∞), is defined as follows:

a) M∞ =
⋃∞

k=0 Mk,

b) S∞ = {⋃i≥k Vi : k ∈ ω and, for all i ≥ k, (Vi, Vi+1) ∈ Φi}.

It is easy to show that, for each k ∈ ω, (Mk, Sk) ⊆Φk,∞ (M∞, S∞), where Φk,∞ is the

relation {(Vk,
⋃

i≥k Vi) : for all i ≥ k, (Vi, Vi+1) ∈ Φi}. Note that all the sets in S∞

already occur in some Sk.

We call (M, S) a Σb
∞-substructure (resp., a Π0

1-substructure) of (N, T ) if, for every

Σb
∞-formula (resp., Π0

1-formula) A(x,X) and elements a in M, V in S and W in T such

that (V, W ) is in Φ, then the following holds:

(M, S) |= A(a, V ) if and only if (N, T ) |= A(a,W ).

It is clear that the relation of Σb
∞-substructureness (resp., Π0

1-substructureness) is transi-

tive.

Lemma 3. If (M0, S0) ⊆Φ0 (M1, S1) ⊆Φ1 (M2, S2) ⊆Φ2 ... is a Σb
∞-chain then, for every

k ∈ ω, (Mk, Sk) is a Σb
∞-substructure of (M∞, S∞). Moreover, if each (Mk, Sk) is a model

of Σb
1-NIA then so is (M∞, S∞).
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Proof : Let A(x,X) be a Σb
∞-formula, a in Mk, V in Sk and W in S∞, such that (V, W )

in Φk,∞. To prove the first claim of the lemma it suffices to show that, if (M∞, S∞) |=

A(a,W ), then (Mk, Sk) |= A(a, V ). We show this by induction on the complexity of A.

The only interesting case to check is when A(x,X) is ∃y ≤ t(x)B(y, x,X), where y is a

variable not occuring in the term t(x) and B ∈ Σb
∞. By assumption there is b ∈ Σb

∞

satisfying b ≤ t(a) and (M∞, S∞) |= B(b, a,W ). Well, b ∈ Mn for some n ≥ k. Now, each

component W j of W is of the form
⋃

i≥k V j
i , for some sequence (V j

i )i≥k such that V j
k is the

jth-component of V and (V j
i , V j

i+1) ∈ Φi for all i ≥ k. Applying the induction hypothesis

we get (Mn, Sn) |= B(b, a, Vn). Hence (Mn, Sn) |= A(a, Vn). By Σb
∞-absoluteness we

conclude (Mk, Sk) |= A(a, V ).

The second part of the theorem is a consequence of Σb
∞-absoluteness.

Lemma 4. If (M0, S0) ⊆Φ0 (M1, S1) ⊆Φ1 (M2, S2) ⊆Φ2 ... is a Π0
1-chain then, for every

k ∈ ω, (Mk, Sk) is a Π0
1-substructure of (M∞, S∞). Moreover, if each (Mk, Sk) is a model

of ∇b
1-CA then so is (M∞, S∞).

Proof : The first part of the lemma can be easily proved with the help of the previous

result. To argue for the last claim, suppose that (M∞, S∞) |= ∀x(A(x) ↔ ¬B(x)), where

A, B ∈ Σb
1, possibly with parameters. Take n large enough so that all parameters already

occur in Mn ∪ Sn. By Π0
1-absoluteness, (Mn, Sn) |= ∀x(A(x) ↔ ¬B(x)). Hence there is

V ∈ Sn such that (Mn, Sn) |= ∀x(x ∈ V ↔ A(x)). Again by Π0
1-absoluteness (M∞, S∞) |=

∀x(x ∈ W ↔ A(x)), where W is such that (V, W ) ∈ Φn,∞. We are done.

Proof of the Theorem: Using completeness, this follows from the fact that every
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model of Σb
1-NIA + ∇b

1-CA has a Π0
1-absolute extension satisfying Σb

1-NIA + ∇b
1-CA +

Σb
∞-WKL. In order to see this, consider (M, S) a model of Σb

1-NIA + ∇b
1-CA. We build

a Π0
1-absolute chain (M0, S0) ⊆ (M1, S1) ⊆ . . . of models of Σb

1-NIA + ∇b
1-CA. Set M0 =

M , S0 = S and suppose that (Mn, Sn) is defined. By compactness take (M ′
n, S′

n) an

elementary extension of (Mn, Sn) for which there is an element cn with Mn < cn (i.e.,

such that x ≤ cn, for all x ∈ Mn). This elementary extension automatically defines a set

identification function Θn ⊆ Sn × S′
n. Set Mn+1 to be {c ∈ M ′

n : ∃a ∈ Mn c ≤ a} and let

S′
n |Mn+1= {W ∩ Mn+1 : W ∈ S′

n}. We get the following situation:

1. (Mn, Sn) ⊆Θn (M ′
n, S′

n)

2. (Mn, Sn) ⊆Φn (Mn+1, S
′
n |Mn+1)

3. (Mn+1, S
′
n |Mn+1) ⊆Ψn (M ′

n, S′
n)

where Φn = {(V, W ∩ Mn+1) : (V, W ) ∈ Θn} and Ψn = {(W ∩ Mn+1, W ) : W ∈ S′
n}. The

facts that the first inclusion is elementary and that the third inclusion is an end-extension

(hence preserving Σb
∞-statements), readily entail that the second inclusion is Π0

1-absolute

and that (Mn+1, S
′
n+1 |Mn+1) is a model of Σb

1-NIA. Define Sn+1 = (S′
n |Mn+1)

∗, as in

the proof of Lemma 1. The inclusion (Mn, Sn) ⊆ (Mn+1, Sn+1) is still Π0
1-absolute. Let

(M∞, S∞) be the union of this chain. By the previous lemmas, this union is a model of

Σb
1-NIA + ∇b

1-CA and a Π0
1-absolute extension of each of the models (Mn, Sn).

Finally, we check that Σb
∞-WKL holds in (M∞, S∞). Assume that (M∞, S∞) |=

Tree∞(Ax), where A is a Σb
∞-formula. Take n large enough so that all parameters from

A already occur in Mn ∪ Sn. Then, by Π0
1-absoluteness, (Mn, Sn) |= Tree∞(Ax). By ele-
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mentarity, (M ′
n, S′

n) |= Tree∞(Ax). So, there is c ∈ M ′
n with c ≡ cn and (M ′

n, S′
n) |= A(c).

Consider W = {a ∈ M ′
n : a ⊆ c}. Clearly W ∈ S′

n and, hence, W ∩ Mn+1 is in Sn+1. We

get

(Mn+1, Sn+1) |= Path(W ∩ Mn+1) ∧ ∀x(x ∈ W ∩ Mn+1 → A(x)).

Hence, by Π0
1-absoluteness,

(M∞, S∞) |= Path(Z) ∧ ∀x(x ∈ Z → A(x)),

where (W ∩ Mn+1, Z) ∈ Φn+1,∞.

Observe that the above conservation result also holds for sentences of the form ∀X∀x∃y

A(X, x, y), with A a bounded formula.

3 Bounded collection and WKL

The principle of bounded collection, denoted in our setting by BΣb
∞, is the following

scheme :

(S1) ∀x ≤ a ∃y A(x, y) → ∃z ∀x ≤ a ∃y ≤ z A(x, y)

where A is a bounded formula and z is a new variable (parameters are allowed). Within

Σb
1-NIA this scheme is equivalent to the following slight modification :

(S2) ∀x ≡ a ∃y A(x, y) → ∃z ∀x ≡ a ∃y ≤ z A(x, y).

Clearly, (S1) ⇒ (S2). To argue for the other direction, consider the linear ordering <�

of 2<ω defined first according to length and then, within the same length, lexicographically.
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More formally,

x <� y ⇔ (x ≤ y ∧ x �≡ y) ∨ (x ≡ y ∧ ∃z ⊆ x(z0 ⊆ x ∧ z1 ⊆ y)).

Now, in models of Σb
1-NIA it is possible to introduce the natural operation of addition

“+” that stems from this linear ordering. Moreover, the following properties hold:

(P1) Σb
1-NIA 
 x ≤ a → (0 × a1) + x ≡ a1 ∧ (0 × a1) + x �= 1 × a1

(P2) Σb
1-NIA 
 w ≡ a1 → w = 1 × a1 ∨ ∃1x ≤ a (0 × a1) + x = w

(Note that in the arithmetic setting the value 0×a1 correspondes to the number 2u+1−1,

where u is the length of a, and the value 1 × a1 corresponds to the number 2u+2 − 2.)10

Assume (S2) and the left hand side of (S1). Then, by property (P2), ∀w ≡ a1 (w �=

1 × a1 → ∃y ∃x ≤ a (0 × a1) + x = w ∧ A(x, y)). It follows, from (S2), that ∃z ∀w ≡

a1(w �= 1× a1 → ∃y ≤ z ∃x ≤ a (0× a1) + x = w ∧A(x, y)). By (P1) and the uniqueness

part of (P2), we may conclude the right hand side of (S1).

Proposition 5. Σb
1-NIA + Σb

∞-WKL 
 BΣb
∞.

Proof : Let (M, S) be a model of Σb
1-NIA + Σb

∞-WKL and assume that (M, S) |=

∀x ≡ a ∃y A(x, y), with A a Σb
∞-formula and a in M . Define T = {c ∈ M : a ≤ c →

∀y ≤ c ¬A(c |a, y)}11. Clearly T is a Σb
∞-tree ; we claim that T is not infinite. If it were,

10The possibility of introducing the operation of addition in Σb
1-NIA and of proving the above two

properties needs, of course, careful work. However, this work would not be appropriate for the present

paper, being more effective in a study of the precise relationship between our binary framework and Buss’

setting. We plan to effect such a study soon.
11We are using the notation of [F90] : x |y is the word x truncated at the length of y ; if X is a path,

X |y is the initial segment of X with the same length as y.
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there would be a path X through T . Now consider y such that A(X |a, y) ; by definition

of T we get that X |ây /∈ T , which contradicts the definition of X. T being finite, there is

b with ∀x ∈ T (x ≤ b). This clearly entails that ∀x ≡ a ∃y ≤ b1 A(x, y). 12

An easy consequence of the above proposition and Theorem 2 is the following result

mentioned in note 3,

Corollary 6. The theory Σb
1-NIA + BΣb

∞ is conservative over the theory Σb
1-NIA with

respect to Π0
2-sentences.

The next result says that the first-order strength of Σb
∞-WKL is exactly BΣb

∞ (over

the base theory Σb
1-NIA) :

Theorem 7. The first-order part of the theory Σb
1-NIA+∇b

1-CA+Σb
∞-WKL is Σb

1-NIA+

BΣb
∞.

Proof : One half of this result is Proposition 5. To argue for the other half, we show

that for every countable model M of Σb
1-NIA+BΣb

∞ there is S ⊆ P(M) such that (M, S)

is a countable model of Σb
1-NIA + ∇b

1-CA + Σb
∞-WKL. The construction of S hinges on

the following lemma :

Lemma 8. Let (M, S) be a countable second-order model of Σb
1-NIA + BΣb

∞. Consider

A(x) a Σb
∞-formula, with parameters in M ∪ S, such that (M, S) |= Tree∞(Ax). Then

there is a countable second-order model (M, S′) of Σb
1-NIA + BΣb

∞ such that S ⊆ S′ and

(M, S′) |= ∃X (Path(X) ∧ ∀x (x ∈ X → A(x))).

12A close inspection of the above proof actually yields Σb
1-NIA + Πb

i -WKL � BΣb
i , for i ≥ 1.
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Proof of the lemma13 : Let C be the class of all boundedly defined subsets of M

with parameters in M ∪ S and put T = {T : T ∈ C & (M, S) |= Tree∞(T )}. We say that

D ⊆ T is dense if ∀T ∈ T ∃T ′ ∈ D(T ′ ⊆ T ). Moreover D is definable if it is definable over

(M, S) allowing parameters in M ∪ S. We say that X ⊆ M is a generic path if X is a

path in M and for each definable dense set D ⊆ T there exists T ∈ D with X ⊆ T .

We claim that there is a generic path X through T0 = {c ∈ M : (M, S) |= A(c)}.

To prove this consider an enumeration D1, D2, D3,. . . of all definable dense subsets of

T . It is easy to define recursively a sequence T0, T1, T2, T3, . . . of elements of T with

Ti+2 ⊆ Ti+1 ∈ Di+1, for all i ∈ ω. Let X =
⋂

i∈ω Ti. It is clear that X ⊂ T0 and that X is

a tree. To show that X is an infinite path it is enough to argue that for each � ∈ M the

set

D(�) = {T ∈ T : ∀x, y ∈ T (� ≤ x ∧ � ≤ y → x |�= y |�)}

is dense. Take any T ∈ T ; if we show that

(∗) (M, S) |= ∃x ≡ � (x ∈ T ∧ ∀w (x ≤ w → ∃z ≡ w (x ⊆ z ∧ z ∈ T )))

we are done, because we just have to consider T ′ = {z ∈ T : z ⊆ x0 ∨ x0 ⊆ z}, where x0

witnesses (∗). Assume, to obtain a contradiction, that ¬(∗). Then,

∀x ≡ � ∃w (x ∈ T → ∀z ≡ w (x ⊆ z → z /∈ T )).

Using bounded collection we get,

∃b ∀x ≡ � ∃w ≤ b (x ∈ T → ∀z ≡ w (x ⊆ z → z /∈ T )).
13The argument below is based on a forcing construction due to Jockusch and Soare [JS72]. We will be

careful in pointing out the exact places where bounded collection is used.
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This contradicts the infinitude of T .

The remainder of the proof is like in Lemma 4.5 of [SS86] : if X is a generic path then

the structure (M, S′), where S′ = S ∪ {X}, satisfies Σb
1-NIA + BΣb

∞. We give a very brief

sketch of this. Clearly Σb
1-NIA holds in (M, S′), due to the fact that each initial segment of

X is in M . To prove BΣb
∞ let B(x, y) be a Σb

∞-formula with parameters in M∪S∪{X} and

suppose that (M, S′) satisfies ∀x ≤ a ∃y B(x, y). It is easy to write B(x, y) in normal form

as ∃� C(x, y, X |�), with C(x, y, z) a Σb
∞-formula with parameters from M ∪S. Define E to

be the set of all T in T such that (M, S) satisfies ∃x ≤ a ∀v ∈ T ∀y ≤ v ∀u ⊆ v ¬C(x, y, u)

and let D be the set of all T ∈ T such that T ∈ E ∨ (¬∃T ′ ∈ E)(T ′ ⊆ T ). D is definable

and dense ; so let T ∈ D with X ⊆ T . We can not have T ∈ E . Hence there is no T ′ ∈ E

with T ′ ⊆ T . So, for each x ≤ a the tree Tx = {v ∈ T : ∀y ≤ v ∀u ⊆ v ¬C(x, y, u)} must

be finite. That is, ∀x ≤ a ∃c “Tx is bounded by c”, i.e., ∀x ≤ a ∃c ∀v ≡ c1 v /∈ Tx. Using

bounded collection we conclude that ∃b ∀x ≤ a ∃c ≤ b ∀v ≡ c1 v /∈ Tx. This entails that

∃b ∀x ≤ a ∃y ≤ b1 B(x, y).

(of the lemma)

The proof of the theorem proceeds easily. From the previous lemma and the construc-

tion of lemma 1, define an increasing sequence (Si)i∈ω of subsets of M satisfying

a) (M, Si) is a model of Σb
1-NIA + BΣb

∞ + ∇b
1-CA

b) for each boundedly defined infinite tree T from (M, Si) there is j > i such that T is

satisfied in (M, Sj) to have a path.

(Notice that the first requirement can be accomplished because the construction in lemma
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1 preserves BΣb
∞ ; this can be checked routinely.)

The limit of the first-order absolute chain (M, Si)i∈ω does the job.

(of the theorem)

Corollary 9. The theory Σb
1-NIA+∇b

1-CA+Σb
∞-WKL is Π1

1-conservative over Σb
1-NIA+

∇b
1-CA + BΣb

∞.

4 A base theory for feasible analysis

In this section we propose a Base Theory for Feasible Analysis, which we abbreviate by the

acronym BTFA. This theory consists of Σb
1-NIA+BΣb

∞ plus the following strengthening

of ∇b
1-CA:

($) ∀x (∃y A(x, y) ↔ ∀z ¬B(x, z)) → ∃X ∀x (x ∈ X ↔ ∃y A(x, y))

where A and B are Σb
1-formulae (possibly with parameters). Notice that the structure

(2<ω, NP∩co-NP) is a model of Σb
1-NIA+∇b

1-CA+BΣb
∞, while (2<ω,∆0

1) is the smallest

model of BTFA with the standard model 2<ω for first-order part. This shows that ($)

is, indeed, stronger than ∇b
1-CA. The scheme ($) is often useful: for instance, it ensures

that the composition of two total functions (given by sets of ordered pairs) is still a total

function.

Theorem 10.

i. The theory BTFA is conservative over Σb
1-NIA with respect to Π0

2-formulae.

ii. The theory BTFA +Σb
∞-WKL is conservative over BTFA with respect to Π1

1-formulae.
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Proof : By Corollary 6, the first statement follows from the fact that BTFA is a

first-order conservative extension of Σb
1-NIA + BΣb

∞. To show this, let (M, S) be a model

of the latter theory and consider S� the class of all subsets X of M that are simultaneously

definable in (M, S) by formulae of the form ∃y A(x, y) and ∀z ¬B(x, z), with A, B ∈ Σb
1

and allowing parameters from M ∪ S. The checking that (M, S�) is a model of BTFA

follows closely the proof of lemma 4.2 of [SS86]. We argue that to each sw.q-formula C,

with parameters in M∪S� and no free set variables, it is possible to associate two formulae

CΣ and CΠ such that,

a. CΣ is of the form ∃y A, with parameters in M ∪ S and A ∈ Σb
1

b. CΠ is of the form ∀z B, with parameters in M ∪ S and B ∈ Πb
1

c. CΣ and CΠ have the same free variables as C

d. CΣ and CΠ are equivalent over (M, S) and equivalent to C over (M, S�).

The construction of the formulae CΣ and CΠ is done by induction on the complexity

of C. It is only worth commenting on those cases for which C = t ∈ X or C = ∀x ⊆∗ t D.

In the first case CΣ = ∃y A(t, y) and CΠ = ∀z ¬B(t, z), where A and B are as in the

definition of the parameter X ∈ S�. In the second case the definition of CΠ is clear, while

CΣ can be defined using BΣb
∞ and the following result of Σb

1-NIA:

∀x ⊆∗a ∃y ≤ c F ↔ ∃b ≤ (c × a1 × a1) ∀x ⊆∗a ∃y ⊆∗ b (y ≤ c ∧ F )

where F is any Σb
1-formula (see [F90] for a proof of this). The idea is to use the above

schemes to pull out the existential quantifiers (both the unbounded and the bounded).
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It is now clear that ($) holds in (M, S�). It is also easy to argue that (M, S�) |= Σb
1-NIA.

Take a ∈ M and A ∈ Σb
1 such that (M, S�) |= A(∅) ∧ ¬A(a), in order to find c ∈ M with

c ⊆ a, c0 ⊆ a (say) and (M, S�) |= A(c) ∧ ¬A(c0). Well, if A(x) = ∃w ≤ t B(x, w), with

B a sw.q.-formula, we successively get

(M, S) |= ∀x ∀w (BΣ(x, w) ↔ BΠ(x, w))

(M, S) |= ∀x ⊆ a ∀w ≤ t (∃y B1(x, w, y) ↔ ∀z B2(x, w, z))

where BΣ = ∃yB1, BΠ = ∀zB2, B1 and B2 sw.q.-formulae. By BΣb
∞ there is b ∈ M so

that,

(M, S) |= ∀x ⊆ a ∀w ≤ t (∃y ≤ b B1(x, w, y) ↔ ∀z ≤ b B2(x, w, z)).

Hence, (M, S) |= ∀x ⊆ a (∃w ≤ t BΣ(x, w) ↔ ∃w ≤ t ∃y ≤ b B1(x, w, y)). The

element c can now be found using the scheme of notation on induction to the Σb
1-formula

∃w ≤ t ∃y ≤ b B1(x, w, y).

To finish the proof of i., we still need to argue that BΣb
∞ holds in (M, S�). This is

a straightforward consequence of the following fact : the mapping C → (CΣ, CΠ) can be

extended to all bounded formulae C if the formulae A and B of requirements a and b are

bounded. Of course, extending this map uses BΣb
∞ heavily.

The proof of ii. proceeds as the proof of Theorem 7 and Corollary 9, the only difference

being that we use the map S → S� (instead of the map S → S∗) to build an increasing

sequence (Si)i∈ω of subsets of M , with S0 = S, satisfying :

a) (M, Si) is a model of BTFA
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b) for each boundedly defined infinite tree T from (M, Si) there is j > i such that T

has a path in (M, Sj).

We claim that the limit (M, S∞) of the chain (M, Si)i∈ω is a model of BTFA + Σb
∞-

WKL. To see this we only have to check that ($) holds in (M, S∞). Suppose (M, S∞) |=

∀x (∃y A(x, y) ↔ ∀z ¬B(x, z)), with A and B Σb
1-formulae. Take n ∈ ω large enough

so that all parameters already occur in (Mn, Sn). Now, notice that this is a first-order

absolute chain. Hence,

(M, Sn) |= ∀x (∃y A(x, y) ↔ ∀z ¬B(x, z)).

So, there is V ∈ Sn such that

(M, Sn) |= ∀x (x ∈ V ↔ ∃y A(x, y)).

The conclusion follows, again, by first-order absoluteness.
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