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Abstract

In this article we study applications of the bounded functional interpretation to
theories of feasible arithmetic and analysis. The main results show that the novel
interpretation is sound for considerable generalizations of weak König’s lemma, even
in the presence of very weak induction. Moreover, when combined with Cook and
Urquhart’s variant of the functional interpretation, one obtains effective versions
of conservation results regarding weak König’s lemma which have been so far only
obtained non-constructively.
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1 Introduction

A new form of functional interpretation has been developed in [15], focusing on
bounds rather than on precise witnesses. In that paper, the new interpretation
is defined and studied, and some applications are made to systems where the
bounded search operator is present. In these systems bounded first-order for-
mulas are equivalent to quantifier-free formulas, and the analysis of the former
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is reducible to the latter. However, in feasible settings – where bounded search
is unavailable – this reduction is blocked. Gödel’s original functional interpre-
tation (cf. [16]) treats bounded quantifications as ordinary quantifications, not
being attuned for their specific analysis. On the other hand, the new inter-
pretation was conceived so that it would leave (intensional) bounded formulas
unaffected and, in particular, would leave unaffected first-order bounded for-
mulas, even in feasible settings. Therefore, the new interpretation is tailored
for getting conservation results over feasible theories of arithmetic and analy-
sis. This issue is the focus of the present paper.

Feasible systems of arithmetic are formal theories with very restricted kinds
of induction, so much so that their provably total functions (in an appropri-
ate sense) are the polynomial time computable functions. In the context of
first-order arithmetic, these systems were introduced by Samuel Buss in his
doctoral dissertation [5] two decades ago. Three years later in [11], Fernando
Ferreira introduced second-order feasible systems (see, also, [12]). More re-
cently, he and António Fernandes laid down the grounds for the formalization
of analysis in feasible systems – cf. [13], but also [10,14,25]. In the sequel, we
work within the framework of finite type arithmetic and use the new form
of functional interpretation to study metamathematical properties of feasible
systems related to so-called boundedness principles in analysis.

There are four main differences between feasible systems and systems based
on primitive recursion:

(1) There is no minimization functional µb of type (0 � 1) � 1 satisfying
axioms stating that µbf

0�1n0 =0 min0 k ≤0 n(fnk =0 0) if such a k ≤0 n
exists, and =0 0 otherwise. In other words, bounded searches are not
permitted in general.

(2) Bounded first-order formulas are not necessarily equivalent to quantifier-
free formulas and are not necessarily decidable (i.e., tertium non datur
need not hold for them). This characteristic is, of course, related to the
previous one.

(3) There is no maximization functional M of type 1 � 1 satisfying the
equations Mf0 =0 f0 and Mf(n + 1) =0 max0(Mfn, f(n + 1)).

(4) The exponential function is not provably total and, as a consequence,
finite initial segments of type 1 functionals are not (in general) encodable
by type 0 objects (natural numbers).

To make the paper reasonably self-contained, we briefly describe the new
bounded functional interpretation in the next section. We direct the reader
to [15] for the full treatment, with proofs, of the interpretation.
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2 Background

The finite types are defined inductively as follows: 0 is a finite type, and if
ρ and σ are finite types then ρ → σ is also a finite type. We write tρ to say
that term t has type ρ. In this paper we assume familiarity with the finite
type arithmetical theories PVω, IPVω and CPVω as defined in [8] (see also
[23]). PVω is a quantifier-free calculus, whereas IPVω and CPVω are extensions
of PVω based on intuitionistic, respectively classical, many-sorted predicate
calculus. We denote the language over which these systems are defined by Lω.
We point that the amount of induction present in IPVω and CPVω is

A(0) ∧ ∀x0(A(b1
2
xc) → A(x)) → ∀x0A(x),

where A is a Σb
1-formula, i.e. a formula of the form ∃y ≤0 t (s0 = u0) in which

y does not occur in the term t0 and this term has only parameters of type 0:
a so-called zero-open term, in the terminology of [8] (however, s and u may
have parameters of arbitrary type). Note that in IPVω, for each quantifier-free
formulas A(x), one can build a term s such that IPVω ` A(x) ↔ sx = 0.
Underlined variables stand for tuple of variables.

In the language of IPVω we can define Bezem’s strong majorizability relation
[2] (a modification of Howard’s hereditary majorizability relation [17] that,
unlike Howard’s, is provably transitive) and prove its main properties. We
write ≤∗

ρ for Bezem’s strong majorizability relation for type ρ. This relation
is defined by induction on the types:

x ≤∗
0 y :≡ x ≤0 y

x ≤∗
ρ�σ y :≡ ∀vρ∀u ≤∗

ρ v(xu ≤∗
σ yv ∧ yu ≤∗

σ yv).

The following is a consequence of a result in [2]:

Lemma 1 IPVω proves

(i) x ≤∗ y → y ≤∗ y.
(ii) x ≤∗ y ∧ y ≤∗ z → x ≤∗ z.

In order to give a bounded functional interpretation of IPVω we introduce an
extension Lω

� of the language Lω, obtained from the latter by the adjunction
of new primitive binary relation symbols �ρ, one for each type ρ (we use infix
notation for these symbols). The relation �ρ is the intensional counterpart
of the extensional relation ≤∗

ρ. The terms of Lω
� are the same as the terms

of the original language Lω. Formulas of the form s �ρ t, where s and t are
terms of type ρ, are the new atomic formulas of the language. We also add,
as a new syntactic device, bounded quantifiers, i.e. quantifications of the form
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∀x � tA(x) and ∃x � tA(x), for terms t not containing x. Bounded formulas
are those formulas in which every quantifier is bounded.

Definition 1 The theory IPVω
� is an extension of IPVω with the schemata:

B∀ : ∀x � tA(x) ↔ ∀x(x � t → A(x))
B∃ : ∃x � tA(x) ↔ ∃x(x � t ∧ A(x)),

provided that x does not occur in t. There are also two further axioms

M1 : x �0 y ↔ x ≤0 y
M2 : x �ρ→σ y → ∀u �ρ v(xu �σ yv ∧ yu �σ yv)

and a rule RL�

Ab ∧ u � v → su � tv ∧ tu � tv

Ab → s � t

where s and t are terms of IPVω
�, Ab is a bounded formula and u and v are

variables that do not occur free in the conclusion.

Warning 1 The induction available in the extended theory IPVω
� is exactly

the same as that of the original theory IPVω, i.e., it does not include induction
for formulas of the form ∃y ≤ t A, where A is a quantifier-free formula in
which the new predicate symbols � occur.

We called the new binary relations intensional because they are regulated by
a rule, instead of axioms only. Note that the presence of this rule RL� entails
the failure of the deduction theorem for the theory IPVω

� (cf. the argument of
Proposition 8 in [15]).

Let the relation ≤σ be the usual pointwise “less than or equal to” relation,
i.e. ≤0 for type 0, and x ≤ρ�σ y defined recursively by ∀uρ(xu ≤σ yu). Let
also the relation min1(x

1, y1) be defined as λn0. min0(xn, yn), where min0 is
the usual minimum function between two numbers.

Lemma 2 IPVω
� proves

(i) x � y → y � y.
(ii) x � y ∧ y � z → x � z.
(iii) x �1 y → x ≤∗

1 y. Hence, x �1 y → x ≤1 y.
(iv) x �1 z → min1(y, x) �1 z.

The following result is an adaptation of a result due to Howard in [17]:

Proposition 1 IPVω
� is a majorizability theory, i.e., for every closed term tρ
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there is a closed term t̃ρ of the same type such that IPVω
� ` t �ρ t̃.

In the sequel, we will often quantify over monotone functionals, i.e., functionals
f such that f � f . We abbreviate the quantifications ∀f(f � f → A(f)) and
∃f(f � f ∧ A(f)) by ∀̃fA(f) and ∃̃fA(f), respectively.

2.1 Logical Extensions

The principles that have a bounded functional interpretation were character-
ized in [15]. They are:

1. Bounded Choice Principle

bACρ,τ [�] : ∀xρ∃yτA(x, y) → ∃̃f ∀̃b∀x � b∃y � fb A(x, y),

where A is an arbitrary formula of the language Lω
�.

2. Bounded Independence of Premises Principle

bIPρ
∀bd[�] : (∀xAb(x) → ∃yρB(y)) → ∃̃b(∀xAb(x) → ∃y � bB(y)),

where Ab is a bounded formula and B is an arbitrary formula.

3. Bounded Markov’s Principle

bMPρ
bd[�] : (∀yρ∀xAb(x, y) → Bb) → ∃̃b(∀y � b∀xAb(x, y) → Bb),

where Ab and Bb are bounded formulas. If Bb is ⊥, we get a useful version of
the above principle: ¬¬∃yρAb(y) → ∃̃b¬¬∃y � bAb(y), where Ab is a bounded
formula. For y of type 0, we have: ¬¬∃n0Ab(n) → ∃m0¬¬∃n ≤ mAb(n). In
the feasible setting, we cannot (in general) replace the consequent by ∃nAb(n),
even when Ab is quantifier-free. This is due to the fact that bounded first-order
formulas are not (in general) decidable. Cf. (2) of §1.

4. Bounded Contra Collection Principle

bBCC
ρ,τ
bd [�] : ∀̃c(∀̃bτ∃z � cρ∀y � bAb(y, z) → ∃z � c∀yAb(y, z)),

where Ab is a bounded formula. This principle allows the conclusion of certain
existentially bounded statements from the assumption of weakenings thereof
(so-called ε-versions or ε-weakenings, in a terminology that Kohlenbach intro-
duced in [18] for more concrete situations).

5. Majorizability Axioms

MAJρ[�] : ∀xρ∃y(x � y).
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We use bACω[�], bIPω
∀bd[�], bMPω

bd[�], bBCCω
bd[�] and MAJω[�], respectively,

for the aggregate of each of the above principles over all types. We denote by
P[�] the sum total of all these principles.

Proposition 2 The theory IPVω
� + P[�] proves:

1. The Bounded Universal Disjunction Principle

bUDρ,τ
∀bd[�] : ∀̃bρ∀̃cτ (∀x � bAb(x) ∨ ∀y � cBb(y)) → ∀xAb(x) ∨ ∀yBb(y),

where Ab and Bb are bounded formulas.

2. The Bounded Collection Principle

bBCρ,τ [�] : ∀̃c(∀z � cρ∃yτA(y, z) → ∃̃b∀z � c∃y � bA(y, z)),

where A is an arbitrary formula.

Proof. We show that the principle bUDρ,τ
∀bd[�] is a simple consequence of

bBCC0,ρ,τ
bd [�]. The antecedent of bUDρ,τ

∀bd[�] implies

∀̃b∀̃c∃z �0 1∀x � b∀y � c((z = 0 → Ab(x)) ∧ (z = 1 → Bb(y))).

By the Contra Collection Principle it follows that

∃z �0 1∀x∀y((z = 0 → Ab(x)) ∧ (z = 1 → Bb(y))),

and this entails the disjunction we want. Part 2 was shown in Proposition 3
of [15]. 2

The Bounded Universal Disjunction Principle entails the following version of
the lesser limited principle of omniscience LLPO, so-called by Errett Bishop
in [3]:

∀n0, m0(∀k ≤ nAb(k) ∨ ∀k ≤ mBb(k)) → ∀nAb(n) ∨ ∀mBb(m),

where Ab and Bb are bounded first-order formulas. We cannot obtain the usual
version of LLPO, the one in which the antecedent is ∀n,m(Ab(n) ∨ Bb(m)),
because bounded formulas are not (in general) decidable. On the other hand,
the limited principle of omniscience LPO is refutable in IPVω

� + P[�]. This is
shown in [15] for stronger theories, but the proof also goes through in IPVω

� +
P[�]. Actually, the so-called weak limited principle of omniscience (cf. [4])
WLPO is already refuted in IPVω

� + P[�]. Concerning the second principle of
Proposition 2, observe that the Bounded Collection Principle is related to the
FAN principle of Brouwer (the case ρ = 1 and τ = 0).

Let bACω
bd[�] be the version of the Bounded Choice Principle in which the

matrix A is bounded. The acronym Pbd[�] denotes the modification of P[�]
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in which bACω[�] is substituted by bACω
bd[�]. Under Pbd[�] it is only possible

to derive the version of the Bounded Collection Principle in which the ma-
trix is a bounded formula (we denote this version by bBCω

bd[�]). The schema
Pbd[�] plays an important role in the negative translation of formulas A into
formulas A′. For definiteness, we use Kuroda’s translation [21] adapted to our
setting (cf. [15]), where A′ is ¬¬A†, with A† obtained from A by maintain-
ing unchanged atomic formulas, conjunctions, disjunctions, implications and
existential quantifications (bounded or not) and inserting a double negation
after each universal quantification (bounded or not). We denote by CPVω

� the
theory IPVω

� together with all instances of the law of excluded middle A∨¬A.

We call a bounded formula of the form ∃x1 ≤0 t1 . . . ∃xn ≤0 tn (s0 = t0) a Σ̂b
1-

formula. Note that no restriction is made on the parameters appearing in the
bounding terms t1, . . . , tn, thereby obtaining a proper extension of the class
of Σb

1-formulas (whose formulas have bounding terms which are zero-open).
It should also be observed that no restriction is made by having defined Σb

1-
formulas with only one bounded existential quantifier, as shown by Cook and
Urquhart in [8] (caution: Cook and Urquhart’s argument relies essentially on
the fact that the bounding terms are zero-open). For more information on
the issue concerning parameters of bounding terms we direct the reader to
Observation 1 at the end of Subsection 3.2. We let MPΣ̂b

1
be the following

bounded version of Markov’s principle: ¬¬A → A, where A is a Σ̂b
1-formula.

For technical reasons which will be apparent later, we need MPΣ̂b
1

as it is

formulated, instead of a bounded Markov’s principle for mere Σb
1-formulas.

Proposition 3 If CPVω
� + Pbd[�] ` A then IPVω

� + MPΣ̂b
1
+ Pbd[�] ` A′.

Proof. The part concerning the principles Pbd[�] were discussed in [15]. Con-
cerning the axioms of CPVω

�, they are all universal (posing no problems regard-
ing their negative translations because quantifier-free formulas are decidable)
except for the induction axioms. It is clear that the negative translations of
the induction axioms follow from IPVω

� + MPΣ̂b
1
. 2

Definition 2 The 0-bounded formulas of the language Lω form the smallest
class of formulas which includes the quantifier-free formulas and is closed un-
der propositional connectives and quantifications of the form ∀x ≤0 t(...) and
∃x ≤0 t(...), where t is a term of type 0 in which the variable x does not occur.

Note that the 0-bounded formulas with parameters of type 0 correspond to
the bounded formulas of first-order bounded arithmetic (cf. [5]).

Proposition 4 Let

bAC0,1
0 : ∀x0∃y1A0(x, y) → ∃Φ0�1∀x0∃y ≤1 Φx A0(x, y),
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with A0(x, y) a 0-bounded formula of the original language Lω, possibly with
parameters. IPVω

� + Pbd[�] proves bAC0,1
0 .

Proof. Assume ∀x0∃y1A0(x, y). By bACω
bd[�], ∃̃Φ0�1∀̃a0∀x�a∃y�1Φa A0(x, y).

Given x0, put a0 as x0 and use part (iii) of lemma 2 to replace the intensional
sign �1 by ≤1. 2

Notice that bAC0,1
0 entails bAC0,0

0 , where y has type 0. The usual choice prin-
ciple,

AC0,0
0 : ∀x0∃y0A0(x, y) → ∃Φ0�0∀x0 A0(x, Φx),

does not follow from bAC0,0
0 because there is no minimization functional in the

feasible setting. Cf. (1) of §1.

In the stronger theories studied in [15] the above choice principle also holds
for x of type 1. The fact that there is no maximization functional M in the
feasible setting (cf. (3) of §1) prevents the extension of the above proof to that
type.

2.2 The Bounded Functional Interpretation

We now describe the bounded functional interpretation, state its main (sound-
ness) theorem and, finally, present a result that relates the extended language
to the original language without the intensional relations �.

Definition 3 To each formula A of the language Lω
� we associate formulas

(A)B and AB of the same language so that (A)B is of the form ∃̃b∀̃cAB(b, c),
with AB(b, c) a bounded formula.

1. (Ab)
B and (Ab)B are simply Ab, for bounded formulas Ab.

If we have already interpretations for A and B given by ∃̃b∀̃cAB(b, c) and
∃̃d∀̃eBB(d, e) (respectively), then we define

2. (A ∧B)B is ∃̃b, d∀̃c, e(AB(b, c) ∧BB(d, e)),
3. (A ∨B)B is ∃̃b, d∀̃c, e(∀̃c′ � cAB(b, c′) ∨ ∀̃e′ � eBB(d, e′)),
4. (A → B)B is ∃̃f, g∀̃b, e(∀̃c � gbeAB(b, c) → BB(fb, e)).

For bounded quantifiers we have:

5. (∀x � tA(x))B is ∃̃b∀̃c∀x � t AB(b, c, x),
6. (∃x � tA(x))B is ∃̃b∀̃c∃x � t∀̃c′ � c AB(b, c′, x).

And for unbounded quantifiers we define
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7. (∀xA(x))B is ∃̃f ∀̃a, c∀x � aAB(fa, c, x),

8. (∃xA(x))B is ∃̃a, b∀̃c∃x � a∀̃c′ � cAB(b, c′, x).

In the above, it is understood that (∃xA)B is ∃x�a∀̃c′�cAB(b, c′, x). Similarly
for the other clauses.

Theorem 1 (Soundness) Assume that (A(z))B is ∃̃b∀̃cAB(b, c, z), where A(z)
is an arbitrary formula of Lω

� with its free variables as displayed. If

IPVω
� + P[�] ` A(z),

then there are closed monotone terms t of appropriate types such that

IPVω
� ` ∀̃a∀z � a ∀̃cAB(ta, c, z).

Moreover, in the above, we can simultaneously replace IPVω
� by IPVω

� + MPΣ̂b
1
.

Proof. A Soundness Theorem like the above is the main result of [15]. There
are only two differences worth discussing between the theories addressed in
[15] and the theories IPVω

� and IPVω
� + MPΣ̂b

1
. One is the principle MPΣ̂b

1
.

Well, this principle is a universal closure of a bounded formula and, therefore,
its interpretation follows from itself. The other is the induction scheme. The
B-translation of an instance of the induction scheme is equivalent to

∃̃g∀b0
(
∀x′ ≤0 gb(A(0) ∧ (A(b1

2
x′c) → A(x′))) → ∀x ≤ bA(x)

)
where A is a given Σb

1-formula. Taking g := λx.x, it easy to derive

∀b0
(
∀x′ ≤0 b(A(0) ∧ (A(b1

2
x′c) → A(x′))) → ∀x ≤ bA(x)

)
in IPVω

�. 2

It would be more in the spirit of the bounded functional interpretation to state
that the theory IPVω

� (or IPVω
� + MPΣ̂b

1
) proves ∀̃a∀z � a∃b � ta∀̃cAB(b, c, z).

This is in fact equivalent to what is stated in the Soundness Theorem because
formulas of the form AB(b, c) are monotone with respect to the variable(s) b,
i.e., whenever b � b′ then AB(b, c) → AB(b′, c).

Definition 4 For any given formula A in the language Lω
�, we define the

formula A∗ of the language of Lω by induction on A:

(a) If A is an atomic formula in which � does not occur, A∗ is A.
(b) For any given type σ, (t �σ q)∗ is t ≤∗

σ q.
(c) (A2B)∗ is A∗2B∗, for 2 ∈ {∧,∨,→}.
(d) (QxA)∗ is QxA∗, for Q ∈ {∀,∃}.
(e) For any given type σ, (∀x �σ tA)∗ is ∀x(x ≤∗

σ t → A∗) and (∃x �σ tA)∗ is
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∃x(x ≤∗
σ t ∧ A∗).

The following is clear:

Proposition 5 (Flattening) Let A(z) be an arbitrary formula of Lω
�, with

its free variables as displayed. We have:

CPVω
� ` A(z) ⇒ CPVω ` A∗(z).

3 Applications to Feasible Analysis

Weak König’s Lemma, WKL for short, is the well-known principle saying that
every infinite tree of finite sequences of 0’s and 1’s has an infinite path. We
say that A(s) defines an infinite binary tree, and write Tree∞(As), if

∀s0∀q0(A(s) ∧ q � s → A(q)) ∧ ∀k0∃s0(|s| = |k| ∧ A(s)),

where q � s means that the binary expansion of q is an initial sequence of the
binary expansion of s, and |n| indicates the length of the binary expansion
of the natural number n. Note that the quantification ∃s0(|s| = |k| ∧ ...) is
bounded. If f is of type 1, Tree∞(f) stands for Tree∞([f(s) =0 0]s).

We formalize weak König’s Lemma as follows (we write x ≤1 1 instead of
x ≤1 λn0.10)

∀f 1
(
Tree∞(f) → ∃x ≤1 1∀k0 (x(k) ∈ f)

)
,

Tree∞(f) as above, and s ∈ f abbreviates f(s) =0 0. Finally, given k0 and x ≤1

1, x(k) is the (code of the) binary sequence 〈x(0), x(1), x(11), . . . , x(1|k|−1)〉.
Here 11 · · · 1 stands for the natural number whose binary expansion is 11 · · · 1.

A strengthening of WKL in the feasible setting consists in admitting binary
trees defined by a 0-bounded formula, instead of mere set trees. Let A(s) be a
0-bounded formula with a distinguished variable s of type 0 (parameters are
allowed). The schema Σb

∞-WKL is the following collection of formulas, one for
each 0-bounded formula A(s):

Σb
∞-WKL : Tree∞(As) → ∃x ≤1 1∀k0A(x(k)).

Proposition 6 The theory IPVω
� + P[�] proves Σb

∞-WKL.

Proof. Let A(s) be given such that Tree∞(As). Given k0, take s such that
|s| = |k| and A(s). Let ŝ be the type 1 function defined so that ŝ(n) is the
|n|-th bit of the binary expansion of s for n less than or equal to k, and is 0
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otherwise. Using rule RL�, it is easy to show that ŝ �1 1. We have just argued
that ∀k∃x �1 1∀n ≤ k A(x(n)). By bBCCω

bd[�], we get ∃x �1 1∀kA(x(k)). The
result now follows from (iii) of Lemma 2. 2

In the subsequent subsections we will, in fact, state a rather general principle
from which Σb

∞-WKL follows, and prove a pertinent conservation result. We
will also relate our discussion with theories of feasible arithmetic and analysis.

3.1 A Uniform Boundedness Principle

In [7], Andrea Cantini studied the principle of strict-Π1
1 reflection, abbreviated

by sΠ1
1-reflection, in the context of second-order feasible theories. For our

purposes, this principle is:

∀x ≤1 1∃y0 A0(x, y) → ∃z0∀x ≤1 1∃y ≤0 z A0(x, y),

where A0(x, y) is a 0-bounded formula. Strict-Π1
1 reflection is, in fact, a form

of the FAN theorem within the second-order setting. Cantini shows that the
above principle (classically) entails Σb

∞-WKL (say, over CPVω). He also proves
a conservation result concerning this principle and, a fortiori, concerning
Σb
∞-WKL. We generalize this conservation result in the sequel.

The following principle was introduced by Kohlenbach in [20]. We present a
slight variant thereof:

Definition 5 The Uniform Σ0
1-Boundedness Principle, abbreviated by Σ0

1-UB,
is the following scheme,

∀h0�1
(
∀k0∀f ≤1 hk∃e1A0(f, h, k, e) → ∃g0�1∀k0∀f ≤1 hk∃e ≤1 gkA0(f, h, k, e)

)
,

where A0 is a 0-bounded formula (which may contain parameters of arbitrary
type).

Note that sΠ1
1-reflection follows from Σ0

1-UB over IPVω. The same is true for
the bounded collection scheme:

∀r0
(
∀n ≤0 r∃y0A0(n, y) → ∃z0∀n ≤0 r∃y ≤0 zA0(n, y)

)
.

(As a consequence of Theorem 2 below, we shall see that the bounded col-
lection scheme has no effect on the Π0

2-consequences of our starting theory,
a result originally due to Buss in [6].) Since we are allowing parameters of
arbitrary type in A0, Σ0

1-UB is false in the set-theoretic model of the func-
tionals of finite type. E.g., the following patently false principle, a version
of Kohlenbach’s so-called principle F introduced in [20], is a consequence of
Σ0

1-UB:
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∀Φ2∃n0∀f ≤1 1(Φ(f) ≤0 n).

When only parameters of type 0 or 1 are permitted, Σ0
1-UB is nonetheless true

in the set-theoretic model. The reason for this is well-known. Fix h. Since A0

is 0-bounded and has parameters restricted to type 0 and 1, only an initial
segment of the type 1 functional e1 is needed to fulfill A0. This ensures the
continuity of the functional that associates to each f 1 ∈ {f : f ≤1 hk} the
(say) lexicographic least e1 such that A0(f, h, k, e). Due to the compactness
of the previous set, we can bound the e’s. The uniformity in terms of k0 is
a consequence of the axiom of choice. An upshot of this argument is that
the principle reduces to the original Uniform Σ0

1-Boundedness Principle of
Kohlenbach

∀h0�1
(
∀k0∀f ≤1 hk∃s0A0(f, h, k, s) → ∃g1∀k0∀f ≤1 hk∃s ≤0 gkA0(f, h, k, s)

)
in the set-theoretic model. As a matter of fact, Σ0

1-UB is a consequence of the
above principle already in the (classical) theory E-G3A

ω of [19]. This theory is
related with the third level of Grzegorczyk’s hierarchy of primitive recursive
functions, and the reduction follows from results in the first part of section 9 of
[15]. In the feasible setting, however, the above principle is seemingly weaker
than Σ0

1-UB because initial segments of type 1 functionals cannot (in general)
be coded by numbers. Cf. (4) of §1.

We prefix by the letter E the name of a theory to mean that we add full
extensionality to it. Given s and t terms of type ρ ≡ ρ1 � (. . . � (ρk � 0) . . .)
we say that s =ρ t if ∀yρ1

1 . . . ∀yρk
k (sy1 . . . yk =0 ty1 . . . yk). Full extensionality

is the collection of axioms of the form ∀zρ�τ∀xρ, yρ(x =ρ y → zx =τ zy).

Here is the promised conservation result, a generalization of the uniform
boundedness principle of Kohlenbach [20] to the feasible setting:

Theorem 2 Let σ ∈ {0, 1} and ρ be any type. Suppose that

E-CPVω + bAC0,1
0 + Σ0

1-UB ` ∀xσ∃yρA0(x, y),

where A0 is a 0-bounded formula (its free variables as displayed) and ρ is an
arbitrary type. Then, there is a closed monotone term qσ�ρ of Lω such that

CPVω ` ∀aσ∀x ≤∗
σ a∃y ≤∗

ρ qa A0(x, y).

When x is of type 0, then the conclusion can be simplified to

CPVω ` ∀x0∃y ≤∗
ρ qx A0(x, y).

Proof. Suppose A ≡ ∀xσ∃yρA0(x, y) is a theorem of the theory E-CPVω +
bAC0,1

0 + Σ0
1-UB. In the presence of full extensionality, each instance of Σ0

1-UB
is easily seen to be equivalent to
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(∗)

 ∀h0�1
(
∀k0∀f ≤1 hk∃e1 A0(f, h, k, e) →

∃g0�1∀k0∀f 1∃e ≤1 gk A0(min(f, hk), h, k, e)
)
.

Therefore, E-CPVω + bAC0,1
0 + (∗) ` A. Since the quantifiers in each (∗) are

(essentially) of type 1 or less, it follows by elimination of extensionality (cf.
H. Luckhardt in [22]) that CPVω + bAC0,1

0 + (∗) ` A. Hence, by Proposition 4,
CPVω

� + Pbd[�] + (∗) ` A.

We claim that CPVω
� + Pbd[�] proves each (∗). Fix h0�1. Assume that

∀k0∀f 1(∀n0(fn ≤0 hkn) → ∃e1A0(f, h, k, e)).

By bIPω
∀bd[�] and bMPω

bd[�] we get

∀k0∀f 1∃̃m0∃̃e1(∀n ≤0 m(fn ≤0 hkn) → ∃e′ �1 eA0(f, h, k, e′)).

And in particular

∀k0∀f 1 �1 h̃k∃̃m0∃̃e1(∀n ≤0 m(fn ≤0 hkn) → ∃e′ �1 eA0(f, h, k, e′)),

where h�1 h̃ (we are using MAJω[�] here). By bBCω
bd[�], the monotonicity on

m and e and the transitivity of �1 it follows that

∀k0∃̃m0∃̃e1∀f 1 �1 h̃k(∀n ≤0 m(fn ≤0 hkn) → ∃e′ �1 eA0(f, h, k, e′)).

Using bACω
bd[�] and the transitivity of �1 we may conclude that there are

monotone g0�1 and l0�0 such that

∀k0∀f �1 h̃k(∀n ≤0 lk(fn ≤0 hkn) → ∃e �1 gkA0(f, h, k, e)),

which implies

∀k0∀f �1 h̃k((f ≤1 hk) → ∃e �1 gkA0(f, h, k, e)).

We are now ready to check ∀k0∀f 1∃e ≤1 gkA0(min1(f, hk), h, k, e). Take k0

and f 1. By (iv) of Lemma 2, min1(f, hk)�1 h̃k. Also min1(f, hk) ≤1 hk. Hence,
∃e �1 gkA0(min1(f, hk), h, k, e). The claim follows because of (iii) of Lemma
2.

We showed that CPVω
�+Pbd[�] ` A. By Proposition 3, IPVω

�+MPΣ̂b
1
+Pbd[�] `

A′. Using bMPω
bd[�], IPVω

�+MPΣ̂b
1
+Pbd[�] ` ∀xσ∃̃bρ¬¬∃y�ρb(A0(x, y))†. Now,

by the Soundness Theorem, there is a closed monotone term qσ�ρ such that

IPVω
� + MPΣ̂b

1
` ∀̃aσ∀x �σ a¬¬∃y �ρ qa(A0(x, y))†.

The theorem now follows from Proposition 5. 2
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3.2 Division of labor

The bounded functional interpretation is efficient in dealing with principles
like Σb

∞-WKL because it only cares for bounds. On the other hand, it is too
coarse to get precise witnesses. It analyzes just up to a point. Beyond that
point, in order to obtain precise (polynomial time) witnesses, one must turn to
the more fine-grained interpretation of Cook and Urquhart [8]. However, this
latter interpretation is unable to deal with bounded collection or Σb

∞-WKL. A
strategy emerges, though. Firstly, remove principles like Σb

∞-WKL using the
bounded functional interpretation. Afterwards, obtain the polynomial time
computable witnesses using Cook and Urquhart’s interpretation. In this sec-
tion, we put this strategy of division of labor into action.

The principle AC0,0
qf of the language Lω is ∀x0∃y0Aqf(x, y) → ∃f 1∀x0 Aqf(x, fx),

where Aqf is quantifier-free, possibly with parameters (compare with the choice
principle AC0,0

0 of Subsection 2.1). We consider the following (intuitionistic)
consequence of AC0,0

qf ,

AC0,b0

Σ̂b
1

: ∀x0∃y ≤0 1AΣ(x, y) → ∃f ≤1 1∀x0AΣ(x, fx),

where AΣ is a Σ̂b
1-formula. Next, we show that AC0,b0

Σ̂b
1

is sufficient for proving

(in a classical context) the following weak form of comprehension

∇b
1-CA :

∀h1∀g1
(
∀k0(∃v ≤0 hkAqf(k, v) ↔ ∀w ≤0 gkBqf(k, w)) →

∃f 1∀k0(fk =0 0 ↔ ∃v ≤0 hkAqf(k, v))
)
,

where Aqf(k, v) and Bqf(k, w) are quantifier-free formulas (possibly with pa-
rameters). The parameter-free version of this schema, for h and g polytime
computable functions, says that the sets in NP ∩ co-NP exist.

Lemma 3 CPVω + AC0,b0

Σ̂b
1

` ∇b
1-CA.

Proof. Let h1 and g1 be given functionals and assume that

∀k0(∃v ≤0 hkAqf(k, v) ↔ ∀w ≤0 gkBqf(k, w)).

By classical logic we have

∀k0∃n ≤0 1
(
(n = 0 → ∃v ≤0 hkAqf(k, v))∧(n 6= 0 → ¬∃v ≤0 hkAqf(k, v))

)
,

which, by our assumption, is equivalent to

∀k0∃n ≤0 1
(
(n = 0 → ∃v ≤0 hkAqf(k, v))∧(n 6= 0 → ∃w ≤0 gk¬Bqf(k, w))

)
.
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By AC0,b0

Σ̂b
1

we get

∃f ≤1 1∀k0
(
(fk = 0 → ∃v ≤0 hkAqf(k, v))∧(fk 6= 0 → ∃w ≤0 gk¬Bqf(k, w))

)
.

By assumption again, this is equivalent to

∃f ≤1 1∀k0(fk = 0 ↔ ∃v ≤0 hkAqf(k, v)).

2

In the presence of the choice principle bAC0,0
0 , AC0,b0

Σ̂b
1

even implies the stronger

form of “recursive” comprehension ∆PT
1 -CA

∀k0(∃v0Aqf(k, v) ↔ ∀w0Bqf(k, w)) → ∃f 1∀k0(fk =0 0 ↔ ∃v0Aqf(k, v)),

where Aqf(k, v) and Bqf(k, w) are quantifier-free formulas (possibly with pa-
rameters).

Lemma 4 CPVω + bAC0,0
0 + AC0,b0

Σ̂b
1

` ∆PT
1 -CA.

Proof. By Lemma 3, it is sufficient to prove CPVω + bAC0,0
0 + ∇b

1-CA `
∆PT

1 -CA. Suppose that ∀k0(∃v0Aqf(k, v) ↔ ∀w0Bqf(k, w)). In particular one
has ∀k0∃w0, v0(Bqf(k, w) → Aqf(k, v)). By bAC0,0

0 , there is a function h1 such
that ∀k0∃w, v ≤0 hk(Bqf(k, w) → Aqf(k, v)). It is now easy to conclude that,

∀k0(∃v ≤0 hkAqf(k, v) ↔ ∀w ≤0 hkBqf(k, w)).

By ∇b
1-CA, there is a functional f 1 so that ∀k0(fk =0 0 ↔ ∃v ≤0 hkAqf(k, v)).

It is easy to argue that ∀k0(∃v ≤0 hkAqf(k, v) ↔ ∃v0Aqf(k, v)). We get the
result. 2

In the following, we denote by (?) the strengthening of the scheme AC0,b0

Σ̂b
1

whereby one changes the extensional bound of f by the intensional one, i.e.

(?) : ∀x0∃y ≤0 1AΣ(x, y) → ∃f �1 1∀x0AΣ(x, fx).

Lemma 5 (Soundness) Assume that (A(z))B is ∃̃b∀̃cAB(b, c, z), where A(z)
is an arbitrary formula of Lω

� with its free variables as displayed. If

IPVω
� + MPΣ̂b

1
+ P[�] + (?) ` A(z),

then there are closed monotone terms t of appropriate types such that

IPVω
� + MPΣ̂b

1
+ (?) ` ∀̃a∀z � a ∀̃cAB(ta, c, z).

Proof. The lemma is proved like the Soundness Theorem. Ignoring parame-
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ters, it is sufficient to show that, for each instance P of (?),

∀x0∃y �0 1AΣ(x, y) → ∃f �1 1∀x0AΣ(x, fx),

there is a closed monotone term s1 such that IPVω
� +MPΣ̂b

1
+(?) ` ∀k0PB(s, k),

where (P )B is ∃̃u1∀k0PB(u, k). We have that (P )B is equivalent to

∃̃u1∀k0
(
∀x �0 uk∃y �0 1AΣ(x, y) → ∃f �1 1∀x �0 kAΣ(x, fx)

)
,

where condition 6 of Definition 3 is used crucially. In order to witness (P )B

we must produce a monotone closed term s1 such that,

∀k0
(
∀x �0 sk∃y �0 1AΣ(x, y) → ∃f �1 1∀x �0 kAΣ(x, fx)

)
,

Let s1 := λk0.k. Fix k0 and assume ∀x �0 k∃y �0 1AΣ(x, y). Hence

∀x0∃y �0 1(x �0 k → AΣ(x, y)),

which by (?) gives ∃f �1 1∀x0(x �0 k → AΣ(x, fx)). This implies the desired
conclusion. 2

We can now prove the following variant of Theorem 2:

Theorem 3 Let σ ∈ {0, 1} and ρ be any type. Suppose that

E-CPVω + bAC0,1
0 + AC0,b0

Σ̂b
1

+ Σ0
1-UB ` ∀xσ∃yρA0(x, y),

where A0 is a 0-bounded formula (its free variables as displayed). Then, there
is a closed monotone term qσ�ρ of Lω such that

CPVω + AC0,b0

Σ̂b
1

` ∀aσ∀x ≤∗
σ a∃y ≤∗

ρ qa A0(x, y).

Proof. Let A ≡ ∀xσ∃yρA0(x, y). Assume the hypothesis. We can follow the
proof of Theorem 2 up until the point where we can conclude that CPVω

� +

Pbd[�] + AC0,b0

Σ̂b
1

` A. By (iii) of Lemma 2, CPVω
� + Pbd[�] + (?) ` A. Using

the negative translation (Proposition 3) it is easy to see that:

IPVω
� + MPΣ̂b

1
+ Pbd[�] + (?) ` ∀xσ∃zρ¬¬∃y �ρ z (A0(x, y))†.

Note that MPΣ̂b
1

is used in accounting for the negative translation of (?). (At

this juncture, a restricted bounded Markov’s principle for mere Σb
1-formulas

would not suffice.) It follows from Lemma 5 that there is a closed monotone
term qσ�ρ such that

CPVω
� + (?) ` ∀aσ∀x �σ a∃y �ρ qa A0(x, y).
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An inessential generalization of Proposition 5 now yields the conclusion (note
that f ≤∗

1 1 iff f ≤1 1). 2

The following vast generalization of a Parikh-type bounding result (see [24])
is now immediate:

Corollary 1 Suppose that

E-CPVω + bAC0,1
0 + AC0,b0

Σ̂b
1

+ Σ0
1-UB ` ∀x0∃yρA0(x, y),

where A0 is a 0-bounded formula (its free variables as displayed). Then there
is a closed term q0�ρ such that,

CPVω + AC0,b0

Σ̂b
1

` ∀x0∃y ≤∗
ρ qx A0(x, y).

Whereas the bounded functional interpretation is powerless to analyze away
AC0,b0

Σ̂b
1

since this principle asks for a precise witness, the interpretation of Cook

and Urquhart analyzes away AC0,0
qf effortlessly (this observation is due to the

second author in [23]) and, a fortiori, AC0,b0

Σ̂b
1

. According to [8], the same is also

the case concerning MPΣ̂b
1

(actually, even Markov’s principle for existential

formulas, without the bound).

We are now ready to prove the main theorem of this paper:

Theorem 4 (Main Theorem) Suppose that

E-CPVω + bAC0,1
0 + AC0,b0

Σ̂b
1

+ Σ0
1-UB ` ∀x0∃y0 Aqf(x, y),

where Aqf is a quantifier-free formula (its variables as displayed). Then there
is a closed term t0�0 of Lω such that

PVω ` Aqf(x, tx).

Proof. Assume the hypothesis. By Corollary 1, the theory CPVω + AC0,b0

Σ̂b
1

proves ∀x0∃y0Aqf(x, y). We now use Cook and Urquhart’s interpretation (their
Soundness Theorem 9.3 in [8], and Oliva’s observation above) to finish the
proof. 2

Observation 1 In the formulation of the amount of induction present in
IPVω (see Section 2), we have demanded that the parameters of the bound-
ing terms t be of type 0 only (i.e., t must be zero-open). The only place where
this requirement is used is in Cook and Urquhart’s proof of their Soundness
Theorem. Except for the Main Theorem above, all the results stated so far also
hold if we have induction on notation for Σ̂b

1-formulas instead of induction on
notation for mere Σb

1-formulas.
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By Theorem 6.17 of [8], we can even have the equational theory PV instead
of PVω in the conclusion of the theorem (the former theory bears to the
polynomial-time computable functions the same relation that Skolem’s prim-
itive recursive arithmetic bears to the primitive recursive functions).

In [12], the first author showed that if BTFA+Σb
∞-WKL ` ∀x0∃y0A(x, y), where

A is a Σb
1-formula, then there is a term t such that PTCA ` ∀x0A(x, t(x)),

where PTCA is a first-order version of Cook’s PV. Ferreira’s proof has an
essential model-theoretic component. Disregarding notational differences, by
Lemma 4 and Cantini’s observations, BTFA + Σb

∞-WKL is included in the
major theory of the theorem above. Since the arguments given in this paper
are proof-theoretic and based on functional interpretations, we have met the
challenge of Avigad and Feferman (posed at the end of §7 of [1]) to obtain, via
these means, conservation results concerning weak König’s lemma in a feasible
setting.

4 Finite Functions

The theorems of the previous section can be extended by replacing the notion
of 0-bounded formula by a wider notion, that of FIN-bounded formula.

Definition 6 The FIN-bounded formulas of the language Lω form the small-
est class of formulas that includes the quantifier-free formulas and is closed
under propositional connectives and quantifications of the form ∀x ≤0 t(...),
∃x ≤0 t(...), ∀f 1(FIN(f, q, r) → (...)) and ∃f 1(FIN(f, q, r)∧ (...)) where t is a
term of type 0 in which the variable x does not occur, and q and r are terms
of type 0 in which the variable f does not occur. The formula FIN(f 1, k0, m0)
abbreviates ∀n0(n > k → fn =0 0) ∧ ∀n0(fn ≤ m).

In primitive recursive arithmetic, the finite functions f such that FIN(f, q, r)
can be encoded by natural numbers bounded by a (primitive recursive) func-
tion of q and r. Therefore, within primitive recursive arithmetic, the quan-
tifications ∀f 1(FIN(f, q, r) → (...)) and ∃f 1(FIN(f, q, r) ∧ (...)) are bounded.
This is not the case in the context of feasibility (cf. (4) of §1).

The case FIN(f, q, 1) corresponds to characteristic functions of sets whose
elements are all less than q + 1. The study of quantifications over finite sets
bounded by a given number of elements in the context of feasible analysis was
first addressed by A. Fernandes in his doctoral dissertation [9] using model-
theoretical methods. In this last section, we study the “FIN-quantifications”
in feasible analysis with the methods of this paper.

Lemma 6 Let F be the functional of type 1 � (0 � (0 � 1)) defined by
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F(f 1, k0, m0)(n0) =0

 max0(fn, m) if n ≤0 k

0 otherwise

The theory IPVω
� proves the following:

a) ∀f 1∀k0, m0 (F(f, k, m) �1 λn0.m);
b) ∀f 1∀k0, m0 (FIN(F(f, k,m), k, m));
c) ∀f 1∀k0, m0 (FIN(f, k, m) → ∀x0(f(x) = F(f, k,m)(x))).

Proof. Part a) is a straightforward consequence of RL�. Parts b) and c) are
clear. 2

In order to extend Theorem 2, Theorem 3 and Main Theorem 4 we perform a
‘sandwich argument’.

Definition 7 To each FIN-bounded formula A of Lω we associate formulas
All, Al, Ac, Ar and Arr according to the following recursive clauses:

(1) If A is atomic, All, Al, Ac, Ar and Arr are all the same and equal to A.
(2) (A2B)\ is A\2B\, where 2 ∈ {∧,∨} and \ ∈ {ll, l, c, r, rr}.
(3)a) (A → B)ll is Arr → Bll;

b) (A → B)l is Ar → Bl;
c) (A → B)c is Ac → Bc;
d) (A → B)r is Al → Br;
e) (A → B)rr is All → Brr.

(4) (Qz ≤0 tA(z))\ is Qz�0 t[A(z)]\, where Q ∈ {∀,∃} and \ ∈ {ll, l, c, r, rr}.
(5)a) [∀f(FIN(f, q, r) → A(f))]ll is ∀f [A(F(f, q, r))]ll;

b) [∀f(FIN(f, q, r) → A(f))]l is ∀f �1 λn.r[A(F(f, q, r))]l;
c) [∀f(FIN(f, q, r) → A(f))]c is ∀f [A(F(F(f, q, r), q, r))]c;
d) [∀f(FIN(f, q, r) → A(f))]r is ∀f �1 λn.r[A(F(F(f, q, r), q, r))]r;
e) [∀f(FIN(f, q, r) → A(f))]rr is ∀f [A(F(F(F(f, q, r), q, r), q, r))]rr.

(6)a) [∃f(FIN(f, q, r) ∧ A(f)]ll is ∃f [A(F(F(F(f, q, r), q, r), q, r))]ll;
b) [∃f(FIN(f, q, r) ∧ A(f)]l is ∃f �1 λn.r[A(F(F(f, q, r), q, r))]l;
c) [∃f(FIN(f, q, r) ∧ A(f)]c is ∃f [A(F(F(f, q, r), q, r))]c;
d) [∃f(FIN(f, q, r) ∧ A(f)]r is ∃f �1 λn.r[A(F(f, q, r))]r;
e) [∃f(FIN(f, q, r) ∧ A(f)]rr is ∃f [A(F(f, q, r))]rr.

Observe that the original formula A as well as All, Ac and Arr are in the
language Lω, whereas the formulas Al and Ar are bounded formulas of Lω

�.

Lemma 7 Let A be a FIN-bounded formula of the language Lω.

(i) E-IPVω proves that A, All, Ac and Arr are all equivalent.
(ii) IPVω

� proves All → Al, Al → Ac, Ac → Ar and Ar → Arr.
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Proof. By b) and c) of Lemma 6, (i) immediately follows in the presence of
full extensionality. The proof of (ii) requires simultaneous induction, and uses
a) of Lemma 6. 2

The principles bAC0,1
FIN and Σ0

1-UBFIN are the counterparts of bAC0,1
0 and Σ0

1-UB
(respectively), where the 0-bounded matrix A0 is replaced by a FIN-bounded
matrix AF. Note that the generalization of the principle of strict-Π1

1 reflection
whereby the 0-bounded matrix A0 is replaced by a FIN-bounded matrix AF,
is a consequence of Σ0

1-UBFIN. Hence, by an (adaptation of an) argument of
Cantini [7] (see also the beginning of §3.1), Σ0

1-UBFIN classically entails weak
König’s lemma for trees defined by FIN-bounded formulas.

We can now generalize Theorem 2.

Theorem 5 Let σ ∈ {0, 1}. Suppose that

E-CPVω + bAC0,1
FIN + Σ0

1-UBFIN ` ∀xσ∃yρAF(x, y),

where AF is a FIN-bounded formula (its free variables as displayed). Then,
there is a closed monotone term qσ�ρ of Lω such that

E-CPVω ` ∀aσ∀x ≤∗
σ a∃y ≤∗

ρ qa AF(x, y).

Proof. The argument is a combination of the proof of Theorem 2 with a
‘sandwich argument’. Suppose that ∀x∃yAF(x, y) is a theorem of E-CPVω +
bAC0,1

FIN + Σ0
1-UBFIN. By the previous lemma, then so is ∀x∃y[AF(x, y)]c. In

virtue of the presence of full extensionality and by the previous lemma, it is
clear that we may replace bAC0,1

FIN by the scheme

($) : ∀x0∃y1[BF(x, y)]c → ∃Φ∀x∃y ≤1 Φx[BF(x, y)]rr,

for FIN-bounded formulas BF. It is also clear that we may replace Σ0
1-UBFIN

by:

(∗∗)

 ∀h0�1
(
∀k0∀f 1 ≤ hk∃e1 [BF(f, h, k, e)]c →

∃g0�1∀k0, f1∃e ≤1 gk [BF(min1(f, hk), h, k, e)]rr

)
.

In sum, the theory E-CPVω + ($) + (∗∗) proves ∀x∃y[AF(x, y)]c. Using Luck-
hardt’s elimination technique, it follows that CPVω +($)+(∗∗) already proves
∀x∃y[AF(x, y)]c. Now, we claim that CPVω

� + Pbd[�] proves each instance of
($) and (∗∗). Let us argue this for ($). Assume that ∀x∃y[BF(x, y)]c. By the
previous lemma, ∀x∃y[BF(x, y)]r. Since [BF(x, y)]r is a bounded formula, by
bACω

bd[�] and part (iii) of Lemma 2 we get ∃Φ∀x∃y ≤ Φx[BF(x, y)]r. Ac-
cording to the previous lemma, we may conclude ∃Φ∀x∃y ≤ Φx[BF(x, y)]rr,
as wanted. The case (∗∗) is similar, using MAJω[�], bMPω

bd[�], bACω
bd[�] and
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bBCω
bd[�] (following an argument in the proof of Theorem 2) and, again, the

previous lemma.

We showed that CPVω
� + Pbd[�] proves ∀x∃y[AF(x, y)]c and, hence (by the

above lemma) ∀x∃y[AF(x, y)]r. Since the formula [AF(x, y)]r is bounded, using
the negative translation and the Soundness Theorem, it is not difficult to see
that

CPVω
� ` ∀aσ∀x �σ a∃y �ρ qa [AF(x, y)]r

for a certain closed term q. By the above lemma, we may substitute the matrix
[AF(x, y)]r by [AF(x, y)]rr. A modification of Proposition 5 yields

CPVω ` ∀aσ∀x ≤∗
σ a∃y ≤∗

ρ qa [AF(x, y)]rr.

Therefore, by full extensionality and the above lemma:

E-CPVω ` ∀aσ∀x ≤∗
σ a∃y ≤∗

ρ qa AF(x, y).

2

Theorem 3 and Main Theorem 4 can be similarly extended. We finish the
paper with the improved formulation of the latter theorem.

Theorem 6 Suppose that

E-CPVω + bAC0,1
FIN + Σ0

1-UBFIN + AC0,b0

Σ̂b
1

` ∀x0∃y0 Aqf(x, y),

where Aqf is a quantifier-free formula (its variables as displayed). Then there
is a closed term t0�0 of Lω such that

PVω ` Aqf(x, tx).
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