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Abstract

We formulate schemes (M1) and (M2) of the “typical” ∀Σb
1-sentences that are provable in

T 1
2 , respectively T 2

2 . As an application, we reprove a recente result of Buss and Kraj́iček which
describes witnesses for the ∀Σb

1-sentences provable in T 1
1 in terms of solutions to PLS-problems.

1 Introduction

In his 1985 Princeton University Doctoral Thesis, Samuel Buss introduced a series of bounded
theories of arithmetic which are closely related to the Meyer-Stockmeyer complexity hierarchy. A
notable example of this closeness is the following particular case of Buss’ main theorem of his
dissertation: if S1

2 � ∀x∃yA(x, y), with A ∈ Σb
1, then there is a ✷

p
1-function f , i.e., a polynomial

time computable function, such that, for all n ∈ ω, A(n, f(n)). This suggests the investigation
of the ∀Σb

1-consequences of bounded theories stronger than S1
2 . For instance, what are the ∀Σb

1-
consequences of T k

2 (k ≥ 1)? What are, indeed, the provably total functions (with Σb
1-graphs) of

T k
2 ? Something rather trivial can be said at once. According to the so-called Parikh’s theorem, if
T k

2 � ∀x∃yA(x, y), with A ∈ Σb
1, then there is a term t(x) such that T k

2 proves ∀x∃y ≤ t(x)A(x, y).
In particular this sentence is true and - from this fact alone - it follows that there exists a ✷

p
2-

function f such that, for all n ∈ ω, A(n, f(n)). However, this information comes solely from the
truth of the sentence ∀x∃y ≤ t(x)A(x, y), and totally neglects its provability in T k

2 .
We do not adress directly the question of characterizing the provably total functions (with

Σb
1-graphs) of T k

2 . This we were not able to do. We rather adress the related issue of describing
the “typical” ∀Σb

1-consequences of T k
2 . More precisely, we would like to formulate a distinct scheme

(Mk) of ∀Σb
1-sentences such that,

I. each instance of (Mk) is provable in T k
2 , and

II. every ∀Σb
1-consequence of T k

2 is provable in S1
2 plus the scheme (Mk).

We believe that this constitutes a sensible first answer to the question posed in the title of the
paper. For instance, it is very clear from the form of the sentences in (M2) that they embody
stronger minimization assumptions than the sentences in (M1). Perhaps the study of these prin-
ciples (Mk) will be helpful in answering whether the relativized theories T k

2 (α) and Sk
2 (α) can be

separated by a ∀Σb
1(α)-sentence (this is known to be true for k = 1; vide Buss’ dissertation).

We describe a method for obtaining these schemes (Mk), and we do actually calculate the
schemes (M1) and (M2). In the final section of the paper we show that our study of the case k = 1
yields a recent characterization (due to Buss and Kraj́iček) of the ∀Σb

1-consequences of T 1
1 in terms

of solutions to certain complexity theoretic problems introduced by Johnson, Papadimitriou and
Yannakakis.
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2 Notation and main lemma

We mainly follow Buss’ notation in [1], except for the few departures discussed ahead. A first
departure consists in using Buss’ acronym PV1 for the first-order version of the quantifier-free
theory PV1. This first-order counterpart is a universal theory stated in a language that has function
symbol for each (canonical description of a) polynomial time computable function. (Our paper [2]
describes in detail a theory of this sort. However, this theory is formulated in a stringlanguage,
not in the arithmetic language of Buss.) In trying to present a uniform and perspicuous treatment,
we introduce the classes of Π̌b

k-formulae (for k ≥ 0). These are the bounded formulae of the form

∀x1 ≤ t1∃x2 ≤ t2 . . .Qxk ≤ tkA

where Q is ∀ if n is odd and ∃ if n is even, t1, . . . , tk are terms, and A is a quantifier-free formula
of the language of PV1. The classes of Σ̌b

k-formulae are defined in a dual manner. Hence, we are
embedding the language of PV1 in Buss’ original language. The main fact to keep in mind is that
the class Π̌b

0 defines all polynomial time decidable relations, not just the sharply bounded ones. In
tune with the above definition, we assume that the theories Sk

2 and T k
2 (k ≥ 1) are stated in the

enlarged language. This is a harmless move, since all polynomial time computable functions can be
“smoothly” introduced in S1

2 . In other words, these new theories are conservative extensions of the
original theories Sk

2 and T k
2 . More generally, every ✷

p
k-function can be “smoothly” introduced in

Sk
2 . In view of this fact (due to Buss), we will occasionally assume that the language of Sk

2 contains
function symbols for the ✷

p
k-functions, without explicitly telling so. In a nutshell, sometimes it is

convenient to suppose that PVk ⊆ Sk
2 , where the PVk’s are the theories introduced by Kraj́ičeck

et al. in [3] (although we really use their first-order versions). Lastly, we abbreviate a sequence of
variables (or terms) x0, x1, . . . , xr by x̄ and modify (abbreviate) related notation accordingly.

Lemma. Let k ≥ 1 and A(x, y) ∈ Σ̌b
k. The following three statements are equivalent:

(1) T k
2 � ∀x∃wA(x,w)

(2) There are B ∈ Π̌b
k−1 and g, f, h ∈ ✷

p
k such that

Sk
2 � ∀xB(x, g(x))

Sk
2 � ∀x∀w(B(x,w) → A(x, f(x,w)) ∨ (h(x,w) < w ∧B(x, h(x,w))))

(3) There is B ∈ Π̌b
k−1 such that

PV1 � ∀x∃wB(x,w)

PV1 � ∀x∀w(B(x,w) → ∃yA(x, y) ∨ ∃w′ < wB(x,w′))

Proof : Without loss of generality, we may suppose A ∈ Π̌b
k−1. This supposition is admissible

since two existential quantifiers can be merged into a single one by means of a pairing function pair
which is polynomial time computable, whose decoding projections pr0, pr1 are also polynomial time
computable and such that the code/decode relations are provable in PV1. For later convenience,
we further assume that pair is (provably) bijective and that x0 ≤ w0 ∧ x1 ≤ w1 → pair(x0, x1) ≤
pair(w0, w1). Under this simplifying assumption, we show that (1) ⇒ (3) ⇒ (2) ⇒ (1). The
implication (3) ⇒ (2) is immediate by Herbrand’s theorem, since B is equivalent to an open
formula of the language of PVk and since this theory is universal (and a subtheory of Sk

2 ). To
argue for the implication (2) ⇒ (1) we will use the well-known characterization of the theory T k

2

(essencially due to Buss in [1]) which states that T k
2 is equivalent to the theory PV1 plus the scheme

of minimization for Π̌b
k−1-formulae. We remind that this scheme consists of all (universal closures

of) formulae of the type
∃xA(x) → ∃x(A(x) ∧ ∀y < x¬A(y))
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where A is a formula in Π̌b
k−1, possibly with parameters. Now, suppose that (2) holds. We reason

inside T k
2 . Let x be an arbitrary element. By hypothesis, B(x, g(x)). Using the minimization

scheme, pick w such that B(x,w) ∧ ∀w′ < w¬B(x,w′) holds. This implies A(x, f(x,w)) and,
therefore, that ∃yA(x, y) is true.

The proof of (1) ⇒ (3) is more substantial. Following Buss [1], we reformulate the theory T k
2 in

Gentzen’s sequent calculus. Occasionally, our notation for the sequent calculus differs from Buss’:
for instance, we use the colon - instead of the arrow - to separate the cedents in a sequent, and
we reserve the arrow for the implication sign (instead of Buss’ horseshoe). Moreover, to simplify
the reading process, we systematically use the standard abbreviation <. The sequent calculus
for T k

2 treats bounded quantification as a syntactic operation in its own right (as opposed to an
abbreviation), and Buss listed in his thesis twenty two structural and logical inferences for this
“bounded” logic. The sequent calculus reformulation of T k

2 has, also, the cut inferences

Γ, A : ∆ Γ : A,∆
Γ : ∆

and the so-called MIN -inferences

Γ, A(x) : ∆,∃x′ < xA(x′)
Γ, A(t) : ∆

where A ∈ Π̌b
k−1, t is any term and x is an eigenvariable that does not appear in the lower sequent.

The initial sequents are the logical ones, of the form A : A, with A atomic, plus some mathe-
matical sequents corresponding to the axioms of the universal theory PV1. The main observation
to make is that the initial sequents contain only quantifier-free formulae.

This sequent calculus is equivalent to the theory T k
2 in the usual sense, i.e, T k

2 � A if, and only
if, the sequent :A is derivable in the calculus. The only significant thing to show in this respect
is that the minimization scheme is derivable in the sequent calculus. In fact,

· · · · · ·
A(z) : A(z) ∃y < zA(y) : ∃y < zA(y)

A(z) → ∃y < zA(y), A(z) : ∃y < zA(y)
∀x(A(x) → ∃y < xA(y)), A(z) : ∃y < zA(y)
∀x(A(x) → ∃y < xA(y)), A(z) :

A(z) : ¬∀x(A(x) → ∃y < xA(y))
· · · · · ·

A(z) : ∃x(A(x) ∧ ∀y < x¬A(y))
∃xA(x) : ∃x(A(x) ∧ ∀y < x¬A(y))

: ∃xA(x) → ∃x(A(x) ∧ ∀y < x¬A(y))

Now, suppose that T k
2 � ∀x∃yA(x, y), where A ∈ Π̌b

k−1. Then, the sequent : ∃yA(x, y) is
derivable in the above sequent calculus. By Gentzens cut elimination theorem, adapted to our
setting, there is a so-called free-cut free derivation (see Buss [1]) of this sequent. Hence, there is
a (tree) derivation of : ∃yA(x, y) such that all sequents (nodes) Γ : ∆ that occur in the (tree)
derivation consist only of formulae of the type ∃Π̌b

k−1. By logic alone, write the conjunction of Γ
as ∃ūT (p̄, ū), with T a conjunction of Π̌b

k−1-formulae, and write the disjunction of ∆ as ∃v̄D(p̄, v̄),
with D a disjunction of Π̌b

k−1-formulae. We claim that there is B(p̄, ū, w) ∈ Π̌b
k−1 satisfying the

following two conditions:
PV1 � ∀p̄∀ū(T (p̄, ū) → ∃wB(p̄, ū, w))

PV1 � ∀p̄∀ū∀w(B(p̄, ū, w) ∧ T (p̄, ū) → ∃ȳD(p̄, ȳ) ∨ ∃w′ < wB(p̄, ū, w′))
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The case when Γ : ∆ is the root of the tree derivation gives the desired conclusion. We prove the
claim by induction on the length of the largest branch in the tree derivation above the node Γ : ∆.
When this length is zero we are at a top node, i.e., at an axiom, and hence there is really nothing
to prove since these nodes consist only of quantifier-free formulae. The structural inferences pose
no trouble. The propositional inferences may solely apply to quantifier-free formulae and thus
are easy to deal with. Concerning the quantifier inferences, we illustrate the most complex case,
namely the inference ∀ ≤: right (or, dually, ∃ ≤: left):

x ≤ t,Γ : ∆, A(x)
Γ : ∆,∀z ≤ tA(z)

where x is a variable that does not appear in the lower sequent. Recall that every formulae of the
tree derivation is of the form ∃Π̌b

k−1. In particular, ∀z ≤ tA(z) must be in Π̌b
k−1. Thus, A ∈ Σ̌b

k−2.
By induction hypothesis, there is B′ ∈ Π̌b

k−1 such that the theory PV1 proves both

∀p̄∀x∀ū(x ≤ t(p̄) ∧ T (p̄, ū) → ∃wB′(p̄, x, ū, w))

∀p̄∀x∀ū∀w(B′(p̄, x, ū, w) ∧ x ≤ t(p̄) ∧ T (p̄, ū) → ∃ȳD(p̄, y) ∨A(x, p̄) ∨ ∃w′ < wB′(p̄, x, ū, w′))

Let B(p̄, ū, w) be the following Π̌b
k−1-formula:

(B′(p̄, 0, ū, w) ∧ ∀z ≤ t(p̄)A(z, p̄)) ∨ (B′(p̄, pr0(w), ū, pr1(w)) ∧ pr0(w) ≤ t(p̄) ∧ ¬A(pr0(w), p̄))

Strictly speaking this is not a Π̌b
k−1-formula, although it is clearly equivalent to such one in the

theory PV1. (In the sequel, we often abuse the language in this way.) It is straightforward to see
that the formula B satisfies the two required conditions associated with the lower sequent of the
inference ∀ ≤: right.

There remains to check the cut-inferences and the MIN-inferences. Let us first consider the cut
case. Suppose A(p̄) is ∃sQ(p̄, s), with Q ∈ Π̌b

k−1. By induction hypothesis there is B0 ∈ Π̌b
k−1 such

that
PV1 � ∀p̄∀ū∀s(T (p̄, ū) ∧Q(p̄, s) → ∃wB0(p̄, ū, s, w))

PV1 � ∀p̄∀ū∀s∀w(B0(p̄, ū, s, w) ∧ T (p̄, ū) ∧Q(p̄, s) → ∃ȳD(p̄, ȳ) ∨ ∃w′ < wB0(p̄, ū, s, w′))

and there is B1 ∈ Π̌b
k−1 such that

PV1 � ∀p̄∀ū(T (p̄, ū) → ∃wB1(p̄, ū, w))

PV1 � ∀p̄∀ū∀w(B1(p̄, ū, w) ∧ T (p̄, ū) → ∃ȳD(p̄, ȳ) ∨ ∃sQ(p̄, s) ∨ ∃w′ < wB1(p̄, ū, w′))

Using thrice a well-known result of Parikh (see, for instance, [1]), there are terms t(p̄, ū), q(p̄, ū)
and r(p̄, ū) of the language of PV1 such that the theory PV1 proves

∀p̄∀ū(T (p̄, ū) → ∃w ≤ t(p̄, ū)B1(p̄, ū, w))

∀p̄∀ū∀w ≤ t(p̄, ū)(B1(p̄, ū, w) ∧ T (p̄, ū) → ∃ȳD(p̄, ȳ) ∨ ∃s ≤ q(p̄, ū)Q(p̄, s) ∨ ∃w′ < wB1(p̄, ū, w′))

∀p̄∀ū∀s ≤ q(p̄, ū)(T (p̄, ū) ∧Q(p̄, s) → ∃w ≤ r(p̄, ū)B0(p̄, ū, s, w))

Define B(p̄, ū, w) as the disjunction

(pr0(w) ≥ r(p̄, ū) ∧B1(p̄, ū, pr0(w) − r(p̄, ū)) ∧ pr1(w) = 1 + q(p̄, ū))∨

∨(pr0(w) ≤ r(p̄, ū) ∧ pr1(w) ≤ q(p̄, ū) ∧B0(p̄, ū, pr1(w), pr0(w)) ∧Q(p̄, pr1(w)))

4



Firstly, we show that B, as defined above, satisfies the first condition. We reason inside PV1.
Assume T (p̄, ū), and take a ≤ t(p̄, ū) such that B1(p̄, ū, a) is true. Let w0 be a + r(p̄, ū) and let
w1 be 1 + q(p̄, ū). It is clear that B(p̄, ū, c) holds, where c = pair(w0, w1), since the first disjunct
of B becomes true. In order to verify the second condition, assume B(p̄, ū, w) ∧ T (p̄, ū). If the
second disjunct of B(p̄, ū, w) holds, the matter is easy. Alternatively, the first disjunct is valid.
We may assume, without loss of generality, that pr0(w) − r(p̄, ū) ≤ t(p̄, ū) is true. (In fact, if
pr(w0) − r(p̄, ū) > a, then B(p̄, ū, c) and c < w.) There are two cases to consider. The case
when ∀s ≤ q(p̄, ū)¬Q(p̄, s̄) is straightforward. Otherwise, take w1 ≤ q(p̄, ū) such that Q(p̄, w1)
holds, and pick w0 ≤ r(p̄, ū) such that B0(p̄, ū, w1, w0) is true. Note that pair(w0, w1) < w,
since w0 ≤ r(p̄, ū) ≤ pr0(w) and w1 ≤ q(p̄, ū) < pr1(w). By construction, the second disjunct of
B(p̄, ū, pair(w0, w1)) is true.

Let us finally consider the MIN-inferences. By induction hypothesis, there is B′ ∈ Π̌b
k−1 such

that the theory PV1 proves both

∀p̄∀x∀ū(T (p̄, ū) ∧A(p̄, x) → ∃wB′(p̄, x, ū, w))

∀p̄∀x∀ū∀w(B′(p̄, x, ū, w)∧T (p̄, ū)∧A(p̄, x) → ∃ȳD(p̄, ȳ)∨∃x′ < xA(p̄, x′)∨∃w′ < wB′(p̄, x, ū, w′))

By a previous remark, the result of Parikh guarantees that there is a term d such that

PV1 � ∀p̄∀x ≤ t(p̄)∀ū(T (p̄, ū) ∧A(p̄, x) → ∃w < d(p̄, ū)B′(p̄, x, ū, w))

Let B(p̄, ū, w) be the following Π̌b
k−1-formula:

B′(p̄, qt(w; d(p̄, ū)), ū, rm(w; d(p̄, ū))) ∧ qt(w; d(p̄, ū)) ≤ t(p̄) ∧A(p̄, qt(w; d(p̄, ū)))

where qt(w; d(p̄, ū)) and rm(w; d(p̄, ū)) are, respectively, the quotient and the remainder of the
dividion of w by d(p̄, ū). In other words: w = qt(w; d(p̄, ū))d(p̄, ū) + rm(w; d(p̄, ū)), where
rm(w; d(p̄, ū)) < d(p̄, ū). We show that B, as defined above, satisfies the two required conditions to
keep the induction going. In order to check the first condition, assume T (p̄, ū) ∧A(p̄, t(p̄)). Then,
there exists a < d(p̄, ū) such that B′(p̄, t(p̄), ū, a) holds. Clearly, B(p̄, ū, c), where c = t(p̄)d(p̄, ū)+a.
Let us now argue for the validity of the second condition. Assume B(p̄, ū, w)∧T (p̄, ū)∧A(p̄, t(p̄)).
In particular, B′(p̄, qt(w; d(p̄, ū)), ū, rm(w; d(p̄, ū))) and A(p̄, qt(w; d(p̄, ū))). There are two cases
to consider. If there is w0 < qt(w; d(p̄, ū)) such that A(p̄, w0) is true, pick w1 < d(p̄, ū) satisfying
B′(p̄, w0, ū, w1). We get B(p̄, ū, w′), where w′ = w0d(p̄, ū) + w1 < w. The second case takes place
when there exists w1 < rm(w; d(p̄, ū)) such that B′(p̄, qt(w; d(p̄, ū)), ū, w1) holds. In this situation,
we conclude B(p̄, ū, w′), where w′ = qt(w; d(p̄, ū))d(p̄, ū) + w1 < w. ✷

Notice that the lemma is also true for A ∈ Σb
k. In effect, it is well known that the theory Sk

2 , and
a fortiori the theory T k

2 , proves the Σb
k-replacement axioms. This entails that every Σb

k-formula
A is equivalent to a Σ̌b

k-formula Ǎ in T k
2 . Furthermore, the theory PV1 proves the implication

“Ǎ→ A”. The claim follows.

3 The cases T 1
2 and T 2

2

In the introduction we posed the question of characterizing the ∀Σb
1-consequences of T k

2 , and
we proposed that a sensible first answer would be to perspicuously describe a collection of ∀Σb

1-
sentences that, together with the theory PV1, forms the ∀Σb

1-theory of T k
2 . The main lemma of the

previous section suggests a way of tackling this question. The key idea can be briefly described.
Suppose that T k

2 � ∀x∃yA(x, y), where A ∈ Σb
1. Part 3 of the main lemma guarantees the existence

of B ∈ Π̌b
k−1 such that the theory PV1 proves both ∀x∃wB(x,w) and

∀x∀w(B(x,w) → ∃yA(x, y) ∨ ∃w′ < wB(x,w′))
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By Herbrand analysis, we know that PV1 � H, where H is the quantifier-free Herbrand normal
form of the above statement (we mean by H the Herbrand normal form which is stated in the
same language). The final step consists in trying to extract from the particular form of H a ∀Σb

1-
condition (provable in T 1

2 ) which entails the sentence ∀x∃yA(x, y) in the theory PV1. This strategy
is perfectly general, but we will only effect an ad-hoc study for the cases of the theories T 1

2 and
T 2

2 . We believe that the general case should yield to the above method, although this surely must
involve careful work and the introduction of some intelligent definitions.

Proposition. The following ∀Σb
1-scheme is provable in T 1

2 :

(M1) ∀x∀u(B(x, u) → ∃w ≤ u(B(x,w) ∧ (h(x,w) < w → ¬B(x, h(x,w)))))

where B ∈ Π̌b
0 and h ∈ ✷

p
1.

Moreover, all the ∀Σb
1-consequences of T 1

2 are provable in PV1 plus the above scheme.

Proof : (M1) is obviously a consequence of the Π̌b
0-minimization scheme. Suppose, now, that

T 1
2 � ∀x∃yA(x, y), with A ∈ Π̌b

0 (it is clear that this latter assumption does not represent a loss
of generality). By part 3 of the main lemma, and by Herbrand analysis, there are B ∈ Π̌b

0 and
g, f, h ∈ ✷

p
1 such that

(∗) PV1 � ∀xB(x, g(x))

(∗∗) PV1 � ∀x∀w(B(x,w) → A(x, f(x,w)) ∨ (h(x,w) < w ∧B(x, h(x,w))))

We reason inside PV1. Take any x. By (∗), B(x, g(x)) is true. Thus, according to (M1), there
is w such that B(x,w) ∧ (h(x,w) < w → ¬B(x, h(x,w))) is true. This entails A(x, f(x,w)). So,
∃yA(x, y). ✷

A comment by the anonymous referee suggested to me a particularly elegant reformulation of
the above proposition:

Proposition (ameliorated version). The following ∀Σb
1-scheme is provable in T 1

2 :

∀x∀u(g(x, u) < u→ ∃w ≤ u(g(x,w) < w ∧ g(x, g(x,w)) ≥ g(x,w)))

where g ∈ ✷
p
1.

Moreover, all the ∀Σb
1-consequences of T 1

2 are provable in PV1 plus the above scheme.

Proof : (M1) is obviously a consequence of the Π̌b
0-minimization scheme. Conversely, we show

that the above scheme entails, within PV1, the scheme (M1). By the previous lemma, this suffices
for concluding the proof of the proposition.

Let B ∈ Π̌b
0, h ∈ ✷

p
1, and define

g(x, u) =
{
h(x, u) if B(x, u) ∧B(x, h(x, u))
u otherwise

It is clear that g ∈ ✷
p
1. We reason inside PV1. Assume that B(x, u) holds. If g(x, u) ≥ u, then

(M1) is true with w = u. Otherwise, according to (M1), there is w′ ≤ u such that,

g(x,w′) < w′ ∧ g(x, g(x,w′)) ≥ g(x,w′)

In this case, (M1) is true with w = g(x,w′). ✷
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Proposition. The following ∀Σb
1-scheme is provable in T 2

2 :

(M ′
2) ∀x∀u{∀zB(x, u, z) → ∃w ≤ u∃z0∃z1 . . .∃zn

n∧
i=0

[B(x,w, ki(x,w, z0, z1, . . . , zi−1))∧

∧(hi(x,w, z0, z1, . . . , zi−1) < w → ¬B(x, hi(x,w, z0, z1, . . . , zi−1), zi))]}
where B(x, u, z) is of the form “z ≤ t(x, u) → C(x, u, z)”, with t a term of the language of PV1,
C ∈ Π̌b

0, and where both (i+ 2)-ary functions ki, hi (0 ≤ i ≤ n) are in ✷
p
1.

Moreover, all the ∀Σb
1-consequences of T 2

2 are provable in PV1 plus the above scheme.

Proof : It is not difficult to argue that (M ′
2) is provable in the theory T 2

2 : the crucial step consists
in using the Π̌b

1-minimization scheme to pick the least w such that ∀zB(x,w, z). Suppose, now,
that T 2

2 � ∀x∃yA(x, y), with A ∈ Π̌b
0. By part 3 of the main lemma, there is B′ ∈ Π̌b

1 such that
PV1 � ∀x∃wB′(x,w) and

PV1 � ∀x∀w(B′(x,w) → ∃yA(x, y) ∨ ∃w′ < wB′(x,w′))

Write B′(x,w) as ∀zB(x,w, z), where B(x,w, z) is z ≤ t(x,w) → C(x,w, z) for a certain term t
of the language of PV1, and a certain C ∈ Π̌b

0. Using this new notation, we can rewrite the above
condition as

PV1 � ∀x∀w∃z∃y∃w′∀z′(B(x,w, z) → A(x, y) ∨ (w′ < w ∧B(x,w′, z′)))

By Herbrand analysis (or, if the reader feels more sympathetic towards model theory, by a sim-
ple compactness argument as in the second proof of theorem A in [3]), there are ✷

p
1-functions

k0, . . . , kn, f0, . . . , fn, h0, . . . , hn such that the theory PV1 proves the following sentence:

∀x∀w∀z0 . . .∀zn
n∨

i=0

[B(x,w, ki(x,w, z0, . . . , zi−1)) → A(x, fi(x,w, z0, . . . , zi−1))∨

∨(hi(x,w, z0, . . . , zi−1) < w ∧B(x, hi(x,w, z0, . . . , zi−1), zi))]

We reason inside PV1. Take any x, and pick u such that ∀zB(x, u, z) holds. Then, according
to (M ′

2), there are w, z0, . . . , zn such that, for all 0 ≤ i ≤ n,

B(x,w, ki(x,w, z0, . . . , zi−1)) ∧ (hi(x,w, z0, , . . . , zi−1) < w → ¬B(x, h1(x,w, z0, , . . . , zi−1), zi))

This entails
∨n

i=0A(x, fi(x,w, z0, . . . , zi−1)). So, ∃yA(x, y). ✷

It would be interesting to find an amelioration of the above proposition in the vein of the case
T 1

1 .

4 Digression on PLS-problems

The concept of a polynomial local search problem (a PLS-problem, for short) was introduced in
[4]. The next definition follows closely the presentation of Buss and Kraj́iček in [5].

Definition. A PLS-problem L consists of a family FL(x) of subsets of ω (one for each x ∈ ω,
called the set of solutions of the instance x of L), and functions cL(s, x) and NL(s, x), called (resp.)
the cost function and the neighborhood function, such that:

i. the binary predicate s ∈ FL(x) and the functions cL(s, x) and NL(s, x) are polynomial time
computable;
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ii. there is a polynomial pL such that, for all s ∈ FL(x), |s| ≤ pL(|x|);

iii. for all s ∈ ω, NL(s, x) ∈ FL(x);

iv. for all s ∈ FL(x), if NL(s, x) �= s then cL(s, x) < cL(NL(s, x), x).

An optimal solution of the instance x of the problem L is a natural number s such thatNL(s, x) = s.

It is clear that a PLS-problem can be expressed by a ∀Π̌b
0-sentence. If this sentence is provable

in PV1, then we say that L is a PLS-problem in PV1. The formula Opt(s, x) is the Π̌b
0-formula

NL(s, x) = s. The following result is an inessential variation of a theorem at the end of [5].

Proposition. (Buss and Kraj́iček) Suppose that T 1
2 � ∀x∃yA(x, y), with A ∈ Π̌b

0. Then there
is a PLS-problem L in PV1, and there is a polynomial time computable function f such that

PV1 � ∀x∀s(OptL(x, s) → A(x, f(x, s)))

Proof : As we have pointed out in the proof of the first lemma of the previous section, there are
B ∈ Π̌b

0 and g, f, h ∈ ✷
p
1 which satisfy both (∗) and (∗∗). Define,

FL(x) = {s : s ≤ g(x) ∧B(x, s)}

NL(x, s) =



g(x) if s �∈ FL(x)
h(x, s) if s ∈ FL(x) ∧ ¬A(x, f(x, s))
s if s ∈ FL(x) ∧A(x, f(x, s))

cL(s, x) = g(x) −. s
where −. is the modified subtraction. This defines a PLS-problem in PV1 that satisfies the
conclusion of the proposition. ✷
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