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GROUNDWORK FOR WEAK ANALYSIS

ANTÓNIO M. FERNANDES AND FERNANDO FERREIRA

Abstract. This paper develops the very basic notions of analysis in a weak second-

order theory of arithmetic BTFA whose provably total functions are the polynomial time

computable functions. We formalize within BTFA the real number system and the notion

of a continuous real function of a real variable. The theory BTFA is able to prove the

intermediate value theorem, wherefore it follows that the system of real numbers is a real

closed ordered field. In the last section of the paper, we show how to interpret the theory

BTFA in Robinson’s theory of arithmetic Q. This fact entails that the elementary theory

of the real closed ordered fields is interpretable in Q.

§1. Introduction. The formalization of mathematics within second-order
arithmetic has a long and distinguished history. We may say that it goes back
to Richard Dedekind, and that it has been pursued by, among others, Hermann
Weyl, David Hilbert, Paul Bernays, Harvey Friedman, and Stephen Simpson and
his students (we may also mention the insights of Georg Kreisel, Solomon Fefer-
man, Peter Zahn and Gaisi Takeuti). Stephen Simpson’s recent magnum opus
“Subsystems of Second Order Arithmetic” [23] – claiming to be a continuation
of Hilbert/Bernays “Grundlagen der Mathematik” [13] – provides the state of
the art of the subject, with an emphasis on calibrating the logico-mathematical
strength of various theorems of ordinary mathematics. It is also a superb refer-
ence for the pertinent bibliography. The weakest second-order system studied in
Simpson’s book is RCA0, a theory whose provably total functions are the primi-
tive recursive functions. Scant attention has been paid to weaker systems and, in
particular, to systems related to conspicuous classes of computational complex-
ity. The exceptions that we found in the literature are some papers of Simpson
and his students on algebraic questions within a second-order theory related to
the elementary functions (see [25], [12] and [24]), Ferreira’s work on second-order
theories related to polynomial time computability ([5] and [8]), and subsequent
papers by Andrea Cantini [4] and Takeshi Yamazaki [29], [28]. In a different
setting, viz. finite type arithmetic, we should also mention Ulrich Kohlenbach’s
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single-handed work in “proof mining” where concerned with theories related to
the various Grzegorczyk classes (e.g., [17], [18] and [19]).

This work is an essay on a subject that we may call weak analysis: the formal-
ization and study of mathematics in weak (i.e., mainly sub-exponential) subsys-
tems of second-order arithmetic. More specifically, in this paper we study the
formalization of the very basic ideas of analysis in a feasible theory, that is, in
a theory whose provably total functions (with appropriate graphs) are the poly-
nomial time computable functions. Plainly, the work of Harvey Friedman and
Ker-I Ko on the complexity of computations on the reals – as exposed in [16] – is
bound to be of great importance for the pursuit of weak analysis, comparable to
the importance of recursive analysis as a well-spring of ideas and constructions
for the development of analysis over RCA0. That not withstanding, the import
of Friedman and Ko’s work in the present paper is not yet apparent.

In section 2, we briefly review and discuss the base theory for feasible analysis
BTFA introduced by Ferreira in [8]: this is the second-order theory of arithmetic
that shall concern us here. In section 3, we define the real number system
within BTFA to the point where it is shown that it forms an ordered field. The
following section deals with continuous functions and proves, within BTFA, the
intermediate value theorem for continuous real functions of a real variable. As a
consequence, the real number system forms a real closed ordered field, provably
in BTFA.

The last section shows that the theory BTFA is interpretable in Raphael Robin-
son’s theory of arithmetic Q. This result, together with the fact that the ele-
mentary theory of the real closed ordered fields RCOF is interpretable in BTFA,
entails that RCOF is interpretable in Q (Harvey Friedman has also claimed this
latter result – albeit without giving a proof – in a well-known web discussion
forum for the foundations of mathematics: see [10]). Prima facie, this is a some-
what surprising result. After all, RCOF is a theory whose intended model is
the continuum of real numbers, strong enough for the development of all ana-
lytic geometry, whereas the theory Q purports to speak very sparingly (since no
induction is present in its axioms) about the natural numbers. Q is the usual
textbook example (e.g., [1]) of a finitely axiomatizable, essentially undecidable,
theory. On the other hand, RCOF is a decidable theory – this being an old and
famous result of Tarski [27]. Therefore, Robinson’s Q is not interpretable in
RCOF. Summing up: the theory RCOF is, in a precise sense, proof theoretically
weaker than Q.

What are we to make of the interpretability of RCOF in Q? Is this a freak and
isolated phenomenon? The proof that we present in this paper clearly indicates
that this is not the case. It is rather the conjugation of the facts that many
bounded theories of arithmetic (in which the totality of exponentiation fails) are
interpretable in Q, and that a modicum of analysis can be done over theories
which are interpretable in one of these bounded theories. How extensive is this
modicum? On this regard, BTFA is a case in point: the more analysis you do in
BTFA, the more analysis you interpret in Q. We should remark that the reals that
we construct inside BTFA are not merely models of RCOF: They have a canonical
integer part whose positive elements are (essentially) given by the first-order
part of BTFA, thus assenting to a pertinent induction principle. Presumably,
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BTFA is sufficient for the development of some transcendental function theory,
but insufficient for developing Riemannian integration for (general) continuous
functions with a modulus of uniform continuity. However, stronger theories than
BTFA, still interpretable in Q, should be able to develop Riemannian integration
and more. We suspect that the amount of analysis that can be done in weak
systems of second-order arithmetic – even in feasible systems – is mathematically
significant, and far from trivial. These matters, we are convinced, are well worth
further studying.

§2. A base theory for feasible analysis. A language for directly describing
finite sequences of zeros and ones (as opposed to a number theoretic language)
is specially perspicuous for dealing with sub-exponential complexity classes and,
in particular, for dealing with polynomial time computability. The second-order
theory BTFA is stated in such a language, and it is based on the first-order
theory Σb

1−NIA (‘NIA’ stands for notation induction axioms). The language L
of Σb

1−NIA consists of three constant symbols ε, 0 and 1, two binary function
symbols � (for concatenation, usually omitted) and ×, and a binary function
symbol ⊆ (for initial subwordness or prefixing). The standard structure for this
language has domain 2<ω, the set of finite sequences of zeros and ones (binary
words or strings), and interprets the symbols of L in the usual way (x× y is the
word x concatenated with itself length of y times). The axioms of the theory
Σb

1−NIA consist of fourteen open axioms governing some basic features of the
given constants, operations and relations (see [8] for the list) together with the
scheme of induction on notation for the so-called Σb

1-formulas. Let us briefly
describe these formulas and this kind of induction.

The class of subword quantification formulas (sw.q.-formulas, for short) is the
smallest class of formulas that contains the atomic formulas and that is closed
under Boolean connectives and subword or part-of quantifications, i.e., quantifi-
cations of the form ∀x(x ⊆∗ t → φ) or ∃x(x ⊆∗ t ∧ φ), where x ⊆∗ t abbreviates
the formula ∃z(z � x ⊆ t). The Σb

1-formulas are the formulas of the form
∃x(x� t∧φ), where φ is a sw.q.-formula and x� t abbreviates 1×x ⊆ 1× t (i.e.,
the length of x is less than or equal to the length of t). The Σb

1-formulas define
exactly the NP predicates in the standard model (see [5] for a proof of this). The
scheme of induction on notation for Σb

1-predicates consists of all formulas of the
form

φ(ε) ∧ ∀x(φ(x) → φ(x0) ∧ φ(x1)) → ∀x φ(x),(NIA)

where φ is a Σb
1-formula, possibly with parameters. The theory Σb

1−NIA is
interpretable in Buss’ well-known theory S1

2, and vice-versa. With one such
smooth interpretation in mind, it is possible to appeal to Buss’ main theorem
of [3] and infer the following property: whenever Σb

1−NIA proves the sentence
∀x∃yφ(x, y), where φ(x, y) a Σb

1-formula, there is a polynomial time computable
function f : 2<ω �→ 2<ω such that, for all σ ∈ 2<ω, φ(σ, f(σ)) (see [6] or [2] for a
direct proof of this result). This is the precise sense of saying that the provably
total functions of Σb

1−NIA are the polynomial time computable functions.
It is possible to extend by definitions the language L in order to obtain a

language LP with a function symbol for every (description of a) polynomial time
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computable function – this extension by definitions is carefully described in [5]
and in [6]. If this is done in the right way, the above induction scheme (NIA)
holds even if we include the new atomic formulas of LP in the definition of sw.q.-
formulas (for the sake of clarity, let us call the members of this extended class the
PTC formulas). Unless otherwise stated (by a harmless abuse of language), we
will henceforth assume that the theory Σb

1−NIA includes the function symbols
of LP and appropriate open axioms regulating them.

We say that a word x is tally if it is a sequence of ones (formally, if x = 1×x).
The tally part of a model of Σb

1−NIA is a model of the bounded arithmetical
theory I∆0 in a natural way: zero is given by ε, successor ′ by concatenation
with 1, addition + by concatenation, multiplication by ×, and the less than or
equal relation by ⊆ ([11] is a good reference for first-order theories of arithmetic,
including bounded theories). In general, one has the following form of induction,
called tally induction:

φ(ε) ∧ ∀x(x is tally ∧ φ(x) → φ(x′)) → ∀x(x is tally → φ(x)),

where φ is a Σb
1-formula. Using well-known tricks, it can be shown that the

following least tally number principle is a consequence of the the above tally
induction scheme:

∀z(z is tally ∧ φ(z) → ∃x ⊆ z(φ(x) ∧ ∀w ⊂ x¬φ(w))),

where φ is a Σb
1-formula, and w ⊂ x abbreviates w ⊆ x ∧ w 	= x. Note that the

bounded formulas of the language of tally arithmetic correspond exactly to the
sw.q.-formulas (of L) and, thus, are included in the above tally induction scheme
(and in the least tally number principle). In fact, the tally parts of models of
Σb

1−NIA are more than mere models of I∆0: they basically are models of Buss’
theory V1

1 (this is an instance of the so-called RSUV-isomorphisms – see [9], [21]
or [26]).

The second-order language L2 that shall concern us in this paper extends
the language L with set variables X, Y, Z, . . . , intended to vary over subsets of
2<ω. L2 has a binary relation symbol for the membership relation ∈ that infixes
between a term t of L and a second-order variable X, yielding the atomic formula
t ∈ X. Equality between second-order variables is not a primitive notion, rather
being defined by extensionality. Observe that the set-up of L2 is very much
in the spirit of the treatment of second-order arithmetic in Stephen Simpson’s
book [23]. A structure for L2 is a pair consisting of a structure for the first-order
part of L2 (i.e., a structure for L), together with a subset S of the power set of
the domain of that structure. The second-order variables range over S. In the
sequel, when speaking of a given L2-structure, we use the letter W (for words)
to denote its first-order domain. The tally part of W is denoted by T.

The class of Σb
1-formulas of L2 is defined as in the first-order case, except that

it has a wider class of atomic formulas to reckon with (namely, the formulas of
the form t ∈ X). In other words, Σb

1-formulas of L2 may have set parameters.
A technically important class of L2-formulas is the class of bounded formulas
or Σb

∞-formulas: this is the smallest class of formulas containing the sw.q.-
formulas and closed under bounded quantifications, i.e., quantifications of the
form ∀x(x � t → φ) or ∃x(x � t ∧ φ). With this notion of bounded formulas,
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we may speak (as usual) of Π0
1, Σ0

1, Π0
2 formulas, etc. The scheme of bounded

collection BΣb
∞ consists of the formulas:

∀x�z ∃y φ(x, y) → ∃w ∀x�z ∃y�w φ(x, y),

where φ is a bounded formula, possibly with first and second-order parameters.
The comprehension scheme ∆0

1(PT)-CA consists of:

∀x(∃yφ(x, y) ↔ ∀y¬ψ(x, y)) → ∃X∀x(x ∈ X ↔ ∃yφ(y, x)),

where φ and ψ are Σb
1-formulas, possibly with first and second-order parameters.

Definition 1. BTFA is the theory of L2 having the following axioms: the
fourteen basic open axioms, the scheme of induction on notation (NIA) for the
Σb

1-formulas of L2, the scheme of bounded collection, and the comprehension
scheme ∆0

1(PT)-CA.

The following theorem was proved in [8]:

Theorem 1. The theory BTFA is Π0
2-conservative over the theory Σb

1−NIA.

The reader should observe that the quantifiers ∃y and ∀y appearing in the
∆0

1(PT)-CA scheme are unbounded. This is extremely convenient for dealing
with functions in our setting. In our setting, a function f : X �→ Y is given by
the appropriate set of (codes of) ordered pairs. One can state f(x) ∈ Z in two
ways: by x ∈ X ∧ ∃y((x, y) ∈ f ∧ y ∈ Z), or by x ∈ X ∧ ∀y((x, y) ∈ f → y ∈ Z).
Thus, {x ∈ X : f(x) ∈ Z} is a set in our framework. The composition of two
functions f : X �→ Y and g : Y �→ Z is also a function since gf(x) = z iff
x ∈ X ∧ ∃y((x, y) ∈ f ∧ (y, z) ∈ g) iff x ∈ X ∧ ∀y((x, y) ∈ f → (y, z) ∈ g).

Using the Σb
1-induction on notation scheme, it is easy to see that BTFA allows

definition of functions by bounded recursion on notation. That is, given functions
f : Wk �→ W, g0 : Wk+2 �→ W, g1 : Wk+2 �→ W and b : Wk+1 �→ W, there is a
unique function h : Wk+1 �→ W defined by

h(0, x1, . . . , xk) = f(x1, . . . , xk)

h(z0, x1, . . . , xk) = g0(h(z, x1, . . . , xk), z, x1, . . . , xk) �b(z,x1,... ,xk)

h(z1, x1, . . . , xk) = g1(h(z, x1, . . . , xk), z, x1, . . . , xk) �b(z,x1,... ,xk)

where w �b is the truncation of the word w at the length of the word b. Note
that first and second-order parameters may appear in the definition above.

Let φ(x) be a formula of L2 with a distinguished first-order free variable x.
We say that φ(x) defines an infinite path, and write Path(φx), if

∀x1∀x2(φ(x1) ∧ φ(x2) → x1 ⊆ x2 ∨ x2 ⊆ x1) ∧ ∀n ∈ T∃x(�(x) = n ∧ φ(x)),

where �(x) stands for 1 × x, a more friendly way of denoting the tally length of
x. The following is a useful observation:

Proposition 1. The theory BTFA proves the ∃Σb
1-path comprehension scheme,

that is, the following holds in any model of BTFA:

Path(φx) → ∃X∀x(φ(x) ↔ x ∈ X),

where φ is a formula of the form ∃zψ, with ψ a Σb
1-formula.
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Proof. Observe that φ(x) is equivalent to ∀y(�(y) = �(x) ∧ y 	= x → ¬φ(x))
and apply the ∆0

1(PC)-comprehension scheme. �

We finish this section with some notation concerning (infinite) paths. Given
a second-order variable X, we write Path(X) instead of the more cumbersome
Path((x ∈ X)x). If Path(X) and n ∈ T, X[n] denotes the unique element x ∈ X
such that �(x) = n; X(n) is the (n + 1)-th bit of X.

§3. The real number system. The main purpose of this section is to for-
malize the real number system within BTFA and, in particular, to show that it
is provably an ordered field (in the next section, we show that it is in fact a
real closed ordered field). In order to do this, we essentially follow the strategy
outlined by Takeshi Yamazaki in [28]. Let us start with the natural numbers.
Natural numbers y are represented by binary strings of zeros and ones of the
form 1x (with x ∈ W) or by the empty string ε. If x = x1x2 · · ·xn−1, where
each xi is 0 or 1, then we should view y as the number y =

∑n−1
i=0 xi2n−i−1,

where x0 = 1. If y is the empty string, we should view it as representing the
number zero: as usual, this number is denoted by 0 (we hope that no confusion
arises between the number 0, which is the string ε, and the string 0). These
are the so-called dyadic natural numbers, denoted by N2. Note that the order-
ing according to length and, within the same length, lexicographically, induces
a total relation in N2, giving the less than < relation. It is also convenient to
speak of tally numbers: these are identified with the tally part N1 = T of W.
As we have discussed in the previous section, the arithmetic of these numbers
qua tally numbers (since tally numbers can also be viewed as dyadic natural
numbers) is very simple. The arithmetic of the dyadic natural numbers is not
so straightforward. It is well known that the four basic processes of arithmetic,
namely: addition, subtraction, multiplication, and division have polynomial time
computable algorithms (see, for instance, section 4.3 of [15]). Moreover, these
algorithms provably do what they are supposed to do in Σb

1−NIA. However, to
formally define the algorithms and to formally check that they work is a tedious
and unsavory task. The next proposition and remarks state what will be needed
in the sequel:

Proposition 2. There are binary LP -symbols +, −̇, ·, q(, ) and r(, ) such that
the theory Σb

1−NIA proves that (N2, 0, 1,+, ·, <) is a discretely ordered semi-ring.
Moreover, the following properties also hold:

1. x < y → x + (y−̇x) = y
2. x 	= 0 → y = x · q(y, x) + r(y, x) ∧ r(y, x) < x

By a discretely ordered semi-ring, we mean a structure that satisfies the fol-
lowing sixteen axioms:



GROUNDWORK FOR WEAK ANALYSIS 7

Ax. 1 (x + y) + z = x + (y + z) Ax. 2 x + y = y + x
Ax. 3 (x · y) · z = x · (y · z) Ax. 4 x · y = y · x
Ax. 5 x · (y + z) = (x · y) + (x · z) Ax. 6 x + 0 = x ∧ x · 0 = 0
Ax. 7 x · 1 = x Ax. 8 ¬x < x
Ax. 9 x < y ∧ y < z → x < z Ax. 10 x < y ∨ x = y ∨ y < x
Ax. 11 x < y → ∃z(x + z = y) Ax. 12 x < y → x + z < y + z
Ax. 13 0 < z ∧ x < y → x · z < y · z Ax. 14 0 < 1
Ax. 15 ∀x(0 < x → x = 1 ∨ 1 < x) Ax. 16 ∀x(x = 0 ∨ 0 < x)

We refer the reader to Richard Kaye’s book [14] for the discussion of the fun-
damental consequences these axioms. Of course, the structure (N2, 0, 1,+, ·, <)
satisfies much more than the above, since it inherits the Σb

1-induction on no-
tation scheme from BTFA (as a matter of fact, one has to make heavy use of
Σb

1-induction on notation in order to prove the above Proposition 2). Thus,
if φ(x) is a Σb

1-formula, possibly with first and second-order parameters, the
following holds in BTFA:

φ(0) ∧ ∀x ∈ N2(φ(x) → φ(2x) ∧ φ(2x + 1)) → ∀x ∈ N2 φ(x)

where in the above 0 stands for the dyadic number zero (i.e., 0 is really ε).
The usual (non-notation) sort of induction is available in BTFA for sets (see
[3, Theorem 22] or [7, page 167]):

∀X[0 ∈ X ∧ ∀x ∈ N2(x ∈ X → x + 1 ∈ X) → ∀x ∈ N2 x ∈ X]

where the above proviso concerning zero also applies. As a matter of fact, the
structure (N2, 0, 1,+, ·, <) can be suitably expanded to yield a model of Buss’
theory S1

2: this is actually the way to show that S1
2 is interpretable in Σb

1−NIA.
A dyadic rational number is a triple of the form (±, x, y), where x (resp., y) is

the empty string or a string starting with 1 (resp., ending with 1). We assume
that the triples are coded as strings in a smooth way. If x = x0x1 · · ·xn−1 and
y = y0y1 · · · ym−1, where each xi and yj is 0 or 1 (note that x1 must be 1 and ym

must be 1), then we should view the triple (±, x, y) as representing the rational
number ±(

∑n−1
i=0 xi2n−i−1 +

∑m−1
j=0

yj

2j+1 ). Usually, we represent this number by
±x0x1 · · ·xn−1.y0 · · · ym−1. The dot that appears between xn−1 and y0 is called
the radix point of the dyadic representation. Given x ∈ W, it is convenient
to denote by x∗ the word x with its rightmost zeros chopped off. In this way,
.x∗ is the dyadic rational number

∑
i<�(x)

xi

2i+1 , where xi is the (i + 1)-th bit
of the word x (for a tally i less than �(x)). The arithmetic of the non-negative
dyadic rational numbers reduces to the arithmetic of the the dyadic natural
numbers in a straightforward and feasible manner: one has just to keep track
of the radix point. This arithmetic extends in the usual way to all the dyadic
rational numbers D, yielding an ordered ring (D, 0, 1,+, ·, <), i.e., a structure
that satisfies the first fourteen axioms listed after Proposition 2 and the axiom
∀x∃y(x + y = 0). We abbreviate x < y ∨ x = y by x ≤ y, and we define the
absolute value function (LP symbol) |x| as usual.

Clearly, (D, <) is a dense linear order without endpoints. Given a tally n, let
us abbreviate by 2n the following dyadic rational number:

(+, 1 00 . . . 0︸ ︷︷ ︸
n zeros

, ε).
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It is clear that these numbers are cofinal in D. In the introduction, we said that
BTFA is a system of weak analysis, i.e., one in which one cannot prove the totality
of the exponential function. Given that we have just introduced an “exponential”
notation of the form 2n, let us spend a few lines with a brief discussion of these
matters. There is a binary LP relation symbol Exp such that the Σb

1−NIA proves
the following properties: Exp(0, 1), ∀x, y ∈ N2(Exp(x, y) → Exp(x + 1, y + y)),
and ∀x, y, z ∈ N2(Exp(x, y) ∧ Exp(x, z) → y = z). As we have remarked, 1)
the theory Σb

1−NIA does not prove that ∀x ∈ N2∃y ∈ N2Exp(x, y), and 2) for a
given tally number n, 2n is always defined as the dyadic rational number above.
However, for the very same n, it need not be the case that ∃y ∈ N2Exp(n, y),
i.e., the number n, qua dyadic natural number, need not have exponentiation in
base 2. The following result may clarify the situation:

Proposition 3. The theory Σb
1−NIA proves the following:

∀n ∈ N1∃!x ∈ N2 Exp(x, 2n).

Proof. Show that ∀n ∈ N1∃x ∈ N2(x � n∧Exp(x, 2n)) by tally induction on
n. This is a proof in the theory Σb

1 − NIA, since the above existential quantifier
is bounded. The uniqueness proof poses no particular problem. �

This means that the tally numbers have dyadic counterparts. The reverse is
true in a model of Σb

1−NIA if, and only if, exponentiation is always defined in
the model. More precisely, the sentence ∀x ∈ N2∃y ∈ N2Exp(x, y) is equivalent
(within Σb

1−NIA) to the sentence ∀x ∈ N2∃n ∈ N1Exp(x, 2n).
Given n a non-zero tally, let the expression 1

2n , or 2−n, abbreviate the dyadic
rational number

(+, ε, 00 . . . 0︸ ︷︷ ︸
n−1 zeros

1).

Clearly, for every positive dyadic rational number x there is n ∈ N1 such that
2−n < x. In the sequel, we will make use of some simple arithmetic equations
that govern the tally powers of two. Thus, 20 = 1 and, for tallies n and m,
2n ·2−n = 1, 2n ·2m = 2n+m, and 2−n ·2−m = 2−(n+m), where the multiplication
signs stand for dyadic multiplication, and the plus signs stand for the tally
summation. We also have 2n + 2n = 2n+1 and 2−n + 2−n = 2−(n−1). Of course,
the above laws also hold for negative tally numbers, had we cared to have defined
them. The following property will also be used: for n and m in N1, n < m iff
2n < 2m iff 2−m < 2−n. Note that the first < sign in the previous sentence
is really �, while the other two < signs stand for the less than relation in N2.
Whether one is using tally or dyadic arithmetic is usually clear from the context.

Given s = (si)i<n (the code of) a finite sequence of dyadic rational numbers
of length n, where n is a tally number, it makes sense to speak of

∑n−1
i=0 si,

maxi<n si and
∏n−1

i=0 si in Σb
1−NIA, since these operations are easily defined by

bounded recursion (along the tally part). If the sequence s happens to code
the bit expansion of a dyadic rational number x, i.e., if s = (xi2n−i−1)i<n and
x = x0x1 · · ·xn−1, then

∑n−1
i=0 xi2n−i−1 is not only a manner of speaking, but a

formally defined object in its own right. Clearly, one can prove that this object is
indeed x, i.e., that x =

∑n−1
i=0 xi2n−i−1. We shall be loose and informal in using
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this and other similar notations, and often ambiguous between the formally
defined and the “manner of speaking” modes of speaking. This is harmless
because these notions do not pose any particular problems within Σb

1−NIA. Of
course, we shall also use some simple identities concerning summation: e.g.,∑n−1

i=0 2i = 2n − 1 or
∑n

i=1 2−i = 1 − 2−n. They are straightforwardly provable
by tally induction.

The dyadic rational numbers do not form a field, even though it is always
permissible to divide by tally powers of 2. We will nevertheless need the following
result:

Proposition 4. There are ternary LP symbols Q and R such that the theory
Σb

1−NIA proves the following:
1. d1, d2 ∈ D+ ∧ n ∈ N1 → Q(d1, d2, n) ∈ D+

0 ,
2. d1, d2 ∈ D+ ∧ n ∈ N1 → R(d1, d2, n) ∈ D+

0 ∧ R(d1, d2, n) < 2−n,
3. d1, d2 ∈ D+ ∧ n ∈ N1 → d1 = Q(d1, d2, n) · d2 + R(d1, d2, n),

where D+ is the system of all positive dyadic rational numbers, and D+
0 is D+

together with the rational number zero.

Proof. This theorem is an easy consequence of long division. Suppose that
d1 = x0 · · ·xk−1.y0 · · · ym−1 and d2 = w0 · · ·wl−1.z0 · · · zs−1. Let x be 2sd2 and y
be 2m+n+l+s+1d1. Note that x and y can be considered dyadic natural numbers:

x = w0 · · ·wl−1z0 · · · zs−1 and y = x0 · · ·xk−1y0 · · · ym−1

(n+l+s+1) zeros︷ ︸︸ ︷
00 · · · 0.

By 2 of Proposition 2, we have y = x · q(y, x) + r(y, x), with r(y, x) < x.
Multiplying both members of the previous equality by 2−(m+n+l+s+1), we get:

d1 = d2 · 2−(m+n+l+1) · q(y, x) + 2−(m+n+l+s+1) · r(y, x).

Note that 2−(m+n+l+s+1)·r(y, x) < 2−(m+n+l+s+1)·x < 2−(m+n+l+s+1)·2l+s+1 ≤
2−(m+n) ≤ 2−n. From the above discussion, one can easily define the desired
function symbols. �

Definition 2. (BTFA) We say that a function α : N1 �→ D is a real number
if |α(n) − α(m)| ≤ 2−n for all n ≤ m. Two real numbers α and β are said to be
equal, and we write α = β, if ∀n ∈ N1|α(n) − β(n)| ≤ 2−n+1.

The above definition follows closely the definition of real numbers in [23]. It
has a noteworthy feature, though: the domain of the reals are the tally numbers,
not the dyadic natural numbers. When discussing real numbers within BTFA, we
shall often use the symbol R informally to denote the set of all real numbers. For
instance, ∀α ∈ R(· · · ) means ∀α(if α is a real number then · · · ). Within BTFA,
we can embed the dyadic rational numbers into R by identifying x ∈ D with the
real number αx given by the constant law αx(n) = x. A natural generalization of
the dyadic rational numbers are the so-called dyadic real numbers. A dyadic real
number is a triple (±, x, X), where x ∈ N2 and X is an infinite path. The usual
(radix point) notation for these numbers is ±x.X. Informally, such a dyadic
real numbers stand for the real number ±(

∑n−1
i=0 xi2n−i−1 +

∑∞
i=0

X(i)
2i+1 ). More

precisely: to a dyadic real number (±, x, X) we associate a function α : N1 �→ D
given by the law α(n) = ±x.X[n]∗. It is easy to see that α is a real number
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according to the definition above, and we shall usually identify the dyadic real
number triples with the real numbers associated with it. In the next section, we
will see that BTFA is able to prove that every real number is equal to a dyadic
real number.

In order to define the product of two real numbers, we use in the next definition
the least tally number principle (see the previous section). This principle is very
convenient, and will be used often in the paper without explicit mentioning.

Definition 3. (BTFA) Let α and β be two real numbers.
1. α + β is the real number n → α(n + 1) + β(n + 1).
2. α − β is the real number n → α(n + 1) − β(n + 1).
3. α · β is the real number n → α(n + k) · β(n + k), where k is the least tally

number such that |α(0)| + |β(0)| + 2 ≤ 2k.
4. α ≤ β if ∀n(α(n) ≤ β(n) + 2−n+1).

It is clear that α = β if, and only if, α ≤ β and β ≤ α. As usual, we say that
α < β if α ≤ β ∧ α 	= β. The usual proof that these operations are congruent
with the notion of equality between real numbers given in Definition 2 formalizes
readily in BTFA. Note that formulas such as α = β, α ≤ β, α + β = γ, . . . are
∀Πb

1-formulas, while x 	= y, x < y, . . . are ∃Σb
1-formulas.

Proposition 5. (BTFA)
1. ∀α, β, γ ∈ R (α ≤ β ∧ β ≤ γ → α ≤ γ):
2. ∀α ∈ R ∀n ∈ N1 (α(n) − 2−n ≤ α ≤ α(n) + 2−n).
3. ∀α, β ∈ R (α 	= β → α < β ∨ β < α).
4. ∀α, β ∈ R (α < β → ∃x ∈ D(α < x < β)).

Proof. There is no special difficulty in proving this proposition. Suppose
that α ≤ β and β ≤ γ. Fix an arbitrary tally number n. Then, for all tallies
m ≥ n we have that the difference α(n) − γ(n) is equal to:

(α(n) − α(m)) + (α(m) − β(m)) + (β(m) − γ(m)) + (γ(m) − γ(n)).

This, in turn, does not exceed 2−n + 2−m+1 + 2−m+1 + 2−n = 2−n+1 + 2−m+2.
Since m is arbitrarly large, we may conclude that α(n)− γ(n) ≤ 2−n+1. Since n
was an arbitrary tally, we get α ≤ γ. Assertion 2) follows from a straightforward
computation. To prove 3), suppose that α 	= β. Take a tally number k such that
|α(k)− β(k)| > 2−k+1. Without loss of generality, assume α(k) + 2−k+1 < β(k),
i.e., α(k) + 2−k < β(k) + 2−k. Thus, by 1) and 2), we may conclude that α < β.
A similar argument works for part 4), putting x = 1

2 (α(k) + β(k)) for a suitable
tally k. �

An ordered field is an ordered ring which is a field:

Theorem 2. The theory BTFA proves that the real number system is an or-
dered field.

Proof. All the axioms of ordered rings can be proved in a routine (if tedious)
way. We only show in detail that, for every positive real number α, there is a real
number β such that α ·β = 1. By Proposition 5, there is a tally n0 such that, for
all tallies n ≥ n0, one has 2−n0 ≤ α(n). By Proposition 4, there are functions β′

and ρ defined in N1 such that, for all tallies n, α(n + n0 + 1)β′(n) = 1 − ρ(n),
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with 0 ≤ ρ(n) < 2−(n+2). Note that this implies that β′(n) ≤ 2n0 , for all tallies
n. Define β by β(n) = β′(n + n0). Let us first check that β is a real number.
Take arbitrary tallies n and m with n ≤ m. We have:

1
2n0

|β(n) − β(m)| ≤ α(n + 2n0 + 1)|β(n) − β(m)|
= |α(n + 2n0 + 1)β(n) − α(n + 2n0 + 1)β(m)|

The above is less than or equal to the sum of

|α(n + 2n0 + 1)β(n) − α(m + 2n0 + 1)β(m)|
with

|α(m + 2n0 + 1)β(m) − α(n + 2n0 + 1)β(m)|.
Using the fact that α is a real number, the above is less than or equal to

ρ(n + n0) + ρ(m + n0) + β(m)
1

2n+2n0+1
.

Thus,

|β(n) − β(m)| ≤ 2n0(
2

2n+n0+2
+

1
2n+n0+1

) ≤ 2n0

2n+n0
≤ 1

2n
.

Now, notice that for all tallies n:

|α(n + 2n0 + 1)β(n) − 1| = ρ(n + n0) ≤
1

2n+n0+2
≤ 1

2n−1
.

This entails that α′ · β = 1, where α′ is the real defined by the law α′(n) =
α(n + 2n0 + 1). As it happens, α and α′ are the same real. We are done. �

§4. Continuous functions and their values. The last part of Ferreira’s
unpublished thesis [5] studied some basic weak analysis in the Cantor space.
This space is specially perspicuous within BTFA because its elements are just
the infinite paths through W. Codes for continuous (partial) functions are very
simple in the Cantor space setting, as well as the proofs of the fundamental facts
concerning them (e.g., Theorem 3 below is a rather delicate matter, while in the
Cantor space setting has a very simple proof). The Cantor space case should
be regarded as a test case for what really matters: the real number case. This
section is concerned with the formalization of the notion of continuous (partial)
real function of a real variable within the framework of BTFA, and with the study
of some simple properties concerning this notion. It follows from this study that
the structure of the real numbers forms a real closed ordered field in BTFA.

The following definition is based on the notion of (partial) continuous function
given in Simpson’s book [23].

Definition 4. Within BTFA, a (code for a) continuous partial function from
R into R is a set of quintuples Φ ⊆ W × D × N1 × D × N1 such that:

1. if (x, n)Φ(y, k) and (x, n)Φ(y′, k′), then |y − y′| ≤ 2−k + 2−k′
;

2. if (x, n)Φ(y, k) and (x′, n′) < (x, n), then (x′, n′)Φ(y, k);
3. if (x, n)Φ(y, k) and (y, k) < (y′, k′), then (x, n)Φ(y′, k′);

where (x, n)Φ(y, k) abbreviates the ∃Σb
1-relation ∃w(w, x, n, y, k) ∈ Φ, and where

the notation (x′, n′) < (x, n) means that |x − x′| + 2−n′
< 2−n.
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If α is a real number, (α(m+1), m) < (α(n+1), n) for tallies n+1 < m. This
is a handy fact that we shall often use in the sequel.

Here follows some basic examples of continuous functions:
I. The identity function is defined by the clause (x, n)Id(y, k) if x, y ∈ D,

n, k ∈ N1, and (x, n) < (y, k). Note that this is a correct definition. In
particular, notice that the defining clause is a PTC formula. Thus, the
set of quintuples {(ε, x, n, y, k) : θ(x, n, y, k)} exists, and is officially the
function Id.

II. Given γ a real number, we define the constant function Cγ of value γ by the
clause (x, n)Cγ(y, k) if x, y ∈ D, n, k ∈ N1, and |γ − y| < 2−k. Notice that
the above clause θ(x, n, y, k) is given by a ∃Σb

1-formula, i.e., a formula of the
form ∃wθ′(w, x, n, y, k), with θ a sw.q.-formula. Thus, the set of quintuples
{(w, x, n, y, k) : θ′(w, x, n, y, k)} exists, and is officially the function Cγ .

III. Let Φ1 and Φ2 be continuous function. Their sum is the continuous function
Φ1 + Φ2 defined according to the clause (x, n)[Φ1 + Φ2](y, k) if there are
pairs (y1, k1) and (y2, k2) such that (x, n)Φ1(y1, k1), (x, n)Φ2(y2, k2), and
|y − (y1 + y2)| ≤ 2−k − (2−k1 + 2−k2). Notice that this clause is given by a
∃Σb

1-formula.
IV. Let Φ1 and Φ2 be continuous function. Their product is the continuous

function Φ1 ·Φ2 defined according to the clause (x, n)[Φ1 ·Φ2](y, k) if there
are pairs (y1, k1) and (y2, k2) such that (x, n)Φ1(y1, k1), (x, n)Φ2(y2, k2),
and

|y − y1y2| ≤
1
2k

−
(
|y1|

1
2k2

+ |y2|
1

2k1
+

3
2k1+k2

)
.

Notice that the above clause is given by a ∃Σb
1-formula.

The above examples entail that all polynomials of standard degree give rise to
continuous functions in BTFA.

Definition 5. (BTFA) Let Φ be a continuous partial real function of a real
variable. We say that a real number α is in the domain of Φ and, with abuse of
language, write α ∈ dom(Φ), if

∀k ∈ N1∃n ∈ N1∃x ∈ D∃y ∈ D
(
|α − x| < 2−n ∧ (x, n)Φ(y, k)

)
.

Lemma 1. (BTFA) Given Φ be a continuous partial real function of a real
variable, a real number α is in the domain of Φ if, and only if,

∀k ∈ N1∃n ∈ N1∃y ∈ D (α(n + 1), n)Φ(y, k).

Proof. For the right to left direction, just take x = α(n + 1) (use 2 of
Proposition 5). Conversely, let k be an arbitrary tally number. By hypothesis,
there are n ∈ N1 and x, y ∈ D such that |α − x| < 2−n and (x, n)Φ(y, k). Take
m ∈ N1 with |α − x| < 2−n − 2−m. We get,

|α(m + 2) − x| + 1
2m+1

≤ |α(m + 2) − α| + |α − x| + 1
2m+1

≤ |α − x| + 1
2m+2

+
1

2m+1
< |α − x| + 1

2m
<

1
2n

.
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Hence, (α(m + 2), m + 1) < (x, n). Thus, by property 2 of Definition 4, we may
conclude that (α(m + 2), m + 1)Φ(y, k). �

Definition 6. (BTFA) Let Φ be a continuous partial real function of a real
variable, and let α be a real number in the domain of Φ. We say that a real
number β is the value of α under the function Φ, and write Φ(α) = β, if

∀x, y ∈ D ∀n, k ∈ N1

(
(x, n)Φ(y, k) ∧ |α − x| <

1
2n

→ |β − y| ≤ 1
2k

)
.

It is not difficult to check that the examples that we gave of continuous func-
tions have the intended properties. All reals α are in the domain of the identity
function, and Id(α) = α. All reals α are in the domain of any constant function
Cγ , and Cγ(α) = γ. If a real α is in the domain of both Φ1 and Φ2, Φ1(α) = β1

and Φ2(α) = β2, then α is in the domain of Φ1 +Φ2 and in the domain of Φ1 ·Φ2.
Moreover, [Φ1 + Φ2](α) = β1 + β2 and [Φ1 · Φ2](α) = β1 · β2.

The above facts entail that polynomial functions (of standard degree) are
defined everywhere and have a value at every point. This result is a particular
case of a more general situation, namely that if a real number α is in the domain
of a continuous function Φ, then it indeed has a (unique) value β under Φ. It
turns out that proving this result is a somewhat delicate affair. The proof hinges
on the discussion of two alternative cases: either the dyadic notation of Φ(α)
has infinitely many zeros and ones or, else, Φ(α) is in D.

We start with a simple lemma:

Lemma 2. (BTFA) Let x, y ∈ W. Then

|.x1 − .y1| ≤ 1
2�(x)+2

+
1

2�(y)+2
→ x ⊆ y ∨ y ⊆ x.

Proof. To prove the implication, let us assume its antecededent and suppose,
in order to get a contradiction, that �(x) ≤ �(y) but x � y (the other case is
symmetric). Under the above supposition, the hypothesis of the implication
entails that |.x1− .y1| ≤ 2−(�(x)+1). There are two cases to consider. In the first
case, we can put x = z0w and y = z1uv, with �(w) = �(u). We get,

|.x1 − .y1| = .y1 − .x1 ≥ .z1(u × 0)(v × 0)1 − .z0(w × 1)1

> .z1 − .z0(w × 1)1 = .(z × 0)0(w × 0)1 =
1

2�(x)+1
,

which contradicts the bound above. In the second case, we can put x = z1w and
y = z0uv, with �(w) = �(u). Then,

|.x1 − .y1| = .x1 − .y1 ≥ z1(w × 0)1 − .z0(u × 1)(v × 1)1

> .z1(w × 0)1 − .z1 = .(z × 0)0(w × 0)1 =
1

2�(x)+1
,

again contradicting the bound above. �
Theorem 3. (BTFA) Let Φ be a continuous partial real function of a real

variable, and let α be a real number in the domain of Φ. Then there is a dyadic
real number β such that Φ(α) = β. Moreover, this real number is unique.
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Proof. The uniqueness part of the theorem is clear. Let now Φ and α be as
in the hypothesis of the theorem. Without loss of generality, we may suppose
that all the dyadic rational numbers appearing in the penultimate components
of Φ are of the form (+, ε, z1), i.e., are positive dyadic rational numbers with
no integer part (to see this, just make a convenient linear transformation with
dyadic coeficients, and restrict your attention to a suitable neighborhood). There
are two cases to be discussed.

The first case is when

∀k ∈ N1∃n ∈ N1∃z ∈ W (�(z) ≥ k ∧ (α(n + 1), n)Φ(.z1, �(z) + 2)) .

In this case, consider the following ∃Σb
1-formula θ(y):

∃n ∈ N1∃z ∈ W (y ⊆ z ∧ (α(n + 1), n)Φ(.z1, �(z) + 2)) .

We make three claims:

1. θ(y) ∧ y′ ⊆ y → θ(y′);
2. θ(y) ∧ θ(y′) → y ⊆ y′ ∨ y′ ⊆ y; and
3. ∀k ∈ N1∃y(θ(y) ∧ �(y) = k).

The first claim is evident, while the last claim follows because we are in the
first case. Let us now argue for the second claim. Let y and y′ be such that
θ(y) and θ(y′). Then there are z, z′ ∈ W and n, n′ ∈ N1 with y ⊆ z, y′ ⊆ z′,
(α(n + 1), n)Φ(.z1, �(z) + 2), and (α(n′ + 1), n′)Φ(.z′1, �(z′) + 2). Without loss
of generality, we may assume that n = n′ (just use clause 2 of the definition of
continuous function and the handy result mentioned afterwards). By the first
clause of the same definition, we get |.z′1 − .z1| ≤ 2−(2+�(z′)) + 2−(2+�(z)). By
the previous lemma, either z ⊆ z′ or z′ ⊆ z. In the former case, we have that
both y and y′ are prefixes of z′ and, thus, one of them is a prefix of the other.
The latter case is similar.

By ∃Σb
1-path comprehension, the set Y = {y ∈ W : θ(y)} exists. We now

argue that the real number β given by the dyadic real number .Y , i.e. given by
the triple (+, ε, Y ), is the value of α under Φ. Let (x, n)Φ(y, k) and |α−x| < 2−n.
Take an arbitrary m ∈ N1. Since Y is an infinite path, take a sufficiently large
tally r ≥ m with 2−(r+1) < 2−n−|α−x|, and for which there is z ∈ W such that
(α(r + 1), r)Φ(.z1, �(z) + 2) and Y [m] ⊆ z. Notice that the above entails that
(α(r + 1), r) < (x, n), and hence (by 2 of Definition 4) that (α(r + 1), r)Φ(y, k).
Now:

|β − y| ≤ |β − β(r)| + |β(r) − β(m)| + |β(m) − .z1| + |.z1 − y|.

The first summand above is less than or equal to 2−r, and a fortiori, less than
or equal to 2−m. Regarding the second summand, notice that β(r) and β(m)
are, by definition, .Y [r]∗ and .Y [m]∗ (respectively). This entails that the second
summand is less than or equal to 2−m. Since Y [m] ⊆ z and since β(m) = .Y [m]∗,
we conclude that the third summand is also less than or equal to 2−m. Finally,
using the first requirement of Definition 4, the fourth summand is less than or
equal to 2−k+2−(�(z)+2). In sum, |β−y| < 2−k+2−(m−2). Since m was arbitrary,
we conclude that |β − y| ≤ 2−k, as we wanted.
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We now consider the second case, viz. when there is a tally k0 such that

∀n ∈ N1∀z ∈ W (�(z) ≥ k0 → ¬(α(n + 1), n)Φ(.z1, �(z) + 2)) .(�)

Let us start by proving the following fact:

Fact. Let r > k0 be a tally number. If (α(n + 1), n)Φ(.z1, r), where n ∈ N1

and z ∈ W, then either
a) ∀i ∈ N1 (k0 ≤ i < r − 4 → zi = 1), or
b) ∀i ∈ N1 (k0 ≤ i < r − 4 → (zi = 0 ∧ i < �(z)) ∨ i ≥ �(z)).

Proof of the fact. Assume that (α(n + 1), n)Φ(.z1, r) as above. By (�) and
clause 3 of the definition of continuous function, we cannot have k0 ≤ �(z) < r−1.
On the other hand, if �(z) ≤ k0, then we have b) above. Thus, we may assume
that �(z) ≥ r − 1 ≥ k0. Let us suppose, in order to get a contradiction, that
neither a) nor b) above hold. The following two cases exhaust the possibilities.
The first case is when we have a tally i such that k0 < i < r−3 and zi−1 = 0 and
zi = 1 (note that �(z) ≥ r − 1 ≥ i + 3). The second case is when we have a tally
i such that k0 < i < r − 4, zi−1 = 1, and zi = 0 (note that �(z) ≥ r − 1 ≥ i + 4).

In the first of these two cases, we have z1 = z �i−1 01w1δw2, where w1, w2 ∈ W
and (z1)r−1 = δ. Note that �(w1) ≥ 2. Suppose that w1 is not a string of zeros.
Then, for a certain tally j with i + 1 < j < r,

|.z �i−1 1 − .z1| + 1
2r

≤ .z �i−1 1 − .z �i−1 01 − 1
2j

+
1
2r

< .z �i−1 1 − .z �i−1 01 =
1

2i+1
.

Therefore, (.z1, r) < (.z �i−1 1, i + 1). This contradicts (�).
Now, suppose that w1 is a string of zeros. Then,

|.z1 − .z �i−1 01| + 1
2r

= .z �i−1 01(0 × w1)δw2 − .z �i−1 01 +
1
2r

< .z �i−1 0101 − .z �i−1 01 +
1
2r

=
1

2i+3
+

1
2r

<
1

2i+3
+

1
2i+3

=
1

2i+2
.

Therefore, (.z1, r) < (.z �i−1 01, i + 2), again contradicting (�).
Let us now consider the second case, namely when there is a tally i such that

k0 < i < r − 4, zi−1 = 1 and zi = 0. Thus, z1 = z �i−1 10w1δw2, where
w1, w2 ∈ W and (z1)r−1 = δ. Note that �(w1) ≥ 3. If zi+1 = 1, we fall into the
first case. Finally, if zi+1 = 0 we get,

|.z1 − .z �i−1 1| + 1
2r

= .z �i−1 10w1δw2 − .z �i−1 1 +
1
2r

< .z �i−1 101 − .z �i−1 1 +
1
2r

=
1

2i+2
+

1
2r

<
1

2i+2
+

1
2i+2

=
1

2i+1
.

Therefore, (.z1, r) < (.z �i−1 1, i + 1), contradicting (�). � (of Fact)

If α is in the domain of Φ, it is easy to argue that for every r ∈ N1, there is
n ∈ N1 and z ∈ D such that (α(n + 1), n)Φ(.z1, r) and �(z) ≥ r − 4. Using this
remark and the fact proven above, we have the following two alternatives: either
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a’) for arbitrarily large tallies r > k0, there is a tally n and a binary string z
such that (α(n + 1), n)Φ(.z1, r) and ∀i ∈ N1(k0 ≤ i < r − 4 → zi = 1), or

b’) for arbitrarily large tallies r > k0, there is a tally n and a binary string z
such that (α(n + 1), n)Φ(.z1, r) and ∀i ∈ N1(k0 ≤ i < r − 4 → zi = 0).

Suppose alternative a’) holds. Then, for arbitrarily large tallies r > k0, there
are n ∈ N1 and z ∈ W with (α(n+1), n)Φ(.z1, r) and ∀i(k0 ≤ i < r−1 → zi = 1).
To see this, just consider r + 3 in a’). Now, given tallies r1, r2 > k0 + 2 and
n1, n2 ∈ N1, and z1, z2 ∈ D such that,

(α(n1 + 1), n1)Φ(.z11, r1) ∧ ∀i ∈ N1(k0 ≤ i < r1 − 1 → (z1)i = 1)

and

(α(n2 + 1), n2)Φ(.z21, r2) ∧ ∀i ∈ N1(k0 ≤ i < r2 − 1 → (z2)i = 1)

we must have z1 �k0= z2 �k0 . For, if r1 ≤ r2 (say) and z1 �k0 	= z2 �k0 then,

|.z11 − .z21| ≥
1

2k0
− 1

2r1−1
>

1
2r1−2

− 1
2r1−1

=
1

2r1−1
,

contradicting the fact that, by clause 1 of the definition of continuous function,

|.z11 − .z21| ≤
1

2r1
+

1
2r2

≤ 1
2r1

+
1

2r1
=

1
2r1−1

.

Let then y be the common value above, and define Y to be the infinite path
y111 · · · . We claim that Φ(α) = β, where β is the dyadic real number .Y . To
see this, suppose that (x, n)Φ(w, k) and |α − x| < 2−n, in order to show that
|β − w| ≤ 2−k. Let m be an arbitrary tally. Chose tallies r > max{k0 + 2, m},
n′ ≥ m, and z′ ∈ D with

(α(n′ + 1), n′)Φ(.z′1, r) ∧ ∀i ∈ N1(k0 ≤ i < r − 1 → z′i = 1)

and 2−(n′−1) < 2−n − |α − x|. Note that Y [m] ⊆ z′ and (α(n′ + 1), n′) < (x, n).
Thus, (α(n′ + 1), n′)Φ(w, k). Now,

|β − w| ≤ |β − β(m)| + |β(m) − .z′1| + |.z′1 − w|.

The first summand above is less than or equal to 2−m. The second summand is
also less than or equal to 2−m, since β(m) = .Y [m]∗. By clause 1 of the definition
of continuous function, the last summand is less than or equal to 2−r +2−k, and
hence less than or equal to 2−m +2−k. Since m is an arbitrary tally, we conclude
that |β − w| ≤ 2−k, as we wanted.

It remains to study alternative b’). Similarly to the previous alternative, we
have that, for arbitrarily large tallies r > k0, there are n ∈ N1 and z ∈ W
such that (α(n + 1), n)Φ(.z1, r) and ∀i(k0 ≤ i < r − 1 → zi = 0). Take tallies
r > k0 + 2 and n, and take z ∈ D such that,

(α(n + 1), n)Φ(.z1, r) ∧ ∀i ∈ N1(k0 ≤ i < r − 1 → zi = 0).

Let y = z �k0 . As before, this y does not depend of the choice of the z above.
Define Y to be the infinite path y000 · · · . Similarly to the previous case, one can
show that Φ(α) = β, where β is the dyadic real number .Y . � (of Theorem 3)
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In the theorem above, the value of a function at a point of its domain can
be taken to be a real number of a very particular form: a dyadic real number.
Applying this fact to the identity function we get,

Corollary 1. (BTFA) Every real number is equal to a dyadic real number.

In the vein of Simpson [23], we now prove Bolzano’s intermediate value theorem
in BTFA.

Theorem 4. (BTFA) If Φ is a continuous function which is total in the closed
interval [0, 1] and if Φ(0) < 0 < Φ(1), then there is a real number α ∈ [0, 1] such
that Φ(α) = 0.

Proof. Assume that there is no dyadic rational number x ∈ [0, 1] such that
Φ(x) = 0 (otherwise we are done). Consider the ∃Σb

1-formulas φ(x) and φ′(x)
defined as follows: x ∈ D ∩ [0, 1] ∧ Φ(x) < 0 and x ∈ D ∩ [0, 1] ∧ Φ(x) > 0,
respectively. Notice that ¬φ(x) is equivalent to x /∈ D ∩ [0, 1] ∨ φ′(x), and that
¬φ′(x) is equivalent to x /∈ D ∩ [0, 1] ∨ φ(x). By ∆0

1(PT)-CA, we can form the
sets X = {x : φ(x)} and X ′ = {x : φ′(x)}. We now proceed with a binary search:
Define, by bounded recursion along the tally part, the function f : N1 → D × D
according to the clauses f(0) = (0, 1) and

f(n + 1) =

{
((f0(n) + f1(n))/2, f1(n)), if (f0(n) + f1(n))/2 ∈ X ;
(f0(n), (f0(n) + f1(n))/2), otherwise;

where f0 and f1 are the first and second projections of f (respectively). Note that
this is indeed a definition by bounded recursion since (for n 	= 0) the number of
bits of f0(n) and f1(n) is always less than or equal to n. It is now straightforward
to prove by Σb

1-induction on notation that, for all n ∈ N1, f0(n) ∈ X, f1(n) ∈ X ′,
f0(n) ≤ f0(n + 1), f1(n + 1) ≤ f1(n), f0(n) < f1(n), and f1(n) − f0(n) = 2−n.
Therefore, f0 and f1 are the same real. If we call this common real α, it is easy
to argue that Φ(α) = 0. �

An ordered field K is real closed, if it has the intermediate value property for
polynomials, i.e., if for all polynomials p(X) ∈ K[X] and all elements a, b ∈ K,
if a < b, p(a) < 0 and p(b) > 0 there exists c ∈ K such that a < c < b and
p(c) = 0. The intermediate value theorem and the continuity of every standard
polynomial function entail that the elementary theory of the real closed ordered
fields is interpretable in BTFA. In sum, we have proved the following result:

Theorem 5. The elementary theory of the real closed ordered fields RCOF is
interpretable in BTFA.

The above theorem does not quite say that BTFA proves that the real number
system is a real closed ordered field, since the polynomials considered so far are
of standard degree. But, in fact, this stronger result is also true. Since there are
some distintictive features when working with systems in which exponentiation
is not a total function, in the remaining part of this section we illustrate the sort
of features that we have in mind by defining polynomials of real coefficients in
BTFA (and by proving that they do define continuous functions).

A moment’s thought will convince the reader that, within BTFA, we can only
effectually define polynomials of tally degree. Given d ∈ N1, a sequence (γ)i≤d
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of real numbers of length d + 1 is a function F : {i ∈ N1 : i ≤ d} × N1 → D
such that, for every i ≤ d, the function γi defined by γi(n) = F (i, n) is a real
number. A real polynomial P (X) of degree d is just such a sequence with the
proviso that γd 	= 0. As usual, we write

P (X) = γdX
d + · · · + γ1X + γ0.(1)

It is not difficult to define smoothly P (α), for α a real number. Just for the
record, we can take P (α) according to the law that maps each tally n to the
dyadic rational number

d∑
i=0

γi(n + d + k)α(n + d + k)i,

where k is the least tally such that

(|α(0)| + 1)d−1(d max
i≤d

(|γi(0)| + 1) + |α(0)| + 1) ≤ 2k.

Lemma 3. (BTFA) Let i ∈ N1. There is a continuous total function Φ such
that Φ(α) = αi for all reals α.

Proof. Just define (x, n)Φ(y, k) by x, y ∈ D, n, k ∈ N1, and

|y − xi| ≤ 1
2k

− i

2n
(|x| + 1)i−1. �

Proposition 6. (BTFA) Let P (X) be a polynomial as in (1). There is a
continuous total function Φ such that Φ(α) = P (α) for all reals α.

Proof. By the above lemma, for each tally i, with i ≤ d, there is a continuous
total function Φi such that Φi(α) = γiα

i, for all real numbers α. By construction,
the 5-ary relation (x, n)Φi(y, k) on x, n, y, k and i is a ∃Σb

1-relation. We can
now define the sought after function Φ by (x, n)Φ(y, k) if

∃(yi)i≤d∃(ki)i≤d∀i ≤ d

(
(x, n)Φi(yi, ki) ∧ |y −

d∑
i=0

yi| ≤
1
2k

−
d∑

i=0

1
2ki

)
.

Note that the universal quantifier above is a subword quantification. Thus, the
above relation is a ∃Σb

1-relation. �
Hence, under the above definitions, we have proved:

Theorem 6. The theory BTFA proves that the real number system is a real
closed ordered field.

§5. Interpretability in Q. The main result of this section is the following
theorem:

Theorem 7. The theory BTFA is interpretable in Robinson’s theory of arith-
metic Q.

As a corollary to the above theorem and Theorem 5, we obtain:

Theorem 8. The elementary theory of the real closed ordered fields RCOF is
interpretable in Q.
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We are here using the extended notion of interpretation according to which
the equality sign need not be interpreted by equality itself (see [22, pages 61-65
and, specially, page 260]). The proof of Theorem 7 will proceed via a sequence
of three lemmas. These lemmas ultimately show that BTFA is interpretable in
Σb

1−NIA. As we have remarked in section 2, the theories Σb
1−NIA and S1

2 are
mutually interpretable. Now, the latter theory is interpretable in Q. Therefore,
the theorem follows.

The fact that S1
2 is interpretable in Q is mainly due to Edward Nelson, with a

little help from Alex Wilkie: A long and somewhat technical proof of Nelson in
[20] showed that the bounded arithmetic theory I∆0 is locally interpretable in Q,
i.e., that every finite subset of I∆0 is interpretable in Q; sometime later, Wilkie
(in an unpublished manuscript) showed that the locality assumption could be
dropped. The result follows, since S1

2 is interpretable in I∆0. The reader can
find an exposition of these matters in chapter V.5 of Hájek and Pudlák’s book
[11].

Let us now state and prove the three above referred lemmas:

Lemma 4. The theory I∆0 + BΣ1 is interpretable in Σb
1−NIA.

Note. BΣ1 is the sheme of collection for bounded arithmetic formulas, i.e., the
scheme formed by the formulas

∀x ≤ z∃yφ(x, y) → ∃w∀x ≤ z∃y ≤ wφ(x, y),

where φ is a bounded formula of arithmetic, possibly with parameters (see [14]).

Proof. We observed in section 2 that the tally part of a model of Σb
1−NIA

is a model of I∆0 in a natural way. We will interpret the theory I∆0 + BΣ1 in
a suitable cut of this tally part. In order to define this cut, we appeal to the
following universal property:
(U) There is a 6-ary sw.q.-formula U(e, x, y, z, p, c) such that for every 4-ary

sw.q.-formula ψ(x, y, z, p) there is a (standard) e ∈ 2<ω and a 4-ary term
t(x, y, z, p) with

Σb
1 − NIA � ∀x∀y∀z∀p(ψ(x, y, z, p) ↔ ∃c U(e, x, y, z, p, c)).

Moreover, this c is (provably) unique and of length less than or equal to
the length of t(x, y, z, p). (Abusing notation, we identified above the binary
word e with its corresponding “numeral.”)

The sw.q.-formula U(e, x, y, z, p, c) essentially says that c is the Gödel (binary
string) code of a computation on input (x, y, z, p) according to the instructions
of the Turing machine with Gödel (binary string) code e. The existence of such
e, c and term t relies on the fact that sw.q.-formulas define relations that can be
decided by polytime computations, and that such computations can be smoothly
formalized in Σb

1 − NIA: see, for instance, section V-4(c) of [11] or [5].
Let J(u) be the formula defined as the conjunction of u ∈ N1 together with:

∀e∀p(∀v ⊆ u∃zU(e, u, v, z0, p, z1) → ∃w∀v ⊆ u∃z ⊆∗ w U(e, u, v, z0, p, z1))

where z0 and z1 are the projections of z when z is regarded as coding an ordered
pair. It is clear that, given any sw.q.-formula ψ(u, v, z, p) and u in the cut J , the
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following holds:

∀p(∀v ⊆ u∃zψ(u, v, z, p) → ∃w∀v ⊆ u∃z ⊆∗ w ψ(u, v, z, p)).(B)

Note that J has all the tally standards. Moreover, it has the following two
properties:

1. J(u) ∧ u′ ⊆ u → J(u′)
2. J(u) → J(u × u)
We can prove the first property straightforwardly: just apply (B) to the sw.q.-

formula (v ⊆ u′∧U(e, u′, v, z0, p, z1))∨(¬v ⊆ u′∧z = ε). To argue for the second
property, assume J(u) and ∀v ⊂ u × u∃zU(e, u × u, v, z0, p, z1). Fix q ⊂ u. We
have, in particular, ∀r ⊂ u∃zU(e, u × u, (q × u) + r, z0, p, z1). By (B) we may
conclude that ∃w∀r ⊂ u∃z ⊆∗ w U(e, u × u, (q × u) + r, z0, p, z1). Since q is an
arbitrary proper initial subword of u we indeed have,

∀q ⊂ u∃w∀r ⊂ u∃z ⊆∗ w U(e, u × u, (q × u) + r, z0, p, z1).

Using (B) once again we infer

∃x∀q ⊂ u∃w ⊆∗ x∀r ⊂ u∃z ⊆∗ w U(e, u × u, (q × u) + r, z0, p, z1).

Therefore, ∃x∀q ⊂ u∀r ⊂ u∃z ⊆∗ x U(e, u × u, (q × u) + r, z0, p, z1), and, as
a consequence, ∃x∀v ⊂ u × u∃z ⊆∗ x U(e, u × u, v, z0, p, z1). In sum, the second
property is verified.

Accordingly to these two properties, J is a tally cut closed under ×. Thus I∆0

holds in J . We now finish the proof by showing that the scheme of collection
for bounded arithmetical formulas also holds in this tally cut. Let ψ(u, v, z, p)
be a bounded formula for the tally part (thus, a sw.q.-formula of the binary
language). Suppose u and p are in J and that ∀v ⊆ u∃z(J(z) ∧ ψ(u, v, z, p)). In
particular, ∀v ⊆ u∃z(z ∈ N1 ∧ ψ(u, v, z, p)). By (B) we infer

∃w∀v ⊆ u∃z ⊆∗ w(z ∈ N1 ∧ ψ(u, v, z, p)).

Thus, there is a tally w such that ∀v ⊆ u∃z ⊆ w ψ(u, v, z, p). By the least
tally number principle, let be w0 the least such w. Then there is v0 with v0 ⊆ u
such that ∀z ⊂ w0¬ψ(u, v0, z, p). On the other hand, by hypothesis, there is z
in the cut J such that ψ(u, v0, z, p). This entails that w0 ⊆ z. By property 1
above, w0 is also in the cut J . �

Lemma 5. The theory I∆0 + Ω1 + BΣ1 is interpretable in I∆0 + BΣ1.

Proof. The axiom Ω1 says that ∀x∀y(xlog2(�y+1�)exists). It is well known
that I∆0 + Ω1 is interpretable in I∆0 via the cut C(x) defined by the formula
∀y(xlog2(�y+1�) exists): see, for instance, [11]. This very same cut provides an
interpretation of I∆0 + Ω1 + BΣ1 into I∆0 + BΣ1. One has only to check that
the scheme of collection for bounded arithmetic formulas holds in the cut C of
a model of I∆0 + BΣ1. This follows from a minimality argument, as in the final
step of the proof of the previous lemma. �

Lemma 6. The theory BTFA is interpretable in I∆0 + Ω1 + BΣ1.

Proof. In fact, we show that BTFA is interpretable in Σb
1−NIA+BΣ1. Prima

facie, the language L2 of BTFA has two sorts of variables: the individual sort
and the set sort. In the first-order language L1 of the theory Σb

1 − NIA + BΣ1,
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we reserve the even numbered variables v0, v2, v4, etc. for the interpretation
of the individual variables of L2, while the odd numbered variables v1, v3, v5,
etc. are reserved for the interpretation of the set variables of L2. To keep the
notation simple, we will in fact identify the even numbered variables of L1 with
the individual variables of L2. Moreover, we suppose that each set variable Xi

of L2 is associated with the odd numbered variable v2i+1 of L1, and we will
use Greek letters α, β, γ, etc. to stand for these odd numbered variables. In
order to describe the domain of these Greek variables (no restriction is made
in the domain of the even numbered variables), we consider – in the manner
of a previous lemma – a 5-ary sw.q.-formula U(e, x, y, p, c) with the universal
property according to which, for every ternary sw.q.-formula ψ(x, y, p), there is
a (standard) e ∈ 2<ω such that

Σb
1 − NIA � ∀x∀y∀p(ψ(x, y, p) ↔ ∃c U(e, x, y, p, c)).

Now, the domain of the Greek variables is restricted to the formula

Set(α) := ∀x(∃wU(α0, x, w0, α1, w1) ↔ ∀w¬U(α2, x, w0, α3, w1)),

where α is seen as the quadruple (α0, α1, α2, α3), and the variables w are seen
as pairs (w0, w1). The identity interpretation (and the above remark on the
identification of variables) takes care of the common language of L1 and L2, viz.
L1. It remains to interpret the membership relation. It is done as follows:

x ∈ X :↔ ∃wU(α0, x, w0, α1, w1),

where the variable X is associated with α. The above set-up induces, in a
natural way, a translation T of formulas φ(x,X) of L2 into formulas φT (x, α) of
L1. It remains to check that the theory Σb

1 − NIA + BΣ1 proves all sentences
ψT , whenever ψ is an axiom of BTFA. A proof of this fact follows closely the
arguments of the proof of the last theorem of [8], viz. the result that BTFA is a
conservative extension of the theory Σb

1−NIA+BΣ1. In the following paragraphs
we briefly outline those arguments.

Using bounded collection (a fragment thereof, to be more precise), we can
recursively associate to each sw.q.-formula φ(x,X) two formulas φΣ(x, α) and
φΠ(x, α) of the form ∃zφ

′

Σ(x, α, z) and ∀zφ
′

Π(x, α, z) (respectively), with both
φ

′

Σ(x, α, z) and φ
′

Π(x, α, z) sw.q.-formulas, such that the theory Σb
1 −NIA + BΣ1

proves
1. ∀α[Set(α) → ∀x(φΣ(x, α) ↔ φΠ(x, α))], and
2. ∀α[Set(α) → ∀x(φT (x, α) ↔ φΣ(x, α))],

where, for α the sequence α1, . . . , αn, Set(α) abbreviates
∧n

k=1 Set(αk).
The universal property above and the existence of these formulas easily entail

that the axioms of ∆0
1(PT)-CA translate to sentences provable in Σb

1−NIA+BΣ1.
Consider now a formula ψ(x) of the form ∃w� t φ(x, w), with φ a sw.q.-formula

(φ may also have individual or set parameters, but we omit them for ease of
reading). Take a such that ψT (ε) ∧ ¬ψT (a), in order to prove the existence of a
c such that c ⊂ a, c0 ⊆ a (say), ψT (c), and ¬ψT (c0). Using bounded collection
(again, only a fragment thereof), it is not difficult to argue for the existence of
an element b such that

∀x ⊆ a∀w� t(∃z�b φ
′

Σ(x, w, z) ↔ ∀z�b φ
′

Π(x, w, z)).
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Therefore, ∀x ⊆ a(ψT (x) ↔ ∃w� t∃z�b φ
′

Σ(x, w, z)). The element c can now be
found by induction on notation applied to the Σb

1-formula ∃w� t∃z�b φ
′

Σ(x, y, z).
Finally, we need to argue that the translation of the bounded collection axioms

are provable in Σb
1−NIA+BΣ1. This is a straightforward consequence of the fact

that the mapping φ �→ (φΣ, φΠ) can be extended to all bounded formulas φ, still
assenting to properties 1 and 2 above, provided that we allow the formulas φ

′

Σ

and φ
′

Π to be bounded (as opposed to mere sw.q.-formulas). Of course, extending
this mapping uses (full) bounded collection essentially. �
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