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Abstract

Leo Harrington showed that the second-order theory of arithmetic
WKL0 is Π1

1-conservative over the theory RCA0. Harrington’s proof is
model-theoretic, making use of a forcing argument. A purely proof-
theoretic proof, avoiding forcing, has been eluding the efforts of re-
searchers. In this short paper, we present a proof of Harrington’s
result using a cut-elimination argument.

1 Introduction

The language of second-order arithmetic is a two-sorted language, with a
numerical sort whose terms are intended to denote natural numbers, and a
second-order sort whose variables are intended to range over subsets of the
natural numbers. Numerical terms are built up as usual from first-order
variables and from function symbols for the primitive recursive functions.
The atomic formulas are of the form t = q, t ≤ q and t ∈ X, where t and
q are numerical terms, and X is a second-order variable. RCA0 denotes the
classical theory consisting of quantifier-free axioms regulating the function
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and relation symbols, the induction scheme restricted to Σ0
1-formulas and the

recursive comprehension scheme:

∀x(F (x) ↔ ¬G(x)) → ∃X∀x(x ∈ X ↔ F (x)),

where F and G are Σ0
1-formulas (Σ0

1-formulas are either bounded formulas
or formulas of the form ∃xF0, where F0 is a bounded formula, and in which
parameters of both sorts may occur). This theory, a variation of which is
described in detail in [19], plays a prominent role in the studies of Reverse
Mathematics where it is usually taken as the base theory over which the
strength of ordinary theorems of mathematics is gauged. It has also the
following conspicuous property: It is Π0

2-conservative over (the first-order
version of) Skolem’s primitive recursive arithmetic. This result is originally
due to Charles Parsons (see [16]; more information on this matter can be
found in [9]). The theory WKL0 is obtained from RCA0 by adjoining weak
König’s lemma:

∀T (T is an infinite binary tree → ∃X(X is an infinite path through T )).

Even though the above axiom is non-constructive in character (e.g., there
are recursive infinite binary trees with no recursive infinite paths through
them), Harvey Friedman reported in [12] that WKL0 is still Π0

2-conservative
over primitive recursive arithmetic. Nowadays there are several proofs of this
result in the literature: e.g., [17], [18], [14] (also in [2]), [19] and [10]. Leo
Harrington (unpublished result) strengthened Friedman’s conservation result
by showing that WKL0 is, in fact, Π1

1-conservative over RCA0:

Theorem (Harrington). Suppose that WKL0 proves the sentence ∀XF (X),
where F is a first-order formula. Then RCA0 already proves ∀XF (X).

Harrington’s proof is model-theoretic, using a forcing construction (the
proof has now been published in Simpson’s book [19]). A purely proof-
theoretic proof of Harrington’s result has been actively sought and, in the
process, some subtle proof-theoretic matters have been clarified (see [15]).
One such proof has indeed been found, namely Avigad’s proof in [1] where he
is able to formalize Harrington’s forcing argument within RCA0 (obtaining,
as a result, nice non speed-up results). Our paper presents a proof that
bypasses the forcing argument and which is based on a direct analysis of
suitable normal proofs of Π1

1-sentences in WKL0. It is a subsidy in showing
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that proof-theoretic methods are a flexible and powerful lot and, also, in
fostering an appreciation of Harrington’s conservation result for those not
familiar with forcing arguments.

The proof of Harrington’s conservation result given below uses the Free-
Cut Elimination Theorem for an appropriate sequent calculus. In Section 2,
we reformulate the theory WKL0 in the sequent calculus and, conspicuously,
state weak König’s lemma by way of its contrapositive: the so-called FAN0

theorem. This is the FAN theorem of intuitionistic mathematics stated in
the context of second-order arithmetic for bounded matrices:

∀X∃xF0(X, x) → ∃w∀X∃x ≤ wF0(X, x),

where F0 is a bounded formula (possibly with parameters of both sorts). No-
tice two things. Firstly, the FAN theorem is intuitionistically acceptable (at
least for Brouwerian intuitionists) while weak König’s lemma is not (in our
setting we may replace one by the other because our logic is classic). Sec-
ondly, even though the general FAN theorem is not classically true, the above
restricted version (where the matrix F0 is bounded) is classically valid, being
classically equivalent (as we pointed) to weak König’s lemma. In Section 3,
we present the proof of Harrington’s result. Finally, in the last section we
comment on the role of the general FAN theorem in the intuitionistic set-
ting. The upshot is that a natural formulation of Harrington’s theorem in
the intuitionistic setting does not hold.

2 The framework of the sequent calculus

The aim of this section is to reformulate the theory WKL0 in the sequent
calculus. We bypass fine points regarding the precise set-up of the sequent
calculus and, rather, direct the reader to [6], [5] and [20] concerning these
matters. Following [5], we adopt bounded quantifications as a primitive syn-
tactic device and, concurrently, uphold the bounded quantifier rules of the
sequent calculus. The non-logical initial sequents consist of the usual (closed
under term substitution) quantifier-free sequents regulating the relation ≤
and the function symbols associated with the (descriptions of the) primitive
recursive functions. Instead of the axioms for Σ0

1-induction we have the rule:

Γ, F (a)→F (a + 1)
Ind

Γ, F (0)→F (t)
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where F is a Σ0
1-formula, a is an Eigenvariable, and t is a term (see [5] and

[20] for the notion of ‘Eigenvariable’). In the standard formulation of the
above rule, side formulas ∆ are also permitted in the right-hand side of the
sequents, but it is easy to see that we can do without them (this observation
also applies to the formulation of the FAN rule below). Concerning the
second-order part of the language, we have the following rules:

Γ, F (V )→∆
∀2left

Γ,∀XF (X)→∆

Γ→∆, F (A)
∀2right

Γ→∆,∀XF (X)

where V is a (set) abstract for a bounded formula and A is a (second-order)
Eigenvariable. (See Takeuti’s book [20] for the notion of ‘abstract’; NB: there
are notational differences between our setting and Takeuti’s). The sequent
calculus also includes similar (dual) rules for the existential second-order
quantifier. Since we permit abstracts for bounded formulas in the (∃2right)
rule, it is straightforward to see that sequents of the form→∃X∀x(x ∈ X ↔
F (x)), for F a bounded formula, are derivable. In other words, our rules for
second-order quantification allow us to prove comprehension for bounded
formulas. Thus, the above sequent calculus is a reformulation of the theory
RCA−

0 , obtained from RCA0 by replacing the ∆0
1-comprehension scheme by

the weaker scheme of bounded comprehension.
The following proposition is clear. It is easily proved by induction on the

complexity of the formula F0:

Proposition. Let F0(A, b) be a bounded formula with a distinguished second-
order parameter A and with the first-order parameters b as shown. We can
effectively associate a term tF0(b), with its free variables as shown, such that
the theory RCA−

0 proves:

∀s ∈ {0, 1}tF0
(b)

(
∀x < tF0(b)(x ∈ A ↔ sx = 0) → (F0(A, b) ↔ F ∗

0 (s, b))
)
,

where s ∈ {0, 1}tF0
(b) means that s is a binary sequence of length tF0(b), sx

is the value of the sequence s at point x (having default value 0 if x is not
less than the length of s), and F ∗

0 is obtained from F0 by replacing its atomic
subformulas of the form q ∈ A by the expression sq = 0.

We now add the following FAN rule to our calculus:
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Γ→∃xF0(A, x, b)
Fan0

Γ→∃v∀s ∈ {0, 1}t(v,b)∃x ≤ vF ∗
0 (s, x, b)

where F0 is a bounded formula, A is a Eigenvariable and the term t(v, b) is
the term associated (according to the previous proposition) to the bounded
formula ∃x ≤ vF0(A, x, b). Note that the formula following the quantification
∃v above is a bounded formula. The rule entails that under the supposition
that ∀X∃xF0(X, x, b) we may conclude ∃v∀X∃x ≤ vF0(X, x, b), for bounded
formulas F0. We are using the above proposition at this point. In sum, the
above rule entails FAN0.

Proposition. The theories RCA−
0 + FAN0 and WKL0 are the same.

Proof. It is sufficient to show that RCA−
0 +FAN0 proves the ∆0

1-comprehension
scheme because FAN0 entails (classically) weak König’s lemma (over RCA−

0 ),
and vice-versa. Suppose that ∀u(∃yF0(u, y) ↔ ∀zG0(u, z)), where F0 and G0

are bounded formulas. We claim that

∀w∃X∀x ≤ w∀u, y, z ≤ x((F0(u, y) → u ∈ X) ∧ (u ∈ X → G0(u, z))).

Given w we just take, by bounded comprehension,

X := {u : ∃y ≤ w F0(u, y)}.

Now, by FAN0, we may conclude that

∃X∀x∀u, y, z ≤ x((F0(u, y) → u ∈ X) ∧ (u ∈ X → G0(u, z))),

and this entails the desired result.

3 The new proof

Suppose that WKL0 proves the sentence ∀XF (X), with F a first-order for-
mula. Then there is a proof of the sequent →F (X) in the sequent calculus
LKFAN described in the previous section. By the Free-Cut Elimination Theo-
rem (see [6], [5] and also Chapter 9 of [4] and [20] for second-order systems)
there is a free-cut free proof of→F (X) in this sequent calculus (the notion
of ‘free-cut’ must be adapted by also declaring that every direct descendent
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of the principal formula of a (Fan0) inference is anchored). Since the princi-
pal formulas of the (Ind) and (Fan0) rules are Σ0

1 and since the abstracts are
given by bounded formulas, we conclude that there is a proof of →F (X) in
LKFAN in which the cut rule applies only to Σ0

1-formulas. As a consequence,
this proof has no occurrences of second-order quantifiers. Disregarding the
order of the formulas, every sequent in the proof has the form

(?)

{
Γ,∃w1H1(w1, A), . . . ,∃wnHn(wn, A)→

∆,∃y1G1(y1, A), . . . ,∃ymGm(ym, A)

where:

a. the Hs and the Gs are bounded formulas (we admit the absence of
the existential quantifiers ∃wi or ∃yj in order to accommodate plain
bounded formulas in the above sequent);

b. there are no Σ0
1-formulas in Γ or ∆;

c. the tuple A displays exactly the second-order parameters which occur
in the Hs or in the Gs without occuring neither in Γ nor in ∆. These
are called the special parameters of the sequent;

d. we are not displaying other (first or second order) parameters. In par-
ticular, we are not displaying second-order parameters that occur in Γ
or in ∆ (and which may concurrently occur in the Hs or in the Gs).

If the (Fan0) rule is not applied in the normal proof then, of course,
∀XF (X) is a theorem of RCA−

0 . Otherwise, it occurs for a first time in some
branch of the proof tree. At this point we need a lemma. Let LKRCA−0

be the

sequent calculus LKFAN minus the (Fan0) rule:

Lemma. Let be given a proof of a sequent of the form (?) in the sequent
calculus LKRCA−0

. Suppose further that this proof is normal in the following

sense: every cut formula is a Σ0
1-formula; and, no formula of the proof has

second-order quantifiers. Under these conditions, the theory RCA−
0 proves

($)

{
Γ ∧ ¬∆ →

(
∀w1 . . . ∀wn∃v∀A(H1(w1, A) ∧ . . . ∧Hn(wn, A) →

∃y1 ≤ vG1(y1, A) ∨ . . . ∨ ∃ym ≤ vGm(ym, A))
)
.

If this is shown then, when we arrive at the top sequent of a (first) appli-
cation of the (Fan0) rule, RCA−

0 proves
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Γ(b) → ∀w∃v∀A(H1(w1, b) ∧ . . . ∧Hn(wn, b) → ∃x ≤ vF0(A, x, b)),

where we are not showing any special parameters besides A. Note that
A is an Eigenvariable and only shows up in the auxiliary formula of the
(Fan0) rule. Note, also, that the universal quantifications over the other
special parameters (variables) can safely cross over the quantifier ∃v. We are
displaying the first-order parameters that appear in the auxiliary formula
(and which may appear elsewhere). Hence, RCA−

0 proves

Γ(b) ∧ ∃w1H1(w1, b) ∧ . . . ∧ ∃wnHn(wn, b) → ∃v∀A∃x ≤ vF0(A, x, b).

As a consequence, the theory RCA−
0 proves the conditional whose an-

tecedent is Γ(b)∧∃w1H1(w1, b)∧ . . .∧∃wnHn(wn, b) and whose consequent is
∃v∀s ∈ {0, 1}t(v,b)∃x ≤ vF ∗

0 (s, x, b), where the term t is as in the (Fan0) rule.
We have arrived at the conclusion of a first application of the (Fan0) rule

in a normal proof in LKFAN via a proof in LKRCA−0
(of course, we may take the

latter as a normal proof, in the sense of Lemma 3). If we repeat this procedure
enough times, we arrive at a (normal) proof of →F (X) in LKRCA−0

. Hence,

the theory RCA0 (actually, RCA−
0 ) already proves the sentence ∀XF (X).

It remains to prove the lemma. At various points, the proof of the lemma
makes appeal to the so-called bounded collection scheme BΣ0

1:

∀x ≤ a∃y F0(x, y) → ∃z∀x ≤ a∃y ≤ z F0(x, y),

where F0 is a bounded formula (vide comments on this issue after the proof
below). As it is well known, bounded collection is a consequence of Σ0

1-
induction.

Proof of the Lemma. The proof is by induction on the depth of the
sequents appearing in the given normal proof. There is nothing to prove
regarding initial sequents, since they are quantifier-free. One must check
that the induction hypothesis is carried over by every rule of LKRCA−0

. We

will do this for some distinguished cases, namely for the (∃≤left), (∀left),
(Ind) and the cut rules. A complete checking can be found in [11] (note that
the rules for the second-order quantifiers never show up in a normal proof).

The (∃≤left) rule has the form

Γ, a ≤ t, F (a, A),∃wH(w, A)→∆,∃yG(y, A)

Γ,∃x ≤ t F (x, A),∃wH(w, A)→∆,∃yG(y, A)
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where, for simplicity, we consider only one (bounded) formula H and one
bounded formula G, and where a is an Eigenvariable and t is a term. The
interesting case is when F is a bounded formula. In this case, A are the special
parameters (of both sequents). By induction hypothesis, the theory RCA−

0

proves the conditional whose antecedent is Γ ∧ ¬∆ and whose consequent is

∀a∀w∃v∀A(a ≤ t ∧ F (a, A) ∧H(w,A) → ∃y ≤ v G(y, A)).

Fix w. Then ∀x ≤ t∃v∀A(F (x, A) ∧ H(w, A) → ∃y ≤ v G(y, A)). By
Proposition 2, the subformula of the previous formula that begins with ∃v is
equivalent to a Σ0

1-formula. Hence, by bounded collection BΣ0
1,

∃v∀x ≤ t∀A(F (x, A) ∧H(w, A) → ∃y ≤ vG(y, A)).

The conclusion of the induction step is an immediate consequence of the
above.

The study of the (∀left) rule is only interesting when the auxiliary formula
is Σ0

1. In this case we have an inference of the form:

Γ,∃wH(w, A, B),∃xF (x, t, B)→∆,∃yG(y, A, B)

Γ,∃wH(w, A, B),∀z∃xF (x, z, B)→∆,∃yG(y, A, B)

under the usual conditions. Here t is a term, and we are distinguishing
between the special parameters which occur in the auxiliary formula (the pa-
rameters B) and those that do not occur there (the parameters A). Note that
the former are no longer special parameters of the lower sequent. By induc-
tion hypothesis, the theory RCA−

0 proves the conditional whose antecedent is
Γ ∧ ¬∆ and whose consequent is

∀w∀x∃v∀A∀B(H(w, A, B) ∧ F (x, t, B) → ∃y ≤ v G(y, A, B)).

We reason inside RCA−
0 . Fix B′ and assume the conjunction of Γ with ¬∆

and with ∀z∃xF (x, z, B′). Take x′ such that F (x′, t, B′). Fix w. It is now
clear that there is v such that ∀A(H(w, A, B′) → ∃y ≤ v G(y, A, B′)).

Consider the (Ind) rule:

Γ,∃wH(w, A),∃xF (x, a, A)→∃x′F (x′, a + 1, A)

Γ,∃wH(w,A),∃xF (x, 0, A)→∃x′F (x′, t, A)
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under the usual conditions, and where a is an Eigenvariable and t is an arbi-
trary term. By induction hypothesis, the theory RCA−

0 proves the conditional
whose antecedent is Γ and whose consequent is

($) ∀a∀w∀x∃v∀A(H(w,A) ∧ F (x, a, A) → ∃x′ ≤ v F (x′, a + 1, A)).

Let us reason inside RCA−
0 . Assume Γ. Fix elements w and x. We claim

that, for all elements a,

∃v∀A(H(w,A) ∧ F (x, 0, A) → ∃x′ ≤ vF (x′, a, A)).

This solves our problem (instantiate a by t). The claim is proved by in-
duction on a. Note that this induction is permissible because, by Proposition
2, the above formula is equivalent to a Σ0

1-formula. The base case a = 0 is
clear. To argue for the induction step, assume that there is v such that

∀A(H(w,A) ∧ F (x, 0, A) → ∃x′′ ≤ v F (x′′, a, A)).

By ($) we have:

∀x′′ ≤ v∃v′∀A(H(w, A) ∧ F (x′′, a, A) → ∃x′ ≤ v′F (x′, a + 1, A)).

By bounded collection BΣ0
1, there is v′ such that,

∀x′′ ≤ v∀A(H(w, A) ∧ F (x′′, a, A) → ∃x′ ≤ v′ F (x′, a + 1, A)).

It clearly follows that

∀A(H(w,A) ∧ F (x, 0, A) → ∃x′ ≤ v′F (x′, a + 1, A)).

Finally, we study the cut rule (with a Σ0
1 cut-formula). This rule says

that from the two sequents

Γ,∃wH(w,A)→∆,∃yG(y, A),∃xF (x, A, B) and

∃xF (x, A, B), Γ,∃wH(w, A)→∆,∃yG(y, A)

one can infer the sequent Γ,∃wH(w, A)→∆,∃yG(y, A). We are distinguish-
ing the special parameters which only occur in the cut-formula (the param-
eters B). By induction hypothesis, the theory RCA−

0 proves that Γ ∧ ¬∆
implies both
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∀w∃v1∀A(H(w, A) → ∃y ≤ v1 G(y, A) ∨ ∀B∃x ≤ v1 F (x, A, B)) and

∀w∀x∃v2∀A∀B(F (x, A, B) ∧H(w, A) → ∃y ≤ v2 G(y, A)).

Let us fix w. Take v1 according to the first assertion above. An application
of bounded collection BΣ0

1 to the second assertion above yields v2 such that

∀B∀x ≤ v1∀A(F (x, A, B) ∧H(w, A) → ∃y ≤ v2 G(y, A)).

It is now clear that ∀A(H(w, A) → ∃y ≤ max(v1, v2) G(y, A)) follows, as
wanted.

Let PRA2 be the theory obtained from RCA−
0 by replacing the Σ0

1-induction
rule by the set induction axiom:

∀X(0 ∈ X ∧ ∀x(x ∈ X → x + 1 ∈ X) → ∀x(x ∈ X)).

In the sequent calculus, this axiom is replaced by the rule:

Γ, a ∈ X→a + 1 ∈ X
SetInd

Γ, 0 ∈ X→t ∈ X

where a is an Eigenvariable and t is a term. An inspection on the above proof
shows that the following theorem is true (the above rule poses no difficulty):

Proposition. Suppose that PRA2+FAN0 proves the sentence ∀XF (X), where
F is a first-order formula. Then PRA2 + BΣ0

1 already proves it.

The inclusion of the bounded collection principle in the second theory
above is unavoidable because the theory PRA2 + FAN0 proves BΣ0

1. This was
noticed in [8] (the precise setting was different). Observe that it is known
that BΣ0

1 is not a consequence of PRA2 (cf. [13]). For weak theories of
arithmetic and analysis (i.e., in which the totality of exponentiation is not
provable) one has to be careful in formulating weak König’s lemma (or the
FAN principle), and tight relationships emerge between these formulations
and various formulations of bounded collection. On this regard, one should
pay attention to the exact formulation of weak König’s lemma in the feasible
setting (see [8]), and to the results in [7]. We may say with confidence that
Harrington type theorems for these weaker settings can also be proved with
arguments based on the one presented in this paper.
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4 Final considerations

Let FAN be the second-order principle

∀X∃x F (X, x) → ∃w∀X∃x ≤ w F (X, x),

where F is an arbitrary second-order formula. It is easy to see that the
theory RCA−

0 + FAN is classically inconsistent. We repeat here a well known
argument to the effect that one can prove intuitionistically in RCA−

0 + FAN
the negation of the classical truth ∀X(∀y(y ∈ X) ∨ ∃x(x /∈ X)). Suppose
that this classical truth holds. Then, ∀X∃x(∀y(y ∈ X) ∨ x /∈ X). By FAN,
there exists w such that ∀X∃x ≤ w(∀y(y ∈ X) ∨ x /∈ X). This is clearly a
contradiction: just consider X = {x : x ≤ w}.

The theory RCA−
0 + FAN is, nevertheless, intuitionistically consistent. As

a matter of fact, a Friedman type conservation result holds for this theory:

Theorem. The intuitionistic version of RCA−
0 +FAN is Π0

2-conservative over
primitive recursive arithmetic.

This result follows directly from work on a newly found functional in-
terpretation in [10]. In fact, the work on the new interpretation shows that
one can even join to the intuitionistic version of RCA−

0 + FAN the following
classical principles: Markov’s principle, a form of independence of premises
for universal antecedents and (surprisingly) both the lesser limited principle
of omniscience (cf. [3]) and weak König’s lemma.

It is natural to ask whether a Harrington type conservation result holds
in the intuitionistic setting. More precisely: Is intuitionistic RCA−

0 + FAN a
Π1

1-conservative theory over RCA0? The answer is negative, even when RCA0

is conceived classically. The reason is simple:

Proposition. Intuitionistic RCA−
0 + FAN proves bounded collection for all

formulas of the language.

Now, if intuitionistic RCA−
0 + FAN were Π1

1-conservative over RCA0 then
the latter theory would prove bounded collection for all arithmetical formulas,
a well-known falsity. In order to prove the proposition, assume that ∀x ≤
a∃yF (x, y). Let F †(X, y, a) be the formula ∃x(x = card{z ∈ X : z <
a}∧F (x, y)). It is clear that ∀X∃yF †(X, y, a). By FAN, there is w such that
∀X∃y ≤ w F †(X, y, a). This easily entails ∀x ≤ a∃y ≤ wF (x, y).
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