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Abstract. In the last fifteen years, the traditional proof interpretations of
modified realizability and functional (dialectica) interpretation in finite-type

arithmetic have been adapted by taking into account majorizability consid-

erations. One of such adaptations, the monotone functional interpretation of
Ulrich Kohlenbach, has been at the center of a vigorous program in applied

proof theory dubbed proof mining. We discuss some of the traditional and
majorizability interpretations, including the recent bounded interpretations,

and focus on the main theoretical techniques behind proof mining.
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4.1. Gödel’s dialectica interpretation 24
4.2. On the monotone functional interpretation 27
4.3. Negative translation 30
4.4. Extraction and all that (III) & (IV) 30
4.5. The no-counterexample interpretation 31
4.6. Digression on provably total functions 32
4.7. Suggested reading and historical notes 34
5. Injecting uniformities 34
5.1. Intensional majorizability 34
5.2. Bounded functional interpretation 36
5.3. Digression on a new conservation result 40
5.4. Extraction and all that (V) 41
5.5. Flattening 42
5.6. On extensionality and uniform boundedness 43
5.7. Suggested reading and historical notes 46
6. Coda 47
References 48

1. Introduction

Functional interpretations were introduced half a century ago by Kurt Gödel in
[17]. Gödel’s interpretation uses functionals of finite type and is an exact interpre-
tation. It is exact in the sense that it provides precise witnesses of existential state-
ments. Another example of an exact (functional) interpretation is Georg Kreisel’s
modified realizability [40], [41]. In the last fifteen years or so, there has been an
interest in interpretations which are not exact, but only demand bounds for exis-
tential witnesses. These interpretations, when dealing with bounds for functionals
of every type, are based on the majorizability notions of William Howard [20] and
Marc Bezem [4]. This is the case with Ulrich Kohlenbach’s monotone modified re-
alizability [29] and monotone functional interpretation [27], the bounded modified
realizability [11] of Fernando Ferreira and Ana Nunes, or the bounded functional
interpretation [11] of Ferreira and Paulo Oliva. There are, to be sure, other in-
terpretations which also incorporate majorizability notions to a certain extent: for
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instance, the seminal Diller-Nahm interpretation [6], Wolfgang Burr’s interpretation
of KPω [5] or the very recent interpretation of Jeremy Avigad and Henry Towsner
[3] which is able to provide a proof theoretic analysis of ID1. The reader should
consult [2], [53] and [43] for more information on proof interpretations. Specifically
for Gödel’s interpretation, I also suggest the articles which appeared in a recent
issue of dialectica [48] commemorating the 50th anniversary of Gödel’s paper.

In these lectures, we give an overview of the various functional interpretations
based on the notion of majorizability of Howard/Bezem. The starting points are
the exact interpretations of Gödel and Kreisel. We have tried to organize the results
around certain main theorems: soundness, extraction, conservation and character-
ization theorems. We hope that this organization makes it easier to appreciate the
differences between the various interpretations, their advantages and limitations,
and also the techniques involved in proving the theorems (even though, as observed
in the introductory footnote, the lectures have few proofs). We also pay special at-
tention to certain issues. For instance, we discuss the advantages of the monotone
functional interpretation vis-à-vis Gödel’s interpretation (Section 4.2), and discuss
the role of extensionality in relation to intensional majorizability and the uniform
boundedness principles (Section 5.6). The lectures finish with an extraction result
for the fully extensional classical theory E-PAω0 + AC1,1

qf (the result entails that this
theory has the provably total functions of Peano Arithmetic) via a false theory by
applying the techniques developed in Part 5. It is not known whether there is a
direct route. In order not to distract the reader, we give almost no references during
the exposition of the material. Each of the four lectures closes with a section on
suggested readings and historical notes where we try to give the proper references.

The monotone functional interpretation and associated theorems have been used
to guide the extraction of effective data from given ordinary proofs in mathematics.
In more picturesque words, it has been used to guide the “proof mining” of ordi-
nary mathematical arguments. This paper does not attempt to even give a brief
description of the applied work apart from saying that proof mining techniques
(functional style) have been applied to approximation theory, fixed points of non-
expansive mappings and, more recently, to ergodic theory. There are very good
places to get into these applications and the recent book of Kohlenbach [35] is a
very good place to start. Nevertheless, we would like to convey here a sense of the
excitement of possible applications. Our example is taken from the research blog
of Terence Tao. In a page entitled “Soft analysis, hard analysis, and the finite con-
vergence principle” (see [51]), Tao speaks of an informal distinction between “soft”
and “hard” principles in mathematics. Typically, “soft” principles are abstract,
infinitary and lack computational content. They are extremely useful in modern
mathematics and, given the usual training of a mathematician, they are simple to
state and easy to remember and apply. An example of a “soft” principle is (in Tao’s
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terminology) the infinite convergence theorem: every bounded monotone sequence
of real numbers is convergent. On the other hand, “hard” principles are concrete,
finitary and with computational content. They seem to be more difficult to grasp
than the corresponding “soft” principles. In his blog, Tao sets himself the task
of finding the “hard” counterpart of the infinite convergence theorem. Actually,
Tao considers the following modification of the infinite convergence principle: ev-
ery bounded nondecreasing sequence of reals is a Cauchy sequence. (The reader
of like mind knows that this modified statement is weaker than the original one in
terms of set existence: see, for instance, section 13.3 of [35].) Tao proceeds in an
informal, tentative manner, and is eventually satisfied with a principle dubbed the
finite convergence principle. Afterwards – in an impressive application – Tao for-
mulates a variant of the infinite convergence theorem for Hilbert spaces and shows
that Szemerédi’s regularity lemma, a major combinatorial tool in graph theory,
follows from the corresponding finite convergence principle for Hilbert spaces.

As pointed by Towsner in a comment of the blog, the finite convergence princi-
ple can be seen as an application of Gödel’s dialectica interpretation. In a detailed
treatment, Kohlenbach shows in his recent book [35] that the finite convergence
principle is the no-counterexample interpretation (cf. Section 4.5) of the modified
infinite convergence principle reinforced with a uniformity observation (which is
given an explicit quantitative meaning in Kohlenbach’s analysis). Note that, for
the case at hand, the no-counterexample interpretation coincides with the dialectica
interpretation (after a double-negation translation). In the lines below, we show
that the finite convergence principle is essentially the bounded functional interpre-
tation (for the classical case) of the modified infinite convergence principle:1,2 in
contrast with the dialectica interpretation, the bounded functional interpretation
takes care of the uniformities automatically. Let us see why this is so. We state
the modified infinite convergence theorem in a normalized form as follows:

∀k ∈ N∀x ∈ [0, 1]N∃N ∈ N∀n ∈ N |xN+n − xN | ≤ 1
2k
,

under the assumption that xi ≤ xi+1, for all i ∈ N. Alternatively, one can drop the
assumption and work instead with the sequence x̃n = maxi≤n xi. This is what we
will do. Rather than go through the moves of applying the syntactic transformation
of the bounded functional interpretation, we will put the above statement in the

1A similar case can also be made for the monotone functional interpretation.
2In [8], we describe a direct bounded functional interpretation for the classical case. In the

present lectures, the (intuitionistic) bounded functional interpretation is applied after a double-
negation translation. The proviso “essentially” is made because, for the bounded functional

interpretation to work as desired, the convergence principles would have to be formulated with

intensional majorizability signs (these reformulations are nevertheless equivalent to the original
statements by extensionality reasons, as discussed in the sequel and in Section 5.6). These are

technical matters that we sidestep in this introduction.
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form ∀∃ (with an appropriate matrix) using the so-called characteristic principles
associated with the bounded functional interpretation (for the classical case). These
are the principles bBACω� and MAJω� of Theorem 5.12. The first principle is a version
of choice, a consequence of which is:

(I): ∀i ∈ N∃j ∈ NA∃(i, j)→ ∃̃f ∈ NN∀i ∈ N∃j ≤ f(i)A∃(i, j),
where A∃ is an existential formula, and the tilde on the quantifier “∃̃f” means
that f is nondecreasing. A combination of the first and second principle yields the
following “collection” principle (in our application, it reduces to a “compactness”
property):

(II): ∀w ∈ [0, 1]N∃i ∈ NA∃(w, i)→ ∃l ∈ N∀w ∈ [0, 1]N∃i ≤ lA∃(w, i),
where A∃ is an existential formula. The quantification “∀w ∈ [0, 1]N” is a bounded
quantification under a suitable representation of the compact separable metric space
[0, 1]N (its topology is the product topology of N-copies of the closed unit interval,
and a natural metric is forthcoming). One should consult [35] for an exposition con-
cerning representations of Polish spaces. According to the characteristic principles,
the bounded quantification mentioned above should have been intensional, but in
our application we can work with the regular bounded quantification because we
apply it to a matrix A∃(w, i) which is extensional in w (these issues are discussed
in Section 5.6).3

Assume the modified infinite convergence principle. Consider the negation of the
formula ∃N ∈ N∀n ∈ N |x̃N+n− x̃N | ≤ 1

2k
. Using (I), this negation is equivalent to

∃̃F ∈ NN∀N ∈ N∃n ≤ F (N) |x̃N+n − x̃N | > 1
2k

(note that the relation > between
real numbers is existential). We get,

∀k ∈ N∀̃F ∈ NN∀x ∈ [0, 1]N∃N ∈ N∀n ≤ F (N) |x̃N+n − x̃N | ≤ 1
2k
.

It is clear that the matrix “∀n ≤ F (N) |x̃N+n − x̃N | ≤ 1
2k

” can be replaced by
“∀n ≤ F (N) |x̃N+n − x̃N | < 1

2k
.” The latter matrix can be considered existential.

Hence, we can apply (II) and conclude that
∀k ∈ N∀̃F ∈ NN∃M ∈ N∀x ∈ [0, 1]N∃N ≤M∀n ≤ F (N) |x̃N+n− x̃N | < 1

2k
.

Observe that only the values of xi, for i < M + F (M) + 1, do matter. Hence the
above can the restated as,{

∀k ∈ N∀̃F ∈ NN∃M ∈ N∀x ∈ [0, 1]M+F (M)+1

∃N ≤M∀n ≤ F (N) |x̃N+n − x̃N | < 1
2k
.

This is a straightforward reformulation of Tao’s finite convergence principle. As
usual, this “hard” principle is more difficult to read than the “soft” monotone
convergence principle. We quote a description given by Tao of this principle: the

3In more familiar mathematical terms, our application of (II) boils down to the fact that the

compact space [0, 1]N is covered by the family of open sets Ui = {w ∈ [0, 1]N : A∃(w, i)}, with
i ∈ N. Hence, it has a finite sub-cover.
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finite convergence principle “asserts that any sufficiently long (but finite) bounded
monotone sequence will experience arbitrarily high-quality amounts of metastability
with a specified error tolerance 1

2k
, in which the duration F (N) of the metastability

exceeds the time N of onset of the metastability by an arbitrary function F which
is specified in advance.” As Tao says, this is significantly more verbose than the
“soft” formulation.

In a more recent blog [50] entitled “The correspondence principle and finitary
ergodic theory,” Tao speaks of a correspondence principle between qualitative (or
“soft”) results in infinite dynamical systems and quantitative (or “hard”) results in
finite dynamical systems. He illustrates such correspondence principle with eight
examples, all of them mediated by compactness properties. It would be inter-
esting to see how Tao’s examples are relate to the majorizability interpretations:
are they essentially instances of the bounded functional interpretation? Moreover,
the majorizability interpretations are based on majorizability properties, not on
compactness properties (consult sections 17.7 and 17.8 of [35] to appreciate the dif-
ference, as well as the groundwork with new base types in [33] and [15]). Are there
examples of “correspondences” waiting to be discovered based on the majorizability
interpretations?

I want to thank my students Patŕıcia Engrácia, Gilda Ferreira and Jaime Gaspar
for discussions and observations concerning the majorizability interpretations. I
would also like to thank the two anonymous referees for their helpful criticism and
suggestions of improvement.

2. Basic theory and some models

2.1. The language of finite-type arithmetic. The finite types T are syntactic
expressions defined inductively: 0 (the base type) is a finite type; if τ and σ are finite
types then τ → σ is a finite type. It is useful to have the following interpretation
in mind: the base type 0 is the type constituted by the natural numbers, whereas
τ → σ is the type of (total) functions of objects of type τ to objects of type σ.

To make the reading easier, we often omit brackets and associate the arrows
to the right. E.g., 0 → 0 → 0 means 0 → (0 → 0). The pure types are defined
inductively for each natural number: the pure type corresponding to the natural
number 0 is the base type 0; the pure type n+ 1 is n→ 0.

The language of Heyting arithmetic in all finite types, denoted by Lω0 , is a sorted
language with a sort for each finite type. There is a denumerable set of variables
xσ, yσ, zσ, etc for each type σ. When convenient, we omit the type superscript.
There are two kinds of constants:

(a) Logical constants or combinators. For each pair of types ρ, τ there is a
combinator of type ρ → τ → ρ denoted by Πρ,τ ; for each triple of types
δ, ρ, τ there is a combinator of type
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(δ → ρ→ τ)→ (δ → ρ)→ (δ → τ)
denoted by Σδ,ρ,τ .

(b) Arithmetical constants. The constant 0 of type 0; the successor constant S
of type 1; for each type ρ, a recursor constant of type

0→ ρ→ (ρ→ 0→ ρ)→ ρ
denoted by Rρ.

Constants and variables of type ρ are terms of type ρ. If t is a term of type
ρ → τ and q is a term of type ρ then App(t, q) is a term of type τ . These are all
the terms there are. A term with no variables is a closed term. We usually write
tq or t(q) for App(t, q). When writing tqr without brackets we associate to the left
(note the difference with the previous convention): (t(q))(r). We also write t(q, r)
instead of (t(q))(r). In general, t(q, r, . . . , s) stands for (. . . ((t(q))(r)) . . .)(s).

Atomic formulas are formulas of the form t = q where t and q are terms of type
0. Note that, in the present setting, there is only one primitive equality symbol
(infixing between terms of type 0). Formulas are obtained from atomic formulas
by means of the usual propositional connectives ∧, ∨, →, ⊥ (falsum) and universal
and existential quantifiers ∀xσ and ∃xσ for each type σ. As usual, ¬A abbreviates
A→ ⊥ and A↔ B abbreviates (A→ B) ∧ (B → A).

2.2. Heyting arithmetic in all finite types. The theory HAω0 is based on intu-
itionistic logic. It also has the following axioms for combinators and equality:

(a) Axioms for combinators. A[Π(x, y)/w] ↔ A[x/w] and A[Σ(x, y, z)/w] ↔
A[x(z, yz)/w], where A is an atomic formula with a distinguished variable
w and A[t/w] is obtained from A by replacing the occurences of w by t.

(b) Equality axioms. x = x (reflexivity); x = y ∧A[x/w]→ A[y/w], where A is
an atomic formula with a distinguished (type zero) variable w.

and the arithmetical axioms:
(c) Successor axioms. Sx 6= 0 and Sx = Sy → x = y.
(d) Axioms for recursors. A[R(0, y, z)/w] ↔ A[y/w] and A[R(Sx, y, z)/w] ↔

A[z(R(x, y, z), x)/w], where A is an atomic formula with distinguished vari-
able w.

(e) Induction scheme. A(0)∧∀x0(A(x)→ A(Sx))→ ∀xA(x), for each formula
A of the language.

It can be shown that equality is symmetric and transitive and, moreover, the
conditional x = y ∧A[x/w]→ A[y/w] also holds for every formula of the language
(provided that there is no clash of variables). Similarly, the axioms for combinators
and recursors extend to every formula A.

Equality is decidable in the following sense: HAω0 ` ∀x0(x = 0 ∨ x 6= 0). This
is easily proven by induction. Equality for higher types is defined inductively:
s =ρ→τ t is ∀xρ(sx =τ tx). Equality in higher types is not decidable anylonger.
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Full extensionality is the scheme of axioms ∀z∀x, y(x = y → zx = zy). It should be
noted that we are not assuming full extensionality in the theory HAω0 . The theory
obtained by its inclusion is denoted by E-HAω0 . In the sequel, we prefix a theory by
E when adding full extensionality to it.

2.3. Combinatorial completeness. The combinators Π and Σ are instrumental
in proving the following important property:

Theorem 2.1 (Combinatorial completeness). For each term t[xρ] of type τ with a
distinguished variable x of type ρ, we can construct a term q of type ρ → τ whose
variables are those of t except for x such that, for every term s of type ρ and atomic
formula A with a distinguished variable wτ ,

HAω0 ` A[t[s/x]/w]↔ A[qs/w].

For instance, if t is of type 0, then qs = t[s/x]. The term q is usually denoted by
λx.t[x] and the above equation can now be written (λx.t[x])s = t[s/x] (β-reduction).
Of course, the proposition extends to all formulas A (provided that there is no clash
of variables), i.e., we may substitute the term t[s/x] by (λx.t[x])s in any formula.

Using the recursors, it is possible to associate to each description of a primitive
recursive function a closed term that (with the proper understanding) satisfies the
defining conditions of the description. Therefore, the theory HAω0 contains, in a
natural sense, primitive recursive arithmetic. Actually, only the recursor R0 is
needed to define the primitive recursive functions. The presence of recursors of
higher types has the effect of making possible the definition of functions beyond
the primitive recursive functions (e.g., the Ackermann function).

We reserve the subscript “qf” for quantifier-free formulas:

Proposition 2.2. For each quantifier-free formula Aqf(x) there is a closed term t
of appropriate type such that HAω0 ` Aqf(x)↔ tx = 0.

As a consequence, HAω0 ` Aqf ∨¬Aqf . The theory obtained from HAω0 by adjoin-
ing the unrestricted law of excluded middle A ∨ ¬A is the classical theory PAω0 . If
full extensionality is present, we have E-PAω0 .

2.4. Main models. 1. The full set-theoretical model Sω. Let S0 = N and Sρ→τ =
(Sτ )Sρ , where (Sτ )Sρ is the set of all functions from Sρ to Sτ . Let Sω be 〈Sσ〉σ∈T .
With the proper understanding, it is clear that Sω is a model of HAω0 . It is actually
a model of E-PAω0 . The model Sω is called the standard structure of finite-type
arithmetic. When we call a sentence of Lω0 true or false, we always mean true or
false with respect to the standard model.
2. The hereditarily recursive operations HROω. For each type σ we define a subset
HROσ of the natural numbers in the following way: HRO0 = N and

HROρ→τ = {n ∈ N : ∀k ∈ HROρ ∃m ∈ HROτ ({n}(k) ' m)},
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where {·} denotes the Kleene bracket of recursion theory. Let HROω be 〈HROσ〉σ∈T .
If n ∈ HROρ→τ and k ∈ HROρ then AppHROω (n, k) is defined as {n}(k). With
a proper interpretation of the constants, HROω is a model of PAω0 . By internaliz-
ing the above definitions within first-order Heyting arithmetic HA, it is possible to
prove the following conservation result:

Proposition 2.3. The theory HAω0 is conservative over HA.

3. The intensional continuous functionals ICFω. In order to motivate some def-
initions below, let us briefly discuss continuous functionals of type 2. The set S1

(=NN) endowed with the product topology of the discrete space N with itself N-
times is known as the Baire space. It is easy to see that a functional Φ : S1 7→ N is
continuous at a point β ∈ S1 if, and only if,

∃n ∈ N∀γ ∈ S1(γ(n) = β(n)→ Φ(γ) = Φ(β)).
where γ(n) stands for the finite sequence 〈γ(0), . . . , γ(n− 1)〉. In other words, the
value of Φ at a point β only depends on a finite initial segment of β. Therefore, Φ
is determined by what happens in a countable set of finite sequences. This can be
made explicit in the following way. An associate of a continuous functional Φ is an
element α ∈ S1 with the following two properties:

i. If s = 〈s0, . . . , sn−1〉 is a finite sequence4 of natural numbers, α(s) 6= 0 and
s is an initial segment of β, then Φ(β) = α(s)− 1.

ii. For all β ∈ S1, there is n such that α(β(n)) 6= 0.
Of course, such associates exist. It is clear that for every continuous functional

Φ2 with associate α, the following holds:
Φ(β) = α(β(µk(α(β(k)) 6= 0)))− 1,

where µ is the minimization operator of recursion theory. Therefore, each contin-
uous functional of type 2 is determined by a function of type 1. By means of this
type lowering procedure, we obtain a structure for Lω0 in the following manner (for
simplicity, we restrict ourselves to pure types). First, for α, β ∈ S1 we define

α(β) ' α(β(µk(α(β(k)) 6= 0)))− 1
Second, we let ICF0 = N, ICF1 = S1 and, for the remaining pure cases:

ICFρ→0 = {α ∈ S1 : ∀β ∈ ICFρ∃k ∈ N (α(β) = k)}
The above definition can be extended to all finite types. Let ICFω = 〈ICFσ〉σ∈T .
Application between functionals is defined in the natural way: for α ∈ ICFρ→0 and
β ∈ ICFρ, with ρ 6= 0, then AppICFω (α, β) is α(β). With a proper interpretation of
the constants, ICFω is a model of PAω0 .

4We are identifying the finite sequence s with its numerical coding, as it is usually done in

recursion theory.
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This construction can be generalized in the following way. Take U ⊆ NN closed
under Turing reducibility. Define ICF0(U) = N, ICF1(U) = U and, for σ 6= 0, 1,
put ICFσ(U) following the blueprint above (mutatis mutandis). Then ICFω(U) :=
〈ICFσ(U)〉σ∈T is a model of PAω0 . A particularly nice source of (counter-)examples
is ICFω(Rec), where Rec is the set of (total) recursive functions from N to N. This
is due to the fact that recursive sets do not necessarily separate disjoint r.e. sets (a
result of Kleene).

4. The extensional counterparts HEOω and ECFω. The models HROω and ICFω

are called intensional because the scheme of extensionality fails to hold for them.
For instance, take e1, e2 ∈ N two different indices for the constant zero function.
Clearly, e1, e2 ∈ HRO1. Let e ∈ N be an index for the identity function. Of
course, e ∈ HRO2. Even though {e}(e1) 6= {e}(e2), one has ∀n ∈ HRO0 ({e1}(n) =
{e2}(n)). Therefore, the form of extensionality

∀Φ2∀α1, β1(∀k0(αk = βk)→ Φα = Φβ),

already fails in HROω. The above form of extensionality holds in ICFω, but it is
easy to find a counter-example a type above, i.e. to:

∀G3∀Φ2,Ψ2(∀α1(Φα = Ψα)→ GΦ = GΦ).

We now define the extensional counterparts of HROω and ICFω. These are
called, respectively, the hereditarily effective operations HEOω and the (extensional)
countinuous functionals ECFω. The elements of non-zero type of HEOω and ECFω

are functions (functionals). For HEOω we define by induction on the type σ both
the functionals in HEOσ and the indices of these functionals (these indices are
natural numbers). We let HEO0 be the set of natural numbers and declare that
each natural number is an index of itself. We say that a natural number e is an
index for a function (functional) F : HEOσ 7→ HEOτ if for each index x of a
function h of HEOσ, {e}(x) is defined and is an index for the function F (h). We
take HEOρ→τ as the set of functions F : HEOρ 7→ HEOτ which have an index. The
structure HEOω is defined as 〈HEOσ〉σ∈T .

Regarding ECFω, we let ECF0 be the set of natural numbers and, for each non-
zero type σ, we define by induction both the functionals in ECFσ and the associates
of these functionals (these are elements of S1). We put ECF1 as S1 and declare
each α ∈ S1 an associate of itself. We restrict to pure types in order to simplify.
We say that α ∈ S1 is an associate for a function F : ECFσ 7→ N, with σ a non-zero
pure type, if for each associate β of a function h of ECFσ, α(β) is defined and is
the natural number F (h). We take ECFρ→0 as the set of functions F : ECFρ 7→ N
which have an associate. This definition can be extended to all finite types. The
structure ECFω is defined as 〈ECFσ〉σ∈T .

The structure ECFω is also called the structure of the countable functionals
(Kleene’s terminology). In a way similar to the intensional case, we can also start
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with any subset U of S1 closed under Turing reducibility, and get the struture
ECFω(U).
5. The strongly majorizable functionals Mω. Let M0 = N and let ≤∗0 be the usual
“less than or equal” relation between natural numbers. Given types ρ and τ , and
given x and y elements of MMρ

τ , we say that x ≤∗ρ�τ y (and read “y strongly
majorizes x”) if

∀u, v ∈ Mρ (u ≤∗ρ v � x(u) ≤∗τ y(v) ∧ y(u) ≤∗τ y(v))

Define Mρ�τ as the set {x ∈ MMρ
τ : ∃y ∈ MMρ

τ (x ≤∗ρ�τ y)}. Let Mω be 〈Mσ〉σ∈T .
Bezem showed that Mω forms a model of E-PAω0 under function application and
the natural interpretation of the constants. It is also important to observe that if
x, y ∈ MMρ

τ and x ≤∗ρ�τ y, then y ≤∗ρ�τ y. Therefore, not only is it the case that x
is in Mρ�τ but y is also there.

For x, y ∈ S1, x ≤∗1 y iff x ≤1 y and y is non-decreasing. Note that ≤∗1 is not
reflexive. Given α : N 7→ N, let αM be defined by αM(n) = maxk≤n α(k). It is clear
that α ≤∗1 αM. Therefore, M1 = S1. However, M2 is properly contained in S2. E.g.,
consider the functional Σ ∈ S2 defined as follows:

Σ(α) =
{
n if n is the least value such that α(n) 6= 0
0 if ∀k (α(k) = 0)

Suppose, in order to get a contradiction, that there is Ψ with Σ ≤∗2 Ψ. In
particular, ∀α ∈ S1(α ≤∗1 11 → Σ(α) ≤ Ψ(11)). This is a contradiction: just
consider the function α which takes the value 0 for numbers n ≤ Ψ(11) and
is 1 afterwards. As a consequence, the following form of choice fails in Mω:
∀α1∃n0A(α, n)→ ∃Φ2∀α1A(α,Φ(α)). To see this, just take for A the formula:

(α(n) 6= 0 ∧ ∀k < n(α(k) = 0)) ∨ (n = 0 ∧ ∀k(α(k) = 0)).
The failure of choice in Mω can be further improved by noticing that the discon-
tinuous functional E defined thus:

E(α) =
{

1 if ∀k (α(k) = 0)
0 otherwise

is majorizable. Hence, we can replace the formula ∀k(α(k) = 0) by the quantifier-
free formula E(α) = 1 and, as a consequence, get the failure of the above form of
choice with a quantifier-free matrix (although with the parameter E).

Continuous functionals have been playing an important role in discussions con-
cerning finite-type functionals. Since the notion of majorizability (as opposed to
continuity) plays the crucial role in some of the functional interpretations discussed
in this paper, we believe that it is illuminating to make two observations regarding
the relationship between continuity and majorizability. First, the continuous func-
tionals of type 2 are in M2. The proof of this fact uses a compactness argument.
Given Φ a continuous functional of type 2, it makes sense to define the functional
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ΦM ∈ S2 according to the equation ΦM(α) = maxβ≤1αM Φ(β) because, for a given
α ∈ S1, the set {β ∈ S1 : β ≤1 α

M} is a compact subspace of the Baire space and,
hence, Φ[{β ∈ S1 : β ≤1 α

M}] is compact in the discrete topology of N. In other
words, it is finite and we can take its maximum. By construction, Φ ≤∗2 ΦM. Addi-
tionally, it is not difficult to show that ΦM is continuous. Clearly, by the continuity
of Φ one has

S1 = ∪s∈D{β ∈ S1 : β extends s},
where D is constituted by the finite sequences of natural numbers that determine
values for Φ (i.e., such that elements of S1 that extend an element of D have the
same values according to Φ). Given α ∈ S1, by compactness there is a finite Fα ⊆ D
such that

{β ∈ S1 : β ≤1 α
M} ⊆ ∪s∈Fα{β ∈ S1 : β extends s}.

Let n ∈ N be the maximal length of the sequences in Fα. It can now be easily
argued that if α(n) is an initial segment of γ then ΦM(γ) = ΦM(α).

The second observation is that, nevertheless, there is a type 3 functional in ECFω

which is not majorizable. Kreisel showed that there is a Fan functional F3 in ECF3

such that
∀Φ ∈ ECF2∀α ≤1 1∀β ≤1 1 (α(F(Φ)) = β(F(Φ))→ Φα = Φβ).

In other words, F(Φ) is a length witnessing the uniform continuity of Φ restricted to
the Cantor space (i.e., to the compact subset of the Baire space constituted by the
elements α such that α ≤1 11). However, the set {F(Φ) : Φ ∈ ECF2 and Φ ≤∗2 12}
is clearly unbounded. Therefore, F is not majorizable. (I thank Dag Normann for
this observation.)

It will be important in the sequel to formalize the majorizability relation. We
finish our discussion of the strongly majorizable functionals with this issue. Fix a
suitable formula “x ≤ y” of Lω0 saying that the natural number x is less than or
equal to the natural number y. The (strong) majorizability formulas “x ≤∗σ y” are
defined inductively on the types according to the following clauses:

(a) x ≤∗0 y := x ≤ y
(b) x ≤∗ρ�σ y := ∀uρ, vρ (u ≤∗ρ v � xu ≤∗σ yv ∧ yu ≤∗σ yv)

The following easy, but important, absoluteness property holds: when inter-
preted in Mω the formulas “x ≤∗σ y” coincide with the strong majorizability rela-
tions defined in the beginning of this example. It follows that Mω is a model of
the majorizability axioms MAJω: ∀x∃y(x ≤∗ y). By previous discussions, MAJω

already fails in the full set-theoretic model Sω at type 2, and fails in the structure
of (extensional) continuous functionals ECFω at type 3.

Lemma 2.4. For each finite type σ, the theory HAω0 proves:
(i) x ≤∗σ y → y ≤∗σ y;
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(ii) x ≤∗σ y ∧ y ≤∗σ z → x ≤∗σ z;
(iii) x ≤σ y ∧ y ≤∗σ z → x ≤∗σ z;

where the relation ≤σ is the pointwise “less than or equal to” relation: it is ≤ for
type 0, and x ≤ρ→τ y is defined recursively by ∀uρ (xu ≤τ yu).

The following theorem of Howard is a basic ingredient of the soundness proof of
many interpretations discussed in this paper:

Theorem 2.5. For each closed term t there is a closed term q such that HAω0 `
t ≤∗ q.

6. The term model. We say that a term t contracts to a term q if one of the following
clauses is satisfied:

(i) t is Πrs and q is r.
(ii) t is Σrst and q is r(t, st).
(iii) t is R0st and q is s.
(iv) t is R(Sr)st and q is t(Rrst, r).
A term t reduces to another term q in one step if q is obtained from t by con-

tracting a single sub-term of t. A term is said to be in normal form if it does not
admit reductions in one step. A reduction sequence is a sequence of terms t0, . . . , tn
such that each term reduces in one step to the next. In this case, we say that t0
reduces to tn. If tn cannot be reduced further, then tn is in normal form and the
sequence is called terminating.

Theorem 2.6 (Confluence and strong normalization). Every term reduces to a
unique term in normal form. Moreover, every reduction sequence eventually termi-
nates.

The uniqueness result (confluence) is the Church-Rosser theorem for this re-
duction calculus. Normalization strictu sensu is the fact that every term has a
terminating reduction sequence (strong normalization is the fact that every reduc-
tion sequence eventually terminates). Proofs of normalization are bound to use
strong forms of induction (viz. induction on non-arithmetical predicates), because
it is known that it (elementarily) implies the consistency of first-order Peano arith-
metic. This fact can be proved with the aid of Gödel’s dialectica interpretation (see
Section 4.6).

A corollary of the normalization theorem is that every closed term r of type 0
reduces to a numeral n and, clearly, HAω0 ` r = n. Therefore, we can assign to
each closed term t of type 1 a number theoretical function that maps each k ∈ N to
the unique natural number n such that tk reduces to n. The normalization process
ensures that this function is recursive. As we will comment in Part 3, closed terms
of type 1 give exactly the provably total Σ0

1-functions of PAω0 (and, actually, of PA).
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Let CTσ be the set of closed terms of type σ, and let CTω be 〈CTσ〉σ∈T . Given
closed terms t, q of type zero, we say that t =CTω q if the normal forms of t and
q are the same term. If t ∈ CTρ→τ and q ∈ CTρ then AppCTω (t, q) is defined as
the term App(t, q). With these specifications and the interpretation of constants
by themselves, CTω is a model of HAω0 .

A modification of the reduction calculus above has an interesting application.
Let T be a closed term of type 2. The interpretation of T in the full set-theoretical
model Sω, denoted by T Sω , is a function from S1 to N. We claim that this function
is continuous. In fact, we claim more: T Sω is a computable function (such functions
are, of necessity, continuous since each computation only depends on a finite initial
segment of the input, which is considered an oracle for effecting the computation).
Consider a distinguished variable x̌ of type 1. Fix α ∈ S1. We complement the
previous normalization calculus with a new contraction rule:

(v)α t is x̌(n) and q is α(n).

This α-normalization calculus enjoys the property of confluence and strong normal-
ization. Therefore, the type 0 term T x̌ has a (unique) normal form which (it may
easily be argued) must be a numeral n. Due to the semantical soundness of the
contraction procedure, it is clear that T Sω (α) = n. It is also clear that the process
of normalization yields an oracle computation (the oracle is only invoked to effect
contractions of the form (v)α).

2.5. Suggested reading and historical notes. The structure of the hereditarily
continuous functionals was independently discovered by Stephen Kleene in [22] and
Kreisel in [40]. The notion of majorizability was introduced by Howard in [20]. The
structure of the strongly majorizable functionals was defined by Bezem in [4]. The
failure of choice in Mω is due to Kohlenbach in [25]. The existence of the continuous
Fan functional mentioned at the end of the discussion of the structure Mω appeared
in [41], and the proof that this functional is not majorizable is discussed in [23].
The strong normalization theorem for finite-type functionals (as well as the oracle
modification) is due to William Tait in [49].

Anne Troelstra’s book [55] is still very much rewarding for studying the topics of
this section. Volume II of [54] and the recent [35] are alternatives. More specifically:
HROω and ICFω and their extensional counterparts are covered in [55] ([54] has less
material). Our treatment of the extensional structures is slightly unusual since we
work directly with set theoretic functionals instead of working with their indexes
or associates endowed with a suitable notion of equality. Kohlenbach also studies
also studies the extensional counterparts in [35], as well as the structure of the
majorizable functionals in detail. Both [55] and [54] study the term model and the
normalization theorems.
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The treatment of equality in finite types in this paper comes from a suggestion in
[18], elaborated by Troelstra in [52] (the subscript ‘0’ in HAω0 comes from Troelstra
given notation).

3. Modified and bounded realizability

3.1. Modified realizability. The method of realizability is reminiscent of the
BHK (Brouwer-Heyting-Kolmogorov) interpretation of the intuitionistic connec-
tives. We introduce a version of realizability, called modified realizability, due to
Kreisel in the setting of finite-type arithmetic.

We present Kreisel’s modified realizability in a slightly unfamilar way. Instead
of saying what realizing tuples of functionals are, we associate to each formula of
the language an existential formula. We need a preliminary definition:

Definition 3.1. A formula of Lω0 is called ∃-free if it is built from atomic formulas
by means of conjuntions, implications and universal quantifications.

Do notice that ∃-free also means free of disjunctions (compare with some defini-
tions in the sequel). We are ready to define the assignment of modified realizability:

Definition 3.2. To each formula A of the language Lω0 we assign formulas (A)mr

and Amr so that (A)mr is of the form ∃xAmr(x) with Amr(x) a ∃-free formula,
according to the following clauses:

1. (A)mr and Amr are simply A, for atomic formulas A.
If we have already interpretations for A and B given by ∃xAmr(x) and ∃yBmr(y)
(respectively), then we define:

2. (A ∧B)mr is ∃x, y(Amr(x) ∧Bmr(y)),
3. (A ∨B)mr is ∃n0∃x, y

(
(n = 0→ Amr(x)) ∧ (n 6= 0→ Bmr(y))

)
,

4. (A→ B)mr is ∃f∀x(Amr(x)→ Bmr(f(x))),
5. (∀zA(z))mr is ∃f∀zAmr(f(z), z),
6. (∃zA(z))mr is ∃z, xAmr(x, z).

In the established literature, we say that x mr-realizes A instead of Amr(x).
Notice that the tuple x may be empty. The realizers of a disjunction include a flag
n of type 0 that decides which way to fork. Similarly, the realizers of an existential
quantifier include an existential witness. It is easy to check that the interpretation
of negation (¬A)mr is ∀x¬Amr(x). Notice that (¬A)mr is always an ∃-free formula
and, therefore, demands an empty realizer. Realizability is unsuitable for extracting
constructive information from negated formulas.

There are two important principles in connection with modified realizability:
I. Axiom of Choice ACω: ∀x∃yA(x, y)→ ∃f∀xA(x, fx), where A is any formula.
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II. Independence of Premises IPω∃free: (A→ ∃zB(z))→ ∃z(A→ B(z)), where A
is ∃-free and B is an arbitrary formula.

The last principle is a classical, but not intuitionistic, law.

Theorem 3.3 (Soundness of modified realizability). Suppose that
HAω0 + ACω + IPω∃free + ∆ ` A(z),

where ∆ is a set of ∃-free sentences and A(z) is an arbitrary formula (with the free
variables as shown). Then there are closed terms t of appropriate types such that

HAω0 + ∆ ` ∀zAmr(t(z), z).

The proof is by induction on the length of formal derivations, and the terms
are effectively constructed from the formal derivations. The principles ACω and
IPω∃free disappear because they are trivially realizable. It must be noted that the
recursors are only needed to check the induction axioms, while the logical axioms
only need terms built by the combinators. Full extensionality is not automatically
interpretable but the next best thing happens: It is constituted by ∃-free sentences
and, therefore, it is self-interpretable. Therefore, in the above theorem, we may
replace in both places the theory HAω0 by E-HAω0 .

3.2. Extraction and all that (I). The following is an important consequence of
the soundness theorem:

Proposition 3.4 (Extraction and conservation, modified realizability). Suppose
that

HAω0 + ACω + IPω∃free + ∆ ` ∀x∃yA(x, y),
where ∆ is a set of ∃-free sentences and A is a ∃-free formula with free variables
among x and y. Then there is a closed term t of appropriate type such that

HAω0 + ∆ ` ∀xA(x, tx).

Letting A be the sentence 0 = 1 and ∆ be empty, we conclude that the theory
HAω0 + ACω + IPω∃free is consistent relative to HAω0 . This is not, however, terribly
interesting.

Theorem 3.5 (Characterization). For any formula A,
HAω0 + ACω + IPω∃free ` A↔ (A)mr.

The two principles ACω and IPω∃free are called the characteristic principles of
modified realizability. The characterization theorem also ensures that we are not
missing any principles besides ACω and IPω∃free in the statement of the soundness
theorem. To see this, suppose that we could state the soundness theorem with a
further principle (sentence) P. Since P is a consequence of itself, from soundness
it would follow that there are closed terms t such that HAω ` Pmr(t). A fortiori,
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HAω ` ∃xPmr(x), i.e., HAω ` (P)mr. By the characterization theorem, we get
HAω + ACω + IPω∃free ` P. In conclusion, P is superfluous.

Corollary 3.6. The following two properties hold:
(a) (Disjunction Property) Suppose that HAω0 + ACω + IPω∃free ` A ∨ B, for

sentences A and B. Then, either HAω0 +ACω + IPω∃free ` A or HAω0 +ACω +
IPω∃free ` B.

(b) (Existence Property) Suppose that HAω0 + ACω + IPω∃free ` ∃xA(x), for the
sentence ∃xA(x). Then there is a closed term t such that HAω0 + ACω +
IPω∃free ` A(t).

The above corollary is consequence of the soundness and characterization theo-
rems. For instance, suppose that A∨B is provable in HAω0 + ACω + IPω∃free. By the
soundness theorem, there are closed terms s0 and t, q such that,

HAω0 ` (s = 0→ Amr(t)) ∧ (s 6= 0→ Bmr(q)).
Since s is a closed term, there is a numeral n such that HAω0 ` s = n. Suppose

n = 0 (the other case is similar). Then HAω0 ` Amr(t) and, therefore, HAω0 ` (A)mr.
By the characterization theorem, we get the desired conclusion.

It is important to notice that the above argument works because, in the presence
of ACω and IPω∃free, it is possible to come back from the formula (A)mr to the original
formula A. The existence property has the following natural generalization:

Proposition 3.7. Let A be an arbitrary formula with free variables among x and
y. Suppose that

HAω0 + ACω + IPω∃free ` ∀x∃yA(x, y).
Then there is a closed term t of appropriate type such that

HAω0 + ACω + IPω∃free ` ∀xA(x, tx).

This is not a conservation result anymore. However, it is still a sound extraction
result since the conclusion ∀xA(x, tx) is true.

Theorem 3.8 (Fan rule). Let A be an arbitrary formula containing only the vari-
ables x1 and n0. Then the following rule holds: If

HAω0 + ACω + IPω∃free ` ∀x ≤1 1∃n0A(x, n)
then there is a natural number m such that

HAω0 + ACω + IPω∃free ` ∀x ≤1 1∃n ≤ mA(x, n).

The proof of this result uses Howard’s majorizability relation. Assume that
∀x ≤1 1∃n0A(x, n) is provable in HAω0 + ACω + IPω∃free. We get,

HAω0 + ACω + IPω∃free ` ∀x(x ≤1 1→ ∃n∃zAmr(z, x, n)).
By IPω∃free, ∀x∃n∃z(x ≤1 1 → Amr(z, x, n)) is provable. As a consequence of the
soundness theorem, there is a closed term t of type 2 such that
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HAω0 ` ∀x(x ≤1 1→ ∃zAmr(z, x, tx)).
By Howard’s majorizability result, take a closed term q such that t ≤∗2 q. It is clear
that

HAω0 + ACω + IPω∃free ` ∀x ≤1 1∃n ≤ q(11)A(x, n).

3.3. Digression on intuitionistic extraction. Modified realizability does not
quite achieve the disjunction and existence property for HAω0 . For instance, if
HAω0 ` A ∨ B then we can only guarantee that either A or B is provable in the
stronger theory HAω0 + ACω + IPω∃free. One would want instead that A or B were
already provable in the original HAω0 . This is in fact the case, and the proof uses
a variant of modified realizability: modified realizability with truth. The clauses of
this variant of realizability are the same of modified realizability except that the
conditional has an extra clause:

(A→ B)mrt is ∃f∀x(Amrt(x)→ Bmrt(f(x))) ∧ (A→ B)

Theorem 3.9 (Soundness of modified realizability with truth). Suppose that
HAω0 ` A(z),

where A(z) is an arbitrary formula (with the free variables as shown). Then there
are closed terms t of appropriate types such that

HAω0 ` ∀zAmrt(t(z), z).

For the purpose at hand, we crucially have:

Lemma 3.10. For every formula A, HAω0 ` (A)mrt → A.

Now it is clear how to prove the disjunction and existence properties for plain
HAω0 .

3.4. Bounded modified realizability. The new bounded interpretations rely
heavily on the Howard-Bezem majorizability notions. In view of this fact, it is
convenient to work with an extension of the language Lω0 (with exactly the same
terms). Firstly, we extend the language Lω≤ with a primitive binary relation sym-
bol ≤ that infixes between terms of type 0. There are now new atomic formulas,
and the syntactic notions extend in the natural way. Actually, the language that
we get is an extension by definitions of Lω0 because x ≤ y may be defined by a
natural quantifier-free formula. In this setting, we use the primitive binary symbol
to define the majorizability formulas. Secondly, it is convenient to introduce the
primitive syntactical device of bounded quantifications, i.e., quantifications of the
form ∀x ≤∗ t and ∃x ≤∗ t, for terms t not containing the variable x. Bounded
formulas are formulas in which every quantifier is bounded.

The theory HAω≤ is HAω0 together with the (universal) defining axiom of ≤ and
the following schemes:
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B∀ : ∀x ≤∗ tA(x)↔ ∀x(x ≤∗ t→ A(x)),
B∃ : ∃x ≤∗ tA(x)↔ ∃x(x ≤∗ t ∧A(x)).

It is clear that HAω≤ is a conservative extension of HAω0 . We say that a functional
f is monotone if f ≤∗ f . In the sequel, we often quantify over monotone functionals.
We abbreviate the quantifications ∀x(x ≤∗ x → A(x)) and ∃x(x ≤∗ x ∧ A(x)) by
∀̃xA(x) and ∃̃xA(x), respectively.

Definition 3.11. A formula of Lω≤ is called ∃̃-free if it is built from atomic formulas
by means of conjunctions, disjunctions, implications, bounded quantifications and
monotone universal quantifications, i.e., quantifications of the form ∀̃a.

This notion resembles the notion of ∃-free formula, but notice that disjunctions
are allowed.

Definition 3.12. To each formula A of the language Lω≤ we assign formulas (A)br

and Abr so that (A)br is of the form ∃̃bAbr(b), with Abr(b) a ∃̃-free formula, accord-
ing to the following clauses:

1. (A)br and (A)br are simply A, for atomic formulas A.
If we have already interpretations for A and B given by ∃̃bAbr(b) and ∃̃dBbr(d)
(respectively) then, we define

2. (A ∧B)br is ∃̃b, d(Abr(b) ∧Bbr(d)),
3. (A ∨B)br is ∃̃b, d(Abr(b) ∨Bbr(d)),
4. (A→ B)br is ∃̃f ∀̃b(Abr(b)→ Bbr(f(b))).

For bounded quantifiers we have:
5. (∀x ≤∗ t A(x))br is ∃̃b∀x ≤∗ t Abr(b, x),
6. (∃x ≤∗ t A(x))br is ∃̃b∃x ≤∗ t Abr(b, x).

And for unbounded quantifiers we define
7. (∀xA(x))br is ∃̃f ∀̃a∀x ≤∗ aAbr(f(a), x).
8. (∃xA(x))br is ∃̃a, b∃x ≤∗ aAbr(b, x).

Notice that the realizers of a disjunction do not include a flag deciding which
way to fork, and that only a bound for the existential witness is included in the
realizers of an existential statement. As usual, negation is a particular case of the
implication: (¬A)br is ∀̃b¬Abr(b).

Three principles are important in connection with the above assignment:
I. Bounded Choice bACω:

∀x∃yA(x, y)→ ∃̃f ∀̃b∀x ≤∗ b∃y ≤∗ fbA(x, y),
where A is an arbitrary formula.

II. Bounded Independence of Premises bIPω∃̃free
:
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(A→ ∃yB(y))→ ∃̃b(A→ ∃y ≤∗ bB(y)),

where A is a ∃̃-free formula and B is an arbitrary formula.
III. Majorizability Axioms MAJω:

∀x∃y(x ≤∗ y).
It must be remarked that each principle above is false in the full set theoretical

model Sω. The majorizability axioms MAJω (as well as bIPω∃̃free
) are, of course, true

in the structure Mω of the majorizable functionals. However, as we saw in the first
part, the bounded choice principle already fails in Mω for x of type 1 and y of type
0.

Proposition 3.13. The theory HAω≤ + bACω + bIPω∃̃free
proves the Collection Prin-

ciple bCω:
∀z ≤∗ c∃yA(y, z)→ ∃̃b∀z ≤∗ c∃y ≤∗ bA(y, z),

where A is an arbitrary formula and c is a tuple of monotone functionals.

Proof. Suppose that ∀z ≤∗ c∃yA(y, z). By bIPω∃̃free
, we get

∀z∃̃b(z ≤∗ c→ ∃y ≤∗ bA(y, z)).

By bACω, we may conclude that ∃̃f∀z ≤∗ c∃̃b ≤∗ fc∃y ≤∗ bA(x, y). The desired
conclusion follows from the transitivity of the majorizability relation. �

The case where the types of z and y are 0 extends the familiar collection principle
of arithmetic. In the context of intuitionistic analysis, Brouwer’s Fan theorem is
the case where z is of type 1 and y is of type 0. The formulation for the Cantor
space is:

∀z ≤1 1∃n0A(n, z)→ ∃m0∀z ≤1 1∃n ≤ mA(n, z),
for arbitrary formulas A. The above formulation of the Fan theorem must be
distinguished from the following, which also appears in the literature:

∀z ≤1 1∃n0A(n, z)→ ∃k0∀z ≤1 1∃n0∀w ≤1 1(w(k) = z(k)→ A(n,w)),
for arbitrary formulas A. The latter formulation explicitly includes a continu-
ity principle, whereas the former does not. It is important to keep in mind that
bounded interpretations concern majorizability notions, not continuity notions.

Theorem 3.14 (Soundness of the bounded modified realizability). Suppose that
HAω≤ + bACω + bIPω∃̃free

+ MAJω + ∆ ` A(z),

where ∆ is a set of ∃̃-free sentences and A(z) is an arbitrary formula (with the free
variables as shown). Then there are closed monotone terms t of appropriate types
such that

HAω≤ + ∆ ` ∀̃a∀z ≤∗ aAbr(t(a), z).
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Above, and in similar situations in the sequel, by a closed monotone term t we
mean a closed term such that the monotonicity condition (t ≤∗ t, in this case) is
provable in the base theory (HAω≤, in this case).

3.5. Extraction and all that (II). The following is a consequence of the sound-
ness theorem:

Proposition 3.15 (Extraction and conservation, bounded modified realizability).
Suppose that

HAω≤ + bACω + bIPω∃̃free
+ MAJω + ∆ ` ∀x∃yA(x, y),

where ∆ is a set of ∃̃-free sentences and A is a ∃̃-free formula with free variables
among x and y. Then there is a closed monotone term t of appropriate type such
that

HAω≤ + ∆ ` ∀̃a∀x ≤∗ a∃y ≤∗ taA(x, y).

Strictly speaking, we do not have a conservation result. However, if the type of
x is 0 or 1 then we do have such a result:

Corollary 3.16. Suppose that
HAω≤ + bACω + bIPω∃̃free

+ MAJω + ∆ ` ∀x0/1∃yA(x, y),

where ∆ is a set of ∃̃-free sentences, A a ∃̃-free formula with free variables among
x and y. Then there is a closed monotone term t of appropriate type such that

HAω≤ + ∆ ` ∀x∃y ≤∗ txA(x, y).

In particular, this corollary yields a relative consistency result of the theory
HAω≤+ bACω + bIPω∃̃free

+ MAJω over HAω≤. This is interesting in the present setting
because the former theory is classically inconsistent: It refutes the classically true
Markov’s principle. To see this, suppose that

∀x1
(
¬¬∃n0(xn = 0)→ ∃n0(xn = 0)

)
.

By intuitionistic logic and bIPω∃̃free
, ∀x1∃n0(¬∀k0(xk 6= 0) → ∃i ≤ n(xi = 0)).

Now, by the collection principle bCω, there is a natural number m0 such that
∀x ≤1 1(¬∀k0(xk 6= 0)→ ∃n ≤ m (xn = 0)). This is a contradiction (just consider
the number-theoretic primitive recursive function that takes the value 1 for values
less than m+ 1 and is 0 afterwards).

The reader should take notice that the world of HAω≤ + bACω + bIPω∃̃free
+ MAJω

is a world with some principles related to Brouwerian intuitionism and, in the
terminology of intuitionism, has strong counterexamples to classical logic.

We can also prove a characterization theorem for bounded modified realizability:

Theorem 3.17 (Characterization). For any formula A,
HAω≤ + bACω + bIPω∃̃free

+ MAJω ` A↔ (A)br.
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Of course, bACω, bIPω∃̃free
and MAJω are called the characteristic principles of

the bounded modified realizability. As noticed, in contrast with the traditional
case, these charateristic principles are not true. If we prove ∀x1∃yA(x, y) in the
extended theory HAω≤+bACω+bIPω∃̃free

+MAJω for an arbitrary A then, in complete
analogy with the traditional case, we can find a closed monotone term t such that
∀x1∃y ≤∗ txA(x, y) is provable in HAω≤ + bACω + bIPω∃̃free

+ MAJω. However, the
extended theory is not a true theory and, therefore, we may not conclude that the
statement ∀x1∃y ≤∗ txA(x, y) is true. In other words, the extraction of the term
t is not sound when the matrix A is arbitrary. However, as we saw above, the
extraction is indeed sound if A(x, y) is an ∃̃-free formula (in particular, if A(x, y)
is quantifier-free).

3.6. Benign principles. In the context of bounded modified realizability, if we are
interested in extracting sound bounding information from proofs, we must restrict
ourselves to conclusions of the form ∀∃ whose matrix is ∃̃-free. If such statements
are proved in the theory HAω≤+bACω+bIPω∃̃free

+MAJω, then it is possible to extract
truthful bounding information. Of course, we may use in our proofs principles that
follow from the above theory. This is the case, e.g., with Kohlenbach’s uniform
boundedness principles UBρ, a combination of the Fan theorem (extended to higher
types) with choice:

∀k0∀x ≤ yk ∃z0A(x, y, k, z)→ ∃χ1∀k0∀x ≤ yk ∃z ≤ χkA(x, y, k, z),

for arbitrary A and y of type 0→ ρ.
There are, however, principles that do not follow from the extended theory but

whose use as premises does yield sound bounding information (since that informa-
tion is checked in a true theory). We call these principles benign. Note that benign
principles may be false (because they could follow from suitable true principles
with the aid of the false characteristic principles). We present a list of eight benign
principles:

1. The axioms of extensionality ∀zσ→δ∀xσ, yσ(x =σ y → zx =δ zy), for σ = 0, 1
or 2 and δ arbitrary, are benign.

2. The classical, but not intuitionistic, truth

∀x∀y(A(x) ∨B(y))→ ∀xA(x) ∨ ∀yB(y),

where A and B are ∃̃-free formulas, is benign. When the types of x and y are 0
and A and B are quantifier-free formulas, we have the lesser limited principle of
omniscience LLPO (this is Errett Bishop’s terminology).

3. The law of excluded middle A ∨ ¬A, for ∃̃-free formulas A, is benign. This
form of excluded middle includes Π0

1−LEM, i.e., ∀n0A(n)∨¬∀n0A(n) for A a first-
order bounded formula. In view of the fact that HAω0 + bACω + bIPω∃̃free

+ MAJω
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refutes Markov’s principle, we are drawn to the conclusion that Π0
1−LEM does not

prove Markov’s principle.
4. The choice principle ∀x0/1∃yA(x, y)→ ∃f∀xA(x, fx), where A is an arbitrary

formula and y is of any type, is benign.
5. The following is a benign version of choice with no restrictions on the types:

∀x ≤∗ a∃yA(x, y)→ ∃f∀x ≤∗ aA(x, fx), for arbitrary formulas A.
6. It is well-known that the Fan theorem is true (and intuitionistically accept-

able) for quantifier-free matrices with parameters of type 0 or 1 only. A mod-
ification of its contrapositive, which is equivalent to weak König’s lemma WKL,
is rejected intuitionistically. Nevertheless, this modified contrapositive, namely
∀n0∃x ≤1 1∀k ≤ nAqf(x, k) → ∃x ≤1 1 ∀k Aqf(x, k), is a benign principle. The
familiar formulation of weak König’s lemma states that every infinite subtree of
the full binary tree has an infinite path. This principle is non-constructive in the
following precise sense: There are infinite recursive subtrees of the full binary tree
that have no recursive infinite path (this is a reformulation of Kleene’s result that
there are recursively inseparable r.e. sets).

7. The form of comprehension ∃Φ∀y(Φy = 0↔ A(y)), where A a ∃̃-free formula
and y may be of any type, is benign. Comprehension for negated formulas is also
a benign principle: ∃Φ∀y(Φy = 0↔ ¬A(y)), for arbitrary A.

8. Kohlenbach considered in [29] the principles Fρ, a simplification of which are:
∀Φρ�0∀yρ∃y0 ≤ρ y∀z ≤ρ y (Φ(z) ≤ Φ(y0)).

These principles are false for ρ 6= 0. They are, nevertheless, benign.
The proof that the above principles are benign relies on a careful study of the

formulas which imply, or are implied by, their own bounded realizations.
For some years now, Kohlenbach and his co-workers have been showing the

practical use of Proof Theory in obtaining numerical bounds from classical proofs
of analysis. Kohlenbach’s methods are not based on realizability because realiz-
ability notions (including bounded realizability) are not taylored for the analysis of
classical proofs. In effect, even though a classical proof may be translated into an
intuitionistic proof via (e.g.) the Gödel-Gentzen negative translation, the transla-
tion destroys existential statements – replacing them by negated universal state-
ments – with the consequence that realizers yield no computational information.
Of course, this shortcoming is related with the fact that Markov’s principle is not
benign. That notwithstanding, bounded modified realizability (and Kohlenbach’s
monotone modified realizability) supports many classical principles that go beyond
intuitionistic logic.

3.7. Suggested reading and historical notes. The notion of (numerical) real-
izability was introduced by Stephen Kleene in [21]. Modified realizability is due
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to Kreisel in [40] and [41]. Proofs of the theorems of Section 3.1 can be found in
[55]. An alternative is the very recent [35] (which has, nevertheless, circulated in
preliminary form as a manuscript for quite some years). A survey on realizability
until the mid-nineties can be found in [53] (where one can find the story of the
truth variants of realizability). The Fan rule at the end of Section 3.2 appeared in
[35] but is already essentially treated in [25]. Bounded modified realizability was
introduced by Ferreira and Nunes in [11]. This paper includes full proofs of the
results concerning this form of realizability, including the discussion of the benign
principles. For the sake of space, we did not discuss the monotone version of re-
alizability introduced by Kohlenbach in [29]. The result that Π0

1−LEM does not
prove Markov’s principle first appeared in [1] using this version. Monotone modified
realizability is also explained in [35].

4. The dialectica interpretation

4.1. Gödel’s dialectica interpretation. In 1958, Gödel published an article in
an issue of the journal dialectica dedicated to the seventieth anniversary of Paul
Bernays. The article presents an interpretation of first-order Heyting arithmetic
into a quantifier-free theory with finite-type functionals (Gödel’s theory T). This
theory is, essentially, the quantifier-free part of HAω0 . Gödel’s dialectica interpreta-
tion appeared as a contribution to an extended Hilbert’s program by means of the
notion of computable functional of finite type. In the sequel, we present Gödel’s
interpretation extended to finite-type arithmetic HAω0 .

Definition 4.1. To each formula A of the language Lω0 we assign formulas (A)D

and AD so that (A)D is of the form ∃x∀yAD(x, y) with AD(x, y) a quantifier-free
formula, according to the following clauses:

1. (A)D and AD are simply A, for atomic formulas A.
If we have already interpretations for A and B given by ∃x∀yAD(x, y) and ∃z∀wBD(z, w)
(respectively) then we define:

2. (A ∧B)D is ∃x, z∀y, w(AD(x, y) ∧BD(z, w)),
3. (A ∨B)D is ∃n0, x, z∀y, w((n = 0→ AD(x, y)) ∧ (n 6= 0→ BD(z, w))),
4. (A→ B)D is ∃f, g∀x,w(AD(x, g(x,w))→ BD(f(x), w)).
5. (∀zA(z))D is ∃f∀z∀yAD(f(z), y, z).
6. (∃zA(z))D is ∃z, x∀yAD(x, y, z).

The definition of implication is the hardest to understand. Gödel motivates it
as follows. First consider (A)D → (B)D, that is, the implication ∃x∀yAD(x, y) →
∃z∀wBD(z, w). In other words, a witness x to ∀yAD(x, y) gives rise to a witness
z to ∀wBD(z, w). If this is done by a rule of computation, there should be finite-
type computable functionals f such that ∀x(∀yAD(x, y)→ ∀wBD(f(x), w)). Gödel
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invites us to interprete the inner implication in the following way: Whenever a
counter-example w is given to BD(f(x), w)) then a counter-example y is given
to AD(x, y). If the latter counter-example is given by a rule of computation in
terms of the former, then there should be finite-type computable functionals g
such that ¬BD(f(x), w)) → ¬AD(x, g(x,w)). Using the decidability of quantifier-
free formulas, we get the implication AD(x, g(x,w)) → BD(f(x), w), as in the
definition. The attentive reader will notice that several of the passages above are
not intuitionistically justifiable. However, Gödel’s definitions do sustain a soundness
theorem. There are three important principles in connection with this theorem:

I. The axiom of choice ACω.
II. The principle of independence of premises stated for universal antecedents, de-

noted by IPω∀ (a formula is universal if it is of the form ∀xAqf(x), for Aqf quantifier-
free).

III. Markov’s Principle MPω: ¬∀zAqf(z)→ ∃z¬Aqf(z), where Aqf is a quantifier-
free formula and the z’s are of any types.

Markov’s principle strictu sensu applies only for z of type 0. The acceptance
of this principle differentiates the school of Russian constructivism from the other
constructivist schools. Its acceptance is based on the intuition that if ∀z0Aqf(z)
leads to a contradiction then, if we test in succession each natural number z0 for
the (decidable) truth of Aqf(z) then we will eventually find a z0 such that ¬Aqf(z).
Note that this intuition does not apply for z of non-zero type. The name “Markov’s
Principle” for non-zero types is a misnomer.5

Using the decidability of quantifier-free formulas, we can see that MPω implies
(∀zAqf(z) → Bqf) → ∃z(Aqf(z) → Bqf), for Aqf and Bqf quantifier-free formulas.
Note that MPω is the particular case when Aqf is ⊥.

Theorem 4.2 (Soundness of the dialectica interpretation). Suppose that
HAω0 + ACω + IPω∀ + MPω + ∆ ` A(z),

where ∆ is a set of universal sentences and A is an arbitrary formula (with the free
variables as shown). Then there are closed terms t of appropriate types such that

HAω0 + ∆ ` ∀z∀yAD(t(z), y, z).

As usual, the proof is by induction on the length of formal derivations, and the
terms are effectively constructed from the formal derivations. The discussion of
the seemingly innocuous contraction axiom A → A ∧ A is subtle in three respects
(with the advent of Linear Logic in the late eighties, we learned that contraction is
not that innocuous). Firstly, the choice of witnessing functionals is not canonical

5A referee of this paper pointed out that in the model of continuous functionals ECFω , where
there is a dense subset of finitary objects at any type, it makes some sense to retain the name
“Markov’s principle.”
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at this point. Secondly, it involves a definition by cases functional. Finally, it uses
the decidabilility of quantifier-free formulas. The interpretation of the hypothesis
is ∃x∀yAD(x, y) and that of the conclusion is

∃x1∃x2∀y1∀y2(AD(x1, y1) ∧AD(x2, y2)).
We must define functionals f1, f2 and g such that

AD(x, g(x, y1, y2))→ AD(f1(x), y1) ∧AD(f2(x), y2).
We take f1 and f2 as λx.x. Suppose that y1 and y2 are of type σ. In order to define
g we need a closed term Cσ of type 0 → σ → σ → σ which satisfies in HAω0 the
following “definition by cases” requirements:

B[Cσ(0, u, v)/w]↔ B[u/w] and B[Cσ(Sz0, u, v)/w]↔ B[v/w],
where w is a distinguished variable of type σ and B is a quantifier-free formula. The
functional Cσ can be defined with the aid of the recursor Rσ by Rσ(z, u, λwλs.v).
Note that the checking of the contraction axiom needs a recursor, not merely the
combinators. Since AD is quantifier-free, there is a closed term t of Lω0 such that
HAω0 ` t(x, y) = 0 ↔ ¬AD(x, y). It is easy to see that g can be taken to be
λxλy1λy2.Cσ(t(x, y1), y1, y2). But, as remarked, the choice is not canonical at this
point: we can also take the term λxλy1λy2.Cσ(t(x, y2), y2, y1).

The following proposition is an immediate consequence of the soundness theorem:

Proposition 4.3 (Extraction and conservation, dialectica case). Suppose that
HAω0 + ACω + IPω∀ + MPω + ∆ ` ∀x∃yAqf(x, y),

where ∆ is a set of universal sentences and Aqf is a quantifier-free formula with
free variables among x and y. Then there is a closed term t of appropriate type
such that

HAω0 + ∆ ` ∀xAqf(x, tx).

Theorem 4.4 (Characterization). For any formula A,
HAω0 + ACω + IPω∀ + MPω ` A↔ (A)D.

With the aid of the characterization theorem, we can prove the following sound
extraction result for arbitrary formulas A:

Proposition 4.5. Let A be an arbitrary formula with free variables among x and
y. Suppose that

HAω0 + ACω + IPω∀ + MPω ` ∀x∃yA(x, y),
Then there is a closed term t of appropriate type such that

HAω0 + ACω + IPω∀ + MPω ` ∀xA(x, tx).

Proof. Let (A)D(x, y) be ∃z∀wAD(y, z, w, x). By the soundness theorem, there
are closed terms t and q of appropriate types such that
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HAω0 + ACω + IPω∀ + MPω ` ∀x∀wAD(tx, qx, w, x).
The result follows by the characterization theorem. �

4.2. On the monotone functional interpretation. The reason why we could
include universal sentences ∆ in the statement of the soundness theorem for the
dialectica interpretation is because the dialectica interpretation of a universal sen-
tence is (essentially) itself. By weakening the conclusion of the soundness theorem
it is possible to deal with a wider classe of sentences.

Theorem 4.6 (Soundness of the monotone functional interpretation). Suppose that
HAω0 + ACω + IPω∀ + MPω + ∆ ` A(z),

with ∆ is a set of sentences of the form ∃x ≤ r∀yBqf(x, y), where Bqf is quantifier-
free, r is tuple of closed terms, and A is an arbitrary formula (with the free variables
as shown). Then there are closed monotone terms t of appropriate types such that

HAω0 + ∆ ` ∃x ≤∗ t∀z∀y AD(x(z), y, z).

The proof is by induction on the length of formal derivations, and the terms are
effectively constructed from the formal derivations. In the proof, when it comes to
the contraction axiom, the choice of terms becomes canonical. However, both the
decidability of quantifier-free formulas and the definition by cases functional are
still required.

Proposition 4.7 (Extraction and conservation, monotone case). Suppose that
HAω0 + ACω + IPω∀ + MPω + ∆ ` ∀x∃yAqf(x, y),

with ∆ is a set of sentences of the form ∃x ≤ r∀yBqf(x, y), where Bqf is quantifier-
free, r is tuple of closed terms, and Aqf is a quantifier-free formula with free vari-
ables among x and y. Then there is a closed monotone term t of appropriate type
such that

HAω0 + ∆ ` ∀x, u (x ≤∗ u→ ∃y ≤∗ tuAqf(x, y)).

When x is of type 1 we can put u as xM and get ∀x∃y ≤∗ txAqf(x, y). When
furthermore y is of type 0, even ∀xAqf(x, tx) is in order.

With the aid of the characterization theorem of the dialectica interpretation (no-
tice that the assignment of formulas for the dialectica and monotone interpretations
are the same), the following sound extraction result for arbitrary formulas A can
be proved in the manner of Proposition 4.5:

Proposition 4.8. Let A be an arbitrary formula with free variables among x and
y. Suppose that

HAω0 + ACω + IPω∀ + MPω ` ∀x∃yA(x, y),
Then there is a closed monotone term t of appropriate type such that
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HAω0 + ACω + IPω∀ + MPω ` ∀x, u (x ≤∗ u→ ∃y ≤∗ tuA(x, y)).

In order to compare the dialectica with the monotone interpretation, let us con-
sider a toy, but illuminating, example: the lesser limited principle of omniscience
LLPO (see Section 3.6). This principle is not intuitionistically acceptable. Further-
more, it does not have a dialectica interpretation. Let us see why not. Fix two
recursively enumerable, recursively inseparable sets X and Y . Consider quantifier-
free formulas Aqf(w, k) and Bqf(w, r) such that X = {w ∈ N : ∃k¬Aqf(w, k)} and
Y = {w ∈ N : ∃r¬Bqf(w, r)}. The dialectica assignment of the following instance
of LLPO (with numerical parameter w)

∀k, r(Aqf(w, k) ∨Bqf(w, k))→ ∀kAqf(w, k) ∨ ∀rBqf(w, r)
is essentially

∃n1∃f, g∀w∀k, r
(
Aqf(w, fkrw) ∨Bqf(w, gkrw)→

(nw = 0→ Aqf(w, k)) ∧ (nw 6= 0→ Bqf(w, r))
)
.

A dialectica interpretation would provide a closed term t of type 1 such that
∀w∀k, r

(
(tw = 0→ Aqf(w, k)) ∧ (tw 6= 0→ Bqf(w, r))

)
,

is true (at this juncture, we are using the fact that X and Y are disjoint). But this
would entail that the set {w ∈ N : tS

ω

w = 0} is recursive and separates X from Y .
Nonetheless, it has a monotone functional interpretation (in a suitable verifying

theory). One must find closed terms t and q of types 0 → 0 and 0 → 0 → 0 → 0,
respectively, such that

(?) ∃n ≤ t∃f, g ≤ q∀w∀k, r
(
Aqf(w, fwkr) ∨Bqf(w, gwkr)→

(nw = 0→ Aqf(w, k)) ∧ (nw 6= 0→ Bqf(w, r))
)
.

It turns out that t := λw.1 and q := λwλk, r.max(k, r) do the job. The proof is
simple, though not completely obvious. One considers the modified predicates

A(w, k) := ∀u ≤ kAqf(w, u) ∨ ∃u, v ≤ k(¬Aqf(w, u) ∧ ¬Bqf(w, v)) and
B(w, r) := ∀v ≤ rBqf(w, v) ∨ ∃u, v ≤ r(¬Aqf(w, u) ∧ ¬Bqf(w, v)),

and verifies that, for each w, ∀k, r(A(w, k)∨B(w, r)). By LLPO, one gets, for each
w, ∀kA(w, k)∨∀rB(w, r). The function n is chosen to be 0 or 1 according to whether
the first or second leg of the disjunction holds. At this juncture, we draw attention
to the fact that a bit of choice is used. The functions f and g are, respectively,
λw, k, r.(µm ≤ max(k, r)¬Aqf(w,m)) and λw, k, r.(µm ≤ max(k, r)¬Bqf(w,m))
(where µm ≤ t is the bounded minimization operation; we take t+ 1 as the default
value if no pertinent value satisfies the matrices).

Let us take stock. Suppose that the theory HAω0 + ACω + IPω∀ + MPω + LLPO
proves A(z). It is easy to see that HAω0 + (?) ` LLPO. Therefore, HAω0 + ACω +
IPω∀ + MPω + (?) ` A(z). Since (?) has the right syntactic form, by Theorem 4.6
there are closed terms t such that HAω0 + (?) ` ∃x ≤∗ t∀z∀y AD(x(z), y, z). In the
paragraphs above we have shown that (?) is a consequence of HAω0 , LLPO, but a
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bit of choice is also needed (ACω is, of course, sufficient). So, in order to verify
∃x ≤∗ t∀z∀y AD(x(z), y, z) we need more than just HAω0 + LLPO.

The above is a typical phenomenom. Usually, one deals with principles of the
form

(??) ∃x ≤ rw∀yBqf(x, y, w),

with parameters w (as axioms, one should of course take the universal closures of
these principles). The effect of having parameters is that these principles are no
longer covered by Theorem 4.6. One must instead use the uniformization of these
principles, namely the sentences ∃X ≤ r∀w∀yBqf(X(w), y, w). Note that these
uniformizations have the right syntactical form for the application of Theorem 4.6.
In other words, if one wants to state a monotone soundness theorem which includes
in ∆ principles of the form (??), as Kohlenbach does, then in the verifying theory
one must strengthen these principles by their uniformizations. As long as one’s aim
is just to extract true computational information (in the form of bounding terms
t) from proofs, the uniformization procedure is acceptable because if a certain true
principle of the form (??) is used in the proof then its uniformization is also true.
Therefore, the verification of the role of the extracted terms takes place in a true
theory and, hence, correct computational information is indeed extracted. The pre-
eminent example is weak König’s lemma (see Section 3.6). In its tree formulation,
WKL is the statement

∀T 1(Tree∞(T )→ ∃α ≤1 1 ∀n0 T (αn) = 0),

where we are using the sequence notation of Section 2.4, and Tree∞(T ) abbreviates
the conjunction of

∀s0(Ts = 0→ Seq2(s)) ∧ ∀s, u(Tu = 0 ∧ s � u→ Ts = 0)

with the infinity clause ∀n0∃s(Ts = 0 ∧ |s| = n). Here, Seq2(s) expresses that s is
the number-code of a binary sequence, s � r means that the binary sequence given
by s is an initial segment of r, and |s| is the length of the binary sequence given by s.
Within HAω0 , this principle can be put in the form (??). NB the verification of this
takes some work and was done in [26]. Therefore, by the above discussion, one has
a monotone soundness theorem with WKL, although with a strengthened version
of it in the verifying theory of the soundness theorem. In fact, this strengthened
version can be taken to be the so-called uniform weak König’s lemma:

∃Φ1→1∀T 1(Tree∞(T )→ Φ(T ) ≤1 1 ∧ ∀n0 T (Φ(T )n) = 0).

Even though one needs in general to strengthen WKL to the uniform weak
König’s lemma in the verifying theory, in certain particular cases the dialectica
interpretation together with some majorizability tricks also permits the elimina-
tion of WKL from the verifying theory: this happens when A(z) is an existencial
numerical statement with parameters z of types 0 or 1.
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4.3. Negative translation. Let us consider Gödel-Gentzen’s negative translation
in the framework of arithmetic.

Definition 4.9. To each formula A of the language Lω0 we associate its (Gödel-
Gentzen) negative translation Ag according to the following clauses:

i. Ag is A, for atomic formulas A.
ii. (A ∧B)g is Ag ∧Bg.

iii. (A ∨B)g is ¬(¬Ag ∧ ¬Bg).
iv. (A→ B)g is Ag → Bg.
v. (∀xA)g is ∀xAg.
vi. (∃xA)g is ¬∀x¬Ag.

In the framework of pure logic we must define Ag as ¬¬A for atomic A, but
this is not needed in the current framework because atomic formulas are decidable.
The result of Gödel-Gentzen states that if a formula A is classically provable from
Γ then Ag is intuitionistically provable from Γg, where Γg = {Bg : B ∈ Γ}. This
result extends to HAω0 because the negative translation of an induction axiom is
still an induction axiom and because the remainder axioms are universal formulas.
It does not extend to HAω0 + ACω + IPω∀ + MPω because of the axiom of choice (the
other principles pose no problem since they are laws of classical logic). However,
the restriction of the axiom of choice for quantifier-free matrices ACωqf behaves well
under the negative translation provided that Markov’s principle MPω is present in
the verifying theory (as well as ACωqf itself). In fact:

Theorem 4.10 (Negative translation). Suppose that
PAω0 + ACωqf + ∆ ` A,

where ∆ is a set of sentences and A is an arbitrary sentence. Then
HAω0 + ACωqf + MPω + ∆g ` Ag.

Let us analyze the negative translation of ACωqf . It is,
∀x¬∀y¬Bqf(x, y)→ ¬∀f¬∀xBqf(x, fx),

where Bqf is a quantifier-free formula. It is easy to check that this translation is
provable in HAω0 +ACωqf +MPω. To see this, assume ∀x¬∀y¬Bqf(x, y). By MPω, we
get ∀x∃yBqf(x, y). By ACωqf , ∃f∀xBqf(x, fx) and, a fortiori, ¬∀f¬∀xBqf(x, fx).

4.4. Extraction and all that (III) & (IV). We may now state an extraction
and conservation result which is applicable to a classical theory:

Proposition 4.11 (Extraction and conservation, classical dialectica case). Suppose
that

PAω0 + ACωqf + ∆ ` ∀x∃yAqf(x, y),
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where ∆ is a set of universal sentences and Aqf is a quantifier-free formula with
free variables among x and y. Then there is a closed term t of appropriate type
such that

HAω0 + ∆ ` Aqf(x, tx).

This is an easy corollary of the properties of the negative translation and the
soundness of the dialectica interpretation. If ∀x∃yAqf(x, y) is provable in PAω0 +
ACωqf + ∆ then, by Theorem 4.10, ∀x¬∀y¬Aqf(x, y) is provable in HAω0 + ACωqf +
MPω + ∆. Then so is ∀x∃yAqf(x, y) (because MPω is available!). At this point, we
use Theorem 4.2.

In a similar vein, the combination of the negative translation and the soundness
of the monotone functional interpretation yields,

Proposition 4.12 (Extraction and conservation, classical monotone case). Sup-
pose that

PAω0 + ACωqf + ∆ ` ∀x∃yAqf(x, y),
where ∆ is a set of sentences of the form ∃x ≤ r∀yBqf(x, y), with Bqf quantifier-
free, r a tuple of closed terms and y of any types, and Aqf is a quantifier-free
formula with free variables among x and y. Then there is a closed monotone term
t of appropriate type such that

HAω0 + ∆ ` ∀x, u (x ≤∗ u→ ∃y ≤∗ tuAqf(x, y)).

Observe that each sentence in ∆ proves intuitionistically its own Gödel-Gentzen
translation. As in Proposition 4.7, when x is of type 1 we may conclude ∀x∃y ≤∗
txAqf(x, y). When furthermore y is of type 0, even ∀xAqf(x, tx) is in order.

Theorem 4.13 (Characterization). For any formula A,
PAω0 + ACωqf ` A↔ (Ag)D.

4.5. The no-counterexample interpretation. It is a basic observation in pure
logic that a first-order formula in prenex normal form

∃x0∀y0∃x1∀y1 . . . ∃xk∀yk Aqf(x0, y0, x1, y1, . . . , xk, yk),
is classically valid if, and only if, its Herbrandization

∃x0∃x1 . . . ∃xk Aqf(x0, f0(x0), x1, f1(x0, x1), . . . , xk, fk(x0, . . . , xk))
is classically valid, where f0, f1, . . . , fk are new function symbols of appropriate
arities (known as index functions). Perhaps the most intuitive way of seeing this
is to show that the negation of the former formula is satisfiable if, and only if, the
negation of the latter one is.

Theorem 4.14 (No-counterexample interpretation). Suppose that the sentence
∃x0∀y0 . . . ∃xk∀yk Aqf(x0, y0, . . . , xk, yk),
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of the language of first-order arithmetic is provable in PA (first-order Peano arith-
metic). Then there are closed terms t0, . . . , tk of such that

HAω0 ` ∀f0 . . . ∀fk Aqf(t0(f), f0(t0(f)), . . . , tk(f), fk(t0(f), . . . , tk(f))),
where f abbreviates a tuple of variables f0, f1, . . . , fk of (essentially) type 1.

Observation. A type of the form 0 � 0 � . . . � 0 is essentially of type 1 via a
pairing code.
Proof. Note that ∃x0 . . . ∃xk Aqf(x0, f0(x0), . . . , xk, fk(x0, . . . , xk)) follows from
∃x0∀y0 . . . ∃xk∀yk Aqf(x0, y0, . . . , xk, yk) by logic alone. Therefore, the former for-
mula is provable in PAω0 . We now use the extraction theorem of the previous
section. �

To make sense of the name of the theorem, we may think of f0, . . . , fk as denot-
ing functions in (essentially) S1 that attempt to provide a counterexample to the
truth of ∃x0∀y0 . . . ∃xk∀yk Aqf(x0, y0, . . . , xk, yk), by making A(n0, f0(n0), . . . , nk,
fk(n0, . . . , nk)) false for any given numerical values n0, . . . , nk. However, such coun-
terexample must fail for the values n0 = tS

ω

0 (f), . . . , nk = tS
ω

k (f). As we have argued
at the end of Section 2.4, the functions tS

ω

0 , . . . , tS
ω

k are computable (note that we
can view the closed terms t0, . . . , tk as having type 2). Hence, the above theorem
says that values which defeat a purported counterexample may be effectively con-
structed from the attempted counterexample and that the effective computations
are specified by closed terms of Lω0 .

The no-counterexample interpretations coincides with the dialectica interpreta-
tion (after a double negation translation) for ∀∃∀ statements. This is the case,
for instance, with the modified infinite convergence theorem discussed in the in-
troduction. However, the two interpretations already differ for ∃∀∃ statements.
Kohlenbach discusses in several places the shortcomings of the no-counterexample
interpretation vis-à-vis the dialectica interpretation. One such discussion can be
found in his recent book [35].

4.6. Digression on provably total functions. The following result can be proved
formalizing Tait’s normalization argument:

Proposition 4.15. Let t[x1, . . . , xk] be a term with its (free) variables as shown,
all of which are of type 0. The theory HAω0 proves the Π0

2-sentence saying that for
all natural numbers n1, . . . , nk the closed term t[n1/x1, . . . , nk/xk] normalizes. As
a consequence, so does the theory HA.

A word of caution: PAω0 does not prove the sentence that says that every closed
term of Lω0 has a normal form because this would imply that PAω0 proves its own
consistency, an impossibility by Gödel’s second incompleteness theorem. To see
this, suppose that PAω0 proves ‘0=1’. By the proof of the soundness of the dialectica
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interpretation there would be a sequence of closed terms tn of Lω0 and a sequence of
quantifier-free formulas An(x, y) ending in ‘0=1’ such that An(tn, q) holds for each
list of closed terms q of appropriate types. Well, a truth predicate for these (univer-
sal) statements can be defined within PAω0 provided that each closed term normalizes
(reducing the verifications of the quantifier-free matrices to checking whether pairs
of numerals are, or are not, the same), and this would yield a consistency proof.

The following corollary is immediate, but worth an explicit formulation:

Corollary 4.16. Let us fix a closed term t of type 1. The theory HAω0 proves
the Π0

2-sentence saying that, for each numeral n, the term tn, has a normal form
(necessarily a numeral). As a consequence, so does the theory HA.

The previous corollary and Proposition 4.11 imply that the provably total Σ0
1-

functions of PA are given by the closed terms of type 1 of Lω0 . This provides an
alternative characterization to the one based on Gentzen’s work on the ordinal
analysis of PA (< ε0-recursion).

Let us now briefly consider a very natural subsystem of HAω0 . The theory iPRAω

differs from HAω0 by only having the recursor R0 and, correspondingly, induction in
the following restricted form:

Aqf(0) ∧ ∀x0(Aqf(x)→ Aqf(Sx))→ ∀xAqf(x),
where Aqf is quantifier-free. Due to the absence of higher-order recursors, in order
to interprete the contraction axioms we need primitive constants Cσ in the language
satisfying the “decision by cases” requirements discussed in Section 4.1.

The combination of Gödel’s dialectica interpretation and the Gödel-Gentzen neg-
ative translation yields,

Proposition 4.17 (Extraction and conservation, classical p.r. case). Suppose that
PRAω + ACωqf + ∆ ` ∀x∃yAqf(x, y),

where ∆ is a set of universal sentences and Aqf is a quantifier-free formula with
free variables among x and y ( PRAω is the classical theory associated with iPRAω).
Then there is a closed term t of appropriate type such that

iPRAω ` Aqf(x, tx).

In the present setting, there is a also a notion of contraction of terms and a
corresponding strong normalization theorem, with the following consequence:

Proposition 4.18. For every closed term t of type 1 of the language of iPRAω, tS
ω

is a primitive recursive function.

It is easy to see that the theory PRAω + AC0,0
qf and, a fortiori PRAω + ACωqf ,

proves the following two schemes:
(1) Σ0

1-induction: A(0) ∧ ∀x0(A(x) → A(Sx)) → ∀xA(x), for Σ0
1-formulas A,

i.e., formulas of the form ∃n0Aqf(n, x) with Aqf quantifier-free.
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(2) ∆0
1-comprehension: ∀x0(A(x) ↔ ¬B(x)) → ∃α1∀x0(αx = 0 ↔ A(x)),

where A and B are Σ0
1-formulas.

The previous schemes are the distinguished axioms of the second-order theory
RCA0, which plays an important role in the studies of Reverse Mathematics. The
above results show that the witnesses of the Π0

2-consequences of RCA0 are the
primitive recursive functions. A fortiori, they are also the witnesses of the Π0

2-
consequences of the subsystem PA1 of PA, characterized by having the scheme
of induction restricted to Σ0

1-formulas (this result is, essentially, due to Charles
Parsons and, independently, to Grigori Mints and Gaisi Takeuti).

4.7. Suggested reading and historical notes. Gödel’s functional interpreta-
tion was published in German in [17]. An English translation of this paper can
be found in Gödel’s collected works [19]. The soundness theorem, generalized to
finite-type Heyting arithmetic, with the characteristic principles, is implicit in [40].
The characterization theorem is due to Mariko Yasugi [56]. The books [55] and
[35] present proofs of these theorems. [2] is a good survey of the functional inter-
pretations until the mid-nineties. The monotone functional interpretation is due to
Kohlenbach and appeared in [27]. A good reference for this interpretation is [35].
The treatment of LLPO in Section 4.2 is related to, but not quite the same as in
[31]. The elimination of WKL mentioned at the end of Section 4.2 appears in [24].
Similar eliminations are also explained in [2] and [35]. An alternative elimination
of WKL via the elimination of LLPO is worked out in [31].

The negative translation is due, independently, to Gödel and Gerhard Gentzen
(cf. [16]). The characterization theorem of Section 4.4 is essentially due to Kreisel in
[40]. Instead of dealing with classical Peano arithmetic via the negative translation
followed by the dialectica interpretation, a direct and elegant path is provided by
Joseph Shoenfield in [45] (note, however, that Shoenfield’s interpretation is the same
as the combination of an appropriate negative translation followed by the dialectica
interpretation: this was recently shown by Kohlenbach and Thomas Streicher in
[38]). The no-counterexample interpretation is due to Kreisel in [39]; [30] discusses
in detail the shortcomings of the no-counterexample interpretation. Proofs of the
results in Section 4.6 can be found in [55]. The result of Charles Parsons appeared
in [44]. For information regarding the program of Reverse Mathematics one should
consult [46].

5. Injecting uniformities

5.1. Intensional majorizability. Bounded formulas are treated as computation-
ally empty by the bounded modified realizability interpretation, in the sense that
their realizers are trivial. This hinges on the fact that the majorizability relations of
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Howard-Bezem are given by ∃̃-free formulas and that these formulas have empty re-
alizers. However, the functional interpretation acts non-trivially on these formulas.
We solve this problem with the notion of intensional majorizability.

We introduce a modification of the language Lω≤, dubbed Lω�. The new language
is an extension of Lω0 with the primitive binary relation symbol ≤ (as in Lω≤),
but also with primitive binary relation symbols �σ, for each type σ. Note that the
terms of Lω� and Lω0 are the same. The symbols �σ are the intensional counterparts
of ≤∗σ. There are now new atomic formulas, and the syntactic device of bounded
quantification is modified in such a way that it now concerns the intensional symbols
instead of the extensional ones. I.e., we have quantifications of the form ∀x� tA(x)
and ∃x� tA(x), for terms t not containing x. In the current framework, we use the
terminology of the bounded formulas and monotone functionals with respect to the
intensional symbols.

Definition 5.1. The theory HAω� is an altered version of HAω≤ with the axiom
schemes:

B∀ : ∀x� tA(x)↔ ∀x(x� t→ A(x)),
B∃ : ∃x� tA(x)↔ ∃x(x� t ∧A(x))

instead of the corresponding extensional ones, and with the further axioms

M1 : x�0 y ↔ x ≤ y,
M2 : x�ρ→σ y → ∀u�ρ v(xu�σ yv ∧ yu�σ yv)

and a rule RL�

Abd ∧ u� v → su� tv ∧ tu� tv
Abd → s� t

where s and t are terms of Lω�, Abd is a bounded formula and u and v are variables
that do not occur free in the conclusion. Moreover, the induction scheme is now
extended to all formulas of the language Lω�.

We observe that it is not needed to state the axioms for combinators, the axiom
of equality and the axioms for recursors for the new atomic formulas of the language,
since these already follow from the more restricted statements.

The crucial feature of the above theory is that we have rules instead of the
purported axioms: ∀u �ρ v(xu �σ yv ∧ yu �σ yv) → x �ρ→σ y. Note that the
previous formula would pose a problem for the functional interpretation. The rules,
however, do not pose such a problem! We dubbed the new majorizability symbols
�σ intensional because they are (partially) governed by rules. The presence of rules
entails the failure of the deduction theorem in HAω�, a feature that many do not
find attractive. However, one should keep in mind that the rules are introduced for
mathematical reasons and that “mathematical attraction” is partly a question of



36 FERNANDO FERREIRA

familiarity. In the end, systems where rules play an essential role must be judged
by their own mathematical merits.

Even though the rules are weaker than the axioms we still have:

Lemma 5.2. The theory HAω� proves that the relations �σ are transitive and that
x� y → y� y. For type 1, we have x�1 y → x ≤∗1 y, x�1 x

M and min1(x, y)�1 y
M

(where the min1 function is the minimum function defined pointwise). Howard’s
majorizability theorem holds: For each closed term t, there is a closed term q such
that HAω� ` t� q. Furthermore, it holds of the very same term constructed for the
extensional case.

5.2. Bounded functional interpretation. Let us now define the bounded func-
tional interpretation:

Definition 5.3. To each formula A of the language Lω� we assign formulas (A)B

and AB so that (A)B is of the form ∃̃b∀̃cAB(b, c), with AB(b, c) a bounded formula,
according to the following clauses:

1. (A)B and AB are simply A, for atomic formulas A.
If we have already interpretations for A and B given by ∃̃b∀̃cAB(b, c) and ∃̃d∀̃eBB(d, e)
(respectively) then we define:

2. (A ∧B)B is ∃̃b, d∀̃c, e(AB(b, c) ∧BB(d, e)),
3. (A ∨B)B is ∃̃b, d∀̃c, e(∀̃c′ � cAB(b, c′) ∨ ∀̃e′ � eBB(d, e′)),
4. (A→ B)B is ∃̃f, g∀̃b, e(∀̃c� gbeAB(b, c)→ BB(fb, e)).

For bounded quantifiers we have:
5. (∀x� tA(x))B is ∃̃b∀̃c∀x� t AB(b, c, x),
6. (∃x� tA(x))B is ∃̃b∀̃c∃x� t∀̃c′ � cAB(b, c′, x).

And for unbounded quantifiers we define:
7. (∀xA(x))B is ∃̃f ∀̃a, c∀x� aAB(fa, c, x).
8. (∃xA(x))B is ∃̃a, b∀̃c∃x� a∀̃c′ � cAB(b, c′, x).

There are five important principles in connection with this interpretation:
I. Intensional Bounded Choice bACω�:

∀x∃yA(x, y)→ ∃̃f ∀̃b∀x� b∃y � fbA(x, y),

where A is an arbitrary formula of Lω�. It is clear that the forms of choice bACi,jqf ,
∀xi∃yjBqf(x, y)→ ∃f∀x∃y ≤j fxBqf(x, y), for i, j ∈ {0, 1} and Bqf quantifier-free,
follow from bACω� in HAω� (even if bACω� were restricted to bounded matrices only,
a principle which we denote by bBACω�). Due to the availability of minimization
for quantifier-free formulas, note that bACi,0qf ⇒ ACi,0qf , for i ∈ {0, 1}. Here, ACi,jqf ,
i, j ∈ {0, 1}, is the usual form of choice ∀xi∃yjBqf(x, y) → ∃f∀xBqf(x, fx), with
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Bqf quantifier-free. Note that appropriate tuple versions of these principles also
follow from bBACω�.

II. Intensional Bounded Independence of Premises bIPω�:

(A→ ∃yB(y))→ ∃̃b(A→ ∃y � bB(y)),
where A is a universal formula (with bounded matrix) and B is an arbitrary formula.
In the present setting, by “universal with bounded matrix” we mean a formula of
the form ∀xAbd(x), with Abd a bounded (intensional) matrix.

III. Intensional Bounded Markov’s Principle MPω�:

(∀yAbd(y)→ Bbd)→ ∃̃b(∀y � bAbd(y)→ Bbd),
where Abd is a bounded matrix and Bbd is a bounded formula. When B is the
formula 0 = 1, the above principle specializes to ¬∀yAbd(y) → ∃̃b¬∀y � bAbd(y).
If y is of type 0 and the matrix is quantifier-free, the principle further specializes
to the familiar Markov’s principle of type 0: ¬∀yAqf(y) → ∃y¬Aqf(y). In this, we
are using bounded numerical search.

IV. Intensional Bounded Contra-Collection Principle bBCCω�:

∀̃b∃z � c∀y � bAbd(y, z)→ ∃z � c∀yAbd(y, z),
where c is a tuple of monotone functionals and Abd is a bounded formula. Note
that this is classically equivalent to collection restricted to bounded matrices (see
Proposition 5.4 below). This principle allows the conclusion of certain existentially
bounded statements from the assumption of weakenings thereof. Let us see that it
implies weak König’s lemma WKL (the statement of WKL is in the end of Section
4.2). Suppose that Tree∞(T 1). The infinity clause says that ∀n0∃s(Ts = 0 ∧ |s| =
n). We introduce some notation. Given s a binary sequence, let ŝ be the infinite
binary path which extends s by appending an infinite string of zeros. With the aid
of the rule RL� one can show that HAω0 ` ∀s(Seq2(s) → ŝ �1 1). Therefore, from
the infinity clause one gets ∀n0∃α�1 1 (T (αn) = 0). Of course, by the definition of
tree,

∀n0∃α�1 1∀k ≤ n (T (αk) = 0).
Applying bBCCω�, we may infer ∃α �1 ∀n(T (αn) = 0). Since α �1 1 → α ≤ 1, we
get our infinite path through T .

The following principle, dubbed Intensional Bounded Disjunction Property, also
follows from bBCCω�:

∀̃b∀̃c(∀x� bAbd(x) ∨ ∀y � cBbd(y))→ ∀xAbd(x) ∨ ∀yBbd(y),
where Abd and Bbd are bounded formulas. This property clearly implies (within
HAω�) the lesser limited principle of omniscience LLPO, mentioned in Section 3.6.

V. Intensional Majorizability Axioms MAJω�: ∀x∃y(x� y).
The following result is similar to Proposition 3.13:
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Proposition 5.4. The theory HAω�+bACω�+bIPω� proves the Intensional Collection
Principle bCω�:

∀z � c∃yA(y, z)→ ∃̃b∀z � c∃y � bA(x, y),

where A is an arbitrary formula and c is a tuple of monotone functionals.

Obviously, the restricted theory HAω� + bBACω� + bIPω� proves the Intensional
Bounded Collection Scheme bBCω�, that is, the above scheme restricted to bounded
formulas A.

The theory HAω� + bACω� + bIPω� is classically inconsistent. E.g., it refutes the
limited principle of omniscience LPO (in Errett Bishop’s terminology):

∀x1(∀n0(xn = 1) ∨ ∃n0(xn 6= 1)).

To see this, assume the above. Hence ∀x1∃n0(∀k0(xk = 1) ∨ xn 6= 1), by
intuitionistic logic. A fortiori, ∀x�1 1∃n0(∀k(xk = 1)∨xn 6= 1). By the intensional
collection principle bCω�, we get ∃m0∀x �1 1∃n ≤ m(∀k(xk = 1) ∨ xn 6= 1). Take
such m and consider the sequence s of length m+ 1 with constant value 1. Clearly,
ŝ�1 1 but it is not the case that ∃n ≤ m(∀k(ŝk = 1) ∨ ŝn 6= 1).

Also, the restricted theory HAω� + bBACω� + bIPω� + MPω� already refutes a basic
form of extensionality. In fact, it proves the negation of

∀Φ2∀α1, β1 (∀k0(αk = βk)→ Φα = Φβ).

Towards a contradiction, assume the above. In particular, one has

∀Φ �2 12 ∀α, y �1 11∃k (αk = βk → Φα = Φβ),

where 11 := λk0.10 and 12 := λγ1.11 (we used here MPω�). By bBCω�, one may infer

∃n∀Φ �2 1∀α, y �1 1 (∀k < n(αk = βk)→ Φα = Φβ).

Take one such n = n0. Define Φ according to:

γ1 ;Φ

{
0 if ∀k ≤ n0 (γk = 0)
1 otherwise

It is clear that for α := λk.0 and β := λk.δn0,k (Kronecker’s delta) one has
∀k < n0 (αk = βk) but Φα 6= Φβ. Since it is easy to show that Φ�12 and α, β�11,
we are faced with a contradiction.

The above two examples are not set-theoretically sound. The bounded functional
interpretation injects uniformities which are absent in the universe of sets and which
are incompatible with it. Given this state of affairs, it is pressing to assure that the
theory HAω� + bACω� + bIPω� + MPω� + bBCCω� + MAJω� is consistent.

Theorem 5.5 (Soundness of the bounded functional interpretation). Suppose that

HAω� + bACω� + bIPω� + MPω� + bBCCω� + MAJω� + ∆ ` A(z),
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where ∆ is a set of universal sentences (with bounded matrices) and A is an arbi-
trary formula (with the free variables as shown). Then there are closed monotone
terms of appropriate types such that

HAω� + ∆ ` ∀̃a∀z � a ∀̃cAB(t(a), c, z).

Given an appropriate restatement, we may include in ∆ sentences of the form
∃x ≤ r∀yBqf(x, y), as in the soundness theorem of the monotone functional in-
terpretation (see Theorem 4.6). Let us see what we mean by this. Given a tu-
ple of closed terms r, by Lemma 5.2 there is a tuple of closed terms t such that
HAω� ` r � t. The sentence ∃x� t(x ≤ r ∧ ∀yBqf(x, y)) obviously implies the origi-
nal sentence ∃x ≤ r∀yBqf(x, y). Furthermore, the modified sentence is of the form
∃x�t∀wCqf(x,w) for quantifier-free Cqf , because the formula x ≤ r is universal. By
bBCCω�, the modified sentence is implied by ∀̃b∃x�t∀w�bCqf(x,w), and this latter
sentence has the right form for applying the soundness theorem above. Of course, in
the conclusion of the soundness theorem, the verifying theory must include this sen-
tence. At this juncture, we draw attention to the fact that this sentence “flattens”
(see Section 5.5) to a sentence which is implied by ∀u∃x ≤ r∀y ≤∗ uBqf(x, y) (we
are using here (iii) of Lemma 2.4). NB this is a weaker statement than the original
one. This should be compared with the monotone functional interpretation (see
the discussion in Section 4.2) where a strengthening of the original statement is
needed.

As usual, the proof of the above soundness theorem is by induction on the length
of formal derivations, and the terms are effectively constructed from the formal
derivations. However, for the bounded functional interpretation the choice of the
witnessing terms is always canonical, and there is no need for a definition by cases
functional nor for the decidability of bounded formulas.

Proposition 5.6 (Extraction and conservation, intuitionistic intensional case).
Suppose that

HAω� + bACω� + bIPω� + MPω� + bBCCω� + MAJω� + ∆ ` ∀x∃yAbd(x, y),

where ∆ is a set of universal sentences (with bounded matrices) and Abd is a
bounded formula with free variables among x and y. Then there is a closed mono-
tone term t of appropriate type such that

HAω� + ∆ ` ∀̃a∀x� a∃y � taAbd(x, y).

Theorem 5.7 (Characterization). For any formula A,

HAω� + bACω� + bIPω� + MPω� + bBCCω� + MAJω� ` A↔ (A)B.

Using the above characterization theorem and an argument as in the proof of
Proposition 4.5, we get the following fact:
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Proposition 5.8. Let A be an arbitrary formula with free variables among x and
y. Suppose that

HAω� + bACω� + bIPω� + MPω� + bBCCω� + MAJω� ` ∀x∃yA(x, y),
Then there is a closed monotone term t of appropriate type such that

HAω� + bACω� + bIPω� + MPω� + bBCCω� + MAJω� ` ∀̃a∀x� a∃y � taA(x, y).

It is not clear what is accomplished by the above extraction result, given that
the verifying theory is not sound. This is in sharp contrast with Proposition 4.8,
where the extraction is indeed sound. We are here facing the same phenomenon as
the one discussed at the end of Section 3.5. However, note that for restricted A,
Proposition 5.6 yields a sound extraction result since the characteristic principles
are absent from the verifying theory (the forthcoming Section 5.5 is also relevant
for this discussion).

In the presence of classical logic, the situation concerning the monotone and
the bounded interpretations changes. In the classical case, the matrix A must
necessarily be narrowed down (it is well-known that computational extraction in the
classical case may already fail for universal matrices). The reader should compare
the extraction results of Proposition 4.12 and Proposition 5.15 below.

5.3. Digression on a new conservation result. In Section 4.6, we mentioned
the classical second-order theory RCA0, the ordinary base theory for Reverse Math-
ematics. By iRCA0 we mean an intuitionistic version of this theory, whereby the
logic used is intuitionistic, adjoined with the axiom ∀X∀x(x ∈ X ∨ x /∈ X). Let
us introduce some further second-order principles. bIP∀ is the following bounded
version of the scheme of independence of premises:

(A→ ∃yB(y))→ ∃y(A→ ∃w ≤ yB(w)),
where A is a formula starting with a string of universal (first or second-order) quan-
tifiers followed by a formula without unbounded first-order quantifications (it can
have bounded first-order quantifications as well as second-order quantifications),
and B is an arbitrary formula. MP is the usual (numerical) Markov’s principle.
bACN is bounded version of the countable axiom of choice:

∀x∃yA(x, y)→ ∃X
(
Func(X) ∧ ∀x, y(〈x, y〉 ∈ X → ∃w ≤ yA(x,w))

)
,

where A is any formula, and Func(X) says that the set X is constituted by the
codes of the pairs of a total function from N to N. Finally, FAN is the scheme

∀X∃xA(x,X)→ ∃z∀X∃x ≤ zA(x,X),
with arbitrary A. Weak König’s lemma WKL has its usual formulation in terms of
infinite binary trees.

Theorem 5.9. The second-order intuitionistic theory
iRCA0 + WKL + MP + bIP∀ + bACN + FAN
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is conservative over PA1 with respect to Π0
2-sentences.6

Proof. The second-order language of arithmetic can be embedded in Lω� by letting
the first-order variables run over type 0 arguments, letting the second-order vari-
ables run over type 1 variables X such that X �1 1, and by interpreting x ∈ X by
Xx = 0. Under this embedding, the theory iRCA0+WKL+MP+bIP∀+bACN +FAN
is clearly a sub-theory of iPRAω� + bACω� + bIPω� + MPω� + bBCCω� + MAJω� (where
iPRAω� is the obvious intensional version of iPRAω). Therefore, if the former theory
proves a Π0

2-sentence then, by (an adaptation of) Proposition 5.6, then PRAω� al-
ready proves it. By flattening (see the forthcoming Section 5.5), so does the theory
PRAω. By an internalization argument in the manner of Proposition 2.3, it can be
argued that PRAω is (first-order) conservative over PA1. We are done. �

As a consequence, the provably total Σ0
1-functions of iRCA0 + WKL + MP +

bIP∀ + bACN + FAN are the primitive recursive functions (even though this theory
is classically inconsistent; see the argument after Proposition 5.4). In Reverse
Mathematics, WKL0 is the classical theory RCA0 together with weak König’s lemma
WKL. The importance of the theory WKL0 is well documented from the work in
Reverse Mathematics. The following elimination result is originally due to Harvey
Friedman.

Corollary 5.10. The theory WKL0 is Π0
2-conservative over RCA0.

Proof. Suppose that WKL0 proves a certain Π0
2-sentence. Note that (WKL0)g

is a subtheory of iRCA0 + WKL + MP. Therefore, by the negative translation,
iRCA0 + WKL + MP also proves the given Π0

2-sentence (notice the presence of MP).
The result follows from the previous theorem. �

5.4. Extraction and all that (V). The negative translation of Gödel-Gentzen
can be easily extended to the language Lω� according to the extra clauses:

vii. (∀x� t A)g is ∀x� t Ag.
viii. (∃x� t A)g is ¬∀x� t ¬Ag.
It is clear that the negative translation of a bounded formula is still bounded,

and it can be shown by induction on the type that the intensional majorizability
relations are stable, i.e., HAω� ` ¬¬(x � y) → x � y. Now, in analogy with the
dialectica interpretation, the next result is not difficult:

Theorem 5.11 (Negative translation). Suppose that

6There is a careless misstep in our abstract [9], where the scheme of independence of premisses

IP∀ (i.e., (A → ∃yB(y)) → ∃y(A → B(y)), for A and B as in bIP∀) and the principle of countable

choice ACN (i.e., ∀x∃yA(x, y) → ∃X[Func(X) ∧ ∀x, y(〈x, y〉 ∈ X → A(x, y))]) appear instead of

the weaker principles bIP∀ and bACN, respectively. We do not know if the theorem still holds with

IP∀ and ACN.
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PAω� + bBACω� + MAJω� + ∆ ` A,
where ∆ is a set of sentences, A is an arbitrary sentence and PAω� is the classical
version of HAω�. Then,

HAω� + bBACω� + MAJω� + MPω� + ∆g ` Ag.

Remember that PAω� + bBACω� proves the intensional collection principle re-
stricted to bounded formulas bBCω� and, by classical logic, the contra-collection
scheme bBCCω� follows. The next proposition is a consequence of the combination
of the negative translation with the soundness theorem:

Theorem 5.12 (Extraction and conservation, classical intensional case). Suppose
that

PAω� + bBACω� + MAJω� + ∆ ` ∀x∃yAbd(x, y),
where ∆ is a set of universal sentences (with bounded matrices) and Abd is a
bounded formula with free variables among x and y. Then there is a closed mono-
tone term t of appropriate type such that

PAω� + ∆ ` ∀̃a∀x� a∃y � taAbd(x, y).

In contrast with the analogous result of Section 4.3, the verification theory is a
classical theory because intensional bounded formulas are not decidable in general.
However, if y is of type 0 and Abd is quantifier-free, the verification can be done in
HAω� + ∆g.

Theorem 5.13 (Characterization). For any formula A,
PAω� + bBACω� + MAJω� ` A↔ (Ag)B.

5.5. Flattening. We want to use this intensional technology in “real world” ap-
plications. The following lemma is the passageway from the intensional theory to
plain PAω≤:

Lemma 5.14 (Flattening). Suppose PAω�+Γ ` A, where A is a sentence and Γ is a
set of sentences, formulated in the intensional language Lω�. Then PAω≤ + Γ∗ ` A∗,
where B∗ is the sentence of Lω≤ obtained from B by replacing throughout the binary
symbols �σ by the formulas ≤∗σ (mutatis mutandis for sets of sentences).

We call B∗ the flattening of B (mutatis mutandis for sets of sentences).

Proposition 5.15 (Extraction and conservation, classical flattened case). Suppose
that

PAω� + bBACω� + MAJω� + ∆ ` ∀x∃yAbd(x, y),
where ∆ is a set of universal sentences (with bounded intensional matrices) and
Abd is a bounded (intensional) formula with free variables among x and y. Then
there is a closed monotone term t of appropriate type such that
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PAω≤ + ∆∗ ` ∀a∀x ≤∗ a∃y ≤∗ taA∗bd(x, y).

In particular, the theory PAω� + bBACω� + MAJω� is conservative over PAω≤ with
respect to Π0

2-sentences.
It is interesting to inquire what happens if one flattens the theory PAω� together

with the characteristic principles of Theorem 5.13. It so happens that PAω≤+bBACω

is inconsistent (here bBACω is the flattening of bBACω�). Let us see why. Well, PAω�
proves

∀x1(x ≤∗1 0→ x�1 0)→ ∀x�1 1 ∃n0 (¬x�1 0→ xn 6= 0).
If we now apply the intensional collection principle restricted to bounded formulas
to the consequent above, we get

∀x1(x ≤∗1 0→ x�1 0)→ ∃m0∀x�1 1∃n ≤ m(¬x�1 0→ xn 6= 0).
We remind the reader that the intensional collection principle restricted to bounded
formulas is provable in PAω� + bBACω�. Hence, by flattening, PAω≤ + bBACω proves

∀x1(x ≤∗1 0→ x ≤∗1 0)→ ∃m0∀x ≤∗1 1∃n ≤ m(¬x ≤∗1 0→ xn 6= 0).
Since the antecedent is logically true, we infer

∃m0∀x ≤ 1(∃n(xn 6= 0)→ ∃n ≤ m (xn 6= 0)),
a statement which is obviously refuted in PAω≤. Therefore, the theory PAω≤+bBACω

is inconsistent.

5.6. On extensionality and uniform boundedness. We say that a formula
A(x1) is extensional in the type 1 variable x if ∀x1, y1 (x =1 y∧A(x)→ A(y)), and
we write Extx[A].

Proposition 5.16. Let Abd(x1, k0) be a bounded (intensional) formula. Then the
theory PAω� +bBACω� +MAJω� proves the implication whose antecedent is Extx[Abd]
and whose consequent is

∀x ≤1 z∃kAbd(x, k)→ ∃n∀x ≤1 z∃k ≤ nAbd(x, k).

Proof. Assume ∀x ≤1 z∃kAbd(x, k). By the extensionality of Abd with respect to
x, we have ∀x∃kAbd(min1(x, z), k). A fortiori, we get ∀x�zM∃kAbd(min1(x, z), k).
Hence, by the intensional bounded collection scheme bBCω�, we may infer that
there is n such that ∀x � zM∃k ≤ nAbd(min1(x, z), k). Since min1(x, z) � zM, we
have ∀x∃k ≤ nAbd(min1(min1(x, z), z), k). By extensionality again, we conclude
∀x ≤1 z∃k ≤ nAbd(x, k). �

The principle of the previous proposition is a uniform boundedness principle. As
they were stated originally by Kohlenbach, they also incorporate a bit of choice.
The following corollary can be proved similarly to the above result with the aid of
bBACω�:
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Corollary 5.17. Let Abd(x1, z0→1,m0, k0) be a bounded (intensional) formula.
Then the theory PAω� + bBACω� + MAJω� proves the implication whose antecedent is
Extx[Abd] and whose consequent is

∀m∀x ≤1 zm∃kAbd(x, z,m, k)→ ∃f1∀m∀x ≤ zm∃k ≤ fmAbd(x, z,m, k).

When the formula Abd is a Σ0
1-formula (possibly with higher order parameters),

the consequent above is dubbed Σ0
1-UB. Note that the previous corollary includes

this case because one can collapse two existential numerical quantifiers into a single
one. Observe also that Σ0

1-UB is a false principle. For instance, it entails that all
type 2 functionals are bounded on compact sets:

∀Φ2∀z1∃k0∀x ≤1 z (Φx ≤ k).
Full extensionality (see the definition at the end of Section 2.2) cannot be added

to the theory PAω� + bBACω� + MAJω�: as we saw in Section 5.2, this would entail a
contradiction. Instead, we consider the theory PAω≤+AC1,0

qf +AC0,1
qf +Σ0

1-UB (stated
in the language Lω≤). We will see that adding full extensionality to this theory is
consistent (and more). In order to accomplish this, we briefly review a (streamlined
version of the) method of elimination of extensionality due to Horst Luckhardt:

Definition 5.18. We define, by recursion on the type:
a) x ≈0 y ≡ x = y
b) x ≈ρ�τ y ≡ ∀uρ, vρ(u ≈ρ v → xu ≈τ yv)

Lemma 5.19. For each finite type σ, the theory HAω0 proves:
(i) x ≈σ y → y ≈σ x;

(ii) x ≈σ y → y ≈σ y;
(iii) x ≈σ y ∧ y ≈σ z → x ≈σ z;
(iv) x =σ y ∧ y ≈σ z → x ≈ z.

Proof. All the claims can be proved by induction on the complexity of the type σ,
but (ii) and (iii) should be proved simultaneously. �

Let the expression E(x) abbreviate x ≈ x and, given a formula A of Lω≤, let AE

be the relativization of A to the predicate E. Note that ∀x1E(x).

Theorem 5.20 (Elimination of extensionality). Suppose that

E-PAω≤ + AC1,0
qf + ∆ ` A(z),

where ∆ is a set of universal closures of formulas with bound variables of type 0 or
1 only, and A is an arbitrary formula with its free variables as shown (all this is
stated in the language Lω≤). Then,

PAω≤ + AC1,0
qf + ∆ ` E(z)→ AE(z).
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Usually, this theorem is also stated with the inclusion of AC0,1
qf . There is however

no restriction because this form of choice can be included in ∆ (the type 0→ (0→
0) is essentially of type 1). Even though AC1,0

qf is not of the form ∆, the elimination
of extensionality still goes through because the type 2 witness functional of AC1,0

qf

can be taken as giving the least numerical witness satisfying the matrix of choice,
and this forces the functional to satisfy the predicate E (if the parameters of the
matrix also do). The following result is due to Kohlenbach:

Theorem 5.21 (Extraction and conservation, uniform boundedness). Suppose that

E-PAω≤ + AC1,0
qf + AC0,1

qf + Σ0
1-UB + ∆ ` ∀x0/1∃yAqf(x, y),

where Aqf is a quantifier-free formula with free variables among x and y, and ∆ is
a set of universal sentences (all this is stated in the language Lω≤). Then there is a
closed monotone term t of appropriate type such that

PAω≤ + ∆ ` ∀x0/1∃y ≤∗ txAqf(x, y).

Proof. For this proof, let us introduce the scheme (Σ0
1-UB)− constituted by (univer-

sal closures of) implications of the following form: the antecedent is Extx[F ] and the
consequent is ∀m∀x ≤1 zm∃kF (x, z,m, k)→ ∃f1∀m∀x ≤ zm∃k ≤ fmF (x, z,m, k),
where F (x1, z0→1,m0, k0) is a Σ0

1-formula (possibly with higher order parameters).
Observe that this is a scheme of formulas whose bound variables are (essentially)
of type 0 and 1 only. By hypothesis (notice the presence of full extensionality),

E-PAω≤ + AC1,0
qf + AC0,1

qf + (Σ0
1-UB)− + ∆ ` ∀x0/1∃yAqf(x, y).

Hence, by elimination of extensionality (previous theorem),

PAω≤ + AC1,0
qf + AC0,1

qf + (Σ0
1-UB)− + ∆ ` ∀x0/1∃yAqf(x, y).

By the comments in Section 5.2 apropos intensional bounded choice and by
Corollary 5.17, we get PAω� + bBACω� + MAJω� + ∆ ` ∀x0/1∃yAqf(x, y). Hence,
according to Theorem 5.12, there is a closed term t of appropriate type such that

PAω� + ∆ ` ∀x0/1∃y � txAqf(x, y).
The desired result follows by flattening. �

The above result can be refined in two ways. On the one hand, ∆ may be
constituted by sentences of the form ∃x ≤ r∀yBqf(x, y), with Bqf quantifier-free,
r a tuple of closed terms of type 0 or 1 (the same types of x) and y a tuple of
any types. One can apply Luckhardt’s elimination of extensionality technique to
such sentences and, afterwards, use the techniques discussed after Theorem 5.5.
As observed in that discussion, the verification can even be done with the weaker
(corresponding) sentences ∀z∃x ≤ r∀y ≤∗ zBqf(x, y). On the other hand, the above
result can also be stated with the form of choice AC1,1

qf . We discuss in detail the
latter improvement. This improvement follows from
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Proposition 5.22. The theory E-PAω0 + AC1,0
qf + Σ0

1-UB proves AC1,1
qf .

Proof. We need a preliminary lemma:

Lemma 5.23. Let Aqf(y1) be a quantifier-free formula. Then

E-PAω0 + AC1,0
qf + Σ0

1-UB ` ∀y1(Aqf(y)→ ∃m0Aqf(ŷm)).

Proof of the lemma. By extensionality, we have ∀y, z (y =1 z∧Aqf(y)→ Aqf(z)).
Therefore, ∀y, z∃n (yn = zn∧Aqf(y)→ Aqf(z)). It is easy to see that AC1,0

qf entails
the existence of a functional Σ of type 1→ (1→ 0) such that

∀y, z(y(Σyz) = z(Σyz) ∧Aqf(y)→ Aqf(z)).
Fix y. By Σ0

1-UB, there is m0 such that ∀z ≤ y(Σyz < m). The lemma follows.
�(of lemma)

We now prove that AC1,1
qf follows from E-PAω0 +AC1,0

qf +Σ0
1-UB. Let Aqf(x1, y1) be

a quantifier-free formula and suppose that ∀x∃yAqf(x, y). By the previous lemma,
we may infer that ∀x∃s0(Seq(s) ∧Aqf(x, ŝ)), where Seq(s) means that s is a finite
sequence of natural numbers. Therefore, by AC1,0

qf , there is a functional Φ of type 2

such that ∀x(Seq(Φx) ∧ Aqf(x, Φ̂x)). Clearly, Ψ1→1 := λx.Φ̂x is a choice function.
�(of proposition)

As a consequence of the results above, we obtain an extraction result for the
fully extensional, true theory, E-PAω0 + AC1,1

qf . However, this result is obtained in a
very roundabout way, via a false extension. Is there a more direct route?

5.7. Suggested reading and historical notes. The bounded functional inter-
pretation appeared in [12], where the proofs of the theorems in sections 5.1 and
5.2 can be found. The intuitionistic application in Section 5.3 appears here for the
first time. The negative translation within the setting of the bounded functional
interpretation is also discussed in [12]. A direct interpretation of Peano arith-
metic – in the style of Shoenfield – was recently defined in [10]. In this paper, the
characterization theorem is formulated with different, but equivalent, characteristic
principles. Notwithstanding, Theorem 5.13 regards an indirect interpretation, via
a negative translation. However, one could (for instance) use the factorization of
Jaime Gaspar [14] to get the result in the text (albeit for the so-called Krivine’s
negative translation; it is easy to see, though, that the result also holds for the
Gödel-Gentzen translation using the fact that these negative translations are in-
tuitionistically equivalent). Flattening is already introduced in [12], but only in
[13] it is given its name. The latter article includes a study of the elimination of
weak König’s lemma in the feasible setting (the elimination technique mentioned at
the end of Section 4.2 does not apply to the feasible setting since it uses bounded
search in an essential manner). The discussion on extensionality and the uniform
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boundedness principles in Section 5.6 are based on [12], where stronger results are
proved. Luckhardt’s result on the elimination of extensionality is from [42] but, as
noticed, it is here simplified. The extraction and conservation result on uniform
boundedness is due to Kohlenbach and appears (essentially) in [35] under a treat-
ment which is a combination of results in [28] and [32]. Our treatment is rather
different, in that it is based on the bounded functional interpretation.

6. Coda

The emphasis of this paper is on the theoretical aspects of proof mining in the
style of Kohlenbach and his co-workers. This means studying proof interpretations
where the concept of majorizability plays a central role. Even though the applied
work has been revolving around functional interpretations, for the sake of rounding
up we also included in our discussions the realizability interpretations. The main
theoretical tool of the applied work has been the monotone functional interpreta-
tion but, from a theoretical point of view, we believe that the bounded functional
interpretations provide a fresh perspective. We also took the chance of making
some comparisons between the monotone and bounded interpretations. It remains
to be seen whether the latter interpretations prove to be useful in the applied work.
Proof mining itself was left out. I suggest the surveys [37] and [34] for a first read-
ing (see also [36] for a systematic list of statements of the results obtained until
2006). Kohlenbach’s book [35] is recommended for a detailed treatment. In [8] the
reader can find some general discussions on the theoretical and practical benefits
of (functional) majorizability interpretations.

We left out two important theoretical topics, one old, the other quite recent. The
old one is Clifford Spector’s deep generalization of Gödel’s interpretation to second-
order classical arithmetic using bar-recursive functionals (see [47]). The systems
which Kohlenbach and his co-workers use in proof mining include, as a matter of
course, full second-order comprehension. Kohlenbach’s book [35] is a good source
for an exposition of Spector’s interpretation. Very recently, it was shown in [7]
that the bar-recursive functionals of Spector can also be used to obtain a bounded
functional interpretation of second-order classical artithmetic. In the words of Part
5, it is possible to inject uniformities into systems containing full second-order
comprehension (see [8] for a brief discussion on how far one can go on in doing this).
The other topic is the generalization of the monotone functional interpretation
to new base types, typically metric or normed spaces. This generalization was
introduced in [33] and is also treated in [35]. It has been proved very useful in the
applied work and it is rather illuminating from a theoretical point of view.
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[19] K. Gödel. Collected Works, Vol. II. S. Feferman et al., eds. Oxford University Press, Oxford,

1990.
[20] W. A. Howard. Hereditarily majorizable functionals of finite type. In A. S. Troelstra, editor,

Metamathematical investigation of intuitionistic Arithmetic and Analysis, volume 344 of

Lecture Notes in Mathematics, pages 454–461. Springer, Berlin, 1973.
[21] S. C. Kleene. On the interpretation of intuitionistic number theory. The Journal of Symbolic

Logic, 10:109–124, 1945.



PROOF INTERPRETATIONS AND MAJORIZABILITY 49

[22] S. C. Kleene. Countable functionals. In A. Heyting, editor, Constructivity in Mathematics,
pages 81–100. North Holland, Amsterdam, 1959.

[23] U. Kohlenbach. Theorie der majorisierbaren und stetigen Funktionale und ihre Anwen-

dung bei der Extraktion von Schranken aus inkonstruktiven Beweisen: Effektive Ein-
deutigkeitsmodule bei besten Approximationen aus ineffektiven Beweisen. PhD thesis, Frank-

furt, pp. xxii+278, 1990.

[24] U. Kohlenbach. Effective bounds from ineffective proofs in analysis: an application of func-
tional interpretation and majorization. The Journal of Symbolic Logic, 57:1239–1273, 1992.

[25] U. Kohlenbach. Pointwise hereditary majorization and some applications. Archive for Math-
ematical Logic, 31:227–241, 1992.

[26] U. Kohlenbach. Effective moduli from ineffective uniqueness proofs. An unwinding of de La

Vallée Poussin’s proof for Chebycheff approximation. Annals of Pure and Applied Logic,
64:27–94, 1993.

[27] U. Kohlenbach. Analysing proofs in analysis. In W. Hodges, M. Hyland, C. Steinhorn, and

J. Truss, editors, Logic: from Foundations to Applications, pages 225–260. European Logic
Colloquium (Keele, 1993), Oxford University Press, 1996.

[28] U. Kohlenbach. Mathematically strong subsystems of analysis with low rate of growth of

provably recursive functionals. Archive for Mathematical Logic, 36:31–71, 1996.
[29] U. Kohlenbach. Relative constructivity. The Journal of Symbolic Logic, 63:1218–1238, 1998.

[30] U. Kohlenbach. On the no-counterexample interpretation. The Journal of Symbolic Logic,

64:1491–1511, 1999.
[31] U. Kohlenbach. Intuitionistic choice and restricted classical logic. Mathematical Logic Quar-

terly, 47:455–460, 2001.

[32] U. Kohlenbach. Foundational and mathematical uses of higher types. In W. Sieg et al., editors,
Reflections on the Foundations of Mathematics: Essay in Honor of Solomon Feferman,

volume 15 of Lecture Notes in Logic, pages 92–116. A. K. Peters, Ltd., 2002.
[33] U. Kohlenbach. Some logical metatheorems with applications in functional analysis. Trans-

actions of the American Mathematical Society, 357:89–128, 2005.

[34] U. Kohlenbach. Proof interpretations and the computational content of proofs in mathemat-
ics. Bulletin of the EATCS, 93:143–173, 2007.

[35] U. Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathematics.

Springer Monographs in Mathematics. Springer, Berlin, 2008.
[36] U. Kohlenbach. Effective bounds from proofs in abstract functional analysis. In S. B. Cooper,
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