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1 Introduction

A platonist in mathematics believes that arithmetic has a subject matter, i.e., that
the statements of arithmetic are about certain objects – the natural numbers. For a
platonist, the language of (first-order) arithmetic La is referential and he is licensed
to speak of true and false sentences of La and to endorse Tarski’s analysis of truth.
It follows from this Tarskian analysis plus the fact that every natural number is
denoted by some closed term of La (a numeral, if one insists on canonicity) that
the truth values of arithmetical sentences are determined by the truth values of its
atomic sentences. Consider now a philosopher who, while not a platonist in any
sense, broadly accepts the results of mathematics – however tentatively – and is
persuaded that the truths of arithmetic are determined by the truth values of its
atomic sentences (whatever may be his reformulation of the notion of arithmetical
truth). This article may be viewed as an attempt to frame a position for such a
non-platonist philosopher of a non-revisionist bent.

It is well known that certain atomic sentences of arithmetic have a persuasive
rendering in terms of schemata of formulas of first-order languages with equality.
This rendering is specially persuasive insofar as we focus on the cardinal role of
numbers (and leave their ordinal role aside). For instance, the sentence 7+5 =12
can be rendered as

(∗) ∃7xA(x) ∧ ∃5xB(x) ∧ ¬∃x(A(x) ∧ B(x)) → ∃12x(A(x) ∨ B(x))

where A and B are any formulas of a given first-order language and where, for each
numeral n, ∃nxC(x) makes the numerical claim that there are exactly n objects x
such that C(x). Such numerical claims have straightforward renderings in first-order
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languages with equality and, thus, expressions of the form ∃nx C(x) are explicitly
eliminable within those languages. I call a first-order scheme like (∗) a checking
point of arithmetic.

In the next section, I introduce a number of checking points of arithmetic, suf-
ficient to determine arithmetical truth (in the platonic sense above). This is done
in such a manner that an atomic (or negated atomic, as we will see) sentence of
arithmetic is true if, and only if, the corresponding scheme consists of logically valid
formulas. This feature should be enough to convince our non-revisionist philosopher
that arithmetical truth (better, his reformulation thereof) is determined by logic
alone. In section 3, I show how to extend the above correspondence to all sentences
of first-order arithmetic. My proposal has the following general features. Given
a referential first-order language with equality L enhanced with numerical quanti-
fiers of the form ∃nx, I firstly extend L to a language Lsa in which substitutional
quantification is permitted for the substitutional class constituted by the numerals
n occurring in the expressions ∃nx (note that the numerals here are construed as
syncategorematic, significant in context but naming nothing). Afterwards, I show
how to associate with each first-order sentence S of the language of arithmetic La

a scheme of sentences S of the substitutional language Lsa such that if S is true
then each instance of S is logically valid. A suitable modification of the converse
of this implication also holds. Hence, under this rendering, arithmetical truth is
subsumed under a notion of logical validity and the nature of the determination of
arithmetic by its checking points is rooted in substitutional quantification. I there-
fore accomplish a form of reduction of arithmetic to logic, a brand of logicism for
first-order arithmetic. In the last section, I compare my substitutional approach
with Gottlieb’s approach as presented in [Got80]. I do not attempt to discuss the
ontological issues posed by substitutional quantification. They are too intricate to
be discussed in this paper. All the same, I finish the paper with an observation
concerning the so-called orthodox interpretation of my substitutional apparatus.

2 Checking points of arithmetic

My insisting that the checking points of arithmetic are schemata of first-order for-
mulas poses some difficulties concerning the proper treatment of the operation of
negation. For instance, given natural numbers n, k and r, I render the atomic
sentence n + k = r of referential number theory by the scheme,

(1) ∃nxA(x) ∧ ∃kxB(x) ∧ ¬∃x(A(x) ∧ B(x)) → ∃rx(A(x) ∨ B(x)).

It is clear that this scheme consists of logically valid sentences if, and only if, n+k =
r. Consider now the falsity 5 + 3 = 7. How should its negation, viz. 5 + 3 �= 7, be
rendered? Gottlieb in [Got80] does not have to face this problem since he renders
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5 + 3 = 7 by the second-order sentence,

∀F∀G(∃5xFx ∧ ∃3xGx ∧ ¬∃x(Fx ∧ Gx) → ∃7x(Fx ∨ Gx)).1

Accordingly, Gottlieb renders 5 + 3 �= 7 by,

∃F∃G(∃5xFx ∧ ∃3xGx ∧ ¬∃x(Fx ∧ Gx) ∧ ¬∃7x(Fx ∨ Gx)).

This rendering is problematic. In a universe with less than eight elements 5+3 =
7 is rendered true, while 5 + 3 �= 7 is rendered false. A curious inversion of truth-
values. Gottlieb welcomes the first type of situations in which, due to the finiteness
of the universe, certain falsities of arithmetic are rendered true. He adds that that
‘is precisely what is to be expected if we found our account of arithmetic upon
its application to multiplicity attributions.’2 I agree with Gottlieb’s remark but
I add a correctness constraint: in a proper account of arithmetic, the truths of
arithmetic should yield truths in applications to objectual languages. In this light,
the fact that some falsities of arithmetic may – in certain situations – yield truths is
beside the point. Gottlieb could not have subscribed to this constraint because, in
his framework, the negations of the above falsities (which are bona fide arithmetical
truths) would, in the very same situations, yield falsities. That is what happens with
his rendering of 5 + 3 �= 7. Gottlieb rightly sees a problem here and he proposes a
revision of the axioms of arithmetic. I resist revisionism. Therefore, I deal with this
problem differently.

Given numerals n, k and r, I render the atomic sentence n + k �= r of referential
number theory by the scheme,

(2) ∃nxA(x) ∧ ∃kxB(x) ∧ ¬∃x(A(x) ∧ B(x)) → ¬∃rx(A(x) ∨ B(x)).

Each pair of corresponding instances of the schematic renderings of n + k = r and
n+ k �= r is constituted by subcontrary sentences, i.e., by two sentences that cannot
be both false but which can be both true. As a matter of fact, there are situations
in which all the instances of both schemes n + k = r and n + k �= r are true.
This seems to be a fatal blow for a proper treatment of the non-atomic sentences of
arithmetic, namely for a proper treatment of true arithmetic sentences of the form
¬(n+k = r∧n+k �= r). However, the no go situation is apparent. The heart of the
solution to this problem will be presented in the following paragraphs and, in the
next section, a mathematical theorem will dispel any remaining doubts concerning
the soundness of my solution.

1In Gottlieb’s account, the second-order quantifiers are interpreted substitutionally. To be more
exact, he uses full relative substitutional quantification, as in the terminology of Parsons [Par82].

2In p. 103 of [Got80].
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It is convenient to work with a language La of first-order arithmetic which has no
function symbols and which has a constant symbol cn for each natural number n.3

Instead of function symbols for successor, addition and multiplication I have, respec-
tively, a binary relation symbol Suc(x, y) and ternary relation symbols Add(x, y, z)
and Mul(x, y, z). These relation symbols have the intended meaning of being the
graphs of the corresponding arithmetical operations. It is well known that this refor-
mulation of the standard language of first-order arithmetic gains and loses nothing
in terms of expressive power. I extend the vocabulary of this language by associat-
ing with each relation symbol Suc, Add, Mul a corresponding relation symbol ˜Suc,
˜Add, ˜Mul. These new relation symbols stand for the negations of the corresponding
earlier relations. Suc, ˜Suc, Add, ˜Add, Mul and ˜Mul are called literals and Suc and
˜Suc (resp., Add and ˜Add, and Mul and ˜Mul) are opposite literals. The equality
sign = and the inequality sign �= are also called opposite literals. The formulas of
La are built up from the atomic formulas (of the extended vocabulary) by means
of conjunction, disjunction, universal quantification and existential quantification.
The negation ¬A of a formula A is defined to be the formula obtained from A by

i. replacing each literal by its opposite and

ii. replacing ∧, ∨, ∀, ∃ by ∨, ∧, ∃, ∀, respectively.

This treatment of negation for classical logic is well-known (see [Tai68]). Note
that ¬¬A is the same formula as A. As usual, we define A → B to be ¬A ∨ B
and A ↔ B to be (A → B) ∧ (B → A). According to this set-up, the sentence

¬(n + k = r ∧ n + k �= r) is firstly rendered as ¬(Add(n, k, r) ∧ ˜Add(n, k, r)) and

finally takes the official form ˜Add(n, k, r) ∨ Add(n, k, r). Now, if we translate Add

and ˜Add according to (1) and (2) above and if we suitably conjoin these schemes,
the true sentence ¬(n + k = r ∧ n + k �= r) is rendered by the first-order scheme,

[∃nxA(x) ∧ ∃kxB(x) ∧ ¬∃x(A(x) ∧ B(x)) → ¬∃rx(A(x) ∨ B(x))]∨
[∃nxC(x) ∧ ∃kxD(x) ∧ ¬∃x(C(x) ∧ D(x)) → ∃rx(C(x) ∨ D(x))] .

Observe that the instances of the above scheme are logically valid, no matter what
are the numerals n, k and r. This is as it should be.

We finish this section with a catalog of the checking points of arithmetic, one for
each atomic sentence of La. As we go along, the reader should pause and convince
himself that each checking point is constituted by logically valid sentences if, and

3Thus, La has an infinite number of constants. Of course, the idea of an infinite alphabet
goes beyond a purely syntactic view. However, it is well-known that in cases such as the above,
the formal apparatus can be reformulated suitably by replacing each numerical constant cn by an
expression consisting of n + 1 consecutive strokes ‘|’. To facilitate reading, I use in the sequel the
more congenial expression n instead of cn
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only if, the corresponding arithmetical sentence is true in the standard interpretation
of La. We have already discussed the checking points of arithmetic associated with
the sentences of the form Add(n, k, r) and ˜Add(n, k, r). These are the schemata (1)
and (2), respectively. There remains the following cases:

(3) The checking point of n = k is the scheme:

∃nxA(x) ↔ ∃kxA(x).

(4) The checking point of n �= k is the scheme:

∃nxA(x) → ¬∃kxA(x).

(5) The checking point of Suc(n, k) is the scheme:

∃kxA(x) → ∃y(A(y) ∧ ∃nx(A(x) ∧ x �= y)).

(6) The checking point of ˜Suc(n, k) is the scheme:

∃kxA(x) → ∀y(A(y) → ¬∃nx(A(x) ∧ x �= y)).

(7) The checking point of Mul(n, k, r) is the scheme:

(∃nxA(x) ∧ ∀x∀w∀y(A(x) ∧ A(w) ∧ C(x, y) ∧ C(w, y) → x = w)∧

∀x(A(x) → ∃kyC(x, y))) → ∃ry(∃x(A(x) ∧ C(x, y))).

(8) Finally, the checking point of ˜Mul(n, k, r) is the scheme:

(∃nxA(x) ∧ ∀x∀w∀y(A(x) ∧ A(w) ∧ C(x, y) ∧ C(w, y) → x = w)∧

∀x(A(x) → ∃kyC(x, y))) → ¬∃ry(∃x(A(x) ∧ C(x, y))).

Let me give an application of (7). Suppose A(x) means that x is a soccer team in
the Portuguese upper division soccer championship league. Suppose C(x, y) means
that y is a soccer player of team x at the start of a given complete round of soccer
matches. There are 18 soccer teams in the championship league and each team
starts a match with 11 players (it goes without saying that a soccer player cannot
play for two teams simultaneously). By a logically valid instance of (7), we can
conclude that there are 198 soccer players at the start of the given complete round
of soccer matches.
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3 Substitutional arithmetic done right (?)

Let L be a first-order referential language enhanced with numerical quantifiers of
the form ∃nx. I extend L to a language Lsa in which substitutional quantification
plays a prominent role. With slight differences of terminology, I essentially follow
the paradigmatic treatment of substitutional quantification as expounded by Kripke
in [Kri76]. Let x1, x2, . . . be an infinite list of variables not occurring in L. (Following
Kripke’s notation, I use italicized variables x1, x2, . . . for the referential variables of
the given language L; the new unitalicized variables play a substitutional role in the
extended language Lsa.) An atomic form is an expression obtained from a sentence
of L by replacing zero or more numerals n occurring in the context of a numerical
quantifier ∃nx by an unitalicized variable. For instance, given A(x) a formula of L
with parameters z1, . . ., zs, then

∀z1 · · · ∀zs(∃yxA(x) → ∃y(A(y) ∧ ∃xx(A(x) ∧ x �= y)))

is an atomic form with free substitutional variables x and y (the prefix ∀z1 · · · ∀zs

ensures that the above atomic form comes from a sentence of L). We are now ready
to define inductively the notion of a form of Lsa. An atomic form is a form. If φ and
ψ are forms then so are φ ∧ ψ, φ ∨ ψ, Σxφ and Πxφ. (It is assumed that the truth-
functions and the existential Σ and the universal Π substitutional quantifiers are
new notations, not to be found in L.) A sentence form of Lsa is a form without free
substitutional variables (note that, by definition, forms do not have free referential
variables). Ever since Tarski [Tar83], we know how to define truth for sentences
of L with respect to a previously given interpretation. We extend Tarski’s truth
conditions to account for the notion of a true sentence form of Lsa. The conditions
are:

(a) If φ is an atomic form which is a sentence (thus φ is a sentence of L), then φ
is true in the extended sense if, and only if, it is true in the original sense.

(b) φ ∨ ψ is true if, and only if, either φ is true or ψ is true (or both).

(c) φ ∧ ψ is true if, and only if, both φ and ψ are true.

(d) Σxφ is true if, and only if, there is a numeral n such that φ′ is true, where φ′

comes from φ by replacing all free occurrences of x by n.

(e) Πxφ is true if, and only if, for all numerals n, φ′ is true, where φ′ comes from
φ by replacing all free occurrences of x by n.

For instance, according to the above definition, the scheme of sentence forms

(∗∗) ΠxΣy∀z1 · · · zs (∃yxA(x) → ∃y(A(y) ∧ ∃xx(A(x) ∧ x �= y)))
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is always true, no matter what is the given interpretation of the underlying referential
language L (as before, z1, . . ., zs are the parameters of A(x)).

Let La be the language of first-order arithmetic, as described in the last section.
I define a correspondence between formulas S of La and schemata of forms S of
Lsa. The correspondence is such that if x, y, z (say) are the free variables of S,
then x, y, z are the free substitutional variables of the forms occurring in S. The
correspondence is defined inductively, according to the following clauses:

(a) If S is an atomic sentence of La, then S consists of the first-order referen-
tial universal closures of the formulas of the corresponding checking points
(i.e., the checking points are prefixed by a row of universal objectual quanti-
fiers ∀z1 · · · ∀zs to ensure that all referential variables are bound). The case
of atomic formulas is obtained from the previous case by suitably replacing
numerals in the numerical quantifiers by substitutional variables. E.g., the
scheme that corresponds to Add(3, z, x), consists of the universal referential
closures of

∃3xA(x) ∧ ∃zxB(x) ∧ ¬∃x(A(x) ∧ B(x)) → ∃xx(A(x) ∨ B(x)).

(b) The scheme corresponding to Q1 ∨ Q2 consists of the forms φ ∨ ψ, where φ is
in the scheme corresponding to Q1 and ψ is in the scheme corresponding to
Q2.

(c) The scheme corresponding to Q1 ∧ Q2 consists of the forms φ ∧ ψ, where φ is
in the scheme corresponding to Q1 and ψ is in the scheme corresponding to
Q2.

(d) The scheme corresponding to ∃xQ consists of the forms Σxφ, where φ is in the
scheme corresponding to Q.

(e) The scheme corresponding to ∀xQ consists of the forms Πxφ, where φ is in
the scheme corresponding to Q.

We are now ready to state and prove the following theorem:

Theorem. If S is a true sentence of La, then the corresponding scheme S consists
of true sentence forms of Lsa.

Proof : This is a simple proof by induction on the complexity of the sentence
S. If S is a true atomic sentence, a direct inspection of the checking points (1)
- (8) of the last section shows that the corresponding scheme indeed consists of
true sentence forms. Suppose S is the disjunction S1 ∨ S2. Then either S1 is true
or S2 is true. Assume, without loss of generality, the earlier case. By definition,
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the scheme corresponding to S consists of the sentence forms φ ∨ ψ, where φ is in
the scheme corresponding to S1 and ψ is in the scheme corresponding to S2. By
induction hypothesis, the above φs are true. Therefore, so are the disjunctions φ∨ψ.
Now, suppose S is ∃xQ(x). Then there is a numeral n such that Q(n) is true. By
definition, the scheme S corresponding to S consists of the forms Σxφ(x), where
φ(x) is in the scheme corresponding to the formula Q(x). By induction hypothesis,
φ(n) is a true sentence form for every such form φ. Hence, Σxφ(x) is true.

The cases of conjunction and universal quantifications are also easy to handle.
Q. E. D.

In the above theorem, it is implicit a given interpretation of the original refer-
ential language L (from which Lsa is built). This interpretation can be any inter-
pretation. Therefore, in a definite sense, if S is a true sentence of number theory,
then S consists of logically valid sentence forms.4 In fact, more is true. A scheme
of logically valid sentence forms of the type Σxφ(x) – where φ(x) is a form in a
previously given scheme S ′ – is called robust if there is a numeral n such that all
sentence forms φ(n) – where φ(x) is in S ′ – are logically valid. It is a consequence
of the proof of the above theorem that if ∃xQ(x) is a true sentence of arithmetic,
then the corresponding logically valid scheme is robust.5 This property of robust-
ness is crucial for a correct rendering of arithmetical truth. It says, in effect, that
the substitutions that make each instance of a scheme – corresponding to a true
arithmetical sentence – a true sentence form are independent from the particular in-
stance in question. If we were working with slightly more logical resources, we could
have expressed the above mentioned independence in a direct linguistic (as opposed
to a meta-linguistic) way. Indeed, if we allow quantification for the predicates of
the underlying referential language, then we could associate with each sentence S
of arithmetic a sentence S of the expanded language Lsa by replacing the checking
points of arithmetic with a corresponding universal predicate closure. For instance,
the arithmetical statement ∀x∃y Suc(x, y) would be rendered by

ΠxΣy∀F (∃yxFx → ∃y(Fy ∧ ∃xx(Fx ∧ x �= y))) .6,7

4To put it explicitly, I am using the following semantic notion of logical validity: a sentence
form is logically valid if, and only if, it is true in every interpretation (with non-empty domain). I
caution the reader that this notion of logical validity differs from Kripke’s notion as expounded in
pages 335-337 of [Kri76]. Kripke’s notion is too tied up with the first-order objectual case.

5A similar property of robustness holds for schemata corresponding to disjunctive true sentences
of arithmetic: if the schema S consists of sentence forms of the type φ1∨φ2, where φ1 and φ2 come
from previously given schemata S1 and S2 (respectively), then either S1 consists only of logically
valid sentence forms or S2 does.

6The reader should compare this rendering with (∗∗).
7There are similarities between this alternative approach (which, nevertheless, assents to the

correctness constraint) and Gottlieb’s account in [Got80]. However, the latter’s account makes
essential use of existential predicate quantifications. This is not the case for the alternative account.
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Although the alternative account uses a new sort of quantification, it never-
theless seems committed to the same ontology as the original account. In fact,
the new predicate quantifiers are always universal and never appear in subordinate
clauses. Predicative expressions (or predicates, or classes, or whatever) are required
for making the (alternative) rendering of true arithmetical sentences logically valid
schemata, as much as they are required to account for the schematic validities of
first-order logic.8 And nothing is required for the latter account, as Quine forcefully
argues in [Qui53]. The reason why I did not pursue the alternative account is that I
wanted to press to the limits a minimal use of logical resources. But have I pressed
too much? Is my account at all faithful to the fabric of arithmetic? To put it more
exactly: are the truths of arithmetic determined by the checking points of arithmetic
plus logical validity plus my minimal substitutional apparatus? The answer to this
question is affirmative. That is the content of the next theorem, which applies to
sufficiently rich underlying referential languages:

Theorem. If S is a false sentence of La, then the corresponding scheme S is not
constituted only by logically valid sentence forms.

A proof of this theorem is given in the appendix.

4 Final remarks

We can read the sentences of the language La of first-order arithmetic as encap-
sulations of certain schemata derived from first-order referential languages. The
common ground between these schemata and referential first-order languages are
the checking points of arithmetic. These checking points make claims about multi-
plicity attributions and it is upon these claims that arithmetic is ultimately founded
and that its applications are accounted for. As we saw, these schemata are logically
valid if, and only if, the (assumed) underlying arithmetical sentence is true. Insofar
as arithmetical truth is subsumed under a notion of logical validity, we may classify
the above rendering as a brand of logicism, albeit of a non-Fregean type since it is
not framed on second-order logic nor does it regard numbers as objects via Hume’s
principle. The deductive calculus of first-order arithmetic can be seen as a calculus
for producing (certain) logically valid schemata. Even though this calculus is for-
mally consonant with a direct referential reading, its semantics is in no way directly
referential. For instance, the semantic interpretation of the negation sign cannot, in
any sense, be considered negation. A similar phenomenon concerns the behaviour
of the equality sign: formally, it is like equality in a referential language. In actual
fact, it does not even stand for a relation between objects.

8Of course, I am here disposing of the issue concerning the ontological commitments to numerical
expressions.
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My rendering of arithmetic and Gottlieb’s account in [Got80] are founded on
the same two fundamental ideas: application to multiplicity attributions and sub-
stitutional quantification. There is a definite sense in which my proposal is both an
amendment and an amelioration of Gottlieb’s arithmetic. On the one hand, it is an
amendment because Gottlieb’s arithmetic does not satisfy the correctness constraint.
On Gottlieb’s account, there are true sentences of arithmetic (even quantifier-free)
which are rendered false in certain circunstances. I have already given an example
of this phenomenon in section 2, but it is worthwhile to point out that Gottlieb’s
problem already shows up at the really fundamental level of the interpretation of
inequality. According to Gottlieb, given a certain referential language and a certain
interpretation thereof, the sentence n �= k is true if, and only if, it is not the case
that ∀F (∃nxFx ↔ ∃kxFx). On this account, if the domain of the interpretation has
less than k elements, then n �= k is rendered false for all n > k. Gottlieb’s way out
is to revise arithmetic, thus dissenting from the correctness constraint. On the other
hand, my proposal ameliorates Gottlieb’s account in that it is more parsimonious
in the use of logical and semantic resources. As I have already remarked, Gottlieb
makes use of substitutional quantification not only for the numerals occurring in
expressions of the form ∃nx, but also for the predicates of the given referential lan-
guage. Moreover, Gottlieb introduces the truth conditions for multiplication via a
recursive definition that reduces these conditions to the truth conditions of addi-
tion. Only a somewhat indirect reading of these truth conditions for multiplication
would understand them in terms of multiplicity attributions. My approach to mul-
tiplication is not mediated by addition, does not use the apparatus of a recursive
definition for the truth-conditions, and has a direct reading in terms of multiplicity
attributions.

Quine’s criterium of ontological commitment for an objectual first-order language
states that some given object is required in a theory if that object is required, for the
truth of the theory, to be among the values over which the bound variables range (see
[Qui69]). Orthodox wisdom complements this criterium with the following principle:
when the language of a theory is not objectual, then the ontological commitments of
the theory cannot be assessed directly – the language must be first translated into an
objectual first-order language and only then can the commitment be assessed. In the
case of substitutional quantification, Quine proposes a translation which is mathe-
matically indistinguishable from the truth theory given in the first paragraphs of the
previous section. It follows that a theory framed in a substitutional language is, in
general, committed to an ontology of expressions and of (finite) sequences of objects.
Substitutionalism, on the other hand, is the doctrine according to which substitu-
tional quantification carries no ontological commitments. A substitutionalist rejects
orthodoxy and, accordingly, feels entitled to reject abstracta like expressions. A third
view, proposed by Parsons in [Par83], maintains that substitutional quantifications
‘could express a genuine concept of existence, different from that of the objectual
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quantifier.’9 The question of adjudicating between orthodoxy, substitutionalism or
Parsons’s middle way is an intricate ontological question whose discussion is beyond
the scope of this paper.

All the same, I would like to draw attention to a feature of the substitutional
framework for arithmetical validity presented in this article. According to this in-
terpretation, sentences of first-order arithmetic are read as encapsulations of certain
schemata derived from first-order languages. I showed in the previous section that
if a sentence of first-order arithmetic is true in the standard interpretation of num-
ber theory then that sentence encapsulates (robust) logically valid schemata. As a
consequence, the correctness constraint is uphold. There is, of course, an alternative
substitutional interpretation of first-order arithmetic which assents to the correct-
ness constraint. Such an interpretation is based on algorithms that discriminate the
truths from the falsehoods for atomic sentences of first-order arithmetic. Quantifi-
cations are then interpreted substitutionally, i.e., a sentence of the form ∃xQ(x) is
true if, and only if, there is some closed term t of the language of arithmetic such
that Q(t) is true. In my view, this interpretation has a limited philosophical inter-
est unless it is complemented by an account regarding the applications of arithmetic
(Parsons sketches such an account in pp. 416-417 of [Par82]). However, this “com-
binatorial” interpretation and my interpretation are altogether different, even with
respect to the ontological commitments to numerals under an orthodox analysis.
Let us see why.

On the orthodox interpretation, the “combinatorial” view is ontologically com-
mitted to all numerals. However, this need not be the case for the substitutional
interpretation presented in this article. In fact, if the domain of the underlying lan-
guage L is finite – say, of cardinality n – then, on the orthodox interpretation, my
framework is only ontologically committed to the first n + 2 numerals.10 This can
be seen as follows. Given any form φ(x, y) associated with a given atomic formula
Q(x, y) (say) of La, and given natural numbers k and r, φ(k, r) is a true sentence
form if, and only if, φ(min{k, n + 1}, min{r, n + 1}) is.11 We can see this by di-
rect inspection. Plainly, this phenomenon propagates to all first-order formulas of
arithmetic.

On the surface, there is something bizarre in the above result. If we start with
a singleton universe, then every sentence of referential arithmetic is translated into
a schema that can be decided with only three numerals. This seems to fly in the
face of results of Church, Gödel, Tarski et al. to the effect that the set of truths of
number theory is not decidable. In fact, the contradiction is apparent. My set-up
does not entail that a falsity of arithmetic is translated into a scheme constituted by

9See p. 410 of [Par82].
10Thus, in a sense, it is committed to no numerals at all! Just replace the existential (resp.,

universal) substitutional quantifiers by suitable finite disjunctions (resp., conjunctions).
11min{a, b} is the least number among a and b.
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false sentences. It just entails that a truth of arithmetic is translated into a scheme
constituted by true sentences. The injunction is: use true sentences of arithmetic in
your study of the world, not false ones.12

5 Appendix

Let L be a first-order language with equality with at least two binary relation sym-
bols A(x, u) and B(x, v) and a ternary relation symbol C(x, y, w). We associate with
each formula S of the language La of arithmetic a special form FS of the scheme S
of forms corresponding to S. This is done as follows:

(a) If S is an atomic sentence of La, e.g. n + k = r, then FS is the sentence form

∀u∀v(∃nxA(x, u)∧∃kxB(x, v)∧¬∃x(A(x, u)∧B(x, v)) → ∃rx(A(x, u)∨B(x, v))).

Similarly for the other atomic sentences of arithmetic (the notation is set-
up in such a way as to make obvious what are the special forms associated
with each atomic sentence). The case of atomic formulas is obtained from the
previous case by suitably replacing numerals in the numerical quantifiers by
substitutional variables.

(b) FQ1∨Q2 is FQ1 ∨ FQ2 .

(c) FQ1∧Q2 is FQ1 ∧ FQ2 .

(d) F∃xQ is ΣxFQ.

(e) F∀xQ is ΠxFQ.

The last theorem of section 3 is a consequence of the following lemma:

Lemma. There is an interpretation M of L such that for all sentences S of the
language La of arithmetic, S is true if, and only if, FS is true in M.

Proof : The domain of M is, by definition, the set of the natural numbers. The
interpretations AM, BM and CM of A, B and C (respectively) are defined by:

(i) (x, u) ∈ AM if, and only if, x is even and x < 2u;

(ii) (x, v) ∈ BM if, and only if, x is odd and x < 2v + 1;

12I am grateful to Manuel Lourenço who commented this article in his characteristically thought-
ful manner. I would also like to thank António Zilhão for the kind invitation to contribute with a
paper for this issue of Grazer Philosophische Studien.
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(iii) (x, y, w) ∈ CM if, and only if, xw ≤ y < (x + 1)w.

Given an atomic sentence of arithmetic S, it is clear that S is true if, and only
if, FS is true in M. It is straightforward to argue that this equivalence propagates
to all first-order sentences of arithmetic. Q. E. D.
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