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Abstract

The first section of this paper consists of a defense of the binary string notation for the
formulation of weak theories of arithmetic which have computational significance. We defend
that a stringlanguage is the most natural framework and that the usual arithmetic setting
suffers from some troubles when dealing with very low complexity classes. Having introduced
in the first section the theory Th − FO - associated with a rather robust uniform version of
the class of problems that can be decided by constant depth, polynomial size circuit families
(the so-called AC0-class) - we prove in the second section that the deletion of a crucial axiom
from Th − FO results in a theory which is unsuitable from the computational point of view.
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1 The apology of a notation

In his Ph.D. Dissertation [1], Samuel Buss studies systems of arithmetic related to conspicuos
classes of computational complexity. The main results of Buss show that the provability of cer-
tain sentences of the type “∀x∃yA(x, y)” in suitable sub-theories of Peano Arithmetic imply the
existence of a function f such that A(n, f(n)), for all n ∈ ω, and such that f has a certain computa-
tional complexity. Buss is interested in computational complexity classes consisting only of feasible
computable functions and this requirement excludes, a fortiori, the exponential function. On the
proof-theoretic side, this requirement compels the theories of arithmetic to be weak theories, i.e.,
theories that do not prove the totality of the exponential function.

A good first example is the theory I∆0 + Ω1. This theory consists of I∆0, the main feature
of which is the restriction of the induction scheme to bounded formula of the language of I∆0,
plus a Π0

2-axiom (the Ω1-principle) saying that the function λx.x�logx� is total (�w� represents
the greatest integer less than or equal to w). The language of the theory I∆0 + Ω1 is the usual
language of arithmetic: a constant 0, a unary function symbol S, two binary function symbols +
and · and a binary relation symbol ≤. This language presents some technical difficulties for the
study of the provable total functions of I∆0 + Ω1. A first reason is that I∆0 + Ω1 does not have
a Π0

1-axiomatization. Hence it is not suitable for the formulation of a Parikh type theorem (we
recommend chapter V of [2] as a reference for this section).

Buss gave a reformulation of the theory I∆0+Ω1. His reformulation adds to the usual language
of arithmetic two unary function symbols � 1

2x�, |x| (for 	log2(x + 1)
, the length of the binary
representation of x) and a binary function symbol x#y (for 2|x|·|y|, the “smash” function)1. In
this language Buss presents a Π0

1-axiomatization consisting of thirty two basic open axioms, plus
the usual scheme of induction for bounded formulae, resulting in the so-called theory T2 (the
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induction scheme, whose instances are “A(0) ∧ ∀x(A(x) → A(x + 1)) → ∀xA(x)”, where A is
a bounded formula, does not consist of Π0

1-sentences but can be easily reformulated as such by
“∀x(A(0) ∧ ¬A(x) → ∃y ≤ x(A(y) ∧ ¬A(y + 1)))”). Parikh’s theorem applies:

Theorem. If T2 � ∀x∃yA(x, y), where A is a bounded formula, then there is a term t(x) of the
language of T2 such that T2 � ∀x∃y ≤ t(x)A(x, y).

From the truth of “∀x∃y ≤ t(x)A(x, y)” alone, one easily concludes that the witness function
f(n) = µmA(n,m) is computable in polynomial space - indeed, even computable in polynomial
time with an oracle in PH (the polynomial time hierarchy). More specifically, if the relation
A(x, y) is in Σp

n (and this is always the case for a certain n) then f is in ✷
p
n+1. This analysis takes

little advantage of the provability of “∀x∃yA(x, y)” in T2, relying solely upon the very general fact
of Parikh. As we will see, Buss is able to provide a deeper analysis.

The class of sharply bounded formulae is the smallest class of formulae of the language of T2

that contains the atomic formulae and that is closed under Boolean operations and sharply bounded
quantifications (these are quantifications of the form ∀x ≤ |t|(...) or ∃x ≤ |t|(...), where t is a term
in which the variable x does not occur). The Σb

n-formulae, n ≥ 1, are the bounded formulae of the
language of T2 with the following form:

(BD) ∃x1 ≤ t1∀x2 ≤ t2∃x3 ≤ t3 ... Qxn ≤ tn A

where A is a sharply bounded formula, t1, . . . , tn are terms of the language and the quantifier Q is
a ∀ or a ∃ depending on whether n is even or odd (respectively). The Σb

n-formulae define, in the
standard model, the Σp

n-relations of PH. Hence, there is a matching between bounded formulae
of the language of T2 and the levels of the polynomial time hierarchy. Moreover, this is a faithful
matching in the sense that the complexity of formula-construction goes hand-in-hand with the
complexity levels of the polynomial hierarchy. In other words, a sub-formula of a Σb

n-formula can
only define Σp

n-relations.2

Let Ψ be a set of formulae. The Ψ − PIND axioms are:

(PIND) A(0) ∧ ∀x(A(�1
2
x�) → A(x)) → ∀xA(x)

where A ∈ Ψ, possibly with parameters. The theory Sn
2 (n ≥ 1) consists of the thirty two basic

open axioms plus the Σb
n −PIND axioms (it is well known that T2 = ∪n∈ωS

n
2 ). Buss’ main result

of his thesis is the following:

Theorem. If Sn
2 � ∀x∃yA(x, y), where A is a Σb

n-formula, then there is f ∈ ✷p
n such that

A(k, f(k)), for all k ∈ ω.3

In the above, f(k) is not necessarily the leastm such that A(k,m). The function f is constructed
by means of a careful analysis of the proof of “∀x∃yA(x, y)” in Sn

2 , and the importance of the
faithfulness of the matching between Σb

n-formulae and Σp
n-relations cannot be over-emphasized in

this respect. It is this faithfulness that permits a successful application of Gentzen’s Hauptsatz
(vulgo cut-elimination) to proving the above theorem. In short, Buss’ notation for I∆0 + Ω1 is
not only superior to the usual notation on the account of providing Π0

1-axiomatizations but, more
important, on the account of giving faithful representations of the polynomial hierarchy.

Nonetheless, a critique can be made of Buss’ notation. The most important is that it is not
faithful with respect to certain complexity classes below the class P of polynomial time decidable
predicates (we will discuss this later). It also parts from the notation of choice of most computer
scientists working on feasibility.
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In our Ph.D. Dissertation [3] (see, also, [4]) we work with a language based on the operation
of concatenation, following Quine [5] and Smullyan [6]. Our intended (standard) model is the tree
{0, 1}∗ of binary strings. The first-order stringlanguage of the binary tree consists of three constant
symbols ε, 0 and 1, two binary function symbols � (for concatenation, sometimes omitted) and ×,
and a binary relation symbol ⊆ (for initial subwordness). There are fourteen basic open axioms:

x � ε = x x× ε = ε

x � (y � 0) = (x � y) � 0 x× (y � 0) = (x× y) � x

x � (y � 1) = (x � y) � 1 x× (y � 1) = (x× y) � x

x � 0 = y � 0 → x = y x � 1 = y � 1 → x = y

x ⊆ ε ↔ x = ε

x ⊆ y � 0 ↔ x ⊆ y ∨ x = y � 0
x ⊆ y � 1 ↔ x ⊆ y ∨ x = y � 1

x � 0 �= y � 1
x � 0 �= ε

x � 1 �= ε

In the standard model, x×y is the word x concatenated with itself length of y times (the growth
rate of × corresponds exactly to the growth rate of Buss’ smash function #). Subwordness of x
with respect to y, denoted by x ⊆∗ y, is defined by ∃z ⊆ y (z � x ⊆ y). The class of sw.q.-formulae
(“subword quantification formulae”) is the smallest class of formulae containing the atomic formulae
and closed under Boolean operations and subword quantification, i.e., quantification of the form
∀x ⊆∗ t(...) or ∃x ⊆∗ t(...), where t is a term in which the variable x does not occur. These
formulae define in the standard model the so-called class FO of first-order expressible properties:
this notion was introduced by Neil Immerman in [7] and was originally defined in terms of first-order
definability in suitable finite structures with domain {0, 1, · · · , n− 1}. The FO-class is included in
AC0, the class of sets that can be decided by constant depth, polynomial size circuit families (one
should view the class of FO-relations as a rather robust uniform version of AC0). In the same
paper, Immerman also discusses what we call FO-functions. In parallel with the set case, these
functions can also be computed by constant depth, polynomial size circuit families (the so-called
AC0-functions). A more detailed rendering of these notions can be found in [8].

The relation of x being of length less than or equal to the length of y, denoted by x ≤ y, is defined
by 1×x ⊆ 1× y;4 x ≡ y abbreviates x ≤ y∧ y ≤ x. The class of bounded formulae, also named the
class of Σb

∞-formulae, is the smallest class of formulae containing the sw.q.-formulae and closed
under Boolean operations and bounded quantification, i.e., quantification of the form ∀x ≤ t(...)
or ∃x ≤ t(...), where t is a term in which the variable x does not occur. In the standard model
these formulae define exactly the sets of the polynomial hierarchy. Mimicking Buss’ terminology,
we define the Σb

n-formulae (n ≥ 1) as the bounded formulae with the form (BD) above, where A
is sw.q.-formula and t1, . . . , tn are terms of the new language. Not surprisingly, these Σb

n-formulae
define exactly the Σp

n-relations.
The theory Σb

n − NIA (for Notation Induction Axioms) consists of the basic axioms plus the
induction scheme,

(NIA) A(ε) ∧ ∀x (A(x) → A(x0) ∧A(x1)) → ∀xA(x)

where A is a Σb
n-formula, possibly with parameters. This theory is equivalent, in a sense that could

be made precise, to Buss’ theory Sn
2 , and it is partly a matter of taste and habitude the preference

for working within the string setting.
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In the sequel, we will be interested in the theory Th− FO. The axioms of this theory consist
of the fourteen basic open axioms, the scheme of induction on notation (NIA) for sw.q.-formulae,
and a string-building principle:

(SB) ∀u(tally(u) → ∃x ≡ u∀v ⊂ u(bit(x, v) = 1 ↔ A(v)))

where “v ⊂ u” abbreviates “v ⊆ u∧v �= u”, “bit(x, v) = 1” abbreviates “∃w ⊆ x(w ≡ v∧w1 ⊆ x)”,
and A is a sw.q.-formula (possibly with parameters). This is a rather weak theory, but still an
interesting one5. The theory Th− FO is not an arithmetical theory in the usual sense. However,
it is possible to do some arithmetic in Th − FO. More specifically, it is possible to “smoothly”
introduce the successor and the addition functions in Th−FO. We are using the term “smoothly”
in the following sense: it is possible to expand the language of Th − FO with new function
symbols S and + such that the usual recursive defining relations are provable and such that these
new symbols count as primitive when making an analysis of whether a particular formula of the
extended language falls within a pertinent class of formulae (e.g., whether a particular formulae
is a sw.q.-formula). Let us briefly see how arithmetic notions can be introduced in the theory
Th− FO.

The models of Th − FO have a canonical linear ordering <
, which is formally defined by a
sw.q.-formula:

x <
 y := (x ≤ y ∧ x �≡ y) ∨ (x ≡ y ∧ ∃z ⊆ x(z0 ⊆ x ∧ z1 ⊆ y))

In the standard model this yields a ω-like ordering:

0 1 2 3 4 5 6 7 8 9 10 11 · · ·
� � � � � � � � � � � �
ε 0 1 00 01 10 11 000 001 010 011 100 · · ·

Having this correspondence in mind, we introduce arithmetic notions in models of Th − FO.
The graph of the successor function is easily defined by the following sw.q.-formula θ1:

θ1(x, y) := (x = 1 × x ∧ y = 0 × x1) ∨ ∃w ⊆ x∃z ⊆ x(x = w0 � (1 × z) ∧ y = w1 � (0 × z))

Moreover,

(Iθ1) Th− FO � ∀x∃1y θ1(x, y)

(IIθ1) Th− FO � θ1(ε, 0)

(IIIθ1) Th− FO � ∀x∀y(θ1(x0, x1) ∧ (θ1(x, y) → θ(x1, y0)))

The proofs of these three facts are elementary and can be obtained by means of judicious uses
of the axioms. Some basic properties recur in these proofs (and in proofs of similar nature), e.g.:
ε ⊆ x; x ⊆ x; x ⊆ y → x ⊆∗ y; x ⊆∗ y ∧ y ⊆∗ z → x ⊆∗ z; x ⊆∗ y � z → ∃x1 ⊆∗ y ∃x2 ⊆ z (x =
x1 � x2); and x ⊆∗ y × z → ∃x1 ⊆∗ y ∃x2 ⊆ z ∃x3 ⊆ y (x = x1 � (y × x2) � x3). Actually,
all these properties are provable without the use of the string-building principle. (Proofs of the
previous statements were worked out in detail in [3].) The properties (Iθ1), (IIθ1) and (IIIθ1)
permit to “smoothly” introduce in the theory Th − FO a new unary function symbol S (for the
successor function) satisfying the following recursive specifications: S(ε) = 0; S(x0) = x1; and
S(x1) = S(x) � 0. Almost dually, it is also possible to introduce the corresponding predecessor
function: pred(ε) = pred(0) = ε; pred(x0) = pred(x) � 1, for x �= ε; and pred(x1) = x0.
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The introduction of “addition” is not so straightforward. Perhaps the easiest way to introduce
it consists in reducing this operation of addition to the usual addition in binary number notation.
The configuration of a number in binary notation is a non-empty string of zeroes and ones which
does not begin by a zero, with the sole exception of the string 0 itself. The relation β that is
the graph of the order-preserving, no-gap, bijection between {0, 1}∗ and the set of binary number
configurations is sw.q.-definable. In fact:

β(x, y) ↔ (x = ε ∧ y = 0) ∨ (x �= ε ∧ y = 1 � pred(x))

Here is a picture:

ε 0 1 00 01 10 11 000 001 010 011 100 · · ·
� � � � � � � � � � � �
0 1 10 11 100 101 110 111 1000 1001 1010 1011 · · ·

It is not difficult to see that,
Th− FO � ∀x∃1y β(x, y)

Th− FO � ∀y(bin(y) → ∃1x β(x, y))

where bin(y) abbreviates y = 0 ∨ ∃z ⊆∗ y(y = 1z). This permitts to “smoothly” introduce two
unary function symbols βf and βb in the theory Th− FO such that the sentences ∀x(β(x, βf (x)),
∀y(bin(y) → β(βb(y), y)), ∀x(x = βb(βf (x))), and ∀y(bin(y) → y = βf (βb(y))) are provable in
Th − FO. The definition of binary addition can be obtained by a sw.q.-formula with the help of
the ternary carry predicate (the following is a standard construction; see [9]):

carry(x, y, u) := tally(u) ∧ ∃v ⊂ u(bit(x, v) = 1 ∧ bit(y, v) = 1∧

∧∀w ⊂ u(v ⊆ w → bit(x,w) = 1 ∨ bit(y, w) = 1))

Now, if we let sum(x, y, z) be

bin(x)∧ bin(y)∧ bin(z)∧ (∀u ⊂ 1× z(bit(z, u) = 1 ↔ (bit(x, u) = 1∨̇bit(y, u) = 1∨̇carry(x, y, u))))

where ∨̇ stands for the exclusive or, we get the graph of binary addition. Define θ2(x, y, z) by
βb(sum(βf (x), βf (y), βf (z))). It is a matter of careful attention to detail and habitude with the
axioms to show that,

(Iθ2) Th− FO � ∀x∀y∃1z θ2(x, y, z)

(IIθ2) Th− FO � ∀xθ2(x, ε, x)

(IIIθ2) Th− FO � ∀x∀y∀z(θ2(x, y, z) → θ2(x, S(y), S(z)))

(The string-building principle is used to proving the existence part of (Iθ2).) The previous three
properties permit to “smoothly” introduce in the theory Th− FO a new binary function symbol
+ such that x+ ε = x and x+ S(y) = S(x+ y).

The next natural step towards defining arithmetic notions in Th− FO consists in introducing
the multiplication function. Well, at this point we are faced with a stumbling block, since there is
no Σb

1-formula θ3 such that,

(Iθ3) Th− FO � ∀x∀y∃1z θ3(x, y, z)
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(IIθ3) Th− FO � ∀xθ3(x, ε, ε)

(IIIθ3) Th− FO � ∀x∀y∀z(θ3(x, y, z) → θ3(x, S(y), z + x))

The reason for the inexistence of such a formula rests on deep work in circuit complexity theory.
If such a formula existed, then the unique binary function f such that θ3(σ, τ, f(σ, τ)), for all σ,τ
in {0, 1}∗, would be a FO-function (this is a consequence of a theorem in [8] which characterizes
the provably total functions, with Σb

1-graphs, of the theory Th − FO). Hence, a fortiori, f is an
AC0-function, and this easily entails that the usual multiplication function on the setting of binary
number configurations is also an AC0-function. Well, this latter fact contradicts work of M. Furst,
J. Saxe and M. Sipser and, independently, of M. Ajtai.6

The previous discussion explains why Buss’ arithmetic language is inadequate for the formu-
lation of the theory Th − FO, since the representation of sw.q.-relations in Buss’ language uses
the multiplication function pervasively. In short, Buss’ notation is not faithful with respect to
sw.q.-relations.7 This is the main point of the present section.

Annotations

1 The growth rate of the smash function entails that lengths of numbers are closed under multiplication. This
enables the formulation of many standard constructions, in particular of polynomial time computations.

2 The definiton of Σb
n-formula presented here is what Buss calls a strict Σb

n-formula. Buss defines Σb
n-formulae

in a more general way. For this latter definition we have to modify slightly the concept of faithfulness: it
means that every positive (resp., negative) occurrence of a sub-formula of a Σb

n-formula is a Σp
n-relation

(resp., a Πp
n-relation).

3 Buss also remarked that the conclusion of the theorem is provable in Sn
2 (pace a suitable formalization).

4 This appropriation of the traditional symbol for the usual order of the natural numbers has, sometimes, been
criticized. We maintain that it has virtualities from the point of view of computational complexity because
the number of natural numbers less than or equal to n has the same order of growth as the number of elements
of {0, 1}∗ with length less than or equal to the length of a word σ of length |n|.

5 A reason for its interest, apart from being closely related to the FO-class, is its bearing on I∆0 (see [8] for an
explanation of this). The theory Th − FO was also independently defined by Zambella [10]. In his setting,
it is called Σp

0 − comp.
6 In groundbreaking papers [11] and [12], these authors proved that “parity” is not an AC0-predicate. (“Parity”

is the set of elements of {0, 1}∗ with an even number of 1’s.) The fact that “parity” is AC0-reducible to
“multiplication” is explained in [13].

7 Buss’ class of sharply bounded formulae is, in certain aspects, a bizarre class: in effect, all the initial functions
and relations of this class, as well as all its closure operations, are of AC0-character, with the sole exception
of the multiplication function. (For an in-depth study of sharply bounded predicates, consult [14].) A similar
remark applies to the class SR of strictly rudimentary formulae, as introduced by Wilkie and Paris in [15].

2 The unsuitability of a theory

The theory S0
2 consists of the thirty two basic open axioms of Buss plus the PIND axioms for

sharply bounded formulae. Gaisi Takeuti proved in [16] that the sentence “∀x∃y(x = 0∨x = y+1)”
cannot be deduced in S0

2 . In our opinion, this result shows that the theory S0
2 is uninteresting

and artificial. Namely, it shows that S0
2 is too sensible to the basic open axioms and to the exact

language chosen. Let sw.q.−NIA be the theory in the stringlanguage formed by the fourteen open
axioms listed in the previous section and the scheme of induction on notation (NIA) for sw.q.-
formulae (the reader should compare this theory with Th − FO). Is sw.q. − NIA an interesting
theory? Similarly, the answer is no. We show that the function λσ.σ̄, where the string σ̄ is
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obtained from σ by changing zeroes into ones and ones into zeroes, is not provably total in the
theory sw.q.−NIA. More specifically, let “y = x̄” abbreviate the sw.q.-formula,

y ≡ x ∧ ∀x′ ⊆ x∃y′ ⊆ y (y′ ≡ x′ ∧ (x′0 ⊆ x→ y′1 ⊆ y) ∧ (x′1 ⊆ x→ y′0 ⊆ y))

We prove the following result:

Theorem. The theory sw.q.−NIA does not prove ∀x∃y“y = x̄”.

We need to prepare the ground for the proof of this theorem. In what follows we will use at ease
the provability of some simple facts in the theory sw.q. − NIA, e.g., those listed in the previous
section during the discussion of the properties (Iθ1), (IIθ1) and (IIIθ1).

Proposition 1. Let A(x) be a sw.q.-formula, possibly with parameters. Then the theory sw.q.−
NIA proves the following sentence,

A(ε) ∧ ¬A(y) → ∃x ⊆ y (A(x) ∧ ((x0 ⊆ y ∧ ¬A(x0)) ∨ (x1 ⊆ y ∧ ¬A(x1)))).

Proof : Consider the formula B(x) := x ⊆ y → A(x) and assume that A(ε) and ¬A(y). Then
B(ε) and ¬B(y). By the scheme (NIA) for sw.q.-formulae we may conclude that there is x such
that either B(x) ∧ ¬B(x0) or B(x) ∧ ¬B(x1). Such an x does the job. ✷

Given two structures M and N for the stringlanguage, we say that N is a weak end-extension
of M , and write M ⊆w N , if M is a substructure of N and the following implication holds: a ∈M ,
b ∈ N , b ⊆∗ a ⇒ b ∈M .

Proposition 2. Let M ⊆w N . Then the sw.q.-formulae are absolute between M and N , i.e.,
given any sw.q.-formula A(5x), with the free variables as shown, and given 5a in M , we have the
equivalence M |= A(5a) ⇔ N |= A(5a).

Proof : The proof is by a straightforward induction on the complexity of the formulae A. ✷

Corollary. LetM ⊆w N , with N a model of sw.q.−NIA. ThenM is also a model of sw.q.−NIA.

Proof : It is clear that M satisfies the basic axioms, since these are open axioms. The validity
of the induction scheme (NIA) for sw.q.-formulae is a consequence of the reformulation of this
scheme given in proposition 1, and of the absoluteness of sw.q.-formulae. ✷

Let k be a positive integer. We define by induction on n (n ∈ ω) the following (k+1)-predicates:

cl0(y, x1, . . . , xk) := y = 0 ∨ y = 1 ∨ y ⊆∗ x1 ∨ . . . ∨ y ⊆∗ xk

cln+1(y, x1, . . . , xk) := ∃z∃w(cln(z, x1, . . . , xk) ∧ cln(w, x1, . . . , xk) ∧ (y = z � w ∨ y = z × w)).

Lemma.

1. For all n ∈ ω, sw.q.−NIA � ∀5x cln(ε, 5x).

2. If n,m ∈ ω and n ≤ m then sw.q.−NIA � ∀5x∀y(cln(y, 5x) → clm(y, 5x)).

3. For all n ∈ ω, sw.q.−NIA � ∀5x∀y∀z(cln(z, 5x) ∧ y ⊆∗ z → cl3n(y, 5x)).
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Proof : The first part is clear. For the second part, it is enough to show that sw.q. − NIA �
∀5x∀y(cln(y, 5x) → cln+1(y, 5x)). This follows immediately from part 1.

The third part is proved by induction on n. The base case is clear. Assume the conclusion for n.
We reason inside sw.q.−NIA. Fix 5x, y and z and suppose that cln+1(z, 5x) and y ⊆∗ z. Then there
are elements z1 and z2 such that cln(z1, 5x), cln(z2, 5x) and either z = z1 � z2 or z = z1×z2. Firstly,
let us consider the case when z = z1 � z2. Take y1 and y2 with y1 ⊆∗ z1, y2 ⊆ z2, and y = y1 � y2.
By induction hypotheses, we have cl3n(y1, 5x) and cl3n(y2, 5x). Hence cl3n+1(y1 � y2, 5x). With more
reason (see part 2), we have cl3n+3(y, 5x). Lastly, consider the case when z = z1×z2. Take y1, y2 and
y3 such that y1 ⊆∗ z1, y2 ⊆ z2, y3 ⊆ z1, and y = y1 � (z1 × y2) � y3. By induction hypothesis,
we have cl3n(y1, 5x), cl3n(y2, 5x), and cl3n(y3, 5x). Hence, we successively get cl3n+1(z1 × y2, 5x),
cl3n+2(y1 � (z1 × y2), 5x) and, finally, cl3n+3(y1 � (z1 × y2) � y3), 5x). ✷

Given a model M of sw.q.−NIA and 5a a sequence of elements of M , we define clMn (5a) := {b ∈
M : M |= cln(b,5a)} and clM∞(5a) := ∪n∈ωcl

M
n (5a). By the previous lemma, it is clear that clM∞(5a) is

a weak substructure of M and, hence, a model of sw.q.−NIA.

Proposition 3. Suppose that sw.q. − NIA � ∀5x∃yA(5x, y), where A is a sw.q.-formula. Then
there is n ∈ ω such that sw.q.−NIA � ∀5x∃y(cln(y, 5x) ∧A(5x, y)).

Proof : Assume, to obtain a contradiction, that for all n ∈ ω, sw.q. − NIA �� ∀5x∃y(cln(y, 5x) ∧
A(5x, y)). Add to the stringlanguage a new sequence of constant symbols 5c (one for each correspond-
ing variable of 5x). It is easy to see that the theory sw.q.−NIA⋃{∀y(cln(y,5c) → ¬A(5c, y)) : n ∈ ω}
is finitely consistent. Hence, by compactness, this theory has a model M . Let us use the very
same 5c for the interpretation of the constant symbols 5c in M . As we have remarked, clM∞(5c) is
a model of sw.q. − NIA. So, by hypothesis, clM∞(5c) |= ∀5x∃yA(5x, y). Take b ∈ clM∞(5c) such that
clM∞(5c) |= A(5c, b). By absoluteness, M |= A(5c, b). On the other hand, b ∈ clMn (5c) for some n ∈ ω,
i.e., M |= cln(b,5c). This contradicts the definition of M . ✷

Let us introduce some easy combinatorial notions. For a positive integer i, denote by bi the
word 00 . . . 01 consisting of (i+1) initial zeroes followed by 1. We say that a word σ has a k-block,
k ≥ 1, if there is j, j ≥ 1, such that bj � bj+1 � . . . � bj+k−1 ⊆∗ σ.

Lemma. If the word σ1 � σ2 has a 2k-block, then either σ1 or σ2 has a k-block.

Proof : Let β, with β ⊆∗ σ1σ2, be a 2k-block. If β ⊆∗ σ1 or β ⊆∗ σ2, there is nothing to prove.
Otherwise, β = ρ1ρ2 with σ1 = σ′1ρ1 and σ2 = ρ2σ

′
2, for some σ′1, σ

′
2. Consider β′

1 the largest
initial sub-block of β such that ρ1 = β′

1α1 , for some α1, and consider β′
2 the largest final sub-block

of β such that ρ2 = α2β
′
2, for some α2. Clearly, α1α2 is either ε or a 1-block. Hence, if β′

1 is a
i-block and β′

2 is a j-block, we have i+ j ≥ 2k − 1. This implies that either i ≥ k or j ≥ k. ✷

Lemma. If the word σ1 × σ2 has a 4k-block, then σ1 has a k-block.

Proof : Let β, with β ⊆∗ σ1 × σ2, be a 4k-block. We claim that β ⊆∗ σ1σ1σ1. Note that if this
is the case, then the result follows from the previous lemma.

In order for σ1 × σ2 to have a 4k-block, σ1 must have at least two 1’s. So, consider a fixed

subword τ of σ1 of the form 100 . . . 01. If β ⊆∗
j-times

︷ ︸︸ ︷
σ1σ1 . . . σ1, with j > 3, and β �⊆∗ σ1σ1σ1, then

σ1σ1 ⊆∗ β. This implies that τ occurs twice in β, contradicting the form of β. ✷

We are now ready to prove the theorem.
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Proof of the theorem: In order to obtain a contradiction, assume that sw.q.−NIA � ∀x∃y“y =
x̄”. Then, by proposition 3, there is n ∈ ω such that sw.q. − NIA � ∀x∃y(cln(y, x) ∧ “y = x̄”).
In particular, this is true in the standard model {0, 1}∗. For this n consider the word ρ = b̄1 �

b̄2 � . . . � b̄4n . We claim that the 4n-block b1 � b2 � . . . � b4n is not in cl{0,1}∗
n (ρ). This is, of

course, a contradiction.
We actually prove that for any k ∈ ω, if σ ∈ cl{0,1}∗

k (ρ) then σ does not contain 4k-blocks. The
claim follows from the case k = n. We show this by induction on k. If k = 0 then either σ = 0 or
σ = 1 or σ ⊆∗ ρ: in all these cases 001 �⊆∗ σ and, hence, σ does not have 40-blocks. Assume the
result for k and suppose that σ ∈ cl{0,1}∗

k+1 (ρ). Then there are σ1, σ2 ∈ cl{0,1}∗

k (ρ) such that either
σ = σ1 � σ2 or σ = σ1 × σ2. Now, if σ has 4k+1-blocks then, by the previous two lemmas, we can
conclude that either σ1 or σ2 has 4k-blocks, which contradicts the induction hypothesis. ✷

The results of this second section appeared in our Ph.D. Dissertation [3]. An abstract reporting
them was published in The Journal of Symbolic Logic (see [17]). A preliminary result towards prov-
ing the main result of this section was first obtained by Mantzivis. Mantzivis’ result is concerned
with a theory even weaker than sw.q.−NIA, namely the theory of the stringlanguage consisting
of the fourteen basic open axioms together with the scheme of induction on notation (NIA) for
the smallest class of formulae that contains the atomic formulae and it is closed under Boolean
operations and initial subword quantification. Mantzivis showed that the function that associates
to a non-empty word the one obtained by deleting its first bit, is not provably total in this theory.
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