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Abstract

We present a functional interpretation of Peano arithmetic that uses Gödel’s com-
putable functionals and which systematically injects uniformities into the statements
of finite-type arithmetic. As a consequence, some uniform boundedness principles
(not necessarily set-theoretically true) are interpreted while maintaining unmoved
the Π0

2-sentences of arithmetic. We explain why this interpretation is taylored to
yield conservation results.
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1 Introduction

In 1958 [1], Kurt Gödel introduced an interpretation of Peano arithmetic into a
quantifier-free theory of finite-type functionals. Gödel’s interpretation consists
of two steps. First, Peano arithmetic is interpreted into Heyting arithmetic by
a negative translation. Afterwards, Heyting arithmetic is interpreted into the
quantifier-free theory via what is now known as Gödel’s (functional) dialectica
interpretation. Almost ten years later, Joseph Shoenfield defined in his well-
known textbook [2] a direct functional interpretation of Peano arithmetic.
Shoenfield’s interpretation and its variants are specially perspicuous for an
undeviating study of classical theories. A case in point is the work of functional
interpretations of admissible set theories (see [3]).

Both interpretations of Gödel and Shoenfield are based on a transformation of
formulas whose analysis of ∀∃-formulas is given in terms of witnessing function-
als. (As an aside, recent work of Thomas Streicher and Ulrich Kohlenbach in
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[4] shows that Shoenfield’s interpretation can be “factored” into Krivine’s neg-
ative translation [5] and the dialectica interpretation.) By maintaining Gödel’s
functionals but relaxing their witnessing role to that of a mere bound (and,
in the process, introducing some uniformities), a new functional interpreta-
tion, with a novel assigment of formulas – dubbed the bounded functional
interpretation (with hindsight, it should have been called uniform functional
interpretation) – was recently introduced by Paulo Oliva and the present au-
thor in [6]. In common with Gödel’s, this interpretation is also two-barreled.
In this paper we introduce a direct bounded functional interpretation of Peano
arithmetic, in the style of Shoenfield.

The interpretation defined in the sequel is not set-theoretically faithful, in the
sense that it introduces uniformities which collide with set-theoretic truth.
For instance, the axiom of extensionality is refuted. Due to its simplicity,
the interpretation shows very distinctly what are its characteristic principles,
i.e. the principles that we can add to Peano arithmetic and still obtain a
soundness theorem. One of these characteristic principles subsumes the so-
called uniform boundedness principle introduced by Kohlenbach in [7] (and
discussed interestingly in [8] in a wider setting), as well as a Brouwerian FAN
type principle. The role of this characteristic principle is to inject uniformities,
and a simple (but somewhat superficial) way of describing it is to say that it
is a vast higher-order generalization of the bounded collection scheme in the
first-order arithmetic setting.

Classically, weak König’s lemma (WKL) is a consequence of the Brouwerian
FAN principle alluded to above. As an illustration, we give a very straight
proof of Harvey Friedman’s conservation result of the second-order arithmeti-
cal theory WKL0 over the base theory RCA0.

2 Majorizability unvarnished

In the bounded functional interpretation, it is necessary to introduce a notion
of intensional, i.e. rule-governed, majorizability. Except for the intensional bit,
the notion of majorizability in question is Mark Bezem’s notion of strong ma-
jorizability given in [9], a modification of the majorizability notion introduced
by William Howard in [10]. The fact that this notion needs to be governed by
a rule, instead of mere axioms, is crucial in proving the soundness theorem for
the new interpretation. As we will see, without this feature our main theory
below would be inconsistent. In a sense, the rule deactivates the computa-
tional capacity of the majorizability relation with respect to the functional
interpretation.

The language Lω
� is described in detail in sections 2 and 6 of [6]. However, since
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we are in a classical setting, we restrict Lω
� to the logical words ∨, ∀, ¬ and

the bounded quantifier ∀x � t (x does not appear in the term t). The other
logical words are defined classically in the usual manner. Mutatis mutandis
for the existential bounded quantifier. Note the presence of the (intensional)
majorizability binary relation symbols �τ – one for each finite type τ (we usu-
ally omit the type-subscript) – in the bounded quantifiers. The majorizability
relation symbols are governed by the axioms

M1 : x �0 y ↔ x ≤ y
M2 : x �ρ→σ y → ∀u �ρ v(xu �σ yv ∧ yu �σ yv)

Note that we do not have the biconditional above (that would give Bezem’s
extensional notion). In its stead, we have the rule RL�

Abd ∧ u � v → su � tv ∧ tu � tv

Abd → s � t

where s and t are terms of Lω
�, Abd is a bounded formula and u and v are

variables which do not occur free in the conclusion. The only quantifiers in a
bounded formula are the bounded quantifiers, and these are regulated by the
axiom scheme

B∀ : ∀x � tA(x) ↔ ∀x(x � t → A(x)).

Concerning equality, we adopt the minimal treatment described in Anne Troel-
stra’s commentary [11] to Gödel’s seminal dialectica paper, whereby there is
only an equality sign ‘=0’ infixing between terms of type 0. The question of
equality must always be dealt with some care in functional interpretations. In
point of fact, the main theory introduced in the next section refutes the axiom
of extensionality.

Our theory has the usual arithmetical axioms, including the scheme of induc-
tion for all formulas of the language (parameters are permitted). At this point,
we finish our brief presentation of the classical theory PAω

�. In the sequel, we
shall use some simple results provable in it, viz concerning the majorizability
relations. All these results are stated and proved in [6].

A term is t is monotone if t � t. A monotone quantification is a quantification
of the form ∀b(b � b → . . .), abbreviated by ∀̃b (. . .). Note that monotone
quantifications are not bounded quantifications (nor are they vacuous for non-
zero types). In the following, the underlined letters are meant to represent
(possibly empty) tuples of variables. The mixed use of these abbreviations is
self-explanatory.

Definition 1 To each formula A of the language Lω
� we assign formulas (A)U
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and AU so that (A)U is of the form ∀̃b∃̃cAU(b, c), with AU(b, c) a bounded
formula, according to the following clauses:

1. (A)U and AU are simply A, for bounded formulas A.

For the remaining cases, if we have already interpretations for A and B given
by ∀̃b∃̃cAU(b, c) and ∀̃d∃̃eBU(d, e) (respectively) then we define:

2. (A ∨B)U is ∀̃b, d∃̃c, e(AU(b, c) ∨BU(d, e)),
3. (∀xA(x))U is ∀̃a∀̃b∃̃c ∀x � aAU(b, c, x),
4. (¬A)U is ∀̃f ∃̃b ∃̃b′ � b¬AU(b′, fb′),

5. (∀x � tA(x))U is ∀̃b∃̃c ∀x � t AU(b, c, x).

The matrix (¬A)U includes the bounded quantification ‘∃̃b′ � b’ in order to
make the following crucial monotonicity condition hold true:

Lemma 1 For each formula A of the language Lω
�, we have:

PAω
� ` ∀b∀c∀c′ � c(AU(b, c′) → AU(b, c)).

Implications A → B are defined by ¬A∨B. A simple computation shows that
(A → B)U is

∀̃f, d∃̃b, e(∀̃b′ � bAU(b′, fb′) → BU(d, e)).

3 Characteristic principles

There are three principles which play an important role in the interpretation
defined in the previous section. The proper formulation of the first two princi-
ples should be with tuples of variables. To ease readability, we formulate them
with single variables. However, the reader should keep in mind that arguments
pertaining to these principles should comprehend the tuple case. This can be
achieved either by introducing product types in the language or, better still,
by arguing directly (at the cost of slight complications vis a vis the single
variable case).

I. Monotone Bounded Choice mACω
bd:

∀̃b∃̃cAbd(b, c) → ∃̃f ∀̃b∃̃c � fb Abd(b, c),

where Abd is a bounded formula of Lω
�.

II. Bounded Collection Principle bCω:
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∀z � c∃yAbd(y, z) → ∃̃b∀z � c∃y � b Abd(y, z),

where Abd is a bounded formula of Lω
�.

III. Majorizability Axioms MAJω: ∀x∃y(x � y).

It is worth making some brief comments on the second principle. Its contra-
positive permits the conclusion of the existence of an element z (with z � c)
such that ∀y¬Abd(y, z) from the weaker statement that such z’s only exist
locally, in the sense that for each (monotone) b there exists z (with z � c) such
that ∀y� b¬Abd(y, z). We may regard such a z as an ideal element that works
uniformly for each b and whose postulation does not affect (as we will see)
real consequences. (We thank Reinhard Kahle for suggesting this Hilbertian
reading of the soundness theorem below).

The theory PAω
� with the above principles is not set-theoretically sound. For

instance, it refutes the weakest form of extensionality. That is, it proves the
negation of the sentence ∀Φ2∀α1, β1 (∀k0(αk = βk) → Φα = Φβ). In effect,
assume this form of extensionality. In particular, one has

∀Φ �2 12 ∀α, β �1 11∃k (αk = βk → Φα = Φβ),

where 11 := λk0.10 and 12 := λγ1.11. By bCω, one may infer

∃n∀Φ �2 1∀α, y �1 1 (∀k < n(αk = βk) → Φα = Φβ).

Take one such n = n0. Define Φ according to:

γ1 ;Φ

 0 if ∀k ≤ n0 (γk = 0)

1 otherwise

It is clear that for α := λk.0 and β := λk.δn0,k (Kronecker’s delta) one has
∀k < n0 (αk = βk) but Φα 6= Φβ. Since it is easy to show that Φ � 12 and
α, β � 11, we are faced with a contradiction.

Let us write Ext(Φ) for saying that the type 2 functional Φ is extensional,
i.e. ∀α1, β1 (∀k0(αk = βk) → Φα = Φβ). Despite the classical setting, we can
prove the following version of the Brouwerian FAN principle: Every extensional
type 2 functional is uniformly continuous on the Cantor space (see, also, [8]).
In symbols,

∀Φ2(Ext(Φ) → ∃n∀α, β ≤1 1 (∀k ≤ n(αk = βk) → Φα = Φβ)).

The argument is easy. Suppose that Ext(Φ). Then,
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∀α, β �1 1∃k(αk = βk → Φα = Φβ),

As in the previous argument, by bCω there is a natural number n such that
∀α, β �1 1(∀k ≤ n(αk = βk) → Φα = Φβ). Take now arbitrary α, β ≤1 1 and
suppose that ∀k ≤ n(αk = βk). Using the rule RL�, it can be proved that
min(α, 11)�11 and min(β, 11)�11, where the minima are taken pointwise. Note
that α and min(α, 1) (respectively, β and min(β, 1)) are type 1 functionals
which take the same values for each natural number. By the above, we get
Φ(min(α, 1)) = Φ(min(β, 1)). Now, by the extensionality of Φ, we conclude
that Φα = Φ(min(α, 1)) and Φβ = Φ(min(β, 1)). We are done.

4 The soundness theorem

Prima facie, it is not even clear whether the theory PAω
� together with the

three principles above is consistent. As we will see in a forthcoming section,
the “flattened” version of PAω

�+mACω
bd+bCω +MAJω is inconsistent. Notwith-

standing, the soundness theorem below does in fact guarantee the consistency
of the original version (modulo Peano arithmetic). The following theorem is
crucial for the proof of soundness :

Theorem 1 (Howard) For each closed term t of Lω
�, there is a closed term

q of the same type such that PAω
� ` t � q.

Essentially, this theorem appeared in [10]. It was shown for Howard’s “flat-
tened” majorizability relation and a corresponding “flattened” theory (see
Section 6), but his argument goes through in the intensional setting (cf. [6]).
Note that the result only holds for closed terms (the theory PAω

� does not
prove MAJω).

Theorem 2 (Soundness) Suppose that

PAω
� + mACω

bd + bCω + MAJω ` A(z),

where A is an arbitrary formula of Lω
� (with free variables as shown). Then

there are closed monotone terms t of appropriate types such that

PAω
� ` ∀̃a∀z � a∀̃b AU(b, t(a, b), z).

Note. The reader might have been expecting

PAω
� ` ∀̃a∀z � a∀̃b∃y � t(a, b) AU(b, y, z)

at this point. However, note that AU is monotone in the second variable (cf.
Lemma 1). We used the notation t(a, b) instead of the official (t a)b. We also
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use t a b in the sequel.

Proof. The proof proceeds by induction on the length of the derivation of
A(z). We rely on the complete axiomatization of classical logic described by
Shoenfield in sections 2.6 and 8.3 of his textbook [2]. In the following, we
discuss a few cases only. To ease readability, we use single variables instead of
tuples and we usually omit the free variabes z.

Let us start with the propositional axiom ¬A ∨ A. Let (A)U be ∀̃b∃̃cAU(b, c).
A simple computation shows that (¬A ∨ A)U is

∀̃f, b∃̃a, c (∃̃a′ � a¬AU(a′, fa′) ∨ AU(b, c)).

Therefore, we need to find closed monotone terms t and q such that

PAω
� ` ∀̃f, b (∃̃a′ � tbf¬AU(a′, fa′) ∨ AU(b, qbf)).

It is clear that we may put t := λb, f.b and q := λb, f.fb.

We now consider the contraction rule which permits the inference A from A∨A.
This seemingly innocuous principle is always a delicate matter for functional
interpretations (cf. the discussions in [11] and in [12]). In the present case,
the interpretation of this principle is obtained by a slight of hand using the
properties of the majorizabilty relation (and requiring no characteristic terms
for bounded formulas). Again, assume that (A)U is ∀̃b∃̃cAU(b, c). By induction
hypothesis there are closed monotone terms t and q such that

PAω
� ` ∀̃b, d(AU(b, tbd) ∨ AU(d, qbd)).

We must find a closed monotone term r such that PAω
� ` ∀̃bAU(b, rb). Well,

in the theory PAω
� it is possible to define, for each type τ , a monotone closed

term maxτ of type τ → (τ → τ) such that

PAω
� ` x �τ x ∧ y �τ y → x � maxτ (x, y) ∧ x � maxτ (x, y).

This is explained in [6]. Therefore, using the monotonicity of AU in the second
variable, we readily see that the term r := λb. max(tbb, qbb) does the job.

Let us now consider the Cut Rule that allows the inference of B ∨ C from
A ∨ B and ¬A ∨ C. Assume that (A)U is ∀̃b∃̃cAU(b, c), (B)U is ∀̃d∃̃eBU(d, e)
and (C)U is ∀̃u∃̃vCU(u, v). By induction hypothesis there are closed monotone
terms t, q, r and s such that

(1) PAω
� ` ∀̃b, d(AU(b, tbd) ∨BU(d, qbd)) and

(2) PAω
� ` ∀̃f, u(∃̃b � rfu¬AU(b, fb) ∨ CU(u, sfu)).
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We must find closed monotone terms k and l such that

PAω
� ` ∀̃d, u(BU(d, kdu) ∨ CU(u, ldu)).

Let us put k := λd, u.q(r(λb.tbd, u), d) and l := λd, u.s(λb.tbd, u). We now
check that these closed monotone terms do the job. We reason inside PAω

�. Fix

monotone d and u. By (2) above, either ∃̃b � rf0u¬AU(b, f0b) or CU(u, sf0u),
where f0 abbreviates λb.tbd. If the latter case holds, we are done. Otherwise,
there is a monotone b with b � rf0u and ¬AU(b, f0b), i.e. ¬AU(b, tbd). By
(1) above, we get BU(d, qbd) and hence, by monotonicity, BU(d, q(rf0u, d)).
Therefore, BU(d, kdu) and we are done.

Let us now consider the substitution axioms ∀xA(x) → A(t), where t is a term
free for x in A. Assume that (A(x))U is ∀̃b∃̃cAU(b, c, x). A simple computation
shows that we must find closed monotone terms r, s and l such that

PAω
� ` ∀̃f, b(∀̃a � rfb∀̃b′ � sfb∀̃x � aAU(b′, fab′, x) → AU(b, lfb, t)).

By Howard’s majorizability Theorem 1, take a closed monotone term q such
that PAω

� ` t � q (see the comment ahead). Now, put r := λf, b.q, s := λf, b.b
and l := λf, b.fqb. It is clear that these terms do the job. Let us comment
briefly on the case in which parameters (free variables) z occur, e.g. t is of the
form t[z]. In this case, we apply Howard’s theorem to the closed term λz.t[z].
Since in the statement of the soundness theorem we only have to consider
those z below a certain given monotone element, everything goes fine.

We finish the study of the logical reasoning by considering the ∀-introduction
rule that infers ∀xA∨B from A∨B, provided that x is not free in B. Assume
that (A(x))U is as in the previous case and (B)U is ∀̃d∃̃eBU(d, e). By induction
hypothesis, there are closed monotone terms t and q such that

PAω
� ` ∀̃a, b, d∀x � a(AU(b, tabd, x) ∨BU(d, qabd)).

We obviously get PAω
� ` ∀̃a, b, d(∀x � aAU(b, tabd, x) ∨ BU(d, qabd)). But this

is what we want.

The axioms regarding combinators, the axioms M1 and M2 and the equality
axioms for =0 have trivial interpretations, since they are universal. The rule
RL� also poses no difficulty (see [6]). At this juncture, let us observe that
the soundness theorem wouldn’t go through if instead of the rule one would
have the axioms ∀v∀u �ρ v(xu �σ yv ∧ yu �σ yv) → x �ρ→σ y. The bounded
functional interpretation would ask for closed monotone terms t such that the
theory PAω

� proves

∀̃a, b, c∀x�a∀y�b∀v�c (∀v�tabc ∀u�ρv (xu�σ yv∧yu�σ yv) → x�ρ→σ y),
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and such terms are simply not available (in order to conclude x � y, the value
v cannot be bounded). Such an impossibility can be argued directly, but it is
also a consequence of the inconsistency of the “flattened” theory discussed in
Section 6 below.

The axioms B∀ are easily dealt with, specially if we see them as abbreviations
of two corresponding conditionals. The scheme of induction is better analysed
via the induction rule. Of course, the recursors are needed here (this is the
only place where they are needed) and the analysis poses no difficulty (even
though one has to be careful with ensuring the monotonicity of terms).

Finally, the characteristic principles trivialize under the interpretation, and the
witness terms are readily forthcoming. For instance, after some computations,
the interpretation of the bounded collection principle bCω asks for a closed
monotone term t such that

∀̃a, b∀c � a(∀z � c∃y � bAbd(y, z) → ∀z � c∃y � tbaAbd(y, z)),

and t := λa, b.b obviously works. Similarly, the majorizability axioms MAJω

ask for a closed term t such that PAω
� ` ∀̃a∀x � a(x � ta). The analysis of

monotone bounded choice mACω
bd is also straightforward. 2

A particular case of the above theorem section is the important:

Corollary 1 If PAω
� + mACω

bd + bCω
bd + MAJω ` ∀x∃yAbd(x, y), where Abd

is a bounded formula with its free variables as shown, then one already has
PAω

� ` ∀a∀x � a∃yAbd(x, y).

This corollary can be refined in an interesting way. As it is well-known, Georg
Kreisel has often remarked that the use of true universal lemmata in the proof
of ∀∃-sentences does not affect the extraction of bounds. Within the framework
of Gödel’s dialectica interpretation, this can be readily seen by observing that
the dialectica interpretation of a universal sentence is the universal sentence
itself. We can even disregard whether the lemmata are true provided that we
accept the very same lemmata in the verification of the bounds for the ∀∃-
consequences. Kohlenbach generalized Kreisel’s observation by considering a
wider class of sentences. In his framework of the monotone functional interpre-
tation (see [13]), the verification of the bounds of the ∀∃-consequences takes
place using slightly stronger lemmata than the original ones (nevertheless, the
stronger lemmata are true if the original lemmata are: this is of importance
for the applications of the monotone functional interpretation).

We may formulate a similar observation in our setting. In the above soundness
theorem, it is clear that we can substitute (both in the hypothesis and the
thesis) the theory PAω

� by the stronger PAω
� + ∆, where ∆ is constituted by

universal closures of bounded formulas. In particular, the use of lemmata of
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this form does not affect the extraction of bounds. This can be generalized
to a wider class of sentences, with the added twist that the verification takes
place using slightly weaker sentences (see also Section 7.1 of [6]):

Corollary 2 Let ∆ be a set of sentences of the form ∀̃b∃u � rb∀vBbd(v, u, b),
with r a (closed) term and Bbd a bounded formula. If

PAω
� + mACω

bd + bCω
bd + MAJω + ∆ ` ∀x∃yAbd(x, y),

where Abd is a bounded formula with its free variables as shown, then one
already has PAω

� + ∆w ` ∀a∀x � a∃yAbd(x, y), where ∆w is the weakening of

∆ consisting of the sentences of the form ∀̃b, c∃u � rb∀v � cBbd(v, u, b), each
one corresponding to a sentence of ∆.

Proof. Note that the sentences in ∆ are consequences of ∆w together with
the bounded collection principle. Observe now that the sentences in ∆w are
universal sentences with bounded matrices. 2

Let us advance a speculative note regarding the above issue. Mathematicians
are very liberal (in the sense of not caring) in their use of induction (and
comprehension). They are oblivious to the complexity of the statements they
are inducting over. Logicians, on the other hand, are very sensitive to issues
of definability and know that induction (together with comprehension) is the
main reason for the advent of fast growing bounds. Nevertheless, as a matter of
common mathematical experience, really fast growing functions almost never
show up in ordinary mathematics. This is a puzzling phenomenon. I want to
point that certain forms of induction are tame in this respect, namely induction
for bounded formulas. In these cases, induction takes the form Abd(0)∧ ∀n <
m(Abd(n) → Abd(n + 1)) → Abd(m), with Abd a bounded formula. As we saw
above, statements like this are dealt by our interpretation effortlessly, with no
need of recursors. NB after “flattening” (see Section 6), bounded formulas may
have very high logical complexity. To what extent can inductions in ordinary
mathematics be put in this form? The use of tame forms of induction is a
particular case of using lemmata which have trivial interpretations (and which
are true after “flattening”). Can lemmata of this kind formulate statements
which have mathematically interesting consequences? (In a sense, the answer
to this question is a trivial ‘yes’ because corresponding statements considered
by Kohlenbach in his work can be dealt by lemmata of this kind. The question
is really meant for mathematical statements beyond those.)

For other comments concerning our interpretation, including its relation to
the Gödel-Shoenfield interpretation and Kohlenbach’s monotone functional
interpretation, see our recent [14].
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5 The characterization theorem

The characterization theorem shows that a formula A and its uniformization
AU are equivalent provided that we are allowed to use certain principles. A
conspicuous difference between Shoenfield’s interpretation and the present in-
terpretation is that the principles allowed for the former – namely, the axiom
of choice for quantifier-free matrices (cf. [15]) – have an unproblematic inter-
pretation and are set-theoretically correct.

Theorem 3 (Characterization) Let A be an arbitrary formula of Lω
�. Then,

PAω
� + mACω

bd + bCω + MAJω ` A ↔ (A)U.

Proof. The proof is by induction on the complexity of A. Let us discuss the
case of negation. Suppose (A)U is ∀̃b∃̃cAU(b, c). By mACω

bd, the latter formula
is equivalent to ∃̃f ∀̃b∃̃c � fb AU(b, c). By monotonicity, this is equivalent to
∃̃f ∀̃bAU(b, fb) and, hence, to ∃̃f ∀̃b∀b′�bAU(b′, fb′). Therefore, ¬(A)U is equiv-
alent to (¬A)U. By induction hypothesis, the former is equivalent to ¬A, and
we are done for this case. The equivalence concerning the case of the bounded
universal quantifier uses the principle of bounded collection bCω. This prin-
ciple, as well as MAJω, is needed for the equivalence concerning the plain
universal quantifier. The case of the disjunction sign is straightforward. 2

It is not apparent what is accomplished by showing the equivalence between
a formula A and its uniformization (A)U within the intensional theory PAω

� +
mACω

bd + bCω + MAJω. The problem lies with the status and interpretation of
this theory (see the next section). Nevertheless, the Characterization Theorem
has the following theoretical consequence: It ensures that we are not missing
any principles besides mACω

bd, bCω and MAJω in our statement of the soundness
theorem. To see this, suppose that we could state the soundness theorem with
a further principle P. Since P is a consequence of itself, soundness would
give the existence of a closed monotone term t such that PAω

� ` ∀̃b PU(b, tb)
and, therefore, PAω

� ` (P)U. By the Characterization Theorem above, we get
PAω

�+mACω
bd+bCω+MAJω ` P. In conclusion: P would be already superfluous.

Both in the Shoenfield interpretation and in the present interpretation, the
treatment of negation is responsible for the raising of types. Negations, and
specially iterated negations, have the effect of raising the types and making
the translation somewhat opaque. As Georg Kreisel commented in a related
context: “those iterated [negations] make my head spin” (cf. p. 147 of [16];
Kreisel actually wrote ‘implications’). This is in general unavoidable, but not
so in the case of conjuntion. If we translate a conjunction A∧B in terms of our
primitive logical words, we get ¬(¬A ∨ ¬B): three negations appear, two of
which nested. However, in the presence of PAω

�+mACω
bd+bCω+MAJω, (A∧B)U

is equivalent to A∧B and, therefore, to (A)U ∧ (B)U. The latter is classically
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equivalent to ∀̃b, d∃̃c, e (AU(b, c) ∧ BU(d, e)), given that (A)U is ∀̃b∃̃cAU(b, c)
and (B)U is ∀̃d∃̃eBU(d, e). Indeed, we could have started with the conjunction
sign as primitive and define (A ∧ B)U by ∀̃b, d∃̃c, e (AU(b, c) ∧ BU(d, e)): the
soundness theorem would still hold.

6 Flattening

The theory PAω
≤∗ is Peano arithmetic in finite-types (with the minimal treat-

ment of equality referred to above) formulated in the usual language of arith-
metic extended by primitive majorizability symbols ≤∗

τ (one for each type
τ) and the associated bounded quantifiers. We call this language Lω

≤∗ . The
following axioms (Bezem’s majorizability relations) govern these symbols:

x ≤∗
0 y ↔ x ≤ y

x ≤∗
ρ→σ y ↔ ∀u ≤∗

ρ v(xu ≤∗
σ yv ∧ yu ≤∗

σ yv)

(note the biconditional above) and the axioms of the form ∀x ≤∗ t A(x) ↔
∀x(x ≤∗ t → A(x)). Of course, PAω

≤∗ is a straightforward extension by defini-
tions of plain PAω. The former formulation is considered only for convenience.

The next result is clear:

Lemma 2 (Flattening) Suppose that PAω
� ` A, where A is a sentence of the

language Lω
�. Then PAω

≤∗ ` A∗, where A∗ is the sentence of Lω
≤∗ obtained from

A by replacing throughout the binary symbols �τ by ≤∗
τ .

This simple lemma provides the passageway from the intensional theories to
PAω

≤∗ and, therefore, to the set-theoretical world. As a typical illustration,
suppose that the intensional theory PAω

� + mACω
bd + bCω + MAJω proves a Π0

2-
sentence of first-order arithmetic. By the corollary of the soundness theorem,
this sentence is provable in PAω

� and, by flattening, in PAω
≤∗ . As a matter

of fact, the sentence is even provable in first-order Peano arithmetic because
PAω

≤∗ has a suitable interpretation in it (there is an internal coding of the finite-
type functionals within first-order Peano arithmetic: the hereditarily recursive
operations – cf. [17]).

In particular, the above argument shows that the theory PAω
� + mACω

bd +
bCω + MAJω is consistent (relative to first-order Peano arithmetic). This is
a syntactic consistency argument, and one wonders whether one can find a
veridical interpretation of the theory PAω

�+mACω
bd+bCω+MAJω. This seems to

be a delicate task because the “flattened” version of this theory is inconsistent.
Let us show that the theory PAω

≤∗ together with the following “flattening” of
a particular case of bCω:

12



∀γ ≤1 1∃n0Abd(n, z) → ∃m∀γ ≤1 1∃n ≤0 mAbd(n, z),

is already inconsistent (in the above, Abd is a bounded formula in the flattened
sense, i.e. it is of the form A∗ for a bounded formula A of the language Lω

�).
By classical logic, ∀γ ≤1 1∃n(¬γ ≤1 01 → γn 6= 0), where 01 := λk0.00. Since
¬γ ≤1 01 is a bounded formula in the flattened sense, we may infer by the
above form of collection that there is a natural number m such that

∀γ ≤1 1(∃n(γn 6= 0) → ∃n ≤ m(γn 6= 0)).

Obviously, this can be refuted.

7 The conservativity of weak König’s lemma

The Shoenfield-like bounded functional interpretation provides a very perspic-
uos proof of Friedman’s Π0

2-conservation result of the theory WKL0 over RCA0

(see [18] for the terminology and the result). The proper setting for discussing
this result is not the theory PAω

� but rather its subtheory PRAω
�. The latter

differs from the former in that it only allows the recursor R0 of type 0 – re-
sulting in the finite-type functionals in the sense of Kleene (cf. section 5.1 and
footnote 10 of [12]) – and restricting the scheme of induction

Aqf(0) ∧ ∀n0(Aqf(n) → Aqf(Sn)) → ∀nAqf(n)

to quantifier-free formulas Aqf (possibly with parameters of arbitrary type)
in which the new predicate symbols � do not occur. It is clear that one can
formulate and prove a soundness theorem for PRAω

� as in Section 4. Mutatis
mutandis for the ensuing corollaries.

The second-order language of arithmetic can be embedded in Lω
� by letting

the first-order variables run over type 0 arguments, letting the second-order
variables run over type 1 variables α such that α �1 1, and by interpreting
n ∈ α by αn = 0. Under this embedding, we claim that WKL0 is a subtheory of
PRAω

� +mACω
bd + bCω +MAJω. We need to check that the latter theory proves

induction for Σ0
1-formulas, recursive comprehension and weak König’s lemma.

It is folklore (in a slightly different setting) that the first two principles follow
from PRAω

� together with the numerical axiom of choice for quantifier-free
matrices, i.e.

∀n0∃m0Aqf(n, m) → ∃α1∀nAqf(n, αn),

where Aqf is quantifier-free. Note that this form of choice is an immediate
consequence of mACω

bd.
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It remains to prove weak König’s lemma, i.e.

∀T �1 1(Tree∞(T ) → ∃α �1 1∀k0 T (αk) = 0),

where αk denotes the number-code of the binary sequence 〈α0, . . . , α(k − 1)〉
and Tree∞(T ) abbreviates the conjunction of

∀s0(T (s) = 0 → Seq2(s)) ∧ ∀s, r(T (r) = 0 ∧ s � r → T (s) = 0)

with the infinity clause ∀n0∃s0(T (s) = 0 ∧ |s| = n). We are using standard
notation: Seq2(s) expresses that s is the number-code of a binary sequence,
s � r says that the binary sequence given by s is an initial segment of the
binary sequence given by r, and |s| is the length of the binary sequence given
by s.

Assume Tree∞(T ). By the infinity clause and the fact that T is a tree, we
may conclude that ∀n0∃α �1 1∀k ≤ n T (αk) = 0. The reason is simple: given
(the code for) a binary sequence s of length n+1, the type 1 function α which
prolongs s by zeros satisfies α �1 1. Now, using the contrapositive of bCω, we
get ∃α �1 1∀k0 T (αk) = 0. Q.E.D.

We just need the punch line to prove Friedman’s conservation result. Suppose
that WKL0 proves a Π0

2-sentence φ. Then, PRAω
�+mACω

bd+bCω+MAJω ` φ. By
the corollary to the soundness theorem, PRAω

� ` φ. Therefore, by flattening,
PRAω

≤∗ ` φ. In fact, RCA0 ` φ because there is a suitable internal coding of the
finite-type functionals in the sense of Kleene in first-order Peano arithmetic
with induction restricted to Σ0

1-formulas (this is a watered down version of the
hereditarily recursive operations). Of course, this restricted version of Peano
arithmetic is a subtheory of RCA0.
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