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A simple proof of Parsons’ theorem

Fernando Ferreira

Abstract Let IΣ1 be the fragment of elementary Peano Arithmetic in
which induction is restricted to Σ1-formulas. More than three decades
ago, Charles Parsons showed that the provably total functions of IΣ1 are
exactly the primitive recursive functions. In this paper, we observe that
Parsons’ result is a consequence of Herbrand’s theorem concerning the
∃∀∃-consequences of universal theories. We give a self-contained proof
requiring only basic knowledge of mathematical logic.

1 Introduction

Primitive recursive arithmetic, or Skolem arithmetic, was invented in 1923 by
the Norwegian mathematician Thoralf Skolem. It presents a way of develop-
ing arithmetic in a quantifier-free calculus in which theorems are stated by
free-variable formulas (asserting, in effect, Π1-sentences of arithmetic). The
work of Skolem [Sko23] was given ample attention by David Hilbert and Paul
Bernays in [HB34], where they took up the task of formalizing it in a propo-
sitional calculus of equations. A few year later, independently of each other,
Haskell Curry [Cur41] and Reuben Goodstein [Goo45] carried the work of
Skolem a step further, showing how to develop primitive recursive arithmetic
in a “logic-free” calculus based solely on equations.

The interest of Hilbert and Bernays in primitive recursive arithmetic
stemmed from their conviction that the arguments carried in it correspond to
the point of view of the “evident, finitistic theory of numbers” (anschaulichen,
finiten Zahlentheorie, p. 286 of [HB34] – in italics in the original).1 Hilbert’s
foundational program aimed at reducing infinitistic, set-theoretic mathemat-
ics, to finitism. As explained by Hilbert (e.g., [Hil25]), the reduction was
to be accomplished by means of finitistic proofs of conservation results for
Π1-sentences or, equivalently, by means of finitistic consistency proofs.2 It
is well-known that Gödel’s second incompleteness theorem refuted Hilbert’s
original foundational program.

Printed September 11, 2003
2001 Mathematics Subject Classification: Primary, 03F30

c©2003 University of Notre Dame

1



2 Fernando Ferreira

Hilbert’s programmatic ideas didn’t die with Gödel’s theorem. Rather,
they were reformulated in the light of Gödel’s results. Beweistheorie, the
mathematical discipline that Hilbert invented to carry out finitistic consis-
tency proofs, eventually redirected its aims and broadened its methods (the
reader can find a clear and accessible description of this change of direction, as
well as more specialized references to this topic, in Feferman’s lecture [Fef00]).
Somewhat surprisingly, Hilbert’s original program resurfaced after a torpor of
more than fifty years. It has been studied in detail in the form of the following
question: What parts of mathematics can be reduced to finitism in Hilbert’s
original sense? In other words: Gödel showed that Hilbert’s original program
is not feasible in its entirety, but it remains a matter of investigation what
partial realizations of Hilbert’s program may still be vindicated. This line of
research was forcefully articulated by Stephen Simpson in [Sim88], and can be
viewed as a sub-program of Simpson and Harvey Friedman’s wider program
of Reverse Mathematics (see [Sim99]).

It is against this background that it is important to study formal systems of
arithmetic that are (finitistically) conservative over primitive recursive arith-
metic. Plainly, the parts of mathematics able to be carried out in these
systems constitute partial realizations of Hilbert’s original program. Charles
Parsons’ conservation theorem – independently proved by Grigori Mints and
Gaisi Takeuti – is an important and central result of this sort.

A modern exposition of primitive recursive arithmetic can be found in
section 2.1 of the textbook of Anne Troelstra and Dirk van Dalen [vDT88].
Their presentation is of a piece with the original presentations of Skolem and
Hilbert/Bernays, in that it is framed in a quantifier-free calculus. Never-
theless, we opt for a framework based on a first-order language with equal-
ity, as expounded in section IX.3 of Simpson’s book [Sim99]. In the sequel,
PRA is such system: It is a first-order universal theory (i.e., axiomatized by
purely universal formulas), with a function symbol for each (description of
a) primitive recursive function, and in which the principle of induction for
quantifier-free formulas holds. By Herbrand’s theorem, PRA is conservative
over quantifier-free Skolem arithmetic (a result which, by itself, constitutes a
conservation result in the sense described above – see the next section). The
theory IΣ1 is the fragment of elementary Peano arithmetic in which induction
is restricted to Σ1-formulas. It is well known that the primitive recursive func-
tions can be suitably introduced in this theory. Thus, by a harmless abuse
of language, PRA is a subtheory of IΣ1. Charles Parsons’ result of [Par70],
[Par71] and [Par72] can be formulated as follows (note that it even applies to
Π2-consequences):

Theorem 1.1 Any Π2-consequence of IΣ1 is also a consequence of PRA.

Parsons’ proof uses a variant of Gödel’s functional interpretation.3 The proofs
of Grigori Mints and Gaisi Takeuti use quite different ideas, namely the no-
counterexample interpretation and a Gentzen-style assignment of ordinals to
proofs, respectively.4 A dozen or so years ago, Wilfried Sieg [Sie91] gave a very
perspicuous proof of Parsons’ theorem by systematically applying Herbrand’s
theorem for ∃-consequences of universal theories at the induction inferences of
a suitable normalized proof.5 Very recently, Jeremy Avigad [Avi02] provided
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a very elegant model-theoretic analogue of Sieg’s proof. In his book [Sim99],
Simpson gives a model-theoretic proof of Parsons’ theorem based on the notion
of ‘semiregular cut’, a notion due to Laurie Kirby and Jeff Paris in [KP77].
Simpson attributes to these two authors the idea of the proof.

In the present paper, we observe that Parsons’ result is a simple conse-
quence of Herbrand’s theorem concerning the ∃∀∃-consequences of universal
theories. Our proof can be followed with only basic knowledge of mathemat-
ical logic. It also readily applies to similar situations, e.g., to show that the
polytime computable functions witness the ∀Σb

1-consequences of Buss’ theory
S1

2 (as in [Bus85]).

2 Herbrand’s theorem

Herbrand’s theorem characterizes first-order validities in terms of suitable
tautologies. In the sequel, we need a form of Herbrand’s theorem for ∃∀∃-
consequences of universal theories.6 The particular form in question has a
quite elegant statement, and can be proved by a very simple compactness
argument due to Jan Kraj́ıček, Pavel Pudlák and Gaisi Takeuti in [KPT91].
Their argument was given in the somewhat arcane setting of bounded arith-
metic. It is however a general argument, and merits to be more widely known.
We include their argument below (making our exposition self-contained).

Theorem 2.1 Let U be a universal theory in the first-order language L.
(1) Suppose ∃xϕ(x, u) is a consequence of U, where ϕ is a quantifier-free

formula with its variables as shown. Then there are terms t1(u), t2(u),
. . . , tk(u) of L (with at most the variable u) such that

U |= ϕ(t1(u), u) ∨ ϕ(t2(u), u) ∨ . . . ∨ ϕ(tk(u), u).
(2) Suppose ∃x∀yϕ(x, y, u) is a consequence of U, where ϕ is an existential

formula, with its free variables as shown. Then there are terms t1(u),
t2(u, y1), . . . , tk(u, y1, . . . , yk−1) of L (with its variables among the
ones shown) such that

U |= ϕ(t1(u), y1, u)∨ϕ(t2(u, y1), y2, u)∨. . .∨ϕ(tk(u, y1, . . . , yk−1), yk, u).

Proof Note that (1) is a particular case of (2): just insert two dummy quan-
tifiers and substitute the ys by the variable u in the terms. Alternatively, one
can prove (1) directly by a compactness argument. We will not do this, since
the same proof idea (albeit more involved) appears in the proof of (2) below.

Assume that no disjunction as in (2) is a consequence of the theory U.
Let v0, v1, . . . be the list of the formal variables of L, and fix t1, t2, t3, . . .
a enumeration of all the terms of the language such that the variables of
tj(v0, v1, . . . , vj−1) occur among v0, v1, . . . , vj−1.

Consider the set of sentences U together with

{¬ϕ(t1(c), d1, c),¬ϕ(t2(c, d1), d2, c), . . . ,¬ϕ(tj(c, d1, d2, . . . , dj−1), dj , c), . . .},
where c, d1, d2, . . . , dj , dj+1, . . . are new constants. It follows from our assump-
tion that this set is finitely satisfiable. By compactness, it has a model M.
Let us consider the following subset of the domain of M,

{t1(c), t2(c, d1), . . . , tj(c, d1, d2, . . . , dj−1), . . .},
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where we are identifying the terms with their interpretations in M. Note that
all elements c, d1, d2, . . . are members of the above subset because the variables
vj appear in the enumeration of terms. It is also clear that the above subset
defines a substructure M∗ of M. Using the fact that U is a universal theory,
M∗ is a model of U. But:

M∗ |= ∀x∃y¬ϕ(x, y, c).

In fact, for x = tj(c, d1, . . . , dj−1) take y = dj and use the fact that ¬ϕ is a
universal formula and, therefore, downward absolute betweenM andM∗. �

We have restricted the statement of the theorem to single variables u, x
and y in order to make the proof more readable. It is clear, however, that
the theorem holds for several variables u := u1, . . . , ui, x := x1, . . . , xj

and y := y1, . . . , yr . In this case, we must consider appropriate terms
t1 := t11, . . . , t

j
1; . . . ; tk = t1k, . . . , t

j
k. One should also point out that part (1) of

the theorem simplifies if the universal theory U admits definition by cases,7

as it is the case with PRA. In this case, we may take k = 1. Note, however,
that no such simplification is forthcoming for part (2) of the theorem!

The above theorem (in general, Herbrand’s theorem for prenex formulas)
can also proved through the analysis of a suitable complete proof system.
The theorem is a simple consequence of Gentzen’s “verschärfter Hauptsatz,”
known in English as Gentzen’s midsequent theorem (see [TS00] for this route).
It can also be proved using Gentzen’s plain Hauptsatz, as Buss does in [Bus95].
Herbrand’s own method appears in his doctoral dissertation [Her30]. The
reader can find a partial translation into English of Herbrand’s thesis in the
volume [vHe67], together with commentaries and corrections of Herbrand’s
proof. Both analyses (à la Herbrand or à la Gentzen) automatically entail
that a quantifier-free first-order consequence of a universal theory is a quasi-
tautological consequence8 of a finite number of substitution instances of its
axioms. When applied to the theory PRA, this additional feature explains
why PRA is conservative over quantifier-free Skolem arithmetic, as observed
in the previous section.

However, one need not lay down and analyze a complete proof system in
order to obtain the extra information above. Plain semantic considerations
suffice. Here is why. First, we may work with pure first-order logic (no equal-
ity present) and, in tandem, with tautological (vs. quasi-tautological) conse-
quences, since the equality axioms may be taken to be universal sentences.
Secondly, it is easy to argue semantically that a pure quantifier-free first-order
validity must be a tautology (where the propositional letters are the atomic
formulas). After these preliminaries, suppose that U is a (pure) universal
theory, and that U |= ϕ(u), where ϕ(u) is a quantifier-free formula with its
variables as shown. By compactness, ϕ(u) is a consequence of finitely many
axioms of U. Without loss of generality, we may suppose that ∀xψ(x) |= ϕ(u),
for a single axiom ‘∀xψ(x)’ of U. Therefore, the sentence ∀u∃x(ψ(x) → ϕ(u))
is a first-order validity. By Herbrand’s theorem (1), applied to the empty
theory, there are terms t1(u), . . . , tk(u) such that the implication

ψ(t1(u)) ∧ . . . ∧ ψ(tk(u)) → ϕ(u)
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is a first-order validity and, hence, a tautology. In short, ϕ(u) is a tautological
consequence of finitely many substitutions instances of axioms of U.9

3 A proof of Parsons’ result

We are now ready to prove Parsons’ theorem. Suppose that the Π2-sentence
∀u∃vθ(u, v) is a consequence of IΣ1, where θ is an open formula (in the lan-
guage of PRA). By compactness, the given Π2-sentence is a consequence
of finitely many instances of the Σ1-induction scheme. It is not difficult to
see that these finitely many instances can be subsumed by a single instance.
Therefore:

PRA |= Indϕ → ∀u∃vθ(u, v),
where Indϕ abbreviates the sentence

∀c∀z(ϕ(c, 0) ∧ ∀x(ϕ(c, x) → ϕ(c, x+ 1)) → ϕ(c, z))

for a certain Σ1-formula ϕ(c, x) := ∃y ψ(c, x, y), ψ quantifier-free (it is all right
to consider only a single parameter c because PRA has a pairing function).

We now put the sentence Indϕ → ∀u∃vθ(u, v) in prenex form and obtain,

(∗) PRA |= ∃v, c, z, y0∀x, y, w∃y′(θ(u, v) ∨ χ(c, z, y0, x, y, w, y′)),

where χ(c, z, y0, x, y, w, y′) is the quantifier-free formula

ψ(c, 0, y0) ∧ (ψ(c, x, y) → ψ(c, x+ 1, y′)) ∧ ¬ψ(c, z, w).

Lemma 3.1 Let t(p), s(p), r(p) and q(p, x, y, w) be terms of the language of
PRA, with the variables as shown. Then,

PRA |= ∀p∃x, y, w ¬χ(t(p), s(p), r(p), x, y, w, q(p, x, y, w)).

Proof We reason inside PRA. In order to get a contradiction, suppose that
there is p such that ∀x, y, w χ(t(p), s(p), r(p), x, y, w, q(p, x, y, w)). We get

(1) ψ(t(p), 0, r(p));
(2) ∀x, y, w (ψ(t(p), x, y) → ψ(t(p), x+ 1, q(p, x, y, w))); and
(3) ∀w¬ψ(t(p), s(p), w).
Define h by primitive recursion according to the following clauses:

h(0, p) = r(p)

h(x+ 1, p) = q(p, x, h(x, p), 0)

By (1), (2) and quantifier-free induction, it follows that ∀xψ(t(p), x, h(x, p)).
In particular, ∃w ψ(t(p), s(p), w). This goes against (3). �

Herbrand’s theorem applies to PRA. Therefore, from (∗) and part (2) of
the theorem of the previous section, there are terms r1(u), t1(u), r2(u, z1),
t2(u, z1),. . . , rk(u, z1, . . . , zk−1), tk(u, z1, . . . , zk−1) such that the disjunction
of the following formulas is a consequence of PRA:

θ(u, r1(u)) ∨ ∃y′χ(t1(u), z1, y
′)

θ(u, r2(u, z1)) ∨ ∃y′χ(t2(u, z1), z2, y
′)

. . .

θ(u, rk(u, z1, . . . , zk−1)) ∨ ∃y′χ(tk(u, z1, . . . , zk−1), zk, y
′),
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where each zj abbreviates a triple of variables and each tj abbreviates a triple
of terms (with its variables as shown). Hence, the disjunction of the formula
∃vθ(u, v) together with the disjunction of the k formulas,

∃y′χ(t1(u), z1, y
′)

∃y′χ(t2(u, z1), z2, y
′)

. . .

∃y′χ(tk(u, z1, . . . , zk−1), zk, y
′),

is a consequence of PRA. By Herbrand’s theorem (in the form of part (1)
of the previous section), there is a term q(u, z1, . . . , zk−1, zk) of the language
such that the last formula of the previous list may be substituted by

χ(tk(u, z1, . . . , zk−1), zk, q(u, z1, . . . , zk−1, zk)).

By the above lemma,

∃zk ¬χ(tk(u, z1, . . . , zk−1), zk, q(u, z1, . . . , zk−1, zk))

is a consequence of PRA. Therefore, the disjunction of ∃vθ(u, v) together with
the disjunction of the k − 1 formulas

∃y′χ(t1(u), z1, y
′)

∃y′χ(t2(u, z1), z2, y
′)

. . .

∃y′χ(tk−1(u, z1, . . . , zk−2), zk−1, y
′),

is also a consequence of PRA.
If we repeat the previous argument (k − 1) times we eventually conclude

that PRA |= ∃vθ(u, v).
Q.E.D.10

Notes

1. Finitistic theory of numbers was never made precise by Hilbert. It re-
mained informal, presumably because an actual finitistic consistency proof
would be recognized as such without disputation. The remarks of Hilbert
and Bernays in the Grundlagen clearly endorse the thesis that primitive re-
cursive arithmetic is part of finitistic mathematics. The substantive thesis
that primitive recursive arithmetic is all there is to finitistic mathematics
(modulo the arithmetization of syntax) is defended by William Tait in
[Tai81].

2. More precisely: If S is a theory that purports to formalize infinitistic math-
ematics, then the consistency of S is equivalent to the reflection principle
for Π1-sentences (see [Smo77]).
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3. Parsons’ result appears in the last theorem of [Par70]. In its proof, Par-
sons refers to the abstract [Par71], where it is stated that the theory IΣ1

(actually, a seemingly stronger but equivalent theory) has a functional in-
terpretation in T0, a fragment of Gödel’s T. The proof of this statement
is carried out in [Par72] (via a preliminary Gödel-Gentzen double nega-
tion interpretation). As a consequence, if ∃vθ(u, v), θ quantifier-free, is
provable in IΣ1, then there is a closed term t of T0 such that T0 proves
θ(u, tu). In order to get his conservation result, Parsons associates to t a
unary term t′ of the language of PRA such that the latter theory proves
θ(u, t′(u)). He studies this association in the initially cited paper [Par70].

4. In [Min72], Mints works directly with the sequent calculus already re-
stricted to a language with one-quantifier formulas only (i.e., there are no
alternations of the quantifiers ∀ and ∃ in the formulas that appear in the
sequents). Clearly, these restricted systems are complete in the obvious
sense. As noted, Mints’ argument uses the no-counterexample interpreta-
tion which, being restricted here to one-quantifier formulas, reminds one of
Samuel Buss’ technique of witness functions [Bus85]. For a witness func-
tion account of Parsons’ theorem, see [Bus98]. Takeuti’s proof appears in
[Tak75].

5. Sieg has an earlier, rather convoluted, proof of Parsons’ theorem in [Sie85].
The proof technique used in [Sie91] was foreshadowed by an argument in
[Fer90].

6. More precisely, we need a version of the “Propriété A” of first-order va-
lidities (of the form ∃∀∃), introduced by Jacques Herbrand in chapter V
of his thesis [Her30]. This is the version of Herbrand’s theorem without
the introduction of (so-called) index functions.

7. A theory U admits definition by cases if, for any terms t1(u), . . . , tk+1(u)
and quantifier-free formulas θ1(u), . . . , θk(u), there is a term t(u) such that

[θ1(u) → t(u) = t1(u)] ∧ [θ2(u) ∧ ¬θ1(u) → t(u) = t2(u)] ∧ . . .

. . . ∧ [¬θk(u) ∧ . . . ∧ ¬θ1(u) → t(u) = tk+1(u)]

is a consequence of U.

8. I.e., a tautological (a.k.a. propositional) consequence of instances of the
equality axioms.

9. This three-part semantic argument is folklore. The last piece is due to
Mints and Nikolay Shanin for the theory PRA (see [Min72]).

10. We strove for simplicity in the above proof and, accordingly, we formu-
lated Parsons’ theorem in semantic terms and proved it in a semantic,
non-finitistic, manner. The argument of this section may, nevertheless,
be given a finitistic form. One must, of course, work with provability
instead of semantic consequence, and rely on proof-theoretic accounts of
Herbrand’s theorem. The induction on k in the final step of the proof
(a Σ1-induction) can be avoided if we use the following fact: From the
proof-theoretic proofs of Herbrand’s theorem, one can obtain primitive re-
cursively a PRA-term t and a PRA-proof of ϕ(u, t(u)) from a PRA-proof
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of ∃xϕ(u, x). Applying this fact to the induction part of the proof as well
as to the lemma, we may replace Σ1-induction by an explicit primitive
recursive construction/verification.
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1967.

Acknowledgments

Partially supported by cmaf, pocti/fct and feder.

Departamento de Matemática
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