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a b s t r a c t

Potential Energy Surfaces (PES) for the ethanol/Au(111) interface are mapped by Neural Networks (NNs).
Interaction energies, calculated from Density Functional Theory (DFT), for the adsorption of the ethanol
on Au(111) surfaces are used to train Ensembles of Feed-Forward Neural Networks (EnsFFNNs). The dis-
tance of the ethanol molecule to the surface, two angles describing the molecular orientation relatively to
the surface, and three binary descriptors encoding the gold adsorption sites, are the input to the NNs. The
training sets contain energy values at different distances, for seven molecular orientations and three
adsorption sites. The models are assessed by: (a) internal cross validation; (b) Leave-One-Out procedure
(LOO); and (c) external test sets corresponding to orientations not used in the training procedure. The
results are compared with the ones obtained from an analytical force field recently proposed by some
of us to match the DFT data. It is shown that NNs can be trained to map PES with a similar or better accu-
racy than analytical representations. This is a relevant point, particularly in simulations by Monte Carlo
(MC) or Molecular Dynamics (MD), which require an extensive screening of the interaction sites at the
interface, turning the development of analytical functions a non-trivial task as the complexity of the sys-
tems increases.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The structure and dynamics of electrode/solution interfaces are
of great importance in the domain of electrochemistry. The modi-
fication of metallic surfaces properties by the adsorption of mole-
cules allows, for example, photovoltaic, biosensing, and corrosion
protection developments.

The adsorption and spontaneous organization of organic mole-
cules on metallic surfaces giving rise to films of organized and sta-
ble monolayers is known as Self-Assembled Monolayers (SAMs).
SAMs can be produced using different types of molecules and sub-
strates. Typically, alkane chains (with 10 or more methylene units)
and a thiol (SH) head group are used with Au surfaces due to the
well-known chemical affinity between sulfur and gold. These spe-
cies have the advantage and singular characteristic of creating
dense monolayers when the thiol molecules adsorb onto gold with
the tail chains pointing outwards the surface. Moreover, it is possi-
ble to functionalize the tail chain, after the formation of the SAMs,
by the chemical insertion of specific functional groups or
molecules.

To investigate the mechanisms involved in the adsorption and
self-assembly of solvated organic molecules on metallic electrodes
by Monte Carlo (MC) or Molecular Dynamics (MD) simulations, the
determination of the Potential Energy Surfaces (PES) of the systems
is crucial. They should describe the interactions between the
molecular species present in the liquid phase as well the interac-
tions between those species and the electrodes. Our current inter-
est is the study of the adsorption of alkylthiols, solvated by ethanol,
on gold electrodes and the understanding of the physi- and chemi-
sorption mechanisms. To this end, our group has recently proposed
an analytical force field, based on Density Functional Theory (DFT)
calculations, for the interaction of ethanol with Au(111) surfaces.
A preliminary test of the force field has also been carried out by
MC simulations [1].

A function that matches DFT data provides, on one hand, a topo-
graphical visualization of the surface features, which may not be
evident from a coarse-grained quantum mechanical study. On
the other hand, it is a suitable input for simulation work. A good
representation of PES should smoothly connect the asymptotic as
well as the most interactive regions of the configuration space. It
should accurately represent the true potential energy in the re-
gions for which experimental or theoretical results are available
and predict the interaction energies for the regions where such
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data is not available. Fitting analytical functions to the energies of a
set of suitable configurations of the system is one of the standard
approaches to obtain PES. The London–Eyring–Polanyi–Sato (LEPS)
functions, many-body expansions, splines and semiempirical
potentials with adjustable parameters to reproduce experimental
and theoretical results, are commonly used [2,3].

It appears, however, that as the complexity of the systems in-
creases, the development of accurate analytical functions becomes
a non-trivial task. In the last years, Neural Networks (NNs) turned
out as an alternative way for mapping PES from ab initio/DFT en-
ergy data sets. [4–15] In such approximation, there are no a priori
guesses of analytical functions and the results come out in tabular
form. Moreover, once the networks are well trained, they are able
to produce, as output, any required number of energy points for
numerical interpolations with similar or better accuracy than other
representation methods.

Single Feed-Forward Neural Networks (FFNNs) have been ap-
plied, for example, to obtain PES for water dimer [4], HClþ[5],
OHþ [6] and Hþ [7].

Some authors have compared structural, dynamical and ther-
mal properties, obtained by MC and MD simulations, from NNs –
PES and analytical functions. Gassner et al. [8] applied FFNNs to
reproduce the three body interaction energy of the system H2O–
Al3þ–H2O and assessed the MC radial distribution functions, using
an analytical function and the NN–PES. A similar study was done

by Cho et al. [9] where a polarizable force field for water was devel-
oped using NNs and tested in MC simulations.

A more systematic work was performed by Witkoskie and Do-
ren [10] who studied the NNs accuracy in terms of some parame-
ters such as the optimal number of neurons and data needed in the
training. Likewise, our group [11] trained ensembles of Feed-For-
ward Neural Networks (EnsFFNNs) and Associative Neural Net-
works (ASNNs) for mapping PES also represented by well-known
analytical potential functions, and then assessed the accuracy of
the method by comparison of the simulation results from NNs
and analytical PES. Training sets with different number of points,
from 15 differently parametrized Lennard–Jones (LJ) potentials,
were used and argon was taken to test the models. MD simulations
were performed using the tabular potential energies, predicted by
the NNs, to work out thermal, structural and dynamical properties
which compare well with the values obtained from the LJ analyti-
cal function.

NNs have also been used to obtain PES for the study of adsorp-
tion on metallic surfaces. The study of reactions in surfaces was
performed by Lorenz et al. [12] to build continuous PES for H2

interacting with a (2� 2) Pd(100) surface covered by potassium.
More recently, the same authors [13] applied NNs to fit six dimen-
sional PES for H2 dissociation on the clean and sulfur covered
Pd(100) surfaces. The models describe reaction rates for the disso-
ciative adsorption and show that a description of dissociation reac-

Fig. 2. Two of the orientations of the ethanol molecule relative to the Au(111) surface used in the training set (notation: a=b, see text).

Fig. 1. Surface sites, top, hollow1 and hollow2, chosen to set up the ethanol–Au surface interaction.
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tions with NNs is orders of magnitude smaller than that of the one
for ‘‘on the fly” ab initio dynamics.

The main objective of the present work is to assess an alterna-
tive to our analytical force field [1], in order to map multidimen-
sional PES for the interaction of ethanol and Au(111) surfaces
regarding the simulation of the adsorption and self-assembly of
alkylthiols solvated by ethanol.

The machine learning methods used to estimate the full en-
ergy surface have been EnsFFNNs [16,17]. They show a greater
generalization ability over single FFNNs in problems of modelling
and fitting. EnsFFNNs, a supervised learning technique, are an
extension of single FFNNs and a memory-less method (after the

training, all information about the input patterns are stored in
the NN weights without the explicit storage of the data in the
system).

The distance of the ethanol molecule to the surface, two angles
describing the molecular orientation relatively to the surface, and
three binary descriptors encoding the gold adsorption sites, are
the input to the NNs. The training sets contain energy values at dif-
ferent distances, for seven molecular orientations and three
adsorption sites. The models are assessed by: (a) internal cross val-
idation; (b) Leave-One-Out procedure (LOO); and (c) external test
sets corresponding to orientations not used in the training
procedure.

Fig. 3. Selected orientations of the ethanol molecule relative to the Au(111) surface used in the test set (notation: a/b, see text).
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The next section contains the methodology and computational
details. Section 3 discusses the NNs results and their comparison
with the ones from the analytical force field. Section 4 presents
the concluding remarks.

2. Methodology and computational details

The training has been performed with the DFT data of Fartaria
et al. [1] used to set up the analytical force field. Additional DFT en-

ergy points have been calculated, at six orientations, to test the
accuracy of the model in regions of the PES not considered by
the training set.

EnsFFNNs is the machine learning method used to set up the
relationship between the input (two orientation angles, the dis-
tance between the ethanol oxygen atom and the plane of the first
layer of the Au(111) surface, and three binary descriptors to en-
code the adsorption sites) and the output (potential energy). The
models are tested with different internal data sets (internal cross
validation and LOO procedure) and external data sets.

Table 1
Energy minima from DFT, analytical function and EnsFFNNs training set

Ethanol orientation Distance Potential energy – U/kJ mol�1

a/degrees b/degrees O-surface r/Å DFT Anal. function EnsFFNNs

Top site
0 180 3.54 7.76 8.7 (0.94) 7.96 (0.20)
135 180 4.07 5.87 6.7 (0.83) 6.15 (0.28)
180 180 6.0 1.37 1.2 (0.17) 1.78 (0.41)
45 180 3.3 9.04 15.0 (5.96) 9.13 (0.09)
90 0 5.5 2.32 1.5 (0.82) 2.38 (0.06)
90 180 2.67 19.03 19.25 (0.22) 18.17 (0.86)
90 90 3.54 11.77 10.4 (1.37) 11.95 (0.18)

H1 site
0 180 3.3 13.14 10.7 (2.44) 12.93 (0.21)
135 180 4.29 4.34 5.5 (1.16) 3.96 (0.34)
180 180 6.04 1.35 0.9 (0.45) 1.51 (0.16)
45 180 2.87 16.42 13.3 (3.12) 14.61 (1.81)
90 0 5.57 2.35 1.4 (0.95) 2.46 (0.11)
90 180 2.87 12.8 15.5 (2.7) 13.91 (1.11)
90 90 3.87 5.99 7.1 (1.11) 6.03 (0.04)

H2 site
0 180 3.3 10.46 9.8 (0.66) 10.32 (0.14)
135 180 4.2 5.08 5.3 (0.22) 4.96 (0.12)
180 180 6.04 1.48 1.0 (0.48) 1.42 (0.06)
45 180 3.08 11.82 12.7 (0.88) 11.39 (0.43)
90 0 5.37 2.33 1.4 (0.93) 2.37 (0.04)
90 180 2.67 15.07 14.7 (0.37) 14.86 (0.21)
90 90 3.87 5.75 7.1 (1.35) 6.03 (0.28)

In parenthesis is the absolute error.
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Fig. 4. Root Mean Square Error of the different data sets for networks with different number of neurons in the hidden layer (first graphic) and ensembles of different sizes
(second graphic).

Table 2
Energy minima from DFT, analytical function and EnsFFNNs test set

Ethanol orientation Distance Potential energy – U/kJ mol�1

a/degrees b/degrees O-surface r/Å DFT Anal. function EnsFFNNs

Top site
45 60 3.79 7.0 8.78 (1.78) �2.70 (9.70)
45 120 3.37 9.81 14.14 (4.33) 5.65 (4.16)
75 150 2.81 15.91 18.85 (2.94) 17.09 (1.18)
30 180 3.37 7.75 13.36 (5.61) 8.10 (0.35)
60 180 3.17 11.52 16.63 (5.11) 11.93 (0.41)
120 180 3.17 11.84 12.13 (0.29) 11.49 (0.35)

H1 site
45 60 3.79 6.69 7.20 (0.51) 3.07 (3.62)
45 120 3.17 12.5 13.03 (0.53) 7.48 (5.02)
75 150 2.81 12.58 15.46 (2.88) 12.82 (0.32)
30 180 3.17 15.59 12.76 (2.83) 14.86 (0.73)
60 180 2.81 16.71 14.34 (2.37) 14.68 (2.03)
120 180 3.58 6.64 10.43 (3.79) 6.43 (0.21)

H2 site
45 60 4.02 4.44 6.55 (2.11) 2.11 (2.33)
45 120 2.99 10.61 12.09 (1.48) 3.96 (6.65)
75 150 2.81 13.78 14.50 (0.72) 13.24 (0.54)
30 180 3.17 10.73 12.19 (1.46) 10.54 (0.19)
60 180 2.81 13.09 13.37 (0.28) 12.59 (0.50)
120 180 3.37 8.55 10.61 (2.06) 7.88 (0.67)

In parenthesis is the absolute error.
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The results are compared with the values from DFT calculations
and the ones from the analytical function developed. The full NNs–
PES for each site in 3D representation is presented and analysed. A
model is also trained with a different training and test sets, and with
all the available data being compared with the one obtained from the
initial training set. The interpolation ability of the NN is analysed.

2.1. DFT calculations and analytical force field

The theory level chosen to calculate the interaction energy of
ethanol/Au(111) was the hybrid B3LYP method [18,19] with the
LanL1MB basis set [20] applied to the gold atoms and the 6-31G
basis set [21] for the H, C and O atoms. The calculations have been
performed by the Gaussian 98 package [22].

A cluster of 14 Au atoms, to represent the gold surface, and one
ethanol molecule, in the optimized gas-phase geometry, have been
used to model the ethanol/Au(111) PES. The size of the gold cluster

was chosen with a compromise between the consistency of the
interaction energy and the computation time. Fig. 1 shows the
three adsorption sites, top (Top), hollow 1 (H1) and hollow 2
(H2), that have been selected to study the ethanol/Au(111)
interaction.

In the Top site, the oxygen atom of ethanol approaches the sur-
face directly over a gold atom of the first layer; the H1 site corre-
sponds to a hexagonal closed packed (hcp) site and the approach
of the ethanol is made in the direction of the centre of a triangle
formed between three gold atoms of the first layer with a gold
atom of the second layer at the centre; and the H2 site corresponds
to a face centred cubic (fcc) site and the ethanol approach is made
in the direction of the centre of a triangle formed between three
gold atoms of the first layer.

The ethanol/Auð111Þ14 cluster interaction energy, as a function
of the distance and orientations of ethanol molecule to the
Au(111) surface, is calculated by
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Uethanol—Auð111Þ14
ðr;a; bÞ ¼ UAuð111Þþethanolðr;a; bÞ � UAuð111Þ14

� Uethanol

ð1Þ
where UAuð111Þþethanol is the energy of the system composed by the
ethanol molecule and the cluster; UAuð111Þ and Uethanol are the ener-
gies of the isolated cluster and ethanol molecule; r is the distance
from the ethanol oxygen atom to the plane of the first layer of the
Au(111) surface; a is the angle between the O–H bond and the nor-
mal to the surface and b is the angle between the plane H–O–C and
the plane H–O–normal to the surface (both angles in degrees). The
orientations for the ethanol molecule have been selected to span
a wide range. Fig. 2 shows the two orientations with the highest
binding energies used in the training, and Fig. 3 displays the molec-
ular orientations used to test the models. The full list of orientations
used in the training set are presented in Table 1 and the respective
snapshots in Ref. [1].

For each orientation, several values of r, along the interval
0–10 Å, have been chosen and the Uethanol—Auð111Þ14

evaluated. Full
details of the DFT calculations are described elsewhere [1].

The following analytical function was fitted to the above men-
tioned DFT results:

UEtOH—Au ¼ UHðrH—AuÞ þ 1þ B0 cosðh=radÞ20
=r3

O—Au

� �
UOðrO—AuÞ

þ UCH2 ðrCH2—AuÞ þ UCH3 ðrCH3—AuÞ þ VðrO—Au; h;/Þ ð2Þ

where

Uiðri�AuÞ ¼ A0;i exp½A1;iðri�Au þ A2;iÞ� � A3;i exp½A4;iðri�Au þ A5;iÞ� ð3Þ

is the site–site interaction energy, and

VðrO—Au; h;/Þ ¼ C0 sinðh=radÞ6 exp½ðr sinðh=radÞ � C1Þ2=C2�ðC3

� C4 cosð3ð/=rad� C5ÞÞ þ C6 cosð6ð/=rad

� C5ÞÞÞ ð4Þ

is the contribution due to the surface symmetry around a Top site. It
is noteworthy that the cosine term with exponent 20, in Eq. 2, can
be expressed by other forms (e.g. expð�10x2Þ).

The function expresses the sum of the interactions between
each gold atom and the sites of the ethanol molecule further mod-
ulated by two angular contributions, one related to the Top site
surface symmetry and the other to the O–Au relative direction.
The ethanol molecule was described by a united atom model with
the H, O, CH2 and CH3 as the interaction sites. The variables used
are: the distances, ri, from each Au atom to each of the ethanol
sites; the angle, h, between the rO—Au vector and the normal to
the surface; and the angle, /, between the projection of the rO—Au

vector on the surface plane and a reference surface vector begin-
ning in a Top site and directed to a H1 site. The fit to the DFT results
was performed by means of genetic algorithms, using an Au(111)
double layered electrode with 74 Au atoms in order to minimize
border effects from the surface.

The overall fitting quality is good. We shall return to it in Sec-
tion 3. The function parameters and the details of the fitting proce-
dure can be seen elsewhere [1].

2.2. Feed-Forward Neural Networks

FFNNs [23] were implemented with six input neurons, one hid-
den layer of neurons, and one output neuron. In the input layer and
in the hidden layer, an extra neuron (called bias) with the value of
one was also added. A NN converts the input data X, X ¼ ðx1; x2;

. . . ; xi; . . . ; xmÞ into the output data Y, Y ¼ ðy1; y2; . . . ; yi; . . . ; ynÞ. Each
neuron of the first layer receives all the input signals of an object,
and the signals, after processing by the neuron, are sent to all neu-
rons of the next layer. Each neuron of one layer is connected to all
the neurons of the next layer. These connections are associated

with weights that represent the strength of the connection. All
neurons j in the network perform three basic operations:

(1) Obtain input signals from m neurons.
(2) Convert these signals to a Net input signal using the

expression:

Netj ¼
Xm

i¼1

wjixi ð5Þ

where wji is the strength of the connection between neuron i
and neuron j, and xi is the input signal from neuron i.

(3) Transform the Net signal into an output signal:

Out ¼ f ðNetjÞ ¼
1

1þ expð�cNetj þ mÞ ð6Þ

The function f is called the transfer function which, in the
present study, is a sigmoidal function.

The networks were trained using the ASNN program of Igor
Tetko [24,25] taking as input the distance between the ethanol
oxygen atom and the plane of the first layer of the Au(111) surface
(r), two angles to describe the orientation of the ethanol to the sur-
face (a and b) and three binary descriptors to encode the gold
adsorption sites (Top, H1 and H2). Corrections of the weights
during the training procedure were performed by the Levenberg–
Marquardt algorithm [26,27] and the number of neurons in the
hidden layer was optimized. Before the training, the whole training
set was randomly partitioned into a learning and validation set,
each one with 50% of the objects. Full cross validation of the entire
training set was performed by the Leave-One-Out method (LOO).
The logistic activation function was used (a sigmoidal) and each in-
put and output variable was linearly normalized between 0.1 and
0.9 on the basis of the training set. The maximum number of iter-
ations in the training was 5000 or 10,000. The training stopped
when no further improvement in the root mean squared error
(RMSE) for the validation set [28] was observed. After the training,

Fig. 6. PES of ethanol over the H1 site. Three isoenergetic surfaces are displayed at
�14, �10 and �5 kJ mol�1. The plane cuts the surfaces at a ¼ 45� . The isoenergetic
lines correspond to the energies �14, �10, �5, 0, 5 and 10 kJ mol�1. The colored bar
represents the energy scale.
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the results were calculated for the learning set, validation set, LOO
method and test sets.

2.3. Ensembles of Feed-Forward Neural Networks

An EnsFFNN consists of several independently trained FFNNs,
each one contributing with a single prediction [16,17]. The final
prediction for an object, in our case the potential energy, is the
average of the outputs from all FFNNs of the ensemble. This meth-
odology smoothes out the random fluctuations in the individual
FFNNs predictions. The experiments were carried out with the
ASNN program [29].

3. Results and discussion

The impact of the number of hidden neurons, and the size of the
ensembles, on the accuracy of the models is analysed in terms of
the root mean square error:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1½ðYcalc � YexpÞ2�

n

s
ð7Þ

where Ycalc is the predicted value, Yexp is the target value and n is
the number of objects.

The RMSE is calculated for the training set and for the different
internal and external test sets. After the optimization of these
parameters, a discussion of the NN–PES is presented. The minima
of the DFT-calculated potential energy for each molecular orienta-
tion and adsorption site are compared with the values from the
NNs and from the analytical function at the same distances. The
three preferential orientation curves for each site are analysed
for the test set. The obtained models are used to generate the
3D representation of the PES for each site. The interpolation abil-
ity of different EnsFFNNs is also investigated with EnsFFNNs
trained with a different partition of the data and with all data
available. The comparison between the DFT data, the predictions
of the different EnsFFNNs, and the analytical function are ana-
lysed in terms of the RMSE, the correlation coefficient of the pre-
dictions relatively to the DFT data,and the mean absolute error
(MAE):

MAE ¼
Pn

i¼1jYcalc � Yexpj
n

ð8Þ

Fig. 7. PES projections for the Top (first column), H1 (second column) and H2 (third column) sites. First row, from the left to right, projections at r ¼ 2:8;3:0;2:7 Å; second row,
from left to right, projections at a ¼ 90� , 45�, 90�; third row, b ¼ 180� for all sites. The isoenergetic lines correspond to potential energy of �14, �10, �5, 0, 5 and 10 kJ mol�1.
The colored bar represents the energy scale.

D.A.R.S. Latino et al. / Journal of Electroanalytical Chemistry 624 (2008) 109–120 115



Author's personal copy

where Ycalc is the predicted value, Yexp is the target value and n is
the number of objects.

3.1. Impact of the number of hidden neurons and networks in the
ensemble

Ensembles of 15 FFNNs were evaluated for the training, internal
validation and external test sets, using different numbers of neu-
rons in the hidden layer: 2–10, 15, 20 and 25. Then EnsFFNNs were
trained with different number of networks (1, 5, 10, 15, 20, 25, 50,
75, 100, 150, 200).

Fig. 4 shows a decrease in the RMSE for the test set from
� 8 kJ mol�1 for networks with two neurons, to a RMSE of
� 5 kJ mol�1 for networks with more than five hidden neurons.
The results for the training and other internal validation sets corre-
late with those for the external test set. Reduction of the RMSE val-
ues is more pronounced up to five hidden neurons. Training with
more than 10 hidden neurons does not indicate improvements
and increases computational requirements. Thus a compromise

of eight hidden neurons has been chosen for the experiments. As
for the impact of the ensemble size, the use of ensembles with
more than 10 networks has not shown a significant improvement
in the predictions.

3.2. Mapping of PES by EnsFFNNs

The minima of the potential energy for each orientation of the
ethanol molecule and adsorption sites, from the DFT calculations,
and their comparison with the values from the EnsFFNNs and the
analytical function at the same distances are presented in Table 1
for the points of the training set.

The EnsFFNNs training results are, in general, in good agree-
ment with those from DFT. Only two cases present absolute errors
higher than 1 kJ mol�1: 1.8 kJ mol�1 for the 45/180 orientation and
1.1 kJ mol�1 for the 90/180 orientation both on the H1 the site.

As for the comparison with the values obtained from the analyt-
ical function the EnsFFNNs provide, in general, more accurate pre-
dictions for the energy minima. Moreover, it should be emphasized

Table 3
Energy minima from DFT, analytical function and different EnsFFNNs

Ethanol orientation Distance Potential energy – U/kJ mol�1

a/degrees b/degrees O-surface r/Å DFT Anal. function EnsFFNNs1 EnsFFNNs2 EnsFFNNs3 EnsFFNNs4

Top site
0 180 3.54 7.76 8.7 (0.94) 7.96 (0.20) 8.68 (0.92) 7.92 (0.16) 8.21 (0.45)
135 180 4.07 5.87 6.7 (0.83) 6.15 (0.28) 5.84 (0.03) 5.78(0.09) 6.02 (0.15)
180 180 6.0 1.37 1.2 (0.17) 1.78 (0.41) 1.47 (0.10) 2.14 (0.77)* 1.57 (0.20)
45 180 3.3 9.04 15.0 (5.96) 9.13 (0.09) 9.68 (0.64) 9.20 (0.16) 9.34 (0.30)
90 0 5.5 2.32 1.5 (0.82) 2.38 (0.06) 1.82 (0.50) 2.31 (0.01) 2.23 (0.09)
90 180 2.67 19.03 19.25 (0.22) 18.17 (0.86) 16.82 (2.21) 17.85(1.18) 17.93 (1.10)
90 90 3.54 11.77 10.4 (1.37) 11.95 (0.18) 11.53 (0.24) 11.81(0.04) 11.25 (0.52)
45 60 3.79 7.0 8.78 (1.78)* �2.70 (9.70)* 5.15 (1.85)* 5.94(1.06)* 6.83 (0.17)
45 120 3.37 9.81 14.14 (4.33)* 5.65 (4.16)* 12.29 (2.48)* 9.68(0.13) 9.88 (0.07)
75 150 2.81 15.91 18.85 (2.94)* 17.09 (1.18)* 16.89 (0.98)* 15.77(0.14) 15.75 (0.16)
30 180 3.37 7.75 13.36 (5.61)* 8.10 (0.35)* 8.30 (0.55)* 7.82(0.07)* 7.97 (0.22)
60 180 3.17 11.52 16.63 (5.11)* 11.93 (0.41)* 12.41 (0.89)* 11.44(0.08) 11.49 (0.03)
120 180 3.17 11.84 12.13 (0.29)* 11.49 (0.35)* 9.72 (2.12)* 12.28 (0.44)* 11.61 (0.23)

HI site
0 180 3.3 13.14 10.7 (2.44) 12.93 (0.21) 13.36 (0.22) 12.92(0.22) 13.15 (0.01)
135 180 4.29 4.34 5.5 (1.16) 3.96 (0.34) 4.11 (0.23) 4.23(0.11) 4.23 (0.11)
180 180 6.04 1.35 0.9 (0.45) 1.51 (0.16) 1.36 (0.01) 3.44(2.09)* 1.38 (0.03)
45 180 2.87 16.42 13.3 (3.12) 14.61 (1.81) 14.81 (1.61) 15.74(0.68) 15.23 (1.19)
90 0 5.57 2.35 1.4 (0.95) 2.46 (0.11) 2.69 (0.34) 2.42 (0.07) 2.37 (0.02)
90 180 2.87 12.80 15.5 (2.7) 13.91 (1.11) 12.93 (0.13) 12.94(0.14) 13.49 (0.69)
90 90 3.87 5.99 7.1 (1.11) 6.03 (0.04) 6.00 (0.01) 5.71 (0.28) 5.68 (0.31)
45 60 3.79 6.69 7.20 (0.51)* 3.07 (3.62)* 6.35 (0.34)* 1.48 (5.21)* 6.45 (0.24)
45 120 3.17 12.50 13.03 (0.53)* 7.48 (5.02)* 11.74 (0.76)* 12.26(0.24) 12.2 (0.30)
75 150 2.81 12.58 15.46 (2.88)* 12.82 (0.32)* 13.99 (1.41)* 12.72(0.14) 12.88 (0.30)
30 180 3.17 15.59 12.76 (2.83)* 14.86 (0.73)* 14.41 (1.18)* 15.10(0.49)* 14.9 (0.69)
60 180 2.81 16.71 14.34 (2.37)* 14.68 (2.03)* 15.22 (1.49)* 15.84(0.87) 15.6 (1.11)
120 180 3.58 6.64 10.43 (3.79)* 6.43 (0.21)* 5.87 (0.77)* 5.72(0.92)* 6.37 (0.27)

H2 site
0 180 3.3 10.46 9.8 (0.66) 10.32 (0.14) 10.20 (0.26) 10.37(0.09) 10.30 (0.16)
135 180 4.2 5.08 5.3 (0.22) 4.96 (0.12) 5.06 (0.02) 4.94 (0.14) 4.78 (0.30)
180 180 6.04 1.48 1.0 (0.48) 1.42 (0.06) 1.44 (0.04) 3.4(1.92)* 1.45 (0.03)
45 180 3.08 11.82 12.7 (0.88) 11.39 (0.43) 11.72 (0.10) 11.77(0.05) 11.58 (0.24)
90 0 5.37 2.33 1.4 (0.93) 2.37 (0.04) 2.47 (0.14) 2.38 (0.05) 2.43 (0.10)
90 180 2.67 15.07 14.7 (0.37) 14.86 (0.21) 14.67 (0.40) 14.68(0.39) 15.20 (0.13)
90 90 3.87 5.75 7.1 (1.35) 6.03 (0.28) 5.84 (0.09) 5.58 (0.17) 5.74 (0.01)
45 60 4.02 4.44 6.55 (2.11)* 2.11 (2.33)* 6.32 (1.88)* 4.10 (0.34)* 4.50 (0.06)
45 120 2.99 10.61 12.09 (1.48)* 3.96 (6.65)* 7.08 (3.53)* 10.36(0.25) 10.26 (0.35)
75 150 2.81 13.78 14.50 (0.72)* 13.24 (0.54)* 14.00 (0.22)* 13.58(0.20) 13.65 (0.13)
30 180 3.17 10.73 12.19 (1.46)* 10.54 (0.19)* 10.52 (0.21)* 10.75(0.02)* 10.64 (0.09)
60 180 2.81 13.09 13.37 (0.28)* 12.59 (0.50)* 12.79 (0.30)* 12.80(0.29) 12.73 (0.36)
120 180 3.37 8.55 10.61 (2.06)* 7.88 (0.67)* 7.35 (1.20)* 7.15(1.40)* 7.97 (0.58)

EnsFFNNs1 – training with 366 energy points, tested with 414 energy points (results from Tables 1 and 2); EnsFFNNs2 – same training and test set as EnsFFNNs1, different
initial weights; EnsFFNNs3 – training with a new partition in training and test set (training with 536 energy points, test with 244 energy points); EnsFFNNs4 – training with all
data available.
For all orientations the results from the test set are marked with *.
In parenthesis is the absolute error.
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that while the analytical function shows an evident discrepancy,
relatively to the order of the DFT binding energies, for the referred
to 45/180 and 90/180 orientations on the H1 site, the neural net-
works predict the right DFT energy order.

Table 2 presents the results for the energy minima from the test
set, whose elements, as already said, have not participated in the
training. The results show, in general, the same level of accuracy
as those from the training set, except for the 45/60 and 45/120 ori-
entations that exhibit considerable errors at all the chosen sites.
The value for the 45/60 orientation at the Top site is even a non-
physical one, since it predicts a positive binding energy.

The bad results for those orientations are presumably due to the
fact that the b angle range is not well covered in the training set.
From the seven orientations used in it only two have a b angle dif-
ferent of 180: the 90/0 and the 90/90 orientations. To set up mod-
els allowing more accurate predictions for all the PES regions it is
essential that the training set covers a wider range of possible
molecular orientations. This issue will be reanalysed in the follow-
ing Section 3.3 through the generation of a PES by training with the
same set as before but with different initial weights, using a differ-
ent training and test set and training with all available data with-
out an external test set.

The comparison with the results from the analytical function
shows that, except for the 45/60 and 45/120 orientations, the Ens-
FFNNs provide, in general, more accurate predictions for the en-
ergy minima: a maximum absolute error of � 2 kJ mol�1 from
the NNs against � 6 kJ mol�1 from the function.

Fig. 5 displays the whole NNs PES, from the test set, for the three
most attractive orientations on each site and their comparison
with the DFT data, as a complement of Table 2 (that only presents
the values of the potential energy minima).

In all presented orientations the most considerable deviations
from DFT data are always in the repulsive part of the curves. De-
spite this deviations this part of the curves is less important if
we take into consideration that, at 298 K, kT is only 2.4 kJ mol�1,
suggesting that the probability of the high repulsive parts of the
PES becoming sampled, during a simulation, is very low.

The 120/180 orientation on the Top site presents an average
deviation from the DFT data, of � 6 kJ mol�1, at the repulsive part
of the curve. For the other two orientations the predictions are in
good accordance with DFT data over the entire curves. On the H1
site, very accurate predictions are obtained for the 30/180 and
75/150 orientations, and for the 60/180 orientation a deviation,
of � 2 kJ mol�1, is observed in the attractive part of the curve.
For H2 site the NNs predicted curves are in good agreement with
the DFT data.

After the training and testing, 83,509 potential energy points
have been predicted by the EnsFFNNs for distances of the ethanol
to the surface between 2 and 8 Å, with an interval of 0:1 Å, and
for a and b angles between 0 and 180�, with an interval of 5�. Each
site is treated separately. Fig. 6 displays an example of PES for the
H1 site in a 3D representation.

The cutting plane at a ¼ 45� includes energy minima for the H1
site, for example at b ¼ 180� and r ¼ 2:9 Å (see Table 1). The isoen-
ergetic lines show the energy dependence on the distance and the b
angle. The surfaces corresponding to the lines 0, 5 and 10 kJ mol�1

are not represented just to avoid a heavy picture.
Fig. 7 illustrates PES projections for minima energy regions. The

first, second and third columns correspond to the Top, H1 and H2
sites, respectively. The first, second and third row correspond to
fixing the distances, the a and the b angles, respectively.

The examples of the 3D plots and their projections show the
smooth and well-behaved PES predicted by the EnsFFNNs, allowing
straightforward energy interpolations. This is a relevant aspect
regarding their possible use in Monte Carlo or molecular dynamics
simulations. As we shall see in the next subsection, such represen-
tations also give a good visualization of the improvements intro-
duced in the PES by changing the training and test sets.

3.3. Different training and test sets

The failure or less accurate predictions of the NNs–PES in a few
surface regions, mentioned above, are presumably not due to a lim-
itation of the networks learning but to the available information: a
limited data set of potential energy points. In fact, the NNs ability
of mapping multidimensional data has already been shown, for the
most part of the orientations, by the accurate predictions obtained
from an external data set using a limited number of orientations in
the training set.

In order to evaluate the impact of the available data in the NNs
learning, and consequently in the accuracy of the predicted PES,
further experiments have been carried out: (i) using the same
training and test sets as before but with different (random) train-
ing parameters; (ii) training with a new partition of training and
test sets; and (iii) training with all available data for (13 orienta-
tions for each site corresponding to 780 energy points) without
using an external test set.

The energy minima at each orientation are presented in Table 3
together with the results of the last section.

From Table 3 the following conclusions can be drawn. A differ-
ent ensemble of FFNNs (EnsFFNNs2 trained with the same data
set but different random training parameters) may yield better

Table 4
MAE, RMSE and correlation coefficient for learning, validation and test sets for different ensembles and analytical function

MAE/kJ mol�1 RMSE/kJ mol�1 Correlation coefficient

Learn Valid Test Learn Valid Test Learn Valid Test

For all energy points
EnsFFNNs1 0.21 0.70 2.15 0.38 1.67 4.84 0.9996 0.9915 0.8939
EnsFFNNs2 0.24 0.67 1.83 0.44 1.78 6.37 0.9994 0.9903 0.8131
EnsFFNNs3 0.14 0.36 1.83 0.22 0.94 4.94 0.9998 0.9969 0.9047
EnsFFNNs4 0.21 0.45 – 0.52 1.30 – 0.9990 0.9721 –

Only for energy minima
Anal. function 1.29 – 2.28 1.83 – 2.78 0.9789 – 0.7749
EnsFFNNs1 0.35 0.58 2.13 0.54 0.77 3.36 0.9955 0.9917 0.8506
EnsFFNNs2 0.39 0.44 1.23 0.67 0.76 1.5 0.9939 0.9925 0.9117
EnsFFNNs3 0.24 0.37 1.23 0.35 0.50 1.83 0.9985 0.9970 0.9035
EnsFFNNs4 0.29 0.43 – 0.42 0.60 – 0.9972 0.9390 –

EnsFFNNs1 – training with 366 energy points, tested with 414 energy points (results from Tables 1 and 2); EnsFFNNs2 – same training and test set as EnsFFNNs1, different
initial weights; EnsFFNNs3 – training with a new partition in training and test set (training with 536 energy points, test with 244 energy points); EnsFFNNs4 – training with all
data available.
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Fig. 8. PES from training with the first set (first column) and with all available data (second column) for the Top (first row), H1 (second row) and H2 (third row) sites.
Isoenergetic surfaces at: �14, �10 and �5 kJ mol�1. The colored bar represents the energy scale. (For interpretation of the references in color in this figure legend, the reader
is referred to the web version of this article.)
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predictions for some orientations, namely 45/60 and 45/120, but
the performance degrades for other tests (the overall RMSE for
the validation and test sets) (see Table 4). However, if it is only
considered the predictions for the energy minima of each orienta-
tion the EnsFFNNs2 results are more accurate: a RMSE of
1.5 kJ mol�1 against 3.36 kJ mol�1 for the test set. Also, the correla-
tion coefficients between the DFT results for the energy minima
and the EnsFFNNs2 are improved from 0.85 to 0.91 (Table 4).

A similar situation was observed by using a different partition
of the data set into training and test sets. The RMSE are improved
from 3.36 kJ mol�1 to 1.83 kJ mol�1 for the test set (Table 4). The
new orientations used in the training help the NNs to learn much
better the interactions at 45/60 and 45/120 orientations. Yet, the
binding energies at orientations 180/180 in the sites H1 and H2
and 45/60 in H1 site are less accurately predicted. These results
indicate that the training sets did not cover well enough the config-
uration space, leading to some instability in the results, as well as
large errors for some orientations. Even though, excellent predic-
tions were achieved for most of the orientations in the indepen-
dent test set.

Fig. 8 shows isoenergetic surfaces for the three sites trained
with the initial set and with all available data.

The isoenergetic surfaces allow the visualization of the
improvement for the regions not so well represented with the first
training set. When the training uses all data available, the surfaces
cover, in general, wider regions in the configurational space. As al-
ready referred to before, it is very important to cover as much as
possible the configurational space in the training in order to obtain
accurate predictions.

In the course of the present experiments, Associative Neural
Networks have also been probed. An ASNN is a combination of a
memory-less (after the training all information about the input
patterns are stored in the NN weights of the networks) and a mem-
ory-based method (the data used to build the models are also
stored in a ‘‘memory” and the predictions are corrected based on
some local approximations of the stored examples). The results ob-
tained by ASNNs are not presented and discussed here because
they are similar to the ones from EnsFFNNs. Nonetheless, this is
an important methodology to take into account – it allows to incor-
porate new data in the memory after the training is finished, mak-
ing it possible to improve predictions with new data without the
need to retrain the NNs. It has a potential application in the course
of our future experiments, when DFT data for new orientations and
sites will become gradually available and kept in the ‘‘memory” of
the system.

4. Conclusions

The present results indicate that NNs can be trained to map PES
with suitable accuracy to be used in molecular simulations, partic-
ularly for the ethanol–Au(111) interactions. Once the networks are
well trained they are able to produce, as output, any required num-
ber of energy points for numerical interpolations, with similar or
better accuracy than other mapping methods.

EnsFFNNs give better results than single FFNNs, showing their
capability of taking into account the most subtle features of this
type of interactions when the model was tested for orientations
that did not participate in the learning procedure.

The NNs–PES have to be tested in molecular simulations. The
test will be carried out using the tabular potential energies, pre-
dicted by the NNs, for working out thermal, structural and dynam-
ical properties to be compared with the preliminary Monte Carlo
simulation values already obtained from the analytical function
[1]. One point has already turned out, however, in the present
work: in general, the NNs can reproduce the DFT results with a bet-

ter accuracy than the analytical function as far as the probed inter-
action sites are concerned.

Work is in progress regarding a much finer screening, by DFT, of
the different gold interaction sites and ethanol orientations. In-
deed, before a full simulation test can be performed, based on
the NNs data, it is necessary to obtain DFT results for sites other
than the Top, H1 and H2. Such results will certainly increase the
accuracy of the NNs mappings, using different memories as the
new data is becoming available.

Finally, it should be mentioned that the representation of
metallic surfaces by cluster models has been a common approxi-
mation in order to minimise the heavy computational require-
ments. We have commented on that elsewhere [1,30]. Yet,
nowadays, accurate periodic DFT methods can be implemented
in relatively low cost computer networks. We will consider them
in future applications to surface models. Nevertheless, the conclu-
sions of the present paper do not depend on the choice of the sys-
tem and model but rather indicate that NNs offer an alternative to
be used in Monte Carlo and molecular dynamics simulations. As for
molecular dynamics, which usually require continuously differen-
tiable potentials, the interpolation routines may, however, slow
down the simulations.
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