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a b s t r a c t

A review of our work on phase transitions, coexistence and crystal growth dynamics in ionic nanoclusters
is presented. The foundations and limitations of the proposed models are discussed and perspectives for
extended treatments are given. Additionally, supported on a compilation of the asymptotic behaviour of
the properties towards bulk conditions, new results concerned with the operational meaning of the ther-
modynamic limit are also presented. Some topics are complemented with link references to on-line ani-
mations that provide a visualisation of the focused behaviours. The simulations were carried out by
molecular dynamics on KCl, NaCl, LiCl and NaI clusters.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

A substance can freeze at a temperature different from its melt-
ing point. This phenomenon, called hysteresis, is usually associated
with metastable conditions at high cooling rates of a melted liquid
and reversible paths are expected from carefully managed experi-
ments. Yet, even simple and pure substances can show irreversible
melting, that is, cooling the melt never, or seldom, results in a crys-
tal even slowing down the cooling rate or seeding the melt [1]. In
such cases, a phase change is not completely characterised by the
melting point, for example, and more complex paths can arise.
Consequently, a particular care should be taken in order to choose
convenient properties that unambiguously characterise a system
during a phase change. In this context, regardless of its constitu-
tion, a system with a finite size (cluster) generally presents addi-
tional features that can not be ignored, due to the energy
contributions of the interfaces. The outside interfacial contribu-
tions, in particular, prevent the system to remain at constant tem-
perature during a phase conversion [2–10], often resulting in a
strong non-linear behaviour.

The concept of aggregate, or cluster, is presented in the litera-
ture in several contexts and interpretations such as regions with
differentiated structure [11], an isolated entity surrounded by vac-
uum [12], or even an abstract entity defined by a set of particles

confined in a short space scale [13]. All these definitions, however,
have in common the restriction of a small number of particles rel-
atively to the bulk systems. Several workers have performed sim-
ulations in unconstrained clusters with tens to thousands of
particles by computing properties like temperature, configura-
tional and total energies, diffusion coefficients, autocorrelation
functions [2–10] and Liapunov exponents [14]. The studied clus-
ters include noble gases [2,3,6–8], mixed system [15], alkali halides
[9,16–22], water [23] and metals [24], by using effective potentials.
Also, for example, TeF6 [25,26], pure [27,28] and doped [29]
sodium, and LiCl [30] by using ab initio methods. Some studies
include the application of external fields [31] and others are per-
formed in supercritical fluids [32].

The main objective of the present paper is to review the strate-
gies and models proposed to deal with cluster behaviours during
phase changes, coexistence and crystal growth, discuss their foun-
dations and limitations and to trace out some possible develop-
ments. Additionally, the collected simulation results and the
developed models are used to estimate cluster sizes needed to fulfil
the thermodynamic limit conditions.

Computational remarks are presented in Section 2. A few
examples of properties computed during phase transitions and
coexistence of clusters, many of them relevant to the construction
of a phase coexistence model, are presented in Section 3. Section
4 is devoted to the introduction of the phase coexistence model.
In Section 5 several model application examples are given. A
discussion on the meaning of the thermodynamic limit, supported
on the previous results and models, is made in Section 6. Finally,
some perspectives of future developments are given in Section 7.
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2. Computational remarks

Full details of the computations are given elsewhere
[9,16,17,19–22]. Here, only a few details are recalled.

A key strategy to unravel phase coexistence, used in most of the
calculations, is heating or cooling the clusters under controlled en-
ergy fluxes, that is, rescaling the velocities by a factor (slightly
greater or less than 1, respectively), subsequently isolating the sys-
tems, calculating their properties after a complete relaxation, and
then imposing the next rescaling. This process (designated as ‘‘con-
stant energy or fixed energy process” in what follows) allows the
systems to adjust the internal kinetic and potential energies, keep-
ing the total energy constant. Therefore, generally, melting
decreases and freezing increases the temperature of the clusters.

Most of the molecular dynamics computations have been per-
formed using the Born–Mayer–Huggins (BMH) potential:

/ijðrÞ ¼
zizje2

r
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rij � r
d

h i
� Cij

r6 �
Dij

r8 ð1Þ

with the parameters given by Watts and McGee [33]. Additionally,
in order to analyse the relative stability of the clusters at 0 K we
have also done some calculations with the Michielsen–Woerlee–
Graaf (MWG) potential:
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with the parameters given by Michielsen et al. [34] for l = 4 and
m = 1. It is well-known that these interaction models, despite being
rigid-ion and effective potentials, reproduce some bulk properties of
alkali halides and other substances fairly well. Recently, we have re-
ported [35] an extensive study, by molecular dynamics and free en-
ergy calculations, of the phase diagrams for bulk KCl and NaCl, also
using those models. A generalised and accurate reproduction of
experimental results requires more sophisticated models. It is note-
worthy, however, that potential details and accuracy have little, if
any, influence in the structure of the theoretical models presented
ahead.

Verlet’s leapfrog algorithm [36] for the numerical integration of
Newton’s equations of motion, with a time step of 5 � 10�15s, has
been used in all simulations. Equilibration runs up to 103 steps
have been used for thermal relaxation, insuring that the produc-
tion starting temperatures remain inside average fluctuation inter-
vals. Thermal properties have been calculated with production
runs of 5 � 103 to 5 � 105 steps for each point, depending on the
size of the clusters and the phase transition region. A set of 300–
600 points has been computed for each plot. The determination
of the velocity auto-correlation functions, which are essential to
assess many properties along the phases coexistence, has been
based on runs of 1.6 � 104 � 4 � 106 time steps with a time origin
at every fifth step.

3. Phase change examples

The following Sections 3.1 and 3.2 contain some results ob-
tained for phase changes, coexistence and nucleation in clusters.
These results, in particular the ones concerning nucleation, give
important information for the construction of the phase coexis-
tence model. They will also help to identify the roots of the model
limitations and to trace out possible extensions.

3.1. Melting

The black curves in Fig. 1 show the melting behaviour for KCl
clusters of different sizes by slow heating the solid. All the clusters
present first-order phase transitions for which the estimated limit

points for prevalence of the solid are given in Table 1 (see also the
arrows in the figure). As expected, the melting temperatures
approach the experimental bulk value as the size of the clusters in-
creases. For clusters whose sizes are greater than 512 ions the
melting proceeds with the presence of phase coexistence in a sin-
gle aggregate, approaching a phase change at constant tempera-
ture as the size increases. At the end of melting there is a
complete breakdown of the crystal and the curves follow the usual
liquid-like behaviour.

Fig. 2, displays snapshots of the 4096 ions cluster at the onset
and the final stage of the melting showing evidence of sustained
solid–liquid coexistence. It should be noticed that for cluster sizes
over �1000 ions the solid and liquid phases are simultaneously
present and dynamically sustained in a single cluster. By slowly
transferring energy to or from the system there is a reversible
move along the solid–liquid coexistence. This indicates that the
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Fig. 1. Phase change diagrams of KCl clusters. Heating is in black (a), nucleated
cooling is in blue (b), non-nucleated cooling is in red (c), cooling with ineffective
residual crystallite is in green (d). Melting onset (;), melting end ("). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this paper.)

Table 1
Melting points (Tm/K) and total energies (Etot/kJ mol�1) for KCl clusters. Experimental
bulk values are included for comparison.

n Tm Etot

512 �1000 � � 636
1000 1008 �638.66
1728 1040 �639.12
2744 1046 �640.13
4096 1037 �641.84
5832 1049 �642.27
Exp. [37] 1045 –
Exp. [38] 1044 –
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cluster is equilibrated. Moreover, dynamical alternation between
melted corners of the cluster lattices is observed as much as the
simulations evolve in time. It is interesting to note that the snap-
shots confirm the well-known fact that alkali halides are nonself-
wetting materials [43].

Using a method based on the velocity auto-correlation func-
tions of the ions, reported elsewhere [16], it is possible to estimate
the molar fraction of the liquid in the coexistence regions as a func-
tion of energy (an example is given in Section 5.2). Despite the mo-
lar fractions oscillate there are no dynamical ‘‘jumps” between
solid and liquid forms.

Table 2 contains the enthalpies of melting and Table 3 presents
the heat capacities before and after melting calculated from the
temperature–energy curves. These results also approach the exper-
imental bulk values and the heat capacities increase from the solid
to the liquid phases.

Different systems may present rather different behaviours dur-
ing phase coexistence, as can be seen ahead in Section 5 where
model application examples to NaCl and NaI are presented. A spe-
cial example, among the studied cases, is the two solid phases de-
tected in LiCl clusters. The temperature as a function of total
energy, for different LiCl cluster sizes, is represented in Fig. 3,
where the starting states for the heating curves have been cubic
structures (cut from a perfect rock salt crystal). The heating curves
starting from hexagonal structures and other details are reported
elsewhere [20]. The coexistence regions show well distinguishable
‘‘plateaus” connected by abrupt slopes. In order to confirm that, for
a given cluster size, these features correspond to different solid
phases, snapshots have been collected from each ‘‘plateau” in the
neighbourhood of the slopes that connect them. Fig. 4 displays
snapshots for the 1728 ions cluster in convenient perspectives. In
addition to the symmetry change, there are some other noticeable
differences, such as: the liquid phase wets more extensively the
hexagonal phase than the cubic one; the cubic structure appears
in a distorted form that is wider near the liquid phase; the profile
of the liquid wetting the cubic phase is similar to the one over a
pair of contiguous faces in the hexagonal structure.

Fig. 3 also shows some regular behaviours: (i) during heating,
lithium chloride presents a double phase transition, cubic ?

cubic + liquid ? hexagonal + liquid; (ii) spontaneous nucleation
(see Ref. [17]) of the supercooled liquid droplet occurs, always,
with the formation of a cubic structure; and (iii) for the lower
cooling rates, as in the 1000 ions cluster, a double transition,
liquid ? cubic + liquid ? hexagonal + liquid, at fixed energy, is
observed. The last feature is consistent with the nucleation of the
hexagonal phase in the liquid over the cubic phase, since no direct
spontaneous liquid ? hexagonal + liquid transition is observed.
Thus, the cubic + liquid ? hexagonal + liquid transition mecha-
nism seems to have an intermediate step where the two solid
phases coexist with the liquid. Then, due to the growth of the hex-
agonal phase, the temperature shall increase until the cubic phase
is completely melted. However, since this is a relatively fast pro-
cess, further refined calculations are needed to clarify such details.
The presence of the two solid phases can also be observed in the
liquid molar fractions obtained by means of the method based on
the velocity autocorrelation functions already referred to. This
presence is expressed as two well-distinguishable non-co-linear
and nearly parallel curves [17]. The transition from one to another
occurs precisely at the same energy as the respective slope in Fig. 3.

3.2. Freezing

Figs. 1 and 3, also display the freezing curves obtained from KCl
and LiCl totally melted configurations, and from configurations not
completely melted containing residual crystallites, by slowly cool-
ing the systems. The freezing process from supercooled liquid KCl
configurations plus a solid seed (heterogeneous nucleation) is dis-
played ahead in separate diagrams.

3.2.1. Spontaneous nucleation
The diagrams of Fig. 1 indicate that hysteresis cycles show up

when the freezing process is carried out from totally melted con-
figurations since spontaneous crystallisation occurs at lower tem-
peratures/energies than the ones corresponding to the complete
crystal breakdown in the melting (see black and red curves). The
temperature at which spontaneous crystallisation occurs is,
approximately, the same (�730 K) for cluster sizes over 512. It
may be suggested that this temperature (Tsc) corresponds to the
supercooling limit of the liquid clusters according to the following
analysis.

Assuming homogeneous nucleation, at least one critical nucleus
must be formed in a liquid droplet of volume V so that crystallisa-
tion occurs. Then, the attainable limit of supercooling for the liquid
droplet, that is, the homogeneous nucleation reduced temperature
hsc = Tsc/Tm, is [11]:

1 ¼ VTm

dT=dt

Z hsc

1
JðhÞdh ð3Þ

Table 2
Enthalpies of melting for KCl clusters of different sizes (Dh/kJ mol�1).

n Dh

512 22.73
1000 23.13
1728 24.06
2744 24.24
4096 24.81
5832 25.04
Exp. [39,38] 26.4
Exp. [40] 25.5
Exp. [41] 26.5

Table 3
Heat capacities (Cp/JK�1 mol�1) for solid and liquid KCl clusters of different sizes at
940 K and 1045 K. Experimental bulk values are included for comparison.

n Solid Liquid

940 K 1045 K 940 K 1045 K

512 67.9 – 72.3 69.2
1000 68.2 – 69.6 64.7
1728 66.5 – 72.7 71.6
2744 66.4 – 71.3 68.4
4096 65.6 71.9 72.4 70.7
5832 63.6 66.2 72.0 70.0
10648 71.6 69.1
From [42] – 64.9
Exp. [42] – 66.9
Exp. [39,38] 64.4 69.3 73.6

Fig. 2. Phase coexistence during the melting of the 4096 KCl cluster.
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where Tm is the bulk melting temperature, dT/dt is the cooling rate
and J is the rate of homogeneous nucleation, that is, the number of
critical nuclei per unit volume and unit time. Fig. 5 shows hsc as a
function of nTm/(dT/dt) computed from the previous data and from
additional computations [17]. The overall profile of the curve is,
within the margin of statistical errors, in close agreement with
the predictions of the classical nucleation theory, except (also
detectable in Fig. 1 and Table 4) in the 2744 ions cluster which
represents a fortuitous event of premature nucleation. The experi-
mental attainable limit of supercooling for KCl is 0.836 (874 K)
[11] while the average value of the plateau in Fig. 5 is 0.697 (731
K). This is consistent with the fact that the sizes of our clusters
are of the order of 1 nm (compared to typical droplet sizes of 1
lm in cloud chambers and 10 lm in emulsions) and the cooling
rates in the simulations are considerably higher than the experi-
mental ones. A larger amount of data with improved statistics is
being produced to allow the computation of the rate of homoge-
neous nucleation as a function of h and cluster size. This will pre-
sumably shed light on the time scale that one can expect for the
formation of critical nuclei, as a function of both temperature and
cluster size.

Although vitrification is possible to occur in simulated clusters
or bulk KCl, by applying instantaneous or very high cooling rates
[44,9], it appears that the present simulations have prevented it.
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Fig. 5. hsc as a function of nTm/(dT/dt) for a set of KCl clusters. The dashed curve is a
guide for the eye.

Table 4
Self diffusion coefficients, SDC, for KCl clusters of different sizes just before
spontaneous crystallisation. Energies in kJ mol�1, temperatures in K and self diffusion
coefficients in 105 cm2 s�1.

n Energy T SDC

1728 �637.68 734 2.90
2744 �636.86 760 3.26
4096 �640.33 726 2.73
5832 �640.82 728 2.74
10648 �641.27 735 2.71
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Fig. 3. Temperature as a function of total energy for LiCl clusters of 1000, 1728, 2744 and 4096 ions, showing the occurrence of more than one solid phase. (ch) cubic heating;
(cc) cubic cooling; (hh) hexagonal heating; (hc) cooling with residual hexagonal nuclei; (lc) liquid cooling; (c > h) cubic to hexagonal; (h > l) hexagonal to liquid; (l > c) liquid
to cubic. Arrows indicate the directions of the heating and cooling paths.

Fig. 4. Cubic and hexagonal symmetries in the 1728 ions cluster of LiCl during the
melting starting from a cubic solid.
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In fact, it has been detected that such systems present a glass tran-
sition at h � 0.3 (�300 K). The temperatures in the present simula-
tion are above this value. From Fig. 5 it can also be inferred that the
probed conditions (cooling ratios and cluster sizes) are above
(though not too far) the region where vitrification is concurrent
with crystallisation. Moreover, the self-diffusion coefficients in
the supercooled region show a liquid behaviour and have higher
values than the ones of coexistent states [17].

Representing, for clarity, the solid molar fractions as a function
of temperature (see Fig. 6), it is clear that the supercooled liquid,
obtained from totally melted states, contains traces of solid-like
ions. However, they do not form a single solid (pre-critical) nucleus
inside the liquid droplet. On the contrary, they constitute sparse
clouds of individual ions trapped by their neighbours (with life-
times J 40 ps) whose percentage increases as the temperature
decreases. Table 5 contains the fitting coefficients to:

ns

n
¼ C exp c T � T0ð Þ½ � ð4Þ

where ns and n are the number of solid-behaved ions and the total
number of ions, respectively. The curves have a steep increase at
�730 K. The fitting coefficients seem to be uncorrelated with the
size of the clusters and for the bigger ones the curves almost coin-
cide. Considering that the probability of spontaneous nucleation in-
creases with the fraction of solid-like ions in the supercooled liquid,
the exponential form seems to describe the homogeneous nucle-
ation process in the present clusters. These results help to under-
stand the computational difficulty in obtaining the upper
temperature points in Fig. 5 and strongly suggest the use of seeding
to probe nucleation at higher temperatures.

3.2.2. Heterogeneous nucleation
As for the freezing process starting at configurations not com-

pletely melted containing residual crystallites, the behaviour is
clearly different (see blue curves in Fig. 1) since the liquid already
contains nuclei which mimic the seeds in heterogeneous nucle-
ation. The hysteresis practically disappears and the freezing curves
approach the melting ones. However, if the liquid is not sufficiently
nucleated, then supercooling and hysteresis show up again (see
green curve in Fig. 1).

The last observations called for a further analysis of heteroge-
neous nucleation by means of introducing external seeds as small
crystallites that collide with the liquid droplet. In this way one can
assess the critical nucleus sizes for an effective nucleation. We
have firstly chosen a set of configurations at different energies of

the 5832-ion cluster, in the supercooled liquid branch, and
extracted 512 ions from them. After the thermal stabilisation of
the resulting liquid droplets we have added one seed (a solid crys-
tallite with 512 ions) in the neighbourhood of the droplets (see
Fig. 7) and then followed the time evolution of the seeded droplets
displayed in Fig. 8. The general evolution shows that the tempera-
ture increases rapidly with time when the energy is relatively low,
until it reaches the solid or the coexistence solid–liquid curves.
From there on the temperature stabilises along the time.1 The rate
of temperature variation decreases as the energy increases and
from a value of energy ��630 kJ mol�1 upwards the temperature
ceases to increase and the system reaches the same supercooled
states obtained by cooling the non-nucleated liquid droplet.

We have also performed simulations starting with the same
supercooled liquid droplet of 5832 ions and using smaller seeds
with 64 and 216 ions. In these cases the liquid droplets have
approximately the same size as for the 512-ion seed (5832–64
and 5832–216 ions, respectively). In the case of the 64 ions crystal-
lite, the seed is ineffective in all the existence range of the probed
supercooled liquid, even for values of energy/temperature near the
occurrence of spontaneous nucleation (�730 K). As for the case of
the 216 ions crystallite, the seed is effective, but only in a shorter
range of temperature/energy than in the case of the 512 ions seed.
Above 785 K the seed looses its efficiency. However, below that
temperature the behaviour of the system, namely its time evolu-
tion periods, is similar to the 512 case. Thus, it seems that the dif-
ference between the results obtained with seeds of different sizes
is only in the temperature below which the seed is effective.

The previous quantitative results and analysis are comple-
mented by some instantaneous views of the studied systems. In
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Fig. 6. Fraction of solid-like ions, in the supercooled liquid, as a function of
temperature for KCl clusters of different sizes(n).

Table 5
Values of the exponent factor c(in K�1), and pre-factor C obtained, for KCl, from the
fittings to Eq. (4).

n c C

1728 �0.038 0.011
2744 �0.026 0.008
4096 �0.031 0.017
5832 �0.038 0.022
10648 �0.033 0.020

Fig. 7. Snapshot of a KCl liquid droplet (n = 5832–512) in the presence of a small
crystal seed (n = 512).

1 The noticeable gap near the middle of the energy axes is due to the shorter runs
performed at these state points.
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fact, the perception of the phenomena can be enriched by dynamic
perspectives following their evolution in time. To this end, we have
produced some animation examples, available on-line, for the
melting process [45], and for successful [46] and unsuccessful
seeding [47]cases.

3.2.3. Sizes of critical nuclei
Accordingly to the classical nucleation theory [11,48], if a crys-

tallite produced by a fluctuation in an infinite unstable liquid sys-
tem is smaller than a critical size it shall shrink and disappear. If it
is greater than the critical size the crystallite will grow until all the
system becomes solid. This is due to the balance between two con-
tributions to the free energy (the minimum reversible work of for-
mation) that have opposite signs [11,48]. The free energy (work
function) [11] to create an embryo inside a bulk liquid phase at a
fixed temperature, T, and pressure, p, is:

WminðT;pÞ ¼ rðT;pÞF þ neDlðT;pÞ ð5Þ

where ne is the number of particles in the embryo, F is the surface
area of the embryo, r(T,p) is the interfacial solid–liquid surface ten-
sion and Dl(T,p) is the difference between the chemical potentials
of the stable and unstable phases. F depends on the embryo geom-
etry and, in most cases, it is proportional to n2=3

e . Because of the
positive sign of the first term and the negative one of the second,
together with the respective dependencies on ne, Eq. (5) has a max-
imum at some value ne = n*, the so-called critical nucleus size. Em-
bryos containing less than n* particles shrink spontaneously, while
embryos greater than n* grow spontaneously. As such, for the
formation of the new phase, the system must first overcome a free
energy barrier by creating a critical nucleus, that is, the minimum
size of the seed that is effective at a given temperature T. For cubic
seeds, the average number of particles by one edge of the cube, n�a,
can be derived from Eq. (5) [11,48,18]:

n�a ¼
4t2

3rTm

ðTm � TÞDh
ð6Þ

where t is the specific volume of the solid, Tm is the bulk melting
temperature and Dh is the enthalpy of melting. Assuming that r

and t are independent on the temperature [11], Eq. (6) can be
rewritten in the form:

n�aðTm � TÞ
Tm

¼ k ð7Þ

In the case of the 512 ions seed, n�a ¼ 8, Tm = 1049 K and T = 855 K.
Therefore, the value of k is 1.48 and the highest temperature at
which other seeds are effective should be given by:

T ¼ Tm � k
Tm

n�a
ð8Þ

For the 216 ions seed the predicted temperature is 790 K in good
agreement with the simulation value of 785 K. In the case of the
64 ions seed the predicted temperature is 661 K well below the
temperature of spontaneous crystallisation, and in accordance with
the systematic destruction of the seed observed along the probed
supercooled region.

We should point out that, apart from the assumption of r and t
being independent on the temperature, the application of Eq. (6) to
the present cases does not strictly obey to the conditions of its der-
ivation. Indeed, the equation is obtained supposing homogeneous
nucleation where the spontaneous critical nucleus is well inside
the liquid, that is, completely wetted. It is well-known, however,
that alkali halides are nonself-wetting materials as we have re-
ferred to before. Consequently, the seeds remain outside the liquid
droplet during the crucial steps of the crystal growth process with
their faces not completely wetted. Moreover, the equation presup-
poses a bulk liquid phase which is not exactly the case. Even so the
results appear to be consistent.

We have also estimated the size of the critical nucleus for the
freezing process starting at configurations not completely melted
containing residual crystallites, by analysing the solid portion of
the cluster remaining at the final stage of the melting process.
The maximum energy where the residual crystallite constitutes
an effective nucleus is taken from the crossing point of the melting
and recrystallisation curves (black and blue curves in Fig. 1). The
size of the crystallite is then estimated by interpolation of the li-
quid molar fractions. Table 6 contains the results for clusters of dif-
ferent sizes together with the ones for heterogeneous nucleation.
Fig. 9 displays the inverse of the average number of particles by
one edge of the cubic nucleus as a function of temperature. Note
that the straight line approach 0 as T ? Tm according to Eq. (6).
Considering that the method used to compute the results referring
to residual crystallites is a bit crude and that, in the two sets of re-
sults, the nuclei are differently wetted it seems that there is a fairly
good regular behaviour.

4. Phase coexistence model

An exact and complete treatment of phase coexistence would
require the partition function of the system [49,50]. This is a chal-

Table 6
Critical nuclei sizes ns ¼ n3

a as a function of the temperature (T/K) for KCl. a) from
residual crystallites; b) from the seeding process. Between parenthesis is the number
of ions used to collect the data.

ns T n

(a) (b)

216 785 (5832)
290 875 (1000)
328 893 (1728)
512 855 (5832)
630 922 (2744)
634 905 (4096)
874 939 (5832)

Fig. 8. Induced crystal growth dynamics (temperature evolution in time at fixed
energy) of a supercooled KCl droplet (n = 5832–512) ions, using a seed of 512 ions.
Bullets are coloured according to the system temperatures ranging from blue (for
the lowest ones) to red (for the highest ones). Time in ps, temperature in K and total
energy in kJ mol�1. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this paper.)
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lenging task, even for the simplest systems [51,52], but restrictive
approximations are generally unavoidable [53].

The partition function approach, however, plays an important
role in the study of very small systems that are not able to sustain
phase coexistence [53,54]. These systems either dynamically oscil-
late between ordered and disordered conformations [53] (observed
up to around 100 ions for alkali-halides [16]) or present sharp
jumps between the ordered and disordered phases in the form of
hysteresis cycles when heated and cooled (observed from near
100 up to around 1000 ions for alkali-halides [16]).

Larger systems presenting sustained phase coexistence (in the
form of two regions, one ordered (solid) and the other disordered
(liquid) separated by a permanent interface) require a different ap-
proach. That is the case for the alkali-halides clusters with sizes
over 1000 ions presented in Section 3. Making geometric restric-
tions to the shapes of the component phases, it is possible to obtain
a relation between the system variables [43]. However, even for
the simplest geometries, the equations obtained by this method
may become very intricate. A less restrictive model in what con-
cerns to solid and, specially, to liquid shapes, proposed by us
[19], is discussed in what follows.

Clusters behave differently from the corresponding bulk sys-
tems, mainly in phase change or phase coexistence regions. How-
ever, they asymptotically approach the bulk properties as the
size increases. This is just the basis of the proposed model. It is as-
sumed that a given cluster has a virtual bulk-like behaviour which
is taken as the reference state. The model traces out the deviations
(dependent on the number of particles, n) relatively to the refer-
ence state. All the derived equations should then yield the right
bulk limit when n ?1.

The size of the cubic critical nucleus, n*, (taking the power 3 of
Eq. (6))

n� ¼ 4t2
3rTm

ðTm � TÞDh

" #3

ð9Þ

approaches infinity at the bulk melting temperature, Tm. According
to the results presented in Section 3.2.3, it is assumed that Eq. (9) is
a fairly good approximation even when the liquid phase is not infi-
nite and the nucleus is not completely wetted. The size of the cubic
critical nucleus can be recast in a more compact form:

n� ¼ k3 Tm
3

ðTm � TÞ3
ð10Þ

where

k3 ¼ 4t2
3r

Dh

" #3

ð11Þ

In a bulk system, after the melting onset and solid–liquid equilib-
rium is attained, adding energy to the system converts a portion
of solid to liquid, with the temperature and pressure remaining
constant. The number of solid ions in the bulk system, n1s , at a given
energy E, is:

n1s ¼
ElðTmÞ � E

ElðTmÞ � EsðTmÞ
n ð12Þ

where EsðTmÞ and ElðTmÞ are, respectively, the total energies of the bulk
solid and liquid at the melting temperature Tm, and n is the total
number of particles in the system.

A finite system (cluster) prepared at any fixed total energy over
the bulk solid–liquid line shall always have a size less than the crit-
ical nucleus (see Eq. (9) at Tm. At those fixed energies a number of
solid ions, Dns, shall be transferred to the liquid until the cluster
reaches a temperature T < Tm at which the corresponding solid crit-
ical nucleus can sustain equilibrium with the liquid. If the conver-
sion of solid ions into liquid was realised at constant temperature,
it would require an external energy [Dns/n]Dh, to compensate for
the increase of potential energy. For the clusters at constant total
energy the increase of potential energy is entirely obtained at the
cost of the internal kinetic energy. This results in a decrease of
the cluster temperature, DT = T � Tm,

DT ¼ DnsDh
nCp

ð13Þ

where Dh is the enthalpy of melting and Cp is the heat capacity.
The number of solid ions in the cluster, at energy E, as a function

of temperature is obtained from:

ns ¼ nbb
s þ Dns ð14Þ

where nbb
s , given by the same form of Eq. (12), should be understood

as the number of solid ions that the cluster would have if it followed
the bulk behaviour. EsðTmÞ and ElðTmÞ are, now, the projected solid and
liquid cluster energies at the bulk melting temperature, Tm, which
depend, of course, on the cluster size. Substituting nbb

s from 12
and Dns from 13:

ns ¼
ElðTmÞ � E

Dh
nþ ðT � TmÞnCp

Dh
ð15Þ

In a first order approximation, we can take the bulk value for
Dh ¼ ElðTmÞ � EsðTmÞ [18]. However, Dh is also a function of the num-
ber of particles. This aspect shall be taken into account in a second
order approximation presented in subsection 4.1. Incidentally, it is
noteworthy that Eq. (15) yields the right bulk limit when n ?1,
where (T � T m) = 0. Relatively to Cp, it seems plausible to take it,
in a first approximation, as the average of the solid and liquid values
at the start and end of melting, since that values do not differ much
for alkali halide clusters [17] (see Tables 7 and 8). However, for

750 800 850 900 950 1000 1050
T / K

0.00

0.05

0.10

0.15

0.20

(
n a*  )

−1

Residual crystallites
Seeding

Fig. 9. Inverse of the average number of particles by one edge of the cubic nucleus
as a function of temperature for KCl clusters. Diamonds represent the values
obtained from seeding, and the stars the values from residual crystallites.

Table 7
Enthalpy of melting Dh (kJ mol�1) and heat capacities Cp (JK�1 mol�1) of solid and
liquid NaI clusters at temperature T m = 933K.

n CðsÞp CðlÞp
Dh

1000 75.19 69.58 17.53
1728 68.01 70.53 19.37
2744 68.27 68.96 19.52
4096
1
Exp. 59.95 64.85 23.60
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systems which have very distinct solid and liquid heat capacities a
better approximation may be needed.

Accordingly to Eq. (9), the size of the critical nucleus depends on
the temperature. A walk over embryos sizes, despite it remains dri-
ven in each moment by the work function slope for the respective
size, carries the system over the work functions themselves. Fig. 10
captures, qualitatively, the essential dynamics through which a
cluster can sustain a solid–liquid coexistence, at constant energy
and external pressure. Suppose, for example, a solid crystallite of
size ne(T1) at temperature T1. Once its size is less then n*(T1), the
cluster spontaneously melts and the crystallite shrinks. As the total
energy is fixed, the temperature shall decrease until the crystallite
size reaches the value n*(T), which also constitutes a critical nu-
cleus, but now over a different work function surface. For sizes less
than n*(T), for example at T2 < T, the crystallite would spontane-
ously grow (with a temperature increase at constant total energy),
since such size is greater than the critical nucleus of the corre-
sponding work functions. As a consequence, phase equilibrium is
attained when the crystallite size, given by Eq. (15), becomes equal
to the size of the critical nucleus, given by Eq. (10), that is, when
the temperature T is a root of:

ElðTmÞ � E
Dh

nþ ðT � TmÞnCp

Dh
� k3 Tm

3

ðTm � TÞ3
¼ 0 ð16Þ

From Eq. (16):

E ¼ ElðTmÞ þ ðT � TmÞCp � k3 DhTm
3

nðTm � TÞ3
ð17Þ

This is the key equation to predict (T,E) values for direct com-
parison with the results from simulations.

Fig. 11 represents the crystallite (ns) and critical nucleus (n*)
sizes, at different energies, as a function of temperature, given by
Eqs. (15) and (10), respectively. The lower temperature where

coexistence still exists (coexistence end2) can be obtained noting
that 15 and 10 are tangent at that point (see Fig. 11)

Tce ¼ Tm �
3k3T3

mDh
nCp

 !1
4

ð18Þ

and the correspondent energy is

EðTceÞ ¼ ElðTmÞ þ
Dh
n

DTnCp

Dh
þ k3T3

m

DTð Þ3

" #
ð19Þ

where DT = Tce � Tm. The lowest energy where coexistence, pre-
dicted by Eq. (16), is possible (coexistence begin3) can be obtained
noting that the temperature along the solid curve, near the melting
point, is

Ts ¼ Tm �
EsðTmÞ � E

Cp
ð20Þ

and equating it to temperature T in Eq. (10) with n* = n:

Ecb ¼ EsðTmÞ � kCpTmn�
1
3 ð21Þ

Melting in the energy interval �Ecb; EsðTmÞ½ shall be, from now on, des-
ignated by ‘‘early melting”, since the bulk-like conditions have been
chosen as the reference ones for clusters. However, this does not
mean an exceptional situation. Indeed, at the present approxima-
tion level, the model always predicts the cluster melting onset at
lower temperatures and energies than the ones of the correspond-
ing bulk systems.

The temperature correspondent to the energy Ecb is (see Fig. 11)

Tcb ¼ Tmð1� kn�
1
3Þ ð22Þ

The domain of T values for the resolution of the equation model in
order to E is bounded by Tcb and Tce.

4.1. Second order approximation to Dh

The dependence of Dh on the number of particles can be found
considering:
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Fig. 10. Dynamics through which a cluster attains a solid–liquid equilibrium.
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Fig. 11. Construction, built from Eqs. (15) and (10), to determine the limits of the
phase coexistence for an arbitrary cluster.

Table 8
Enthalpy of melting, Dh (kJ mol�1), and heat capacities, Cp (JK�1 mol�1) of NaCl solid
and liquid clusters at temperature Tm = 1074 K.

n CðsÞp CðlÞp
Dh

1000 69.03 70.57 23.80
1728 67.44 70.67 24.38
2744 66.90 70.70 24.97
4096 66.74 69.70 25.25
1 27.75
Exp. 67.36 70.37 28.25

2 The notation Tce and Ece seems more clear than Tinf (for ‘‘inferior temperature”)
and Einf that has been used in previous articles [19–22].

3 The notation Tcb and Ecb seems also more clear than Tif (for ‘‘initiate fusion”) and
Eif that has been used in previous articles. [19–22].
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ElðTmÞ ¼ E1lðTmÞ þ 1ln
�1

3 ð23Þ

EsðTmÞ ¼ E1sðTmÞ þ 1sn
�1

3 ð24Þ

hence

Dh ¼ Dh1 þ D1n�
1
3 ð25Þ

The value of k is also dependent on n:

k ¼ 4t2
3r

Dh1 þ D1n�
1
3

ð26Þ

The limit value k1 ¼ 4t2
3r=Dh1 is obtained when n ?1. D1 is the

rate of change of the melting enthalpy with system size.

5. Examples of the model application

5.1. Minimum extent of supercooling

Additionally to the properties referred to above, as the energy
and temperature at coexistence, the model predicts, for example,
the minimum extent of supercooling that a droplet should attain,
during the freezing process, before it can crystallise. It is defined
by the ratio between the highest temperature where a cluster
can start a liquid to solid transition and the melting temperature
[19]. Fig. 12 shows the application to a series of KCl clusters, in
comparison with the simulation results.

5.2. Liquid molar fractions

Properties of the system during the coexistence sates are also
accessible. For example, the liquid molar fractions can be obtained
from the ratio between the liquid portion and the total number of
particles in the system:

vliq ¼
n� kTm

Tm�T

� �3

n
ð27Þ

Fig. 13 shows the simulation results [17], obtained with the method
based in the analysis of the velocity autocorrelation functions de-
scribed elsewhere [16], compared with the model predictions for
a KCl cluster with 4096 ions.

5.3. Solid–liquid co-existence for NaI and NaCl clusters

Fig. 14 contains an example of the model application to predict
the evolution of NaI clusters temperature as a function of the total
energy and system size by using parameters Tm = 933 K, k1 = 0.88,
Cp = 69 JK�1 mol�1, E1lðTmÞ ¼ �611:5 kJ mol�1, 1l = 84.906 kJ mol�1,
Dh1 = 23.6 kJ mol�1, D1 = �58 kJ mol�1. As expected, taking into
consideration that the model assumes a bulk liquid phase (and
the equations are considered only approximately valid for a finite
liquid phase as already referred to), the predictions are more accu-
rate for larger clusters. The more significant deviations, if any, tend
to occur at the initial stages of the melting when the most part of
the cluster is solid and the liquid part is just a small drop on a side
or a thin layer on one or two faces. The model prediction diver-
gence from the simulation results for the 4096 ions cluster above
�622 kJ mol�1 is the exception to the general trend. This singular
behaviour is suspected to be originated in a change from a partial
wetting to a total immersion of the crystallite in the melt and re-
quires further investigation. Therefore: (i) excluding the 4096 ions
case, the melting end temperatures are correctly predicted; (ii) the
melting start temperatures of the bigger clusters (2744 and 4096
ions) are in good agreement with simulations; (iii) the melting
start temperatures of the smaller clusters (1000 and 1728 ions)
are a bit underestimated; and (iv) early melting is observed accord-
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Fig. 12. Prediction of the minimum extent of supercooling as a function of system
size for KCl clusters.
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Fig. 14. Phase coexistence model prediction versus simulation results for a set of
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ing to the model predictions similarly to what has been reported
for LiCl clusters [20].

Fig. 15 contains the model prediction for the temperature evolu-
tion as a function of the energy in NaCl clusters by using the param-
eters Tm = 1085 K, k1 = 0.72, Cp = 68 JK�1 mol�1, E1lðTmÞ ¼
�690:98 kJ mol�1, 1l = 106.16 kJ mol�1, Dh1 = 27.74 kJ mol�1, D1 =
�39.647 kJ mol�1. In this case the simulations show that all clusters
closely approach the bulk melting temperature, similarly to the case
of KCl reported elsewhere [19]. However, the model predictions
remarkably underestimate the melting temperature, suggesting
early melting and contrary to the simulations. Nonetheless, the
end parts of the coexistence curves are correctly predicted, remain-
ing within the fluctuations observed for all clusters. Thus, NaCl clus-
ters constitute a significantly less successful application of the
model as far as early melting is concerned. Since the model failure
is undoubtedly related to the approximations discussed above, in or-
der to trace out perspectives that may aid in the overcoming of these
limitations, a closer review of the model foundations is required.

5.4. Crystal growth dynamics

The phase coexistence model can also be used for the study of
nonequilibrium processes as, for example, the crystal growth

dynamics, already referred to in Section 3.2, and here briefly dis-
cussed [21]. For a system with melting temperature Tm, the linear
growth speed, u, of a nucleus of the stable phase at a given temper-
ature T inside the infinite unstable phase (that is to say, the inter-
face progression speed towards the stable phase) is given by
Debenedetti’s equation [11]

u ¼ fkBT
3pa2g

1� exp � Dh
kBT

1� T
Tm

� �� �� 	
ð28Þ

where f is the fraction of the growing phase surface sites available
for placing new particles, a is a number of the order of the molecular
diameter and g is the viscosity.

For a solid–liquid phase transition in the case of a cubic solid
nucleus, the change Dns in the number of particles in the solid nu-
cleus ns after a time Dt, for a system with density q, noting that
uDtq1/3 is the average linear increase of the number of particles
in the u direction, will be:

Dns ¼ 6n
2
3
suq1

3Dt þ OðDt2Þ ð29Þ

from which, removing higher order Dt terms:

@ns

@t
¼ 6n

2
3
suq1

3 ð30Þ

Deriving 15 in order to t at a fixed energy, and considering the
approximation that Dh and Cp are independent of temperature [19]:

@ns

@t
¼ nCp

Dh
@T
@t

ð31Þ

Making use of Eqs. (15), (28), (31) and (30) and eliminating ns, it re-
sults in

@T
@t
¼ a

ElðTmÞ � Eþ ðT � TmÞCp

Dh

� �2
3

� T 1� exp � Dh
kBT

1� T
Teq

� �� �� 	
ð32Þ

with

a ¼ 2DhfkBq
1
3

pCpa2g
n�

1
3 ð33Þ

where Teq represents the phase equilibrium temperature given by
Eq. (16) [19].

Since Eq. (28) presupposes that nucleation is already realised,
the model is not able to predict the starting time for the crystal
growth process, but only its time evolution from there on. More-
over, once stationary conditions presupposed in Eq. (28) are not
verified during stochastic formation of embryos, it should not be
expected a perfect reproduction of experimental or simulation re-
sults at the early stages of the growth process. Nevertheless, Equa-
tion 32 is expected to give fairly good results for cluster sizes up to
a few powers of ten, like the KCl ones for which we have simulation
results available.

As we do not know the value of f, a has been obtained by a fit of
Eq. (32) to the simulation data and then an estimation of f has been
made. To this end, Eq. (32) has been solved numerically for a
(5832–512) ions droplet seeded with a 512 ions crystallite (corre-
sponding to E = �638.71 kJ mol�1 chosen from the droplet seeded
cases studied in Ref. [17]) and a has been adjusted in order to min-
imise the deviations of the computed results from the simulated
ones. The value of a = 1.88 � 10�3 ps�1 has been obtained and used
to predict the evolution for droplets at different energies, including
a spontaneous nucleation case. The results are presented in Fig. 16
together with the correspondent ones simulated in the same con-
ditions [17].
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Fig. 16. Evolution in time of the KCl droplet+seed temperature predicted by Eq.
(32). Symbols represent simulation results, lines the model predictions, and the
inset the respective energies (kJ mol�1).
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All curves present the expected sigmoid-like shape, starting
with an approximate4 cubic growth of the temperature (linearly re-
lated to ns by Eq. (15) as the progressively larger (see Eq. (30)
amount of the liquid converted to solid, per unit of time, proportion-
ally converts potential energy into kinetic energy. This is followed by
a strong slowdown, dictated by Eq. (28), near the equilibrium. There
are, however, some relevant discrepancies between the simulation
results and the model predictions which require a closer view. The
differences observed at the initial stage of crystal growth are due
to the perturbation that the seeding imposes on the temperature
[17]. That is, the introduction of the seed directly drives the system
to an intermediate stage of the crystal growth process. This is con-
firmed by the good agreement observed between the prediction,
made using the same value of a, and the simulation results for the
presented case of spontaneous nucleation. Such agreement is
remarkable, considering the significant differences in the location
of the nuclei at the early stages for the seeded and spontaneous
cases.5 However, as previously referred to, it is not expectable that
the same level of agreement can be obtained at the initial stages
for spontaneous nucleation at higher temperatures/energies (corre-
sponding to higher sizes for the critical nuclei), since the stochastic
contribution to the nuclei formation is not contained in the model.

6. Thermodynamic limit

Some cluster properties that we have computed from the simu-
lations, and models, approach fairly well, mainly for larger clusters,
the corresponding bulk properties determined by experiment or by
simulations with a relatively small number of particles plus bound-
ary conditions.

Given a cluster, not subjected to boundary conditions, how
many particles should be used so that the simulated properties be-
come indistinguishable from the bulk ones? Because of the huge
computer time required, the way to answer such a question is
not, of course, to perform direct simulations of successively larger
clusters. Yet, we believe that is a valuable issue, either to clarify the
operational meaning of ‘‘thermodynamic limit” or to estimate
eventual errors involved in simulations to predict bulk properties
of complex systems, by using small clusters as it is common, for
example, in biochemical and electrochemical simulations.

Nonetheless, for some properties we can predict, in an indirect
way, the clusters sizes in order to answer the question, based on
linear or other convergence trends presented by the properties of
large enough clusters, and on the relative deviation:

RðnÞ ¼ Xref � XðnÞ
Xref










; ð34Þ

where X(n) is the value of a property for a n sized cluster and Xref is
the corresponding bulk value. Imposing a relative deviation we can
compute

XðnÞ ¼ ð1� RðnÞÞXref ð35Þ

and in most cases the inverse function

n Xð Þ ¼ X�1ðnÞ: ð36Þ

that allows to predict the cluster size under the imposed deviation.
Total energy values for solid clusters with sizes ranging from 64

to 8000 ions, presented in Table 9, show, for sizes above 512 ions, a

well defined linear convergence to the bulk value, when repre-
sented as a function of n�1/3 (see Fig. 17). Using Eqs. (35) and
(36) the predicted system size that ensures less than 1% deviation
in this property is ’104.

If the same tolerance is used for free energies, reported else-
where [22], the size predicted is also ’104.

For the melting points in Table 1 there is no need for a conver-
gence law to determine the cluster sizes within 1% deviation. In
fact, for clusters with 1728 ions and above the computed values
are systematically in this interval.

Heat capacities at 940 K, see Table 10, also show a linear conver-
gence. Despite of the considerable uncertainty on the computed
values, we can estimate from the fitted curve a cluster size of
’105 within 1% deviation.

The number of particles on an edge of the critical nucleus, Eq.
(7), can also be used to predict the minimum cluster size needed
to have the possibility of spontaneous nucleation at temperature
T. From

ðTm � TÞ
Tm

6 0:01 ð37Þ

the number of particles on an edge of a KCl nucleus is 1.48/
0.01 = 84, and a reasonable estimation of the cluster is
5 � 1483 ’ 108. This estimation assumes the maintenance of the
proportion between critical nucleus and cluster sizes [17]. A more
rigorous determination has been made from the model prediction
for the minimum hysteresis extent, 4 Thist, that is, the minimum
interval of temperatures where hysteresis is observed[19]:

4Thist

Tm
¼ 3

1
4 þ 3�

3
4

� �
4 h

1
4T
�1

4
m k

3
4 Cpn
� ��1

4
6 0:01 ð38Þ

from which, consistently, results

n P 3
1
4 þ 3�

3
4

� �4
4 hT�1

m k3C�1
p 108 ’ 108 ð39Þ

Table 9
Total energy, E(kJ mol�1), at zero temperature and pressure, for solid clusters of KCl
with sizes 64, 216, 512, 1000, 1728, 2744, 4096, 5832, 8000 and the bulk.

n E n E

64 �674.392 2744 �699.968
216 �687.292 4096 �701.062
512 �693.068 5832 �701.910

1000 �696.354 8000 �702.574
1728 �698.480 Bulk �709.052
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Fig. 17. Total energy, E (kJ mol�1), at zero temperature and pressure, for solid KCl
clusters with sizes 64, 216, 512, 1000, 1728, 2744, 4096, 5832, 8000 and the bulk,
represented as a function of n�1/3.

4 Assuming that u is constant (a reasonable assumption for a small variation of T far
from Teq), the solution of Eq. (30) is ns = (2uq1/3t + l)3, with l = 0 for spontaneous
nucleation and l3 equal to seed size for seeded cases.

5 It should be noted that the spontaneous case was not followed strictly at fixed
energy (see Fig. 1) but, instead, at a considerably slow decreasing rate of it. Although
not very relevant, due to the small energy variation involved during most of the
growth, correcting this aspect will even increase the agreement.
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The results above are summarised in Fig. 18. It also marks some
behaviour classes shown by the smaller clusters in terms of phase
changing. The wide range of orders of magnitude covered is signif-
icant but becomes more impressive if nowadays experimental
tolerances are used. In fact, the thermodynamic limit for experi-
mental accuracy under 0.01%, a value accessible in the last two dec-
ades [55], requires a system size of 1012 for the enthalpy of melting
and more than 1016 if hysteresis is considered.

7. Development perspectives

In the presented model, the slope of the work function depen-
dence on the embryo size, l = DW/Dne, that indicates the height
of the free energy barrier, is evaluated supposing a bulk liquid
phase, which constitutes a first approximation since clusters are
finite systems. Therefore, additional constraints that can determine
the states of the clusters should be considered regarding an exten-
sion of the model.

A partially melted finite system can be seen, depending on the
proportions of the solid and liquid portions, either as a crystallite
embryo in the presence of an unstable liquid, or as a droplet

embryo in the presence of an unstable solid. As such, choosing
the solid portion as parameter, we can define the family of func-
tions Wl iq(n � ns,T,p) that may present considerable free energy
barriers to droplets formation, for T < Tm, like the ones presented
by the family Wsol(ns,T,p) to crystallites formation for T > Tm. The
respective slopes are lliq and lsol.

In this context, the following qualitative outline can be done,
based on the behaviours observed in some of our simulations
and the present model predictions:

1. lliq < lsol and a droplet is easily formed even at temperatures
significantly lower than Tm. Early melting is present and the
phase coexistence extends from Eif to Einf accordingly to the
model (observed in LiCl and NaI clusters).

2. lliq > lsol up to the neighbourhood of the bulk melting temper-
ature, Tm, even for very small droplets. Nearly Tm the droplet
formation barrier is overpassed and from there on the phase
coexistence is in accordance with the model (observed in KCl
clusters).

3. lliq > lsol even at the neighbourhood of the bulk melting tem-
perature, Tm. The system slightly overcomes Tm and starts melt-
ing in a overheated state until the droplet contribution becomes
less significant and allows the proper crystallite contribution
being attained by a fluctuation. Then, this is followed by a rela-
tively sharp transition to the model predictions (observed in
NaBr and NaCl clusters).

The outlined situations are not exhaustive. Moreover, the enu-
merated behaviours can be observed in the same cluster family
when different sizes are considered. For example, the results for
NaI clusters, in Fig. 14, show that for sizes 1000 and 1728 ions, de-
spite they never come close to the bulk melting temperature, do
not present a perfect early-melting, though the sizes 2744 and
4096 do. This means that the balance between the weights of the
contributions from the crystallite and the droplet changes with
size. Thus, a model extension clearly needs to include, at least,
the quantitative contribution of the droplet work of formation,
the surfaces of the systems, and the determination of the equilib-
rium states accessible taking into account, for each energy value,
the complete system geometry in the spirit of the work by Cleve-
land et al. [43]. However, this is not a straightforward improve-
ment due to the multiplicity of geometries that might be
involved and it is still an open challenge.

Other improvements are being considered. For example, the
need to deal with the vapour pressure of more volatile substances
claims for an extension of the model. Despite alkali halide aggre-
gates can be observed in the absence of applied external pressure
for considerable lifetimes, significant values are expected for the
internal pressure in small clusters because of the large fraction of
surface particles and small surface curvature radius. The derivation
of the internal pressure from the model, and its comparison with
simulation results, is presently being assessed.

In the presented form, the model for crystal growth dynamics is
only a first order approximation in several aspects. The more
important of them is the assumption that heat flow along the
cluster is instantaneous, and consequently that thermalization is
always met. This is certainly not the situation for relatively large
clusters. In these cases, a local differential equation, incorporating
the heat flow process, should be used instead of a global one like
Eq. (32). It is also important to mention that Eq. (28) is has not been
used strictly in the conditions of its original derivation. Moreover,
the use of a local equation to have an exact description of the prob-
lem implies the consideration of the system (crystallite + droplet)
geometry, which is one of the other relevant aspects not yet consid-
ered. A more exact accounting of the solid and liquid contributions
to Cp may also be important for higher order approximations.
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Fig. 18. Some examples of the thermodynamic limit border spreading depending
on the system properties considered.

Table 10
Heat capacities Cp(JK�1 mol�1) and total energies (kJ mol�1) at temperatures 940 K
and 1045 K, near the melting point, for the KCl cluster with sizes 512, 1000, 1728,
2744, 4096 and 5832.

940 K 1045 K

n Cp Etot Cp Etot

512 67.9 �640.17 – –
1000 68.2 �643.70 – –
1728 66.5 �645.95 – –
2744 66.4 �647.46 – –
4096 65.6 �648.56 71.9 �641.51
5832 63.6 �648.98 66.2 �642.17
From [42]a – – 64.9 –
Exp. [42] – – 66.9 –
Exp. [39] 64.4 – 69.3 –

a Obtained by interpolation of data in reference.
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Despite all these limitations, the model seems to capture fairly well
the main trends of the crystal growth process inside an overcooled
cluster. However, some discrepancies between the models predic-
tions and the simulation results, involving fine structure effects
(for example, the wavy behaviour of the simulations at the final
stages, seen in Fig. 16), confirm that a model extension is needed.
Indeed, only a local description of the system [56], complemented
by adequate initial and boundary conditions, might improve the
prediction of the system evolution. This is a considerable challenge
due to the complexity of the phase regions geometries, and it is one
of the perspectives to future work. As well as the extension of this
study to other alkali halides, with a comparison between the
respective values of f, and with experimental values if available.

Along the work development, comparison with experimental
and simulation results obtained by other methods and authors
has been done whenever possible. For example, during the free en-
ergy analysis of the lattices for LiCl clusters [20], molecular dynam-
ics results from Croteau and Patey [57] and ab initio results from
Aguado and collaborators [30] have been considered. In general a
good agreement is observed. Yet, due to the limited results avail-
able in the literature for the same cluster sizes as ours, a direct
comparison has been barely possible. We hope that the production
of ab initio data for larger clusters series, presently under progress
in our group, will overcome those limitations.
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