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Abstract. It is known that the full intuitionistic propositional calculus can be embed-

ded into the atomic polymorphic system Fat, a calculus with only two connectives: the

conditional and the second-order universal quantifier. The embedding uses a translation

of formulas due to Prawitz and relies on the so-called property of instantiation overflow.

In this paper, we show that the previous embedding is faithful i.e., if a translated for-

mula is derivable in Fat, then the original formula is already derivable in the propositional

calculus.
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Introduction

In order to have a decent theory of normalization for the natural deduction
calculus in the full language of intuitionistic propositional logic, there is a
need to introduce extra conversions pertaining to the connectives ⊥ and ∨:
the commuting conversions, also known as permutative conversions. In [4],
Jean-Yves Girard says that “the elimination rules [of ⊥ and ∨] are very bad”
and criticizes the commuting conversions by saying that “one tends to think
that natural deduction should be modified to correct such atrocities.”

In 2006, the first author suggested a way of avoiding the bad connectives
and, consequently, the commuting conversions of the intuitionistic proposi-
tional calculus. The suggestion was to embed the full intuitionistic propo-
sitional calculus into Fat, a calculus with only two connectives: the con-
ditional and the second-order universal quantifier.∗ The embedding relies
on Prawitz’s definition of the bad connectives given in [5] and the novelty
lies in the fact that the target calculus (Fat) is predicative: only atomic
instantiations of the second-order quantifiers are allowed. According to the
embedding, if A is derivable in the intuitionistic propositional calculus and
A∗ is its translation into Fat, then A∗ is derivable in Fat. In this paper,
we prove the converse of this statement. Our proof uses a simple model-
theoretic argument. It is also possible to give a purely proof-theoretic proof,
but we do not include it in this paper.

∗In [1], the calculus was named atomic PSOLi. The more modern designation of Fat

comes from atomic polymorphism, a restriction of Girard’s system F to atomic instantia-
tions: cf. title of [3].
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The body of the paper consists of two sections. In Section 1, we briefly
describe the atomic polymorphic system Fat and the embedding of the full
intuitionistic propositional calculus into Fat. Section 2 is dedicated to the
proof of the faithfulness of the embedding.

1. An overview of the embedding

We start by briefly describing the atomic polymorphic system Fat. The
syntax of the calculus consists of propositional constants (denoted by P , Q,
R, . . .), second-order variables (denoted by X, Y , Z, . . .), two primitive log-
ical connectives, implication and the second-order universal quantifier, and
punctuation signs. The formulas of Fat are the smallest class of expressions
such that:

i) Propositional constants and second-order variables are atomic formulas.
Atomic formulas are formulas.

ii) If A and B is a formula then A → B is a formula.

iii) If A is a formula andX is a second-order variable then ∀X.A is a formula.

The logic of Fat is intuitionistic logic. We formulate the intuitionistic de-
duction system by the natural deduction calculus with the usual introduction
rules for the conditional and the second-order universal quantifier:

⟨A⟩
.
.
.
B →I

A → B

.

.

.
A ∀I∀X.A

where, in the conditional rule, the angle-brackets mean that the formula
A is discharged and, in the universal rule, X does not occur free in any
undischarged hypothesis. It also has elimination rules:

.

.

.
A → B

.

.

.
A →E

B

.

.

.

∀X.A ∀E
A[C/X]

where C is an atomic formula (free for X in A), and A[C/X] is the result of
replacing in A all the free occurrences of X by C.

Note that what distinguishes Fat from Girard’s well-known polymor-
phic system F (see [4]) is the restriction to atomic formulas in the ∀E rule.
Whereas in system F the instantiation of X can be done by any formula
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of the system, in Fat the instantiation is restricted to the atomic formulas.
This feature explains the predicativity of the system and, as opposed to Gi-
rard’s system, embodies Fat with a natural notion of subformula. For more
on Fat, including the subformula property and the disjunction property, see
[1]. The reader can find in [3] a proof of the strong normalization property
of the system Fat.

Although Fat is a severe restriction of system F, it is not as weak as we
might at first be led to think. As remarked, it is flexible enough to embed the
full intuitionistic propositional calculus. The reason lies in a phenomenon,
dubbed instantiation overflow, which ensures that for formulas A with a
certain structure, we can instantiate ∀X.A by any formula of the language
whatsoever.

More precisely, from formulas of the form

∀X.X

∀X((A → (B → X)) → X)

∀X((A → X) → ((B → X) → X)),

it is possible to deduce in Fat (respectively)

C

(A → (B → C)) → C

(A → C) → ((B → C) → C),

for any (not necessarily atomic) formula C. The proof of instantiation over-
flow was given in [2] and, in fact, yields algorithmic methods for obtaining
the three kinds of deductions above.

With the property of instantiation overflow in place, it is easy to see that
the full intuitionistic propositional calculus can be embedded into Fat. For
a detailed proof of the embedding, see [1, 2]. The embedding uses a well-
known translation of formulas due to Prawitz [5]: namely, for every formula
A of the full propositional calculus, we define its translation A∗ into Fat

inductively as follows:

(P )∗ :≡ P , for P a propositional constant

(⊥)∗ :≡ ∀X.X

(A → B)∗ :≡ A∗ → B∗

(A ∧B)∗ :≡ ∀X((A∗ → (B∗ → X)) → X)
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(A ∨B)∗ :≡ ∀X((A∗ → X) → ((B∗ → X) → X)),

where X is a second-order variable which does not occur in A∗ or B∗. As
remarked, the embedding is sound, i.e., denoting by ⊢i provability in the full
intuitionistic propositional calculus and by ⊢Fat provability in the atomic
polymorphic system Fat, we have:

If ⊢i A then ⊢Fat A
∗.

In the next section we prove the converse of this result, viz. that the
embedding is faithful:

If ⊢Fat A
∗ then ⊢i A.

2. Faithfulness

Definition 1. A Kripke structure is a triple K = (K,≤,) where:

i) (K,≤) is a non empty partial order,

ii) ⊆ K × P (with P the set of propositional constants) is such that

if (k, P ) ∈ and k ≤ k′ then (k′, P ) ∈ (monotonicity)

Instead of (k, P ) ∈, it is usual to use infix notation and write k  P ,
which we read as “k forces P .” It is well-known that the forcing relation 
can be extended to all formulas of the intuitionistic propositional calculus:

Definition 2. Let K = (K,≤,) be a Kripke structure, k ∈ K and A a
formula of propositional calculus. We define k  A (read “k forces A”) in
the following inductive way:

a) k  P is, by definition, (k, P ) ∈
b) k  A ∧B is k  A and k  B

c) k  A ∨B is k  A or k  B

d) k  A → B is: for all k′ ∈ K, if k ≤ k′ and k′  A, then k′  B

e) No k ∈ K forces ⊥.

As it is well-known, the monotonicity of the forcing relation extends to
any formula A of the propositional calculus, i.e.,

∀k, k′ ∈ K (k  A ∧ k ≤ k′ ⇒ k′  A).

The following definition is standard:
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Definition 3. Let K = (K,≤,) be a Kripke structure, Γ a set of formulas
of the propositional calculus and A a formula of the propositional calculus.

· We say that A is forced by (or valid in) K (denoted by K  A) if

∀k ∈ K (k  A);

· We say that Γ  A if all Kripke structures which force the formulas in
Γ also force the formula A.

The next result is widely known and its proof can be found in many
textbooks in Mathematical Logic/Proof Theory. See, for example, [6].

Proposition 1 (Soundness and completeness). Let Γ, A be respectively a
set of formulas, a formula, of the propositional calculus. Then,

Γ ⊢i A if, and only if, Γ  A.

We are going to extend the definition of Kripke structure in order to
include the second-order universal quantifier. It is very important to no-
tice that, although the extended definition covers the language of Fat, it
goes beyond it because it includes the primitive symbols of the propositional
calculus, viz. ⊥, ∧ and ∨.

f) k  ∀X.A is: for all formulas F of the full propositional calculus (i.e.,
formulas obtained by means of the propositional constants and the prim-
itive connectives ⊥, ∧, ∨, →), k  A[F/X].

The previous forcing relation, which incorporates second-order universal
quantifications, is denoted by 2 in order to distinguish it from the usual
forcing relation applied just to the formulas of the propositional calculus.
Notice that the above inductive definition is in good standing since it is
defined in terms of less complex sentences. The measure of complexity of a
formula can be taken to be the ordinal

(number of 2nd-order quantifiers)ω + (number of 1st-order connectives).

It is clear that the monotonicity property is preserved by 2 and that, for
sentences in which the second-order quantifier does not occur, the relations
2 and  coincide.

We now mimick Definition 3:
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Definition 4. Let K = (K,≤,2) be a Kripke structure, Γ a set of sentences
of Fat and A a sentence of Fat.

· We say that A is forced by (or valid in) K (denoted by K 2 A) if

∀k ∈ K (k 2 A);

· We say that Γ 2 A, if all Kripke structures which force the sentences
in Γ also force the sentence A.

Note that the previous definition can be extended to sentences in the
extended language with the primitive connectives ⊥, ∧, ∨, →, second-order
∀. We will, in fact, use this extension.

Lemma 1. Let K = (K,≤,) be a Kripke structure, A a formula of the
propositional calculus and A∗ its translation into Fat. Then,

K 2 A∗ if, and only if, K  A.

Proof. We are going to prove, by induction on the complexity of the for-
mula A, that for all k ∈ K, k 2 A∗ iff k  A.

If A is a propositional constant, then A∗ ≡ A. Thus, the result is imme-
diate.

Case A ≡ ⊥. In this case A∗ ≡ ∀X.X. It is easy to see that no node of K
forces ∀X.X (otherwise, it would force ⊥, which is impossible). Therefore,
the equivalence is true, since both sides are false.

Case A ≡ A1 ∧A2. Let us prove the left-to-right implication. Fix k ∈ K
such that k 2 A∗, i.e., k 2 ∀X((A∗

1 → (A∗
2 → X)) → X). In particular

k 2 (A∗
1 → (A∗

2 → A1∧A2)) → A1∧A2. In order to prove that k  A1∧A2,
it suffices to show that k 2 A∗

1 → (A∗
2 → A1 ∧ A2). This is clear using the

induction hypothesis and the monotonicity of the forcing relation.

For the right-to-left implication, fix k ∈ K such that k  A1 ∧ A2, i.e.
k  A1 and k  A2. By induction hypothesis we know that k 2 A∗

1 and
k 2 A∗

2. We want to prove that k 2 ∀X((A∗
1 → (A∗

2 → X)) → X), i.e.,
for all formula F of the propositional calculus we have k 2 (A∗

1 → (A∗
2 →

F )) → F . This is now clear, using the monotonicity of the forcing relation.

Case A ≡ A1 ∨A2. Let us first consider the left-to-right implication.
Suppose that k 2 ∀X((A∗

1 → X) → ((A∗
2 → X) → X)). We want to show

that k  A1 ∨A2. By the supposition, we have

k 2 (A∗
1 → A1 ∨A2) → ((A∗

2 → A1 ∨A2) → A1 ∨A2).
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Using the induction hypothesis, it is clear that k 2 A∗
1 → A1 ∨ A2 and

k 2 A∗
2 → A1 ∨A2. It readily follows the desired conclusion.

For the right-to-left implication, suppose that k  A1∨A2. Then, k  A1

or k  A2. Suppose, without loss of generality, that k  A1. By induction
hypothesis k 2 A∗

1. We want to show that

k 2 ∀X((A∗
1 → X) → ((A∗

2 → X) → X)),

i.e. that k 2 (A∗
1 → F ) → ((A∗

2 → F ) → F ) for all formulas F of the
propositional calculus. This is clear using the induction hypothesis (i.e.,
that k 2 A∗

1) and the monotonicity of the forcing relation.
Case A ≡ A1 → A2.

k 2 A∗
1 → A∗

2 ≡ ∀k′ ≥ k (k′ 2 A∗
1 ⇒ k′ 2 A∗

2)

H.I.⇔ ∀k′ ≥ k (k′  A1 ⇒ k′  A2)

≡ k  A1 → A2.

Proposition 2 (Soundness). Let Γ be a set of formulas in Fat and A be a
formula in Fat with the free-variables among the variables in X̄.

If Γ[X̄] ⊢Fat A[X̄] then Γ[F̄ /X̄] 2 A[F̄ /X̄],

for any tuple of formulas F̄ of the propositional calculus.

Proof. The proof is by induction on the length of the derivation.
• The base case is A[X̄] ⊢Fat A[X̄], for a certain formula A. There is

nothing to argue in this case.
• Case where the last rule is a →I:

⟨A[X̄]⟩ Γ[X̄]
.
.
.

B[X̄]

A[X̄] → B[X̄]

Fix F̄ a tuple of formulas of the propositional calculus and let us prove
that Γ[F̄ /X̄] 2 A[F̄ /X̄] → B[F̄ /X̄]. TakeK = (K,≤,) a Kripke structure
such thatK 2 Γ[F̄ /X̄]. We need to prove that k 2 A[F̄ /X̄] → B[F̄ /X̄], for
all k ∈ K. Fix k ∈ K and k′ ∈ K such that k′ ≥ k and k′ 2 A[F̄ /X̄] and
let us prove that k′ 2 B[F̄ /X̄]. Given that A[X̄],Γ[X̄] ⊢Fat B[X̄] then,
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by induction hypothesis, we have A[F̄ /X̄],Γ[F̄ /X̄] 2 B[F̄ /X̄]. Consider
K′ = (K ′,≤,) the Kripke structure that results fromK withK ′ ⊆ K the set
of nodes of K which are greater than or equal to k′. Since k′ 2 Γ[F̄ /X̄] and
k′ 2 A[F̄ /X̄], by monotonicity, K′ forces Γ[F̄ /X̄], A[F̄ /X̄]. By induction
hypothesis K′ 2 B[F̄ /X̄]. Therefore k′ 2 B[F̄ /X̄].

• Case where the last rule is a →E:

Γ[X̄]
.
.
.

A[X̄]

Γ[X̄]
.
.
.

A[X̄] → B[X̄]

B[X̄]

We must show that if F̄ is a tuple of formulas of the propositional calculus
and K is a Kripke structure which forces Γ[F̄ /X̄], then K 2 B[F̄ /X̄]. Well,
by induction hypothesis, Γ[F̄ /X̄] 2 A[F̄ /X̄] and Γ[F̄ /X̄] 2 A[F̄ /X̄] →
B[F̄ /X̄]. Hence, K 2 A[F̄ /X̄] and K 2 A[F̄ /X̄] → B[F̄ /X̄]. Therefore
K 2 B[F̄ /X̄].

• Case where the last rule is a ∀I:

Γ[Ȳ ]
.
.
.

A[Ȳ , X]

∀X.A[Ȳ , X]

where X is not one of the Ȳ .

Fix F̄ a tuple of formulas of the propositional calculus. We argue that
Γ[F̄ /Ȳ ] 2 ∀X.A[F̄ /Ȳ ,X]. Let K = (K,≤,) be a Kripke structure with
K 2 Γ[F̄ /Ȳ ] and fix k ∈ K. We must show that k 2 ∀X.A[F̄ /Ȳ ,X],
i.e., that k 2 A[F̄ /Ȳ , G/X] for all formula G of the propositional calcu-
lus. By induction hypothesis, Γ[F̄ /Ȳ ] 2 A[F̄ /Ȳ , G/X]. Therefore K 2

A[F̄ /Ȳ , G/X], which implies k 2 A[F̄ /Ȳ , G/X].

• Case where the last rule is a ∀E:

Γ[Ȳ ]
.
.
.

∀X.A[X, Ȳ ]

A[C/X, Ȳ ]
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with C an atomic formula. Note that C is either a propositional constant or
a propositional variable. In the second case, we may suppose (without loss
of generality) that C is among the variables Ȳ .

Fix F̄ formulas of the propositional calculus. We must show that i)
Γ[F̄ /Ȳ ] 2 A[C/X, F̄ /Ȳ ] if C is a propositional constant, and ii) Γ[F̄ /Ȳ ] 2

A[G/X, F̄ /Ȳ ] if C is a second-order variable. Note that, in the latter case, G
is the relevant propositional formula of the tuple F̄ . Let K = (K,≤,) be a
Kripke structure such that K 2 Γ[F̄ /Ȳ ]. Take k ∈ K and let us see that in i)
k 2 A[C/X, F̄ /Ȳ ], and in ii) k 2 A[G/X, F̄ /Ȳ ]. By induction hypothesis,
Γ[F̄ /Ȳ ] 2 ∀X.A[X, F̄/Ȳ ]. So K 2 ∀X.A[X, F̄/Ȳ ] which implies that
k 2 ∀X.A[X, F̄/Ȳ ]. In particular, i) if C is a propositional constant (and
so, a formula of the propositional calculus) we have k 2 A[C/X, F̄ /Ȳ ] and
ii) if C is a second-order variable, we have k 2 A[G/X, F̄ /Ȳ ].

Theorem 1 (Faithfulness). Let Γ = A1, . . . , An and A be formulas of the
full propositional calculus (⊥, ∧, ∨, →) and consider their translations Γ∗ :≡
A∗

1, . . . , A
∗
n and A∗ into Fat.

If Γ∗ ⊢Fat A
∗ then Γ ⊢i A.

Proof. Suppose that Γ 0i A. By completeness (Proposition 1), there is a
Kripke structure K = (K,≤,) for the intuitionistic propositional calculus
such that K forces all formulas in Γ but K 1 A. Extend the forcing relation
 as shown in the beginning of this section (to 2) in order to include the
formulas of Fat. By Lemma 1, K forces all formulas in Γ∗ and K 12 A∗.
Therefore, by Proposition 2, Γ∗ 0Fat A

∗.
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de Matemática e Aplicações Fundamentais of Universidade de Lisboa [PEst-
OE/MAT/UI0209/2011]. The second author is also grateful to Fundação
para a Ciência e a Tecnologia [grant SFRH/BPD/34527/2006] and Núcleo
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