
Determinantal Point Processes
and Integrable PDEs

Giulio Ruzza

Universidade de Lisboa, Faculdade de Ciências

based on joint works with Mattia Cafasso, Christophe Charlier,
Tom Claeys, Gabriel Glesner, Sofia Tarricone

An ODE to Geometry
Lisboa, 16–21 September 2024

DOI 10.54499/UIDB/00208/2020 2022.07810.CEECIND



What is a Determinantal point process?

A point process on E is a random locally finite subset Λ ⊆ E.
For us today, E = R.

The point process is determinantal iff there exists

K : E × E → R (kernel)

such that

P(λ1 ∈ Λ, . . . , λk ∈ Λ) = det
(
K(λi, λj)

)k

i,j=1
dλ1 · · · dλk (∀k ≥ 1)

for distinct λ1, . . . , λk.

Why?
▶ Elegant and rich theory
▶ Universal structure arising in many examples of repulsively interacting

systems (non-interacting trapped fermions, random matrices, random
partitions, random tilings, random interface growth models,...)
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DPPs from Random Matrix Theory

Gaussian Unitary Ensemble (GUE): random Hermitian matrix M of
size n with joint pdf of the entries

1
Zn

exp
(
−1

2 n tr (M2)
)

dM.

Eigenvalues λ1, . . . , λn form a determinantal point process [Mehta, Dyson]

KGUE(n)(λ, µ) = 1√
2π(n− 1)!

ψn(λ)ψn−1(µ) − ψn−1(λ)ψn(µ)
λ− µ

,

ψn(λ) = Hen(
√
nλ) e− 1

4 nλ2
.
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Universal scaling limits in RMT: the bulk

By the Plancherel–Rotach asymptotics

ψn+j(λ) ∼ n
n
2 e− n

2

(4 − λ2) 1
4

sin
(
π

4 + (n+ j + 1
2 ) arccos λ2 − n

4 λ
√

4 − λ2

)
as n → ∞, j = O(1), |λ| < 2, the GUE kernel converges to the sine kernel:

1
n δ0

KGUE(n)(λ0 + λ

n δ0
, λ0 + µ

n δ0
) → Ksine(λ, µ) =

sin
(
π(λ− µ)

)
π(λ− µ)

as n → +∞, where

|λ0| < 2, δ0 = 1
2π

√
4 − λ2

0

⇒ GUE eigenvalues in the large-n limit in the bulk are described by the sine
process.

Universality: the sine process similarly describes the limiting eigenvalue
distribution in the bulk for arbitrary potential V .
It is also found in many other “bulk” distributions: from non-interacting
trapped fermions to ... zeros of Riemann’s ζ [Montgomery, Odlyzko,
Rudnick–Sarnak].
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Universal scaling limits in RMT: the edge

Near the edge we instead use the asymptotics

ψn

(
2 + λ

n2/3

)
= n

n
2 + 1

6 e− n
2

√
2π(Ai(λ) +O(n−2/3)), n → +∞,

and find the scaling to the Airy kernel as n → +∞

1
n2/3KGUE(n)(2 + λ

n2/3 , 2 + µ

n2/3 ) → KAi(λ, µ) = Ai(λ)Ai′(µ) − Ai′(λ)Ai(µ)
λ− µ

⇒ GUE eigenvalues in the large-n limit at the edge are described by the Airy
process.

Universality: the Airy process similarly describes the limiting eigenvalue
distribution at the edge for arbitrary (generic) potential V .
It is also found in many other “edge” distributions: from non-interacting
trapped fermions to ... longest increasing subsequences in a random
permutation [Baik–Deift–Johansson, Borodin–Okounkov–Olshanski].
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The Tracy–Widom distribution

The Tracy–Widom distribution describes large-n fluctuations of the
largest GUE eigenvalue λmax around 2:

FTW(s) = lim
n→+∞

P
(

(λmax − 2)n
2
3 ≤ s

)
= P(largest particle of Airy process is ≤ s)

The TW distribution is of course as universal as the Airy process.

A striking example of this universality: let σ be a uniform random permutation
of {1, . . . , n} and let ℓn be the length of the longest increasing subsequence of
σ, then

P
(

(ℓn − 2n
1
2 )n− 1

6 ≤ s

)
→ FTW(s)

as n → +∞ [Baik–Deift–Johansson, Borodin–Okounkov–Olshanski].
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DPPs and Fredholm determinants

A distinguishing feature of determinantal point processes is that
multiplicative expectations are Fredholm determinants:

E
( ∏

i

(
1 − ϕ(λi)

) )
= det

L2(R)

(
1 −

√
ϕK

√
ϕ

)
= 1 +

∑
n≥1

(−1)n

n!

∫
Rn

det
(
K(λi, λj)

)n

i,j=1

n∏
i=1

ϕ(λi)dλi .

In particular, gap probabilities are expressed as Fredholm determinants: for
any Borel S ⊆ R

P
(

no particle in S
)

= det
(

1 − 1SK1S

)
.
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Tracy–Widom distribution and Painlevé II

In particular:

FTW(s) = 1 +
∑
n≥1

(−1)n

n!

∫
(s,+∞)n

det
(
KAi(λi, λj)

)n

i,j=1

n∏
i=1

dλi .

Another characterization in terms of integrable systems [Tracy–Widom]:
we have

FTW(s) = exp
(

−
∫ +∞

s

(s− t) q(t)2 dt
)

where q(s) is the Hastings–McLeod solution of Painlevé II: namely, q(s) is the
unique solution to the boundary value problem

q′′(s) = s q(s) + 2 q(s)3 (Painlevé II ODE)
q(s) ∼ Ai(s), s → +∞.

Note that ∂2
s logFTW(s) = q(s)2, i.e., FTW is a “tau-function” of Painlevé II.
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Painlevé II and Korteweg–de Vries

Painlevé equations also arise as self-similar reductions of integrable
PDEs.

In particular, for any solution of PII

q′′(s) = s q(s) + 2 q(s)3

the function
u(x, t) = x

2t − t−2/3q
(
−x/t1/3 )2

satisfies the Korteweg–de Vries (KdV) equation

ut + 1
6uxxx + 2uux = 0.

8/21



Airy and KdV

Theorem (Cafasso–Claeys–R, 2021). For sufficiently nice σ : R → R, the
Airy multiplicative expectation

Fσ(x, t) = EAi

(∏
i

(
1 − σ(t−

2
3 λi + xt−1)

))
is a tau-function of (cylindrical) KdV, namely

ut + 1
6uxxx + 2uux = 0 , u = u(x, t) = x

2t + ∂2
x logFσ(x, t) .

Such class of KdV solutions is quite general and corresponds to the cylindrical
KdV equation. The Riemann–Hilbert approach to these solutions is equivalent
to the inverse scattering for the cylindrical KdV equation of A. Its and
V. Sukhanov, σ being identified with the scattering data.
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Applications

▶ σ = 1R+ : Fσ(x, t) = FTW(−xt− 1
3 ) [Tracy–Widom]

▶ σ p.w. const: generating function for Airy DPP [Claeys–Doeraene]

▶ σ(λ) = 1
1 + exp(−λ) : positive-temperature Airy kernel

- from Gumbel to Tracy–Widom [Johansson]
- narrow wedge KPZ [Amir–Corwin–Quastel, Borodin–Gorin]
- 1D trapped free fermions at positive temperature [Dean–Le

Doussal–Majumdar–Schehr]
- multiplicative statistics of Hermitian random matrices [Ghosal–Silva]

▶ σ(λ) = 1√
π

∫ λ

−∞ e−s2
ds : edge eigenvalue statistics in the complex elliptic

Ginibre Ensemble at weak non-Hermiticity [Bothner–Little]
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The Riemann–Hilbert problem

The main technical tool is a Riemann–Hilbert characterization of Fσ(x, t)
based on the theory of integrable operators [Its–Izergin–Korepin–Slavnov].
Hiding a couple of technical details, it goes as follows.

There exists a unique Ψ(·|x, t) : C \ R → GL2(C) such that:

▶ Ψ(w|x, t) is analytic for w ∈ C \ R;
▶ When λ ∈ R, the boundary values Ψ±(λ|x, t) = limϵ→0+ Ψ(λ± iϵ|x, t)

exist and are related as

Ψ+(λ|x, t) = Ψ−(λ|x, t)
(

1 1 − σ(λ)
0 1

)
;

▶ As w → ∞ in both half-planes,

Ψ(w|x, t) =
(
I + w−1Ψ[1](x, t) +O(w−2)

)
w

σ3
4

(
1 i
i 1

)
√

2
e
(

− 2
3 tw

3
2 +xλ

1
2
)

σ3 .

Then,
∂x logFσ(x, t) = −i Ψ[1]

2,1(x, t) .
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t → 0+ asymptotics uniform when x < K

Theorem (Cafasso–Claeys–R, 2021). If{∣∣σ(λ) − γ1R+ (λ)
∣∣ ≤ c1e−c2|λ|, λ ∈ R,

|σ′(λ)| ≤ c3|λ|−2, |λ| > C,

we have the following uniform estimates.

▶ ∀t0 > 0 ∃M, c > 0 s.t. for x < −Mt
1
3 , 0 < t < t0

u(x, t) = x

2t +O(e−c|x|t− 1
3 ).

▶ ∃ϵ > 0 s.t. ∀M > 0 and |x| ≤ Mt1/3, 0 < t < ϵ

u(x, t) = x

2t − t−
2
3 qγ(−xt−

1
3 )2 +O(1).

▶ If γ = 1: ∃ϵ,M > 0 s.t. ∀K > 0 and Mt1/3 < x < K, 0 < t < ϵ

u(x, t) = u0(x)(1 +O(x−1t
1
3 )).
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t → 0+ asymptotics uniform when |x| > K: assumptions

This case requires more care.

ASSUMPTIONS: We assume that

M(w) := 1
1 − σ(w)

is an entire function of w satisfying
▶ M ′(λ) ≥ 0 and (logM)′′(λ) ≥ 0 for all λ ∈ R,
▶ M(λ) = 1 + c′

−e
−c−|λ|(1 + o(1)) as λ → −∞, for some c−, c

′
− > 0.

▶ M(λ) = c′
+e

c+λ(1 +O(e−ϵλ)) as λ → +∞, for some c+, c
′
+, ϵ > 0,

▶ |M(w)| = O(ec+Re w) as Rew → +∞.

Functions σ with discontinuities like σ = 1(0,+∞) are not considered.

The prototypical example is

σ(λ) = 1
1 + e−λ

.
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t → 0+ asymptotics uniform when |x| > K

Theorem (Charlier–Claeys–R, 2022). Under the previous assumptions on σ,
for any t0 > 0 exists K > 0 such that

u(x, t) = x

2ta0(y) + 1
2
√
xt
a1(y) + t1/2

2x3/2 a2(y) +O(x−2),

with error terms uniform for x ≥ K, 0 < t ≤ t0, where y := π2

c2
+
xt and

a0 = 2−2
√

1+y
y

,

a1 = − log c′
+

π

√
y

1+y
,

a2 = y3/2
√

y+1(
√

y+1−1)2

(
1

4πc+
1−2

√
y+1

y+1 log2 c′
+ − jσ

)
,

jσ = 1
2π

∫ +∞

−∞

[
log(1 − σ(λ)) + (c+λ+ log c′

+)1R+ (λ)
]

dλ.
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Connection to narrow-wedge KPZ

We have the identity [Amir–Corwin–Quastel, Borodin–Gorin]

EKPZ

[
e−eT 1/3(Υ(T )−s)

]
= Fσ(−sT− 1

6 , T− 1
2 ), σ(λ) = 1

1 + e−λ
,

for the narrow wedge solution to the KPZ equation

Υ(T ) = h(2T,0)+ T
12

T 1/3 ,

{
∂Th(T,X) = 1

2∂
2
Xh(T,X) + 1

2 (∂Xh(T,X))2 + ξ(T,X),
h(0, X) = log δX=0, (ξ =space-time white noise)

This stochastic PDE was introduced by Kardar, Parisi and Zhang in 1986 and
quickly became a universal model for random interface growth in
physics.
Precise mathematical formulation requires care [Bertini–Giacomin, Hairer].
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Application to the lower tail of narrow wedge KPZ

Theorem (Charlier–Claeys–R, 2021). Let Υ(T ) := h(2T,0)+ T
12

T 1/3 ,
Φ1(y) := 4

15 (1 + y)5/2 − 4
15 − 2

3y − 1
2y

2, and

G(s, T ) := T 2

π6 Φ1( π2s

T 2/3 ) + 1
6

√
1 + π2s

T 2/3 +
log(1 + π2s

T 2/3 )
48 + 1

8 log(
√

1 + π2s

T 2/3 − 1) + log T
12 .

1. For any s0, T0 > 0, there exists a real constant D+ = D+(s0, T0) such
that the inequality

log P(ΥT < −s) ≤ p−G(s+ T−1/3 log p, T ) +D+

holds for all s ≥ s0, T ≥ T0, and p ≥ 1.
2. For any ϵ > 0 and for any s0, T0 > 0 sufficiently large, there exists a

real constant D− = D−(s0, T0) such that the inequality

log P(ΥT < −s) ≥ −G(s+ T−1/3 log(s3+ϵ + T ϵ), T ) +D−

holds for all s ≥ s0, T ≥ T0.

Refines [Corwin–Ghosal, 2018], [Cafasso–Claeys, 2019], [LeDoussal, 2020].
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Schrödinger equation, trace-formula

The KdV equation ut + 1
6uxxx + 2uux = 0 is the compatibility of

Lφ(z|x, t) = zφ(z|x, t), L = ∂2
x + 2u(x, t),

∂tφ(z|x, t) = Mφ(z|x, t), M = −2
3∂

3
x − 2u(x, t)∂x − ∂xu(x, t).

For the solutions u(x, t) of KdV obtained from the Airy process and the
associated wave-functions selected by the asymptotic behavior

φ(λ|x, t) ∼ t
1
6 Ai(t

2
3 λ− xt−

1
3 ), x → −∞, λ ∈ R,

we have the trace-formula

u(x, t) = x

2t − 1
t

∫
R
φ2(λ|x, t)dσ(λ).

(cf. [Deift–Trubowitz] for decaying potentials, u(x, t) → 0 as |x| → +∞.)
⇒ Amir-Corwin-Quastel integro-differential Painlevé II equation:

∂2
xφ(z|x, t) =

(
z − x

t
+ 2
t

∫
R
φ2(λ|x, t)dσ(λ)

)
φ(z|x, t) .

17/21



Schrödinger equation, trace-formula

The KdV equation ut + 1
6uxxx + 2uux = 0 is the compatibility of

Lφ(z|x, t) = zφ(z|x, t), L = ∂2
x + 2u(x, t),

∂tφ(z|x, t) = Mφ(z|x, t), M = −2
3∂

3
x − 2u(x, t)∂x − ∂xu(x, t).

For the solutions u(x, t) of KdV obtained from the Airy process and the
associated wave-functions selected by the asymptotic behavior

φ(λ|x, t) ∼ t
1
6 Ai(t

2
3 λ− xt−

1
3 ), x → −∞, λ ∈ R,

we have the trace-formula

u(x, t) = x

2t − 1
t

∫
R
φ2(λ|x, t)dσ(λ).

(cf. [Deift–Trubowitz] for decaying potentials, u(x, t) → 0 as |x| → +∞.)

⇒ Amir-Corwin-Quastel integro-differential Painlevé II equation:

∂2
xφ(z|x, t) =

(
z − x

t
+ 2
t

∫
R
φ2(λ|x, t)dσ(λ)

)
φ(z|x, t) .

17/21



Schrödinger equation, trace-formula

The KdV equation ut + 1
6uxxx + 2uux = 0 is the compatibility of

Lφ(z|x, t) = zφ(z|x, t), L = ∂2
x + 2u(x, t),

∂tφ(z|x, t) = Mφ(z|x, t), M = −2
3∂

3
x − 2u(x, t)∂x − ∂xu(x, t).

For the solutions u(x, t) of KdV obtained from the Airy process and the
associated wave-functions selected by the asymptotic behavior

φ(λ|x, t) ∼ t
1
6 Ai(t

2
3 λ− xt−

1
3 ), x → −∞, λ ∈ R,

we have the trace-formula

u(x, t) = x

2t − 1
t

∫
R
φ2(λ|x, t)dσ(λ).

(cf. [Deift–Trubowitz] for decaying potentials, u(x, t) → 0 as |x| → +∞.)
⇒ Amir-Corwin-Quastel integro-differential Painlevé II equation:

∂2
xφ(z|x, t) =

(
z − x

t
+ 2
t

∫
R
φ2(λ|x, t)dσ(λ)

)
φ(z|x, t) .

17/21



Darboux transformations

Darboux transformations of the ODE

Lφ(z|x, t) = zφ(z|x, t), L = ∂2
x + 2u(x, t)

can be used to produce new KdV solutions from known ones.
This is a standard method in Integrable Systems, usually used to derive,
e.g., soliton solutions from trivial solutions.

Question: do Darboux transformed solutions also enjoy a probabilistic
interpretation?

A good hint: cylindrical KdV N-soliton solutions (= Darboux
transformations of the KdV solution x

2t
) can be written in terms of the Airy

kernel

uN−sol(x, t|ν, ρ) = x

2t + ∂2
x log det

(
t

2
3KAi(t

2
3 νi − xt−

1
3 , t

2
3 ρj − xt−

1
3 )

)N

i,j=1

with dependence on 2N parameters ν = (ν1, . . . , νN ), ρ = (ρ1, . . . , ρN ).
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Thinning and Jánossy densities for Airy process

We give a probabilistic interpretation of Darboux transformation as follows.

▶ First, shift and rescale the Airy point process: consider the
determinantal point process with kernel

KAi
x,t(λ, µ) := t

2
3KAi(t 2

3 λ− xt−
1
3 , t

2
3 µ− xt−

1
3
)
.

▶ Perform a thinning by σ : R → [0, 1] (sufficiently “nice”): consider the
determinantal point process with kernel√

σ(λ)KAi
x,t(λ, µ)

√
σ(µ)

which is obtained from the original one by deleting particles independently
with position-dependent probability 1 − σ.

▶ Let Aσ
x,t be such process. It can be shown that it has a.s. a finite number

of particles, such that we can define the Jánossy densities

Fσ(x, t|ν) :=
P

(
Aσ

x,t has exactly N particles and they are at νi + dνi

)∏N

j=1 σ(νj)dνj

for all ν = (ν1, . . . , νN ), νi ∈ R, νi ̸= νj for i ̸= j.
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KdV solutions, asymptotics

Theorem (Claeys–Glesner–R–Tarricone). The Jánossy density Fσ(x, t|ν) of
the thinned shifted and rescaled Airy process is a tau-function of
(cylindrical) KdV, namely

ut + 1
6uxxx + 2uux = 0 , u = u(x, t|ν) = x

2t + ∂2
x logFσ(x, t|ν) .

Moreover: under weak assumptions on σ, for any t0 > 0 exists c > 0 such
that

u(x, t|ν) = uN−sol(x, t|ν, ν) +O
(
e−c|x|t− 1

3 )
,

uniformly in t ≤ t0 as xt− 1
3 → −∞ ; under strong assumptions on σ, for

any t0 > 0, we have

u(x, t|ν) = u(x, t)+
√

1
xt

N∑
j=1

cos
(

4
3

√
x3

t

(
1+o(1)

)
−2

√
xt νj

(
1+o(1)

))
+O

( t
x

)
,

uniformly for t ≤ t0 as xt
log2(x/t) → +∞ .

(The last asymptotics is close to a superposition of N cKdV 1-solitons.)
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Other models, work in progress

▶ Sine process: Its–Izergin–Korepin–Slavnov (1990, correlation functions
of 1d Bose gas), Claeys–Tarricone (2023)

▶ (continuous) Bessel process (hard edge in RMT and fermion models,
random partitions): R (2024)

(2vx − t) vt
2 + 1

4vxt
2 − 1

2vxxt vt = α2

4 (α > −1) .

▶ (discrete) Bessel process (Random partitions, polynuclear growth
models): Cafasso–R (2022), the integrable equation is 2D Toda
(essentially known since Okounkov). Discrete Riemann–Hilbert approach
to asymptotics (in progress).
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