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Abstract: Background: Ischaemia-reperfusion injury (IRI), a major complication occurring during organ trans-
plantation, involves an initial ischemia insult, due to loss of blood supply, followed by an inflammation-mediated 
reperfusion injury. A variety of molecular targets and pathways involved in liver IRI have been identified. Gene 
silencing through RNA interference (RNAi) by means of small interference RNA (siRNA) targeting mediators of 
IRI is a promising therapeutic approach. 
Objective: This study aims at reviewing the use of siRNAs as therapeutic agents to prevent IRI during liver trans-
plantation. 
Method: We review the crucial choice of siRNA targets and the advantages and problems of the use of siRNAs.  
Results: We propose possible targets for siRNA therapy during liver IRI. Moreover, we discuss how drug deliv-
ery systems, namely liposomes, may improve siRNA therapy by increasing siRNA stability in vivo and avoiding 
siRNA off-target effects.  
Conclusion: siRNA therapeutic potential to preclude liver IRI can be improved by a better knowledge of what 
molecules to target and by using more efficient delivery strategies.  
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1. INTRODUCTION 
 Liver transplantation is the standard of care for patients with 
end-stage liver disease and for those with hepatic tumours [1]. Dur-
ing the harvesting and preservation of the graft and during surgery 
cellular damage can occur, in a process that is known as ischaemia-
reperfusion injury (IRI). Liver IRI is a clinically relevant condition 
affecting graft recovery and function and, ultimately, the success of 
liver transplantation [2]. 
 The pathophysiology of IRI has been comprehensively studied 
but, despite its clinical importance, the mechanisms and cellular 
components involved in organ IRI are only partially understood due 
to their complexity [2-7]. This has hampered the establishment of 
adequate targets for effective therapeutics against IRI.  
 In this review, we first focus on the current knowledge of 
mechanisms triggering local immune activation and inflammatory 
cascades leading to cellular damage during liver IRI. Then we re-
view the advantages and limitations of siRNAs as therapeutic 
agents. Finally, potential targets for the use of siRNAs in liver 
ischaemia-reperfusion injury and the use of drug delivery systems 
to overcome the limitations of siRNAs as therapeutic agents are 
also reviewed. 

2. MECHANISMS OF LIVER ISCHAEMIA-REPERFUSION 
INJURY 
 Liver injury due to ischaemia–reperfusion (IR) can be divided 
into two major types [2]. The first is ‘warm’ ischaemia–reperfusion  
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injury (IRI) which develops in situ during liver transplantation sur-
gery. The second is ‘cold’ IRI which occurs during ex vivo liver 
preservation and is usually coupled with warm IRI during liver 
transplantation surgery. Hepatocytes are more sensitive to warm 
ischemia, whilst liver sinusoidal endothelial cells (LSEC) are more 
sensitive to cold ischemia which has as an outcome hepatic endo-
thelium damage and microcirculation disruption [5, 6]. However, in 
both types of IRI immunological cascades involving the activation 
of Kupffer cells (KC) and neutrophils, the production of cytokines 
and chemokines, the formation of reactive oxygen species (ROS), 
the increased expression of adhesion molecules and infiltration by 
circulating lymphocytes and/or monocytes, occur [2, 6]. 
 During ischaemia lack of oxygen supply in hepatocytes causes 
glycogen consumption, ATP depletion, higher rates of glycolysis, 
and alterations in H+, Na+ and Ca2+ homeostasis leading to cellular 
swelling [5]. Also, redox changes and ATP deficiency cause dys-
functions of key intracellular organelles such as mitochondria and 
trigger stress responses, e.g. the endoplasmic reticulum (ER) stress 
response [8] (Fig. 1). The unfolded protein response (UPR) is acti-
vated upon ER stress and three ER transmembrane receptors, pro-
tein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), 
activating transcription factor 6 (ATF6) and inositol requiring 
kinase 1 (IRE1), are involved in a signalling cascade that inhibits 
new protein synthesis and activates transcription of genes encoding 
proteins involved in protein folding and protein degradation in the 
ER [8]. Hypoxia also leads to the activation of the autophagy ma-
chinery to remove damaged organelles and ensure cell survival and 
limit cell death [6]. The final outcome is a low amount of hepato-
cyte death mainly by necrosis (although apoptosis can occur when 
ATP is less depleted) due to hypoxia and hyperosmotic swelling 
and also LSEC and EC swelling [5, 9]. Moreover, low nitric oxide 
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(•NO) levels and high levels of endothelin and thromboxane A2 
contribute to a narrowing of the sinusoidal lumen and to microcir-
culation dysfunction [5]. The outcome is that on reperfusion the 
blood flow is significantly decreased, and some areas have a com-
plete absence of blood flow, which is known as ‘no-reflow’ [10]. 
The hepatic endothelium damage occurring during cold preserva-
tion represents the initial factor leading to liver IRI [5]. 
 Reperfusion injury, which follows ischaemic injury, is charac-
terized by a sterile inflammatory immune response, involving KC, 
dendritic cells (DC), T cells, natural killer (NK) cells and neutro-
phils (for reviews see [7, 11]. Reperfusion injury can be divided 
into two phases [12], the first dominated by KC activation and the 
latter by neutrophil activation. In the early reperfusion phase, cal-
cium overloading and increased reactive oxygen species (ROS) 
formation in the mitochondria cause mitochondrial dysfunction and 
the opening of the mitochondrial permeability transition pore 

(MPTP), leading to ATP depletion and necrotic hepatocyte death 
[13-15]. A potential source of ROS during liver reperfusion that has 
been extensively studied is xanthine oxidase (reviewed in [13]). In 
mammalian cells xanthine oxidoreductase (XOR) exists in two 
interconvertible forms, xanthine dehydrogenase (XDH), which is 
the predominant form in normal healthy tissue, and xanthine oxi-
dase (XO). XO uses O2 as the terminal electron acceptor generating 
superoxide radical (O2

•-) and hydrogen peroxide (H2O2). In liver 
cells XOR expression is high [16] and the enzyme is also present at 
high levels on the outer surface of the plasma membrane of endo-
thelial cells [17]. Studies in rats showed that XO levels in the circu-
lation are significantly elevated following liver IR and it has been 
proposed that the enzyme is derived from plasma [18]. However, 
when trying to assess whether XDH is significantly converted to 
XO during liver IR, disparate results ranging from significant to no 
conversion of XDH have been obtained [13]. Moreover, during 
liver IR, XO seems not to be a major source of ROS production, 

 
Fig. (1). Mechanisms underlying liver cold ischaemia and warm reperfusion injury. Ischaemia, due to lack of oxygen supply and ATP depletion, leads to mi-
crocirculatory dysfunction mitochondrial damage and hepatocyte death. Reperfusion leads to liver immune activation involving nonparenchymal liver cells 
(Kupffer cells, dendritic cells, natural killer cells) and is triggered by DAMPs released from necrotic cells, by activation of complement and by mitochondrial 
ROS production due to oxygenation. The recruitment of peripheral immune cells from the circulation (T cells and neutrophils) sustains the proinflammatory 
immune cascade activated by ischaemia-reperfusion which is responsible for the ultimate liver reperfusion injury. For a more detailed explanation see the main 
text. Hepatic stellate cells are not shown in the space of Disse and dendritic cells are also omitted, for the sake of clarity. ATF6, activating transcription factor 
6; CD40, cluster of differentiation 40; CD154, CD40 ligand; CXCL2, C-X-C motif chemokine ligand 2; CXCL10, C-X-C motif chemokine 10; DAMPs, dam-
age-associated molecular patterns; ER, endoplasmic reticulum; ET, endothelin; HMGB1, high mobility group box 1; ICAM-1, intercellular adhesion molecule 
1; IL, interleukin; IRE1, inositol requiring enzyme-1; KC, Kupffer cells; LSEC, liver sinusoidal endothelial cells; INF, interferon; MPTP, mitochondrial per-
meability transition pore; NF-κB, nuclear factor kappa B; NK T-cells, Natural killer T-cells; NOX-2, NADPH oxidase 2; RAGE, receptor for advanced glyca-
tion end products; ROS, reactive oxygen species; TIM-1, T-cell immunoglobulin and mucin domain 1; TIM4, T-cell immunoglobulin- and mucin-domain-
containing molecule 4; TLR-4, toll-like receptor 4; TLR-9, toll-like receptor 9; TNF-α, tumor necrosis factor α; TXA2, Thromboxane A2; UPR, unfolded pro-
tein response; VCAM-1, vascular cell adhesion molecule 1; XDH/XO, xanthine dehydrogenase/xanthine oxidase. 
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since hepatocellular injury response to I/R precedes the conversion 
of XDH to XO [19, 20]. However, production of O2

•- can also occur 
via XDH which, under acidic conditions such as those occurring in 
ischaemia, has a NADH oxidase activity catalyzing the oxidation of 
NADH instead of xanthine [21]. Recently, it has also been shown 
that when the NAD pool is mainly reduced XDH is able to form 
large quantities of O2

•-[22]. 
 Activation of KC is triggered by ROS, by complement (C3a, 
C5a, and MAC), a group of proteins that are involved in tissue in-
jury and/or repair, and by damage-associated molecular patterns 
(DAMPs) [11, 23]. It leads to further formation of ROS, mediated 
by NADPH oxidase (NOX-2) formation of O2

•-, and to oxidative 
stress, which contributes to the early cell injury [11, 24] and to 
formation of cytokines which recruit the neutrophils that mediate 
the later portion of the injury [3]. The triggering of cytokine forma-
tion from KC also involves DAMPs, e.g. high-mobility group box-1 
(HMGB1) protein, heat-shock proteins and DNA fragments, which 
are released from necrotic hepatocytes upon reperfusion and can 
stimulate pattern recognition receptors (PRRs) [25]. The two main 
classes of PPRs involved in the IRI inflammatory response are toll-
like receptors (TLRs) and the receptor for advanced glycation end 
products (RAGE) [2, 10]. HMGB1, a nuclear protein, has been 
identified as an endogenous TLR-4 ligand with a key role in innate 
immune activation during IRI [26], whilst DNA fragments are 
ligands for TLR-9 [27]. HMGB1 extracellular release is triggered 
by TLR-4-dependent ROS formation, probably H2O2. This is fol-
lowed by the nuclear translocation of the transcription factor inter-
feron regulatory factor 1 (IRF-1), leading to the up-regulation of 
histone acetyltransferase (HAT) activity, acetylation of HMGB1 
and its extracellular release [11]. HMGB1 released in the circula-
tion is scavenged by either TLR-4, expressed in KC, DC, and to a 
lesser degree in hepatocytes and LSEC, or RAGE, expressed in DC, 
KC and neutrophils and monocytes [11, 28-30], which leads to the 
activation of downstream signalling cascades. Ligation of TLR-4 by 
HMGB1 is MYD88-independent and involves recruitment of 
adapters TRAM and TRIF to induce the translocation of IRF-3 to 
the nucleus and the formation of IFN-β [31]. Alternatively, ligation 
of HMGB1 to RAGE activates mitogen activated protein kinases 
(MAPKs) and leads to the EGR-1-dependent formation of pro-
inflammatory cytokines such as TNF-α and chemokines CXCL10 
and CXCL2 [28].  
 During the early phase of reperfusion injury TNF-α, a central 
mediator in hepatic inflammatory response to IR and oxidative 
stress, activates NF-κB in KC, hepatocytes and endothelial cells [2, 
32]. NF-κB activation in KC upregulates TNF-α and IL-6 which 
leads to the activation of CD4+ T lymphocytes and, to a lesser ex-
tent, of NK T-cells. CD4+ T lymphocytes operate as inflammatory 
signal amplifiers activating KC, and also as facilitators of neutro-
phil recruitment which leads to increased levels of chemotactic 
messengers [2, 11, 33]. In fact, CD154 and T-cell immunoglobulin 
and mucin domain 1 (TIM-1) proteins present at the surface of 
CD4+ T cells associate respectively with CD40 and TIM-4 present 
at the surface of KC and LSEC. CD40 recruits TNF receptor asso-
ciate factor 6 (TRAF6) and Src kinase to activate KC. TRAF6 acti-
vates NF-κB, ERK and p38 MAPK which leads to production of 
cytokines (e.g. IL-1 and TNF-α), chemokines (e.g. CXCL8, 
CXCL2) and •NO by KC and LSEC. Release of the proinflamma-
tory cytokine IL-17 by CD4+ T cells also leads to expression of 
other proinflammatory cytokines including IL-6, TNF-α, and IL-1β 
and chemokines, particularly the CXC chemokines, partly through 
activation of NF-κB [34]. Other inflammatory cytokines such as IL-
12 and IL-23, possibly produced by KC and stellate cells, are also 
involved in the early inflammatory response by stimulating CD4+ T 
cells and γδT-cells to produce IL-17 and by activating NF-κB. Ac-
tivated NK T-cells release IFN-γ which promotes formation of 
chemokines by KC, and promotes, through the transcription factor 

STAT1, the increased expression of adhesion molecules at the sur-
face of LSEC [35].  
 The late phase of IRI is characterized by recruitment of neutro-
phils and damage to hepatocytes promoted by neutrophils through 
activation of NADPH oxidase (NOX-2), leading to O2

•- release and 
formation of other ROS (H2O2, HOCl, ONOO-), and through release 
of proteases during degranulation. Neutrophil recruitment requires 
chemotactic agents and vascular adhesion molecules. NF-κB activa-
tion in LSEC leads to TNF-α up-regulation and to TNF-α-
dependent up-regulation of CXC chemokines and of adhesion 
molecules such as E-selectin, ICAM-1 and VCAM-1 [36, 37]. 
Proinflammatory mediators can also be released by inflammasomes 
which sense the presence of necrotic cells [38]. NLRP3, a member 
of the NOD-like receptor family of PRRs, can be activated and give 
rise to the NLRP3 inflammasome and is involved in the mechanism 
of neutrophil recruitment to sites of focal hepatic necrosis. NLRP3 
silencing decreases the levels of IL-1β, IL-18, IL-6, TNF-α and 
HMGB1 and attenuates IRI [38]. During the reperfusion phase 
hepatocyte death can be massive and occurs mainly by necrosis [39, 
40].  

3. siRNAs AS THERAPEUTIC TOOLS 
 At the end of the 20th century, it was found that exogenously 
introduced double stranded RNA (dsRNA) molecules and plasmids 
expressing short hairpin RNA (shRNA) were able to specifically do 
base-pairing with target mRNA molecules causing their degradation 
(RNA interference, RNAi) [41, 42]. These studies exposed the exis-
tence in eukaryotic cells of specific silencing pathways based on 
small non-coding RNAs (sncRNAs). RNAi is mechanistically re-
lated to a number of other conserved RNA silencing pathways that 
evolved as important regulators of gene expression and genome 
stability by protecting it against virus, mobile repetitive DNA se-
quences, retro-elements, and transposons [43]. Three major classes 
of RNA silencing pathways operating in eukaryotic cells can be 
defined based on the mechanism of action, subcellular location and 
the biogenesis pathways of the small RNA molecules involved, i.e. 
short interfering RNAs (siRNAs), microRNAs (miRNAs) and 
PIWI-interacting RNAs (piRNAs). siRNAs are small RNA duplex 
molecules produced by the action of Dicer, a ribonuclease III 
(RNaseIII) enzyme that creates RNA duplexes with 2-nt overhangs 
at their 3' ends and phosphate groups at their 5' ends [43]. The dis-
covery of RNAi led to the development of the RNAi technique that 
uses synthetic siRNAs, 21–23 nt in length to transfect mammalian 
cells in culture to specifically suppress the expression of endoge-
nous genes. In the last years, this method has been explored as a 
powerful tool to determine biological functions of genes and soon 
emerged as a potential therapeutic approach to silence disease-
related genes. In fact, a significant number of siRNA-based thera-
pies are already in development. A search for siRNA at the NIH 
clinical trials database (https://www. clinicaltrials.gov, May 2018) 
gets 56 clinical trials either performed or currently on going. In 
these clinical trials several diseases have been targeted, e.g. cancer, 
viral infections, inflammatory disorders, cardiovascular disorders, 
neurological disorders, ocular disorders and metabolic disorders 
(for review [44]).  
 siRNAs attractiveness as a new class of therapeutics is due to 
improved rational design strategies and selection algorithms devel-
oped in the last years, which allow to careful select their sequences 
to potentially downregulate every single gene with diminished off-
target effects [45, 46]. Also, siRNA can be specifically targeted to 
different transcripts of a gene, splice variants and mutations in tran-
scripts and used at lower concentrations when compared to other 
antisense oligomers or ribozymes. However, the effectiveness of 
the knockdown caused by siRNAs is dependent on the target se-
quence positions selected from the target gene [47], and a number 
of siRNAs have been shown to be non-functional or to have low 
efficacy in mammalian cells [47, 48].  
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 Despite siRNAs potential for therapy there are still some major 
challenges that should be overcome (Fig. 2). These challenges 
probably explain why, despite the number of patents and clinical 
trials, as far as we know, no siRNA-based therapeutic products 
have reached the market [44, 49]. One of the problems of using 
siRNAs as therapeutic agents is the fact they do not discriminate 
cell types and tissues causing a global gene silencing [50]. Another 
difficulty is due to the fact that siRNAs are either rapidly eliminated 
by the kidneys due to their small molecular mass or captured by the 
phagocytic cells of the mononuclear phagocytic system (MPS) [51]. 
Furthermore, they are rapidly degraded by endogenous RNases in 
the plasma before cellular internalization which is disadvantageous 
for prolonged expression of RNAi-based therapeutics [52, 53]. 
siRNAs also have poor cellular uptake since, being big macromole-
cules and relatively heavily charged, they are not able to cross cell 
membranes by diffusion [54]. Consequently, the endosomal path-
way is a privileged entry pathway for siRNAs. However, siRNAs 
may be degraded or remain trapped inside of endosomes which 
compromises their role inside the cell [55]. 
 Activation of the immune response by siRNAs in a sequence- 
and concentration-dependent manner is also an obstacle for their 

use as therapeutics [58]. Several studies showed that certain 
siRNA sequences trigger immune activation via the TLR-3/7/8 
and PKR cascades leading to the activation, for example, of genes 
coding for interferons, pro-inflammatory cytokines (e.g. TNF-α), 
chemokines and chemokine receptors [59-63]. Nevertheless, the 
fact that siRNAs can trigger sequence- and target-independent 
angiogenesis through TLR-3 [64] shows that off-target effects of 
siRNAs when used as therapeutic agents could be more complex 
and are not yet completely understood. Another concern comes 
from the fact that siRNAS and miRNAs share their biogenesis and 
mechanism of action. Thus, increased levels of a siRNA may affect 
endogenous miRNAs, their regulatory functions, and become toxic. 
This is supported by the observation that miRNAs in hepatocytes 
are down regulated upon delivery of high levels of shRNA expres-
sion specific for six targets using an adeno-associated virus (AAV)-
based gene delivery system, which caused mice morbidity [65]. 

4. POTENTIAL TARGETS FOR THE USE OF siRNAs IN 
LIVER ISCHAEMIA-REPERFUSION INJURY 
 In liver transplantation direct siRNA therapeutics aimed at im-
proving the quality of the graft before surgery, and without having 

 

Fig. (2). Problems and strategies for delivering siRNAs. Main delivery drawbacks of siRNAs: siRNAs have non-favorable pharmacokinetic properties since 
they are rapidly eliminated by the kidneys due to their small molecular mass and are captured by the mononuclear phagocytic system. In the blood system they 
are rapidly degraded by endogenous RNases before cellular uptake and, due to being large macromolecules heavily charged, they display weak transport 
across cell membranes. The endosomal pathway is a privileged via of entry for siRNAs, but they may be degraded or entrapped within endosomes. siRNAs 
released into the cytoplasm via endosomes are incorporated into RISCs (RNA-induced silencing complex) to guide the recognition and degradation of specific 
target mRNAs. In endosomes certain siRNA sequences activate an immune response that may occur through different pathways: (i) recognition of siRNAs by 
TLRs; (ii) activation of retinoic acid-inducible gene I (RIG-I) by blunt-end siRNAs; (iii) activation of dsRNA-dependent protein kinase R (PKR). Strategies 
for effective siRNAs delivery - Introduction of siRNA chemical modifications or siRNA conjugation strategies with hydrophobic ligands (cholesterol, α-
tocopherol), peptide fusion proteins, membrane permeable peptides (penetratin or transportan) and aptamers decrease siRNA susceptibility to nuclease activ-
ity, enhance cell uptake, lower the incidence of off-target effects and increase pharmacodynamics without affecting the silencing efficiency of target genes. 
siRNA delivery carriers, e.g. cationic liposomes and polymers, such as PEG, form complexes with negatively charged siRNA and allow efficient cellular up-
take by endocytosis. To enhance and/or extend gene silencing viral vectors can be used (adenovirus, retrovirus, lentivirus, or adeno associated virus) to deliver 
shRNA. Short-hairpin RNA is translocated into the cell nucleus, transported to the cytoplasm and processed by the Dicer RNase III into functional siRNAs. 
Adapted from [55-57]. 
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to worry about off-target delivery of siRNA, can be performed by 
adding siRNAs to the perfusion medium used to preserve ex vivo 
liver during organ storage and transport to the transplant recipient. 
However, siRNA therapeutics can be used in other phases of liver 
transplant by developing nanosystems (nanoparticles/liposomes, 
etc.) for proper targeting and delivery. No studies have been done in 
liver transplantation using siRNAs in the perfusion media so far. 
However, recently, a similar strategy was used on a kidney trans-
plant model. By perfusing kidneys with a siRNA cocktail solution 
targeting complement 3, RelB (one of the proteins of the NF-κB 
complex), and first apoptosis signal receptor (Fas) cold IRI injury 
was prevented [66].  
 As said previously, liver damage occurs both during ischaemia 
and reperfusion. One of the problems of using siRNA for IRI thera-
peutics is the choice of target, since IRI is a complex process in-
volving several types of cells and signalling pathways which are not 
completely unravelled. In that respect, new mechanistic insights 
into the molecular events involved in IRI, leading to future thera-
peutic use, can be obtained by using siRNAs. For example, re-
cently, the use of ATF6 siRNA in a murine warm ischaemia model 
allowed to show that ischaemia primes murine liver innate immune 
cells by ATF6-mediated ER stress response [67].  
 Initial studies using siRNA specific to selective gene sequences 
which play a key role in hepatic IRI, were targeted mainly at apop-
tosis. First apoptosis signal receptor (Fas) knockdown by siRNA 
led to lower serum alanine aminotransferase (ALT) levels, a bio-
marker of liver damage, after IR [68] whilst in vivo knockdown by 
siRNA of acidic sphingomyelinase [69] decreased ceramide genera-
tion during IR, and attenuated serum ALT levels, hepatocellular 
necrosis, cytochrome c release, and caspase‐3 activation. However, 
more recent studies have shown that both apoptosis and necroptosis 
have a minor role in hepatocyte death during IRI [39, 40, 70].  
 A good therapeutic strategy to prevent liver IRI is to use as 
preferential targets known upstream mediators of KC activation and 
the proinflammatory process involved in reperfusion injury. There-
fore, good candidates for the use of siRNA to prevent KC activation 
are key mediators involved in TLR- or RAGE- triggered inflamma-
tory signal pathways. Among them, IRF1 [71, 72], HMGB1 [73] or 
other DAMPs [74], complement receptors [75], TLR-4 [76], RAGE 
[30] or TLR-9 [27]. Recently, HMGB1-siRNA was used therapeu-
tically to reduce 60-70% nuclear HMGB1 expression in mice liver 
and then mice were subjected to liver IR [73]. HMGB1-siRNA pre-
treatment markedly inhibited HMGB1 release after hepatic reperfu-
sion and the increases in hepatic expression of TLR-4, TLR-2, 
RAGE, TNF-α, IL-1β, IL-6, monocyte chemoattractant protein 1 
(MCP-1), inducible nitric oxide synthase (iNOS), and cyclooxy-
genase-2 (COX-2) seen in control mice after hepatic reperfusion. 
Also, there was a significant preservation of liver function and a 
marked decrease in liver damage when compared to control mice. 
TLR-4 siRNA treatment of liver IRI has been tested in vivo using a 
hepatocyte-specific delivery system consisting of galactose-
conjugated liposome nanoparticles (Gal-LipoNP) [76]. TLR-4 
siRNA treatment significantly decreased serum ALT and aspartate 
transaminase (AST) and histopathology displayed an overall reduc-
tion of the injury area in the Gal-LipoNP TLR-4 siRNA treated 
mice. Additionally, there was a suppression of the inflammatory 
cytokines IL-1 and TNF-α and neutrophil accumulation and lipid 
peroxidation-mediated tissue injury were attenuated after Gal-
LipoNP TLR-4 siRNA treatment. In a recent study it was shown 
that the use of RAGE siRNA alleviated liver injuries and inhibited 
inflammatory immune activation against IR in diabetic, but not 
normal, mice [30]. 
 Two other mediators with a key role in IRI worth targeting with 
siRNA silencing are TNF-α and NF-κB. Silencing of TNF-α ex-
pression with shRNA during liver IR led to a decrease in IRI [77]. 
The use of siRNA to silence TNF-α expression in a renal model 
also decreased IRI [78]. No studies have been made in liver IRI to 

prevent activation of NF-κB or silence the transcription factor. 
However, in renal IRI models, targeted silencing of IκB kinase β 
(IKKβ) [79] or RelB [59] to prevent NF-κB activation using siRNA 
substantially attenuates kidney injury and inflammation following 
ischemia-reperfusion. 
 Since the later part of IRI involves recruitment of neutrophils 
and further amplification of inflammatory damage to liver cells, 
strategies aimed at decreasing the expression of adhesion molecules 
(e.g. ICAM-1, VCAM-1, P-selectin) by using siRNA will probably 
also decrease IRI as shown in [80]. Another important target for the 
use of siRNA should be NOX-2 which is involved both in the early 
and later phases of IRI through its activation in KC and neutrophils. 
Specific inhibitors of NOX-2 are lacking and it has been shown in 
mice models of myocardial infarction that delivery of Nox-2 siRNA 
with polyketal nanoparticles prevents up-regulation of Nox-2 and 
significantly recovered cardiac function [81].  

5. OVERCOMING OF THERAPEUTIC LIMITATIONS siR-
NAs FOR ISCHAEMIA-REPERFUSION INJURY TREAT-
MENT 
 Vast efforts have also been made to improve siRNAs delivery 
for therapeutic use in order to simultaneous protect siRNAs during 
transport and prevent non-specific delivery and promote delivery to 
target tissues/cells [55, 82, 83]. Even if the degradation by serum 
RNases could be surpassed, naked siRNAs would have a very low 
transfection efficiency due to their low cellular internalization be-
cause of their physico-chemical characteristics [84]. Several strate-
gies have been developed to overcome siRNAs limitations, e.g. by 
structurally modifying siRNAs [55] introducing chemical modifica-
tions at the ribose sugar backbone (e.g. 2´-fluoro, Locked Nucleic 
Acids (LNAs contain a methylene bridge which connects the 2´-O 
with the 4´-C of the ribose), 2´-O-methyl RNA (2´OMe), 2´-fluoro-
β-D-arabinonucleotide (FANA) and 2´-O-(2-methoxyethyl) RNA 
2´(MOE)), and phosphodiester backbone (e.g. phosphorothioate, 
boranophosphate, and methylphosphonate) of siRNA molecules 
[85, 86]. Many of these modifications decrease siRNA susceptibil-
ity to nuclease activity, lower the incidence of off-target effects and 
increase pharmacodynamics without affecting the silencing effi-
ciency of target genes. Similarly, strategies involving conjugation 
of siRNAs, namely with hydrophobic ligands (cholesterol, α-
tocopherol) and polymers such as polyethylene glycol (PEG) [87] 
improved their pharmacological properties by increasing circulation 
half-life and enhancing cellular uptake [55, 83, 88]. The use of 
nonpolymeric or polymeric drug delivery systems (DDS) such as 
liposomes, self-assembly phospholipid carrier, polyplexes com-
plexes solid lipid nanoparticles, polymeric nanoparticles, nanoe-
mulsions, etc. has also been a successful approach to deliver siR-
NAs to target organs/cells [89-92].  
 One of the first reports of the use of a drug delivery system to 
treat ischaemic tissue was published in the early 1980s. Palmer et 
al. [93] showed that liposomes accumulated in ischaemic tissues 
(myocardium) and that there was an inverse linear correlation be-
tween liposomal distribution and regional myocardial blood flow. 
Although, the mechanism of liposome accumulation was not 
known, it was proposed they were behaving as microprobes sensi-
tive to the biochemical environment and responding to changes in 
this environment by specific and non-specific structural alterations. 
After the work of Matsumura and Maeda [94], the mechanism of 
accumulation of nanoparticles was elucidated and now it is well 
established that it involves the enhanced and retention effect (EPR), 
due to enhanced vascular permeability occurring in tissues in situa-
tions such as in inflammation. The in vivo fate of nanosystems 
drugs by EPR for the treatment of inflammations such as rheuma-
toid arthritis is now well established [95-99]. It has been proved 
that particles with a size lower than 0.15 µm and with high circula-
tion time (>15-20h) accumulate preferentially at inflamed sites. 
This process is known as passive targeting. As an example, in a 
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mouse cerebral artery occlusion model and in the case of liposomal 
antioxidant (superoxide dismutase) delivery, it was shown the abil-
ity of passively targeted nanoparticles to be effective in the reduc-
tion of infarct volume and improvement in behaviour after cerebral 
ischemic injury [100].  
 In liver IRI, there seems to be a preferential accumulation of 
long circulating (PEGylated) and small size (<0.150 nm) liposomes 
at the sites of inflammatory-type lesions. In fact, magnetoliposomes 
with a negative contrast agent (SPION) and the same characteristics 
improved the visualization of the injuries caused by IR [101]. The 
liposomal uptake by the liver and their intra-hepatic distribution 
[102] has been attributed to the characteristics of the liposomal 
formulation in terms of stealth and size properties [97, 103]. The 
same type of PEGylated and small size liposomes with an anti-
inflammatory associated carrier has been used to treat hepatic 
ischaemia-reperfusion lesion and showed an effective outcome in 
terms of therapeutic activity [98, 104]. Another example is the use 
H2O2-triggered bubble-generating antioxidant polymeric PVO 
nanoparticles as I/R passive targeted nanotheranostic agents. PVO 
nanoparticles significantly enhanced the ultrasound contrast in the 
site of H2O2- accompanying hepatic I/R injury and remarkably in-
hibited the liver damages and apoptotic cell death [105]. These 
studies show that nanosystems can be used as a delivery system to 
passively target siRNAs to the IR liver overcoming the drawbacks 
of naked siRNA by increasing its short plasma half-life, protecting 
from its enzymatic degradation and modifying its biodistribution. 
 In addition to passive targeting, surface modification of the 
drug delivery systems can be done in order for them to be recog-
nized by specific cell receptors allowing a direct interaction with 
the target cells, a process known as active targeting. Moreover, 
active targeting allows intracellular delivery through receptor-
mediated internalization. Specific cell targeting molecules (antibod-
ies, aptamers, and ligands for cell surface receptors) which enable 
the recognition of specific types of cells have been extensively 
investigated and tested [106].  
 One of the few and first works using siRNA silencing to treat 
liver IR injuries was published in 2011 and used a liver-specific 
liposome-based siRNA delivery systems using PEGylated 
liposomes with active targeting to galactose receptors encapsulating 
TLR-4-siRNA. This system efficiently knocked down TLR4 gene 
synthesis in liver and attenuated liver IRI, protected liver function, 
decreased neutrophil infiltration and suppressed inflammatory cy-
tokines [76]. Other examples of the use of nanosystems with special 
attention paid to the effect of targeted delivery, lead to the conclu-
sion that they can be clinically useful to treat liver IR with siRNA 
[95, 100].  
 As siRNAs are needed in the cytosol to achieve their therapeu-
tic activity, an efficient release from the endosome is needed. A 
carrier system to efficiently perform a cytosolic delivery of siRNA 
should follow several general principles [92]. First, to stabilize 
siRNA, lipids/polymers with a positive charge are normally used 
since the work of Felgner et al. [107]. Nevertheless, a neutral net 
charge of the nanosystem will be required to avoid the interaction 
with the MPS and nonspecific cell-binding and to prolong its half-
life [108, 109]. This can be achieved by coating the particle with 
PEG [97, 110]. Another important characteristic of the nanosystems 
must be the possibility of active targeting to specific receptors of 
cells involved in liver IR leading to uptake via the scavenging re-
ceptor [111] as for example with E-selectin ligands [112]. Moreo-
ver, escape from the endosome is mandatory for the cytosolic deliv-
ery of siRNA and this can be achieved using substances that will 
disrupt the endosome before siRNAs are degraded. Several ap-
proaches can be made but the more commonly used is based on the 
incorporation of ionizable cationic lipids with the capacity of desta-
bilizing the bilayer as a function of pH to release siRNA from the 
endosome [90, 92, 111, 113]. 

CONCLUSION 
 Despite all its promising therapeutic outcomes, the use of 
siRNA as a therapeutic drug has been hindered by several limita-
tions. As shown in this review, siRNA has been used for IRI but its 
potential can be improved by a better knowledge of what molecules 
to target and also with better delivery strategies. Here, with the aim 
of using siRNAs as therapeutic drugs to prevent liver IRI during 
transplantation we proposed several targets for the use of siRNAs, 
analysed the advantages and problems of the use of siRNAs, and 
showed what types of drug delivery systems are able to improve 
siRNA therapeutics.  
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