

Localization formulas and polytope decompositions José Agapito (IST, Lisboa)

26[°] Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro, July 27 - August 3, 2007

Here is an interesting question: **what is the polytope decomposition that a given localization type formula will yield?** Brion [B] uses, for instance, the Lefschetz-Riemann-Roch formula in equivariant K-theory to obtain its famous polytope decomposition. In the same fashion, the Lawrence-Varchenko [L, V] (also called polar) polytope decomposition can be recovered by using the Atiyah-Bott and Berline-Vergne localization

The Paradan formula (following Witten). Let $\varepsilon \in W$ and let $\eta \in \Omega_T^{\infty}$ ${}_T^\infty(M)$ be a closed form. Then, on $C^{-\infty}({\mathfrak t})$ we have

in equivariant cohomology (see e.g. [A1]). **Along with Leonor Godinho** [AG1], we use Witten localization in equivariant cohomology, as described by Paradan [P], to find new polytope decompositions. We work with toric manifolds to test and inspire our results.

Two localization formulas

Let (M, ω, μ) be a **toric manifold**. This means (M, ω) is a compact symplectic manifold on which a torus T of half the dimension of M acts in a hamiltonian fashion, where $\mu \colon M \to \mathfrak{t}^*$ is a moment map for the torus action, and where t is the Lie algebra of T and t^* its dual.

is the equivariant Hirzebruch class of M . Here, q is an arbitrary complex parameter and $\textbf{Td}(M)$ (respectively $\textbf{Td}(-M)$) denotes the equivariant Todd class of M (and of M with opposite orientation). This choice of α yields a weighted version of the Lawrence-Varchenko polytope decomposition.

The Atiyah-Bott and Berline-Vergne formula. The fixed point set M^T of the action of T on M is equal to the critical set $Crit(\mu)$ of μ . For a toric manifold, M^T is finite and corresponds to the vertices of the moment polytope $\mu(M)$. Let $\alpha \in H_\mathcal{T}^*(M)$. Then

$$
\int_M \alpha = \sum_{F \in \text{Crit}(\mu)} \frac{\alpha|_F}{\text{eul}(N_F)},
$$

where $\alpha|_F$ refers to the restriction of α to the fixed point F, and

where I_F^{ε} $E_F^{\varepsilon}(\eta)$ is a certain generalized function supported on the Lie algebra t_F of the subtorus T_F of T (cf. [AG1] for details). Using the equivariant form $\eta = e^{i\omega^{\sharp}}$, where ω^{\sharp} is the equivariant symplectic form on M , we motivate the Agapito-Godinho polytope decomposition formula.

where g is a linear combination of characteristic functions of cones with lines (cf. FIG. 2 for an illustration).

 \overline{A} B \overline{A} \ddot{B} \ddot{B} \ddot{B} \ddot{B}

any and a set of a set of the set We say that $\xi \in \mathbb{R}^d$ is a "polarizing" vector if it is not normal to any of the "walls" determining the open set W illustrated in FIG. 1. Such a vector is used to (polarize) change the "direction" of the tangent cones C_F in a systematic way and thus we get the so called polarized tangent cones C^{\sharp}_{μ} $_F^{\sharp}$ (cf. [AG1] for details and FIG. 3,4 for an illustration). Motivated by our work with toric manifolds and the use of the Atiyah-Bott-Berline-Vergne localization formula as explained before, we assign complex numbers q's and $(1 - q)$'s to the facets of P and its tangent cones so that we get the following weighted version of the Lawrence-Varchenko polytope decomposition (which avoids removing facets as occurs with the ordinary $q = 1$ - Lawrence-Varchenko formula) The 1^w_P $_{P}^{w}$ and $\mathbf{1}_{\mathbf{C}}^{w}$ \mathbf{C}^\sharp_{F} stand F for weighted characteristic functions as illustrated in FIG. 3,4.

The (Weighted) Lawrence-Varchenko formula. Let $\xi \in \mathbb{R}^d$ be a polarizing vector. For any convex simple d -polytope P in \mathbb{R}^d , we have

$$
\int_M \eta = \sum_{F \in \text{Crit}(\|\mu_\varepsilon\|^2)} I_F^\varepsilon(\eta),
$$

We can do better, assign arbitrary q_i 's and $(1-q_i)$'s to the facets of P and its tangent cones (not just the same q's and $(1 - q)'s$) and get a more general weighted L-V formula. Finally, using

Polytope decompositions

Let P be a convex *d*-polytope in \mathbb{R}^d . The tangent cone \mathbf{C}_F to P at a face F is the minimal affine polyhedron (not necessarily pointed) that contains F and goes in the "direction" of P . We say that P is simple when its edges are generated by vectors in \mathbb{Z}^d that form a basis of \mathbb{R}^d ; but not necessarily of \mathbb{Z}^d . If the latter occurs, P is called Delzant. For instance, the moment polytope $\mu(M)$ of a toric manifold is Delzant. We denote by 1_P and $1_{\mathbb{C}_F}$ the characteristic functions of P and C_F respectively.

The Brion formula. For any convex d -polytope in \mathbb{R}^d , we have

$$
{\bf 1}_P = g \ \ + \sum_{{\bf v} \text{ vertex of } P} {\bf 1}_{\mathbf{C}_{\bf v}} \quad ,
$$

FIG. 2: Example for a lattice triangle [ABC].

- [B] M. Brion, *Points entiers dans les polyèdres convexes*, Ann. Sci. École Norm. Sup. (4), **4** (1988), 653–663.
- [HK] M. Harada and Y. Karshon, *Localization for hamiltonian group actions*. Work in progress.
- [L] J. Lawrence, *Polytope volume computation*, Math. Comp **57** (1991), 259-271.
- [P] P-E. Paradan, *Formules de localisation en cohomologie equivariante*, Compositio Math **117** (1999), 243–293.
- [V] A. Varchenko, *Combinatorics and topology of the arrangement of affine hyperplanes in the real space* (Russian) Funktsional. Anal. i Prilozhen. **21**, 11–22. English translation: Functional Anal. Appl. **21** (1987), 9–19.

$$
\mathbf{1}_{P}^{w} = \sum_{\mathbf{v} \text{ vertex of } P} (-1)^{m_{\mathbf{v}}} \mathbf{1}_{\mathbf{C}_{\mathbf{v}}^{\sharp}}^{w}.
$$

where $m_{\mathbf{v}}$ is the number of facets of $\mathbf{C}_{\mathbf{v}}$ that change direction

with the polarization.

FIG. 3: Example for a lattice triangle [ABC] using ξ .

the Witten localization in equivariant cohomology as explained before, we get

J

INSTITUTO SUPERIOR TÉCNICO

The Agapito-Godinho formula. Let $\varepsilon \in W$. For any convex simple *d*-polytope P in \mathbb{R}^d , we have

$$
\mathbf{1}_P^w = \sum_{F \text{ face of } P} (-1)^{m_F} \varphi(\varepsilon, \Delta_F) \mathbf{1}_{\mathbf{C}_F^{\sharp}}^w.
$$

where $\varphi(\varepsilon, \Delta_F) = 1, 0$ whether $\beta(\varepsilon, \Delta_F)$ is in P or not and m_F . is the number of facets of C_F that "flip" with polarization.

FIG. 4: Example for a triangle [ABC] using ε_1 and ε_2 .

Here, as opposed to the L-V formula, a **different polarizing vector** ($\beta(\varepsilon, \Delta_F) - \varepsilon$) is assigned to each face of the polytope and the facets of the corresponding tangent cones are "flipped" accordingly (see FIG. 4 for an example). Using **regular triangulations**, we can extend all these decompositions to nonsimple polytopes (cf. [AG2] for details). The L-V and A-G formulas are independent of polarization (although the polarized tangent cones may change, of course).

eul (N_F) is the T-equivariant Euler class of the normal bundle to F. Animated by the theory of **geometric quantization** we choose $\alpha = e^{c_1(\mathbb{L})} \mathbf{Q}_q(M)$, where $e^{c_1(\mathbb{L})}$ is the Chern character of a T-equivariant prequantization line bundle $\mathbb{L} \to M$ and

 $\mathbf{Q}_q(M) = q\mathbf{Td}(M) + (1-q)\mathbf{Td}(-M).$

Final remarks

As an application of our polytope decompositions, we can obtain Euler Maclaurin formulas on simple lattice polytopes that generalize previous results (cf. [AG1] for details). In [AG2], we comment on the relation between Brion's formula and the previously mentioned polytope decompositions, using generating functions. We can also ask: **given a polytope decomposition, is there a localization formula that applied to a toric manifold will imply that polytope decomposition?** For example, Harada and Karshon [HK] have developed new localization formulas for the Duistermaat- Heckman measure that yield the Brianchon-Gram decomposition for **all** toric manifolds. This well known classical decomposition (see e.g. [AG2] and references therein) states that

$$
\mathbf{1}_P = \sum_{F \text{ face of } P} (-1)^{\dim F} \mathbf{1}_{\mathbf{C}_F}.
$$

References

FIG. 1: Open set W for a triangle [ABC].

Now, the facets of the moment polytope $\mu(M)$ determine a set W of open regions in t^* as illustrated in FIG. 1. Let $\varepsilon \in t^*$ and let $\mu_{\varepsilon} := \mu - \varepsilon$ be the perturbed moment map obtained from μ . The critical set of $||\mu_{\varepsilon}||^2$ is given by

 $\mathrm{Crit}(||\mu_{\varepsilon}||^2) = \qquad \qquad \Box \qquad M^{T_F} \cap \mu^{-1}(\beta(\varepsilon,\Delta_F)) \quad ,$ F face of $\mu(M)$

where Δ_F is the affine subspace of \mathfrak{t}^* generated by F, the point $\beta(\varepsilon,\Delta_F)$ is the orthogonal projection of ε on Δ_F and $M^{\rm T_{\it F}}$ is the fixed point set of the subtorus T_F of T generated by $\exp(\Delta_F^{\perp})$. When $\varepsilon \in W$, the set $M^{T_F} \cap \mu^{-1}(\beta(\varepsilon, \Delta_F))$ is a submanifold of M on which T/T_F acts locally freely. For toric manifolds, the set $M^{T_F} \cap \mu^{-1}(\beta(\varepsilon, \Delta_F))$ is either a single point or empty.

- [A1] J. Agapito, *A weighted version of quantization commutes with reduction for a toric manifold*, Contemp. Math. **374** (2005), 1–14.
- [AG1] J. Agapito and L. Godinho, *New polytope decompositions and Euler-Maclaurin formulas for simple integral polytopes*, arXiv: math.CO/0512475.

[AG2] J. Agapito and L. Godinho, *Polytope decompositions*. Preprint 2007.