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Abstract 

A matrix model based on a discrete time form of the logistic equation and the Leslie matrix model was developed 
for density-dependent population growth; the model is simpler and more easily applied than the model developed by 
Liu and Cohen in 1987 using a different discrete time form of the logistic equation. The new model requires no 
additional parameters, matrices, or mathematical functions, and it links life tables, the exponential growth equation, 
the logistic growth equation, and Leslie's matrix. The new model possesses the same qualitative dynamical behavior 
as both the model developed by Liu and Cohen and the discrete time logistic equation; it exhibits stable points, 
cycles, and chaos. It easily can be modified to include features developed for the logistic equation such as time lags. 
The model was applied to describe the growth of a white-tailed deer population introduced into a fenced reserve. 
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1. Introduction 

Leslie (1945, 1948) and Lewis (1942) developed 
a matrix model ,  to describe change in popula t ion 
age s tructure over time, that  is analogous to the 
exponential  equation.  Leslie 's (1945) model  is 

N,+I = ~ ,  (1) 
where  N t is the vector  of  age structure at t ime t 
and M is the popula t ion project ion matrix 

F0 F1 F2 . . .  F v 

P0 0 0 
M =  0 P1 0 ' (2) 

6 . . . . . . . . . .  P / ; 6  

where  F i is the fecundity of  age group i (the 
number  of  young  p roduced  per  female of  age i 
during time per iod t that  live to the next time 

period), and P,. is survival f rom age i - 1 at t ime t 
to age i at t ime t + 1 with cont inuous  mortality. 
The  popula t ion project ion matrix is simpler if 
reproduct ion  occurs during one short season, as it 
does for most  wild animals, and if mortali ty is 
mode led  as a discrete t ime process (e.g., Starfield 
and Bleloch, 1986). The  number  of  young at t ime 
t + 1 p roduced  by individuals of  age x - 1 at t ime 
t is N ( x - 1 , t ) S x _ l m x , a n d  thus the popula t ion 
projection matrix can be writ ten in terms of  life 
table componen ts  as 

m l s  o m 2 s  1 M 3 s  2 . . .  m k S k _  1 0 

S o 0 0 . . .  0 0 

M = l . o  " . . . .  . . . .  o . . . .  . . . :  . . . .  o . . . .  o . ,  

/ 0 0 0 . . .  s _l 0 I 

(3) 
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where mg is the number of young produced by a 
female of age i, s i is survival from age i - 1 to i, 
and N ( x -  1,t) is the number of individuals of 
age x - 1 at time t. The Leslie matrix model has 
been of limited use in ecology because it models 
exponential population growth. 

Several density-dependent matrix models have 
been developed. Leslie (1959) modified his matrix 
model to describe population growth in a limited 
environment by dividing each element in column 
i with the term 

qit = 1 + a N t _ i _  1 q- bNt  , (4) 

where Nt_ i_ 1 is population size at time t - i -  1 
and N t is population size at time t, to give the 
matrix model 

Nt+ 1 =MQt~Nt ,  (5) 

where 

qot 0 0 . . .  0 

0 q l t  0 

Qt=L0 . . .0 . . . .q2 .  t . . . . . .  0 . . "  (6) 

[0 0 qvt 

Abundance approaches a carrying capacity K 
= (L  - 1 ) / ( a  + b), where L is the dominant la- 
tent root of M, but the model contains new 
parameters and is not based on the logistic equa- 
tion. 

Liu and Cohen (1987) applied a discrete time 
form of the logistic equation to develop a density- 
dependent  matrix model. They began with a dis- 
crete time solution of the logistic equation (May, 
1974) 

N t +  1 = N  t L e x p [ - r N t / K ] ,  (7) 

where N is abundance, r is the intrinsic rate of 
natural increase, K is the environmental carrying 
capacity, and L = e r. Liu and Cohen (1987) then 
proposed the following matrix model as a natural 
extension of the above discrete time solution: 

N t .  1 = M [ N ( t ) ] N t ,  (8) 

where N t is the age structure vector at time t and 
the projection matrix M[N(t)] is 

M[N(t)] 

flFl[N(t)] f2F2[N(t)] ... fvF,j[N(t)] 
IPlEl[g(l)l 0 [ 

= [  . . . .  o . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  , 

I 0 pv_lEe_l[N(t)] 0 

where: 

(9) 

= = bijNj(t ) (11) Ei[N( t ) ]  exp - j  

and fi is a density-independent fertility coeffi- 
cient, pi is a density-independent survivorship 
coefficient, Fi[N(t)] and Ei[N(t)] are density-de- 
pendent functions for fertility and survivorship, 
aij measures the sensitivity of fertility of an indi- 
vidual of age i to the density of individuals of age 
j, and bij measures the sensitivity of survivorship 
of individuals of age i to the density of individu- 
als of age j. 

The Liu and Cohen (1987) matrix model was 
based on the logistic equation, but it has many 
parameters in addition to those found in a com- 
bined life and fertility table or Leslie's matrix, its 
relation to Leslie's matrix is unclear, and in an 
application of the model to a laboratory popula- 
tion of Tribolium many simplifying assumptions 
were necessary (Desharnais and Liu, 1987). 

In this study a simple density-dependent ma- 
trix model based on a different discrete time form 
of the logistic equation is developed and applied; 
it requires no additional parameters, matrices, or 
mathematical functions, and it is easy to apply to 
either laboratory or field populations when a 
combined life and fecundity table and estimate of 
the carrying capacity are available. The simple 
model provides a link between life table parame- 
ters, the logistic growth equation, and Leslie's 
original projection matrix. To illustrate the ease 
with which the new model can be applied to field 
populations, it was applied to model growth of a 
white-tailed deer population. 
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2. Model development 

The Leslie matrix model gives the new age 
structure directly from the old age structure, but 
the Leslie matrix equation can be written as 

N, = N,_ 1 + ( M  - / ) N t _  1, (12) 

where N t is the vector of age structure at time t, 
M is the Leslie matrix, I is the identity matrix, 
and M -  I is a transition matrix. The above form 
of Leslie's matrix equation is analogous to the 
discrete time form of the exponential equation, 
i.e., 

U,=Nt_ ,+rU,_ , ,  (13) 

and the matrix M - I is analogous to the intrinsic 
rate of increase r. 

A second, and more frequently used discrete 
time form of the logistic equation is (May, 1974) 

N,+ 1 =Nt+ [ ( K - N t ) / K ] r N , ,  (14) 

and a matrix model analogous to this equation is 

Nt+ , = N t + D( N ) ( M  - I )Nt ,  (15) 

where D(N)  is a density-dependent function. In 
the system of equations described by the above 
matrix model the number of individuals of age x 
at time t for ages greater than zero equals the 
number of age x at time t - 1 plus a transition. 
The transition is the density-dependent function 
multiplied by the difference between the number 
of individuals of age x at time t - 1  and the 
projected number of individuals of age x at time 
t. 

The simplest form of the density-dependent 
function is D ( N ) =  ( K - N ) / K ,  used in the lo- 
gistic equation, where K is the environmental 
carrying capacity and N is the sum of the ele- 
ments in the age structure vector at time t - 1. 
This function is only useful for simulation of 
population growth when the initial population 
size is far less than the carrying capacity, for if 
the initial abundance is small compared to the 
carrying capacity, the age structure at the carry- 
ing capacity is near the stable age distribution 
given by the Leslie matrix. If the initial popula- 
tion size is relatively large, a more general den- 
sity-dependent function is necessary, with a den- 

sity-dependent term for each age; it could be a 
diagonal matrix with terms of the form [CxK- 
N(x,t)]/cxK, where cx is the proportion of age x 
in the stable age distribution, which can be deter- 
mined from either a life table or the Leslie ma- 
trix. The density-dependent matrix model derived 
here contains no new functions, no new matrices, 
and no new parameters; the model can be ap- 
plied using an estimate of the carrying capacity 
and information available in a combined life and 
fecundity table. 

The same density-dependent function was ap- 
plied to both birth and death, as it is in the 
logistic equation, but the Leslie matrix and thus 
the transition matrix M - I can be separated into 
a matrix for births and a matrix for deaths (e.g., 
Usher, 1969; Goodman, 1969; Jensen, 1974) and 
separate density-dependent functions could be 
applied to each process. Although more realistic, 
this would increase the difficulty of parameter 
estimation. 

3. Application and discussion 

The  dynamics of the white-tailed deer  
(Odocoileus virginianus borealis Miller) popula- 
tion on the George Reserve in southeastern 
Michigan provides a classic example of the growth 
potential of white-tailed deer populations in fa- 
vorable habitat (McCullough, 1979). The George 
Reserve is a 464-ha area given to the University 
of Michigan in 1930 with the stipulation that the 
property be allowed to follow its natural course 
without interference by humans. Deer  had been 
extirpated from the area, and there is some ques- 
tion as to whether or not deer were present in 
any of southern Michigan at that time (Mc- 
Cullough, 1979). A 2.9-m-high fence around the 
reserve was completed in 1927, and the following 
year 2 male and 4 female deer from Grand Island 
on Lake Superior were released on the property. 
In 1933, only 5 years later, the first annual deer 
drive was held and 160 deer were counted, which 
far exceeded the maximum thought possible (Mc- 
Cullough, 1979). Later studies indicated that the 
carrying capacity of the reserve was about 220 
deer (McCullough, 1979), and these studies also 



Table 1 
Life table and fecundity schedule for white-tailed deer in the 
George Reserve (adapted from McCullough, 1979) 

120- 

x N x I x ( 1 -  qx) mx 

0 75 1.000 0.713 0 
1 57 0.713 0.645 2 
2 35 0.460 0.648 2 
3 22 0.298 0.560 2 
4 11 0.167 0.563 2 
5 4 0.094 0.777 2 
6 4 0.073 0.753 2 
7 1 0.055 0.436 2 

provided data for construction of a current life 
table and a fecundity table for deer at low popu- 
lation densities (Table 1). Estimation of the tran- 
sition matrix M - I  parameters using the life 
table and fecundity table statistics gives 
M - I  

0.426 1.290 1.296 1.120 1.126 1.554 0 

0.713 - 1 0 0 0 0 01 o i 0.645-1 0 0 0 0 ° 
= 0 . 0 0.648 -- 1 0 0 

0 0 0.560 -- 1 0 
0 0 0 0.563 -- 1 
0 0 0 0 0.777 

(16) 

The transition matrix was applied to calculate 
the age structure of the female deer population 
beginning with a population of 4 aged 1 female 
deer at time zero. The deer population had con- 
siderable capacity to increase and attained the 
carrying capacity after only 6 years (Fig. 1). The 
number of female deer calculated for 1933 is 81, 
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Fig. 1. White-tailed deer population density of  the George 
Reserve calculated with the densi ty-dependent  matrix model. 

which would give 162 deer of both sexes and this 
was near the number observed in the first deer 
drive in 1933. The age structure of the population 
quickly approached the stable age distribution 
(Table 2). 

Modification of the simple density-dependent 
matrix is as simple as modification of the logistic 
equation itself; for example, a time lag can be 
introduced into the density-dependent matrix 
model just as it was introduced into the logistic 
equation by Hutchinson (1948); the result is 

Nt+ 1 = N t + O ( N t _ g ) (  M - I ) N t ,  ( 1 7 )  

Table 2 
Age structure of simulated white-tailed deer population (females) on George Reserve with and without a one-year time lag 

Age Year 

0 1 2 3 4 5 6 7 8 9 10 11 12 

With no time lag 
0 0 5 10 19 34 54 69 73 73 73 73 73 73 
1 4 0 3 7 12 19 24 25 25 25 25 25 25 
2 0 2 0 2 4 6 7 8 8 8 8 8 8 
3 0 0 1 0 1 2 2 2 2 2 2 2 2 
4 0 0 0 1 0 0 0 1 1 1 1 1 1 
With one-year time lag 
0 0 5 10 20 40 70 103 109 62 29 34 56 87 
1 4 0 3 7 13 24 36 38 21 10 12 19 30 
2 0 2 0 2 4 7 11 12 7 3 4 6 9 
3 0 0 2 0 1 2 3 4 2 1 1 1 3 
4 0 0 0 1 0 1 1 1 2 1 1 1 3 
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where D(Nt_ u) = ( K -  N t _ g ) / K , N t _ g  is the to- 
tal population size at time t - g ,  and g is the 
duration of the time lag. Calculation of deer 
numbers was done with a one-year time lag (Fig. 
2 and Table 2). The population size projected 
with a time lag is similar to that obtained with the 
logistic equation with a one-year time lag; there is 
considerable variation in abundance. With a time 
lag the age structure undergoes continual change 
after 1933 (Table 2), as abundance repeatedly 
overshoots the carrying capacity and then col- 
lapses. The George Reserve deer population be- 
gan to be harvested as it approached the carrying 
capacity in 1933, and it is not known if the 
population would have overshot the carrying ca- 
pacity and then collapsed. Harvesting resulted in 
a gradual decline in numbers (McCullough, 1979). 

The density-dependent matrix model devel- 
oped here exhibits stability characteristics compa- 
rable to those of both the matrix model explored 
in detail by Liu and Cohen (1987) and the dis- 
crete time logistic equation explored by May 
(1974). McCullough (1979) showed that mortality 
rates were not dependent  on density, but that 
fecundity rates were, so to examine conditions 
necessary for population cycles or chaotic behav- 
ior the fecundity rates of individuals of age one 
and older were increased. For simplicity, these 
simulations were done with integer population 
abundances; the initial age structure was 4 indi- 
viduals of age 1. If mx < 2.89 the population is 
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Fig. 2. White-tailed deer population density of the George 
Reserve calculated with density-dependent matrix model with 
a time lag of 1 year. 

Table 3 
Dynamical behavior of the George Reserve white tailed deer 
population described by the density-dependent matrix model 
with increased fecundities for age > 0. To maintain non-nega- 
tive abundances for all age groups, it is necessary for m x < 4.19 

Dynamical behavior Fecundity, m x 

stable m x < 2.89 
2-point cycles 3.89 >/m x > 2.89 
4-point cycles 4.05 >/m x >1 3.90 
Chaos m x >~ 4.10 

stable (Table 3). For larger values of m x, the 
population exhibits cycles, and then finally as rn x 
increases further the population exhibits chaotic 
behavior in that the trajectory is sensitive to mi- 
nor changes in the initial age structure. The in- 
trinsic rates of natural increase necessary to ob- 
tain cyclic or chaotic behavior with the logistic 
equation were very high (May, 1974), and the 
fecundity rates necessary to obtain cycles or 
chaotic behavior with the density-dependent ma- 
trix model also were very high. For the George 
Reserve, McCullough (1979) reported the rela- 
tion between recruitment rate y of fawns and the 
number of yearling and adult females x as y = 
3 . 0 7 7 -  0.048x, with R 2=  0.62. The number of 
fawns recruited might approach 3 under the most 
favorable conditions, but this is only beginning to 
approach the value of m x necessary to create 
cycles or chaotic behavior in the deer population. 

The logistic equation and density-dependent 
matrix models assume that population growth is a 
function of population size, but they do not de- 
scribe the factors that limit population growth. 
Based on additional data MeCullough (1979) con- 
cluded that growth of the deer population was 
food limited, and that production of young was 
severely affected by high densities. 
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