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Multiple dose vaccination against childhood diseases: high coverage with 

the first dose remains crucial for eradication. 

 

 

ABSTRACT 

 

The high vaccination coverage required to eradicate communicable diseases like 

measles, mumps and rubella, with a single dose of vaccine, has prompted many 

countries to introduce a second dose. In this paper we investigate the conditions to 

eradicate childhood diseases with multiple doses of vaccine by obtaining explicit 

analytical solutions to the classical compartment model that assumes an age-

independent force of infection and conceptualises the host population as divided into 

maternally protected (P), susceptibles (S), latents (E), infectious (I), and removed (R). 

The solutions allow a quantitative discussion of the long-term impact of vaccination 

schedules with an arbitrary number of doses of vaccine. It becomes possible to 

determine the effect of the number of doses, ages at vaccination, and coverage rates of 

vaccines against childhood diseases. In an example with a two-dose vaccination 

schedule against measles, we show that, in spite of a second dose, a high (>90%) 

immunization coverage in the first dose is still crucial to achieve eradication. With a high 

first-dose coverage, however, eradication is relatively insensitive to the age of the 

second dose and requires only moderate coverage rates in the latter. 

 

Keywords: multiple doses, vaccination schedules, childhood diseases, disease 

eradication 

 

 

 

1.  INTRODUCTION 
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An important goal of modern epidemiology is to predict the impact of 

immunization by vaccination upon the incidence of communicable diseases. 

Vaccination schemes are introduced in mathematical models of host-parasite dynamics 

in order to assess the reduction in the number of new infectives and other 

epidemiological changes in the host population following mass vaccination. For some 

childhood diseases, like measles, rubella and others, the host population is 

conceptualised as divided into distinct epidemiological classes of individuals connected 

by a flow. All individuals are assumed to be born protected by maternal antibodies, then 

become susceptible to the disease, and eventually may become latent, i.e. infected but 

not infectious. Latents become infectious and the latter, once recovered, become 

removed from the transmission process. This PSEIR model (P=protected, 

S=susceptible, E=latent, I=infected, R=removed) has been discussed by Anderson and 

May (1983, 1991) and Greenhalgh (1987) who present explicit solutions for the number 

of individuals by age and class. 

  

 Several authors have used mathematical models to investigate the impact of 

single-dose vaccination programmes upon communicable childhood infections (e.g. 

Dietz 1981; Anderson and May 1983, 1984, 1985; Greenhalgh 1988). The models 

predict that disease eradication requires very high vaccination coverage rates of the 

host population and, indeed, childhood diseases like measles, mumps, and rubella 

have proved very difficult to eliminate through single dose programmes. Accordingly, in 

the recent past many countries in the European region of the World Health 

Organisation (WHO) introduced a second dose of the MMR (measles-mumps-rubella) 

vaccine as part of an international effort to eradicate these diseases. 

 

Mathematical models with two-dose strategies have been considered by Dietz 

(1981), Katzmann and Dietz (1984), and Anderson and Grenfell (1986). In a line of 
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approach similar to ours, Dietz (1981) used an equilibrium analysis of an age-

structured model, with constant transmission rate, to examine the consequences of 

single- and two-dose vaccination programmes against rubella. He did not take into 

account passive immunity and latent (i.e. infected but not infectious) individuals, but 

considered the possibility of loss of vaccine induced immunity. When loss of immunity 

is assumed negligible, Dietz’s (1981) solutions are coincident with the ones we present 

in this paper for a programme with no more than two doses of vaccine. Katzmann and 

Dietz (1984) derived analytical results for eradication in a model with constant 

transmission rate, passive immunity in children born of immune mothers, and loss of 

vaccine induced immunity. In the particular case of two-dose vaccination, their 

formulae are in agreement with ours. Anderson and Grenfell (1986) chose to integrate 

numerically their model equations, studying different scenarios of rubella vaccination 

strategies with two and three doses of vaccine, but did not deduce analytical solutions. 

 

To our knowledge, Greenhalgh (1990) was the first to extend the analytical 

results of the previous authors to vaccination programmes with more than two doses of 

vaccine. He conducted an equilibrium analysis of an age-structured model with age-

dependent transmission rate, in order to establish the immunization programmes that 

eliminate the disease. When analysing multiple dose programmes, however, 

Greenhalgh (1990) assumed a constant transmission rate, as we have done here, but 

did not account for passive immunity. Using a method that differs from ours, he derived 

an equation for the minimum immunization proportions required for elimination, which 

is in agreement with our results. Greenhalgh and Dietz (1994) considered a model with 

age-dependent transmission rate and derived a formula to estimate the basic 

reproductive ratio for communicable childhood diseases. They have then examined the 

impact of one and two-dose vaccination programmes upon the reproductive ratio of the 

disease, in the context of different patterns of transmission rates among age classes. 
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In this paper we generalise the equilibrium solutions of the PSEIR model, for an 

arbitrary number of doses of vaccine, with an age-independent force of infection. We 

present explicit solutions for the number of individuals by age and epidemiological class 

in the steady state that ensues a multi-dose vaccination programme. These equations 

may be used by public health workers concerned with cost-benefit studies of number of 

doses, age at vaccination, and coverage of vaccines against childhood diseases. 

Finally, we discuss necessary conditions for long-term disease eradication with two-

dose vaccination programmes. 

 

2.  THE BASIC MODEL 

 

Consider the host population divided in individuals who are protected by 

maternal antibodies, susceptibles, latents, infectious, and immunes (= removed). The 

densities with respect to age of each class of individuals at age x are, respectively, 

P(x), S(x), E(x), I(x), R(x), and the total density of individuals in the population at age x 

is N(x)=P(x)+S(x)+E(x)+I(x)+R(x). The proportion of individuals in each class is 

represented by lower case symbols. For example,  p(x)=P(x)/N(x) is the proportion of 

maternally protected at age x, s(x)=S(x)/N(x) is the proportion of susceptibles, etc.. At 

equilibrium, the total population density is assumed constant, with death and birth rates 

exactly balancing each other. The variation with age of N(x) is given by 

             

dN
dx

x N= − µ ( )
 

where m(x) is the natural mortality rate. 

 

 Common assumptions about m(x), lead to Type I and II survivorship curves. In 

Type I, m(x) is a step function whereby hosts do not die before a given average age of 

longevity, L, when they all die. Thus N(x)=N(0) if x<L and N(x)=0 if x>L, where N(0) is 

the average number of newborns. In Type II, m(x)=m=1/L, thus N(x)=N(0)e-mx. In both 
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types of survivorship, the total number of individuals is N=N(0)L. Throughout this paper 

we assume Type I survivorship, which is better adapted to developed countries 

(Anderson and May 1991).  

 

At equilibrium the proportion of individuals in the various classes depends only 

on age, as given by the system of first order linear ordinary differential equations 

Anderson and May (1991), 

dp
dx

d
ds
dx

d
de
dx

s e
di
dx

i
dr
dx

i

= −

= −

= −

= −

=

 p                                                                                             (2.1a)

 p  s                                                                                  (2.1b)

                                                                                    (2.1c)

 e                                                                                     (2.1d)

                                                                                                 (2.1e)

λ

λ σ

σ υ

υ

 

The coefficients in these equations are the per capita rates discussed in detail 

by Anderson and May (1983, 1991): d is the rate at which hosts move out of the 

protected into the susceptible class, λ  is the force of infection, σ  is the rate at which 

hosts move out of the latent into the infectious class, andυ  is the recovery rate. For 

simplicity, it is assumed that the force of infection is age independent and related to the 

total number of infectious individuals through the transmission rate b :  

( )λ β=
∞

∫ I x dx
0

2 2( . )
 

The set of initial conditions that completes the description of system (2.1), is 

usually provided by assuming that all hosts are born protected by maternal antibodies, 

i.e. p(0)=1, and  s(0) = e(0) = i(0) = r(0) = 0. 

 

3.  IMMUNIZATION 
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 Let us consider immunization at age, whereby every cohort is immunized n 

times, at ages xt (xt>0  for t=1, 2, …, n), thus dividing its life into a succession of n+1 

age intervals. We define x0 =0 and xn+1=L. Solutions for system (2.1) are obtained in 

the Appendix (equation A3) by piecewise integration from age 0 to the assumed 

longevity (L) of the population. The solutions, valid for xt<x<xt+1 (t=0, ..., n), are as 

follows,  

                           (3.1a) 
( )p x p x et

d x xt( ) ( )= − −

   ( ) ( ) ( ) ( )[ ] ( ) ( tt xx
tt

xx exsxpexp
d

dxs −−−− +−
−

= λλ )

λ
                                    (3.1b) 

    ( ) ( ) ( ) ( ) ( )[e x s x e s xx x
t

t=
−

− − − ]  −
λ

σ λ
σ

( ) ( )

            

( ) ( ) ( )[ ] e +
 

t
t

xx xpexp
d

d −−−
−−

− σ

σλσ
( ) ( ) )1.3( ctxx

t ex −−σλ

 
 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )( )

( ) ( ) ( )
( )( )( ) ( ) ( ) )1.3( dexi

d
xpexpd

xsexsxeexexi

t
t

tt

xx
t

t
xx

t
xx

t
xx

−−
−−

−−−−

+
−−−

−
+

+
−−

−
−

−
−

=

υ
υ

υυ

υλυσυ
λσ

λυσυ
λσ

συ
σ

     
 

where p(xt), s(xt), e(xt), and i(xt) are, respectively, the proportions of protected, 

susceptible, latent, and infected hosts immediately after vaccination at age xt. The 

proportion of removed individuals is r(x)=1-[p(x)+s(x)+e(x)+i(x)]. 

 
 Immunization transfers proportions qt (t= 1, 2, …, n) of susceptible individuals 

directly into the immune class at the n ages xt, affecting the initial condition s(xt) in 

equation (3.1b). Let st(x) be the proportion of susceptibles at age x (xt<x<xt+1). The 

proportion of susceptibles at age xt, immediately following immunization, is  

st(xt) = (1-q t) st-1(xt)      

 

Thus, for xt<x<xt+1, from (3.1b), 
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( ) ( )( ) ( ) ( ) ( ) )2.3(1 1
tt xx

ttt
xxddx

t exsqee
d

dxs −−
−

−−− −+−
−

= λλλ

λ
 

 If there is a single dose of the vaccine, at age x1, the proportion of 

susceptibles is, from (3.2), 

( ) ( )
( ) ( )( ) ( ) ( ) ( )

s x d
d

e e for x

s x d
d

e e q s x e for x x

dx x

dx d x x x x

0 1

1 1 0 1

0

11 1

=
−

− <

=
−

− + − <

− −

− − − − −

λ

λ

λ

λ λ λ

 

 

x

L1

<

<
 

If there are two ages at vaccination, x1 and x2, the equation for s1(x) above is 

valid for  x1< x < x2, and a third equation has to be added, 

( ) ( )( ) ( ) ( ) ( ) Lxxforexsqee
d

dxs xxxxddx <<−+−
−

= −−−−−
22122

22 1 λλλ

λ
 

If we ignore the maternally protected class (dØ¶) and assume that loss of 

vaccine immunity is negligible, these equations reduce to the solutions in Dietz (1981, 

section 3.4). Katzmann and Dietz (1984, eqs (8)) also provide solutions for the 

proportion of susceptibles when n=2. If in their equation (8) we assume that all 

newborns are maternally protected and neglect loss of immunity, again we have our 

solutions for a two-dose programme. 

 

 

 

The general expression for st(x) is 

( ) ( )( ) ( ) ( ){ ( )s x
d

d
e q q q e q q q et

dx
t

x
t

x x dx=
−

− − − − − − − −− − − + −

λ
λ λ1 1 1 1 11 2 1 2

1 1... ... λ  

( ) ( ) }− − − − −− + − − + −q q q e q et
x x dx

t
x x dxt t

2 31 1 2 2... ...λ λ λ λ           for  xt < x < xt+1,  t = 0,…, n 

 
or,  

( ) ( ) ( ) ( )  1   1
11 
















−−−−

−
= ∑ ∏∏

= >

−

=

−−
t

i

t

ik
ki

xd
t

i
i

xdx
t qqeqee

d
dxs iλλ

λ
, 

        for  xt < x < xt+1,  t = 0,…, n          (3.3) 
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where ∏  and  for m>t. 
=

=
t

mi
1(.) 0(.) =∑

=

t

mi

 

The proportion of susceptibles at age x thus depends on a factor with the inflow 

of individuals into the susceptible compartment, the term e-dx, minus the proportion of 

susceptibles that were not vaccinated up to age x, the term in P(1-qi), and those 

susceptibles who were successfully vaccinated at dose i, the term in  qiP(1-qk). The 

proportion of latent and infectious individuals at age x under immunization may now be 

computed by substituting equation (3.3) in, respectively, (3.1c) and (3.1d). 

 

4. THE FORCE OF INFECTION AT EQUILIBRIUM WITH MULTIPLE DOSES OF VACCINE 

  

 Immunization programmes often fail to eradicate infectious diseases but, by 

diminishing overall incidence, they diminish the probability that a given susceptible host 

acquires the infection. In other words, the disease continues to persist but, once settled 

to its new equilibrium state, it is characterized by a smaller force of infection whose 

estimation is crucial for practical applications. We thus proceed to derive a general 

equation for λ under multiple doses of vaccine. 

 

The basic reproductive rate of a disease, R0, is defined as the average number 

of secondary infections caused by an infected individual entering a population at the 

disease-free equilibrium with no vaccination, during his or her infectious lifetime. 

Assuming a homogeneously mixed population, the number of secondary infections 

caused by this infected individual is proportional to the probability that any one random 

contact is made with a susceptible individual, that is S0/N, where S0 is the number of 

susceptibles in the disease-free population. As R0 is the number of contacts with S0 

susceptibles, the total number of contacts with susceptibles plus maternally protected 

individuals is R0(S0+P)/S0 = R0N/S0, where P is the number of protected individuals. 
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This argument neglects infected individuals who might die before the end of their 

infectious period. However, in childhood diseases the latent and the infectious periods 

are usually very small compared with L, so R0N/S0 remains a good approximation. 

 

Let us now consider an endemic equilibrium under vaccination, where each 

infection produces on average exactly one new case, and assume that vaccination 

does not change the social and environmental factors that determine the total number 

of potentially infectious contacts. The number of secondary infections is proportional to 

S/N, the fraction of susceptibles in the population, where  

∑∫
=

+
=

n

t

x

x t
t

t

dxxs
L
NS

0

1 )(  

Hence we write, 

( )R N
S

S
N

R S
S

0

0
0

0

1 4= = .1
 

 The total number of susceptible individuals, at the disease-free equilibrium 

(l=0) with no vaccination, is easily calculated from (3.3), 

( ) ( )2.4111
00 






 −=−= ∫ −

dL
Ndxe

L
NS

L dx  

where we take e-dLá1. R0 may be approximately estimated from the average age at 

infection before vaccination, A, and from L, neglecting terms of order e-dL, e-sL, e-mL, and 

e-lL (Anderson and May 1991) by: 

( )R
L d
A d

0

1

1
4 3≈

−

−
.

 

 Integrating equation (3.3), we obtain, 

( ) ( ) ( )4.41
0

1

W
d

dxxs
n

t

x

x
t

t

t
−

=∑ ∫
=

+

λλ  

where W is, 
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( )∑ ∏ ∑ ∏
= = = >

−−−−
















−+−−+−= +

n

t

t

i

t

i

t

ik
ki

dxx
i

xxdL qqeqeedeW iitt

0 1 1

)1()1(1 λλλλλ  

 In particular, with one and two doses of vaccine, W reduces to, respectively,  

( )( )111
1111 1 qeqeeddedeW dxxxLxdL −−−−− +−−++−−= λλλλλλ  

  and 

( )( )
( ) ( )( ) ( )[ ]22121

112

22112

11121

111

1

qeqqeqqeed
qeqeeddedeW

dxxdxxxL

dxxxxxdL

−−−−

−−−−−

+−+−−−+

++−−++−−=
λλλλ

λλλλλλ
  

 

  Combining with equations (4.1) to (4.4), we arrive at an equation for λ, 

( )
( )5.4

1
1

λλ d
d

A

W

−





 −

=  

 

 

 

 

 

5. DISEASE ERADICATION WITH TWO-DOSE IMMUNIZATION SCHEDULES 

  

 In recent years, several national reports have claimed that the eradication of 

childhood diseases like measles, mumps, and rubella, requires the routine 

administration of two doses of vaccine to within approximately 12 years following birth 

(Bottiger et al. 1987, Gay et al. 1997a, b; Levy-Bruhl et al. 1997, AAP 1998). 

Controversy on the best age to vaccinate cohorts for the first time usually centers on 

the likelihood of young children to make and maintain antibodies after taking the 

vaccine (Wilkins and Wehrle 1979,  Preblud and Katz 1988, Anderson and May 1991, 

Gonçalves 1996). In developed countries, the age recommended for routine 

administration of the first dose of the MMR vaccine, for example, is usually between 12 

and 15 months of age (Helwig et al. 1998). However, the optimum age at which to 
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deliver the second dose is less transparent. In the European Union, for example, the 

second dose of the MMR vaccine is given at ages that vary between 3 and 13 years 

old (Helwig et al. 1998). In 1989, in the United States, the American Academy of 

Pediatrics recommended that the second dose of the MMR vaccine be given at 11-12 

years of age, but recently revised this to be at 4 to 6 years of age (AAP 1998).  

 

The perspectives of disease eradication with two, or indeed any number of 

doses of vaccine, and the long-term consequences of different age schedules, may be 

investigated within the mathematical framework presented above. A general procedure 

to find the critical level of immunization coverage (q1, q2, …,qn) with n doses of vaccine 

at ages x1, x2, …,xn, leading to long-term eradication, can be found from equation (4.4), 

by taking the limit lØ 0 and solving for (q1, q2, …,qn). Consider, for example, a 

vaccination strategy with n =2 doses of vaccine. Taking lØ 0 in (4.5), and solving for 

q2, 

( )( )
( ) ( )[ ] )1.5(

11
1

12

1

12

11
2 xdxd

xd

eqexL
LxeqALq −−

−

−−−−
−−+−

=  

  

Equation (5.1) gives the critical value of q2 that eradicates the disease when the 

proportion immunized in the first dose is q1. It is assumed that there are no secondary 

vaccine failures, i.e. no individuals that respond to the vaccine but lose immunity 

thereafter. Primary vaccine failures (no response to the vaccine) may be taken into 

account by substituting qi by qi
’ = qi VE, VE being an estimate of vaccine efficacy (equal 

to the ratio of the number of immunized individuals to the number of vaccinated 

individuals). 

 

 An identical result for multidose vaccination programmes has been deduced by 

Greenhalgh (1990). Working with an age-structured SEIR model, Type I survivorship, 

and age-independent force of infection, Greenhalgh shows that the critical level of 
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immunization coverage (q1, q2, …,qn) for eradication, to be given at ages A1, A2, …, An , 

satisfies, 

( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

1 1

1 1 1 5

0 1
1

0 1 2 1
2

0 2

1 2 1 0

= −
−

− − −

2

−
− −

− − − −
−

−−

R L q L A
L

R L A q q L A
L

R L A

q q q q L A
L

R L An n
n

n

...

... ... .

   

Assuming that the infectious and latent periods are both very small, compared 

with L, it can be shown that R0 becomes independent of L and, for n=2, (5.2) becomes, 

( )( ) ( ) ( )1 1 1 1 50 1 2 1
1

2 1
2= − − + + −





R q q q A
L

q q A
L

.3

 

which is our equation (5.1), when we take dØ¶. 

 

 Figure 1 illustrates the relation between q1 and q2 (equation 5.1), assuming a 

population longevity of L = 75 years and an age at first infection of A = 6 years 

(Anderson and May 1983, 1991; McLean and Anderson 1988). The age of vaccination 

in the first dose was fixed at 15 months, whereas the age in the second dose varied 

between 3 and 11 years old. Although the values in Figure 1 depend on the 

assumption of homogeneous mixing and constant force of infection of the PSEIR 

model, they point to some interesting trends. 

 

It is very difficult to eliminate measles with low to moderate vaccination 

coverages in the first dose. An immunization coverage below approximately 60% in the 

first dose would require coverage rates above 90% in the second dose for eradication. 

In particular, with a second dose at 11 years old, eradication would be impossible 

(Figure 1). Estimates of vaccination coverage in the second dose are difficult to obtain, 

as individuals are usually not asked about previous vaccination status or disease 

history. However, it seems reasonable to expect that, in general, q2<q1. Can moderate 

immunization coverages in the second dose eradicate the disease? With high levels of 
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coverage in the first dose, Figure 1 suggests that moderate levels in the second dose 

might indeed be enough to eliminate the disease. For example, for q1 = 90%, 

eradication is achieved with q2 = 55%, 58%, and 62%, depending on whether x2= 3, 6, 

or 11 years. 

 

Finally, does age of vaccination at the second dose matter ? The answer, once 

again, depends critically on percent coverage in the first dose. Under our assumption 

of an age-independent force of infection (equation 2.2), with high (>90%) immunization 

coverage in the first dose, options for the second dose within the age range currently 

practised (3-13 years old) probably make little difference, insofar as eradication is 

concerned. For a moderate (50-70%) coverage in the first dose, however, age at the 

second dose might decide whether there is any chance of eradicating the disease. In 

the case of measles, for example, for q1= 50%, eradication appears impossible with 

x2=11, but possible if x1=3 or 6 and q2 is high enough (Figure 1). We thus conclude that 

while it seems crucial to maintain high levels of vaccination coverage in the first dose, 

once this is achieved, logistic considerations might become a crucial factor in 

determining the age of the second dose. 
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APPENDIX 

 

In this appendix we obtain analytical solutions for system (2.1) that allow for the 

introduction of an immunization programme with an arbitrary number of doses of 

vaccine. System (2.1) can be written in the general form of a linear equation, 

( )
( ) ( )

df x
dx

a f x a f x ii
i i i i+ = =− −1 1 1 5    ;                                                  (A1),... ,  

 

Where i identifies the class of hosts and the transfer rate out of that class. The 

functions f1, …, f5  are, respectively, the solutions p(x), s(x), e(x), i(x), and r(x). The 

coefficients a1, a2, a3, and a4 represent d ,λ , σ  and υ  respectively, whereas a5=0. 

 

 Equation (A1) is solved by multiplying both sides by an integrating factor, m(x), 

which is defined to account for immunization. If every cohort is immunized n  times at 

ages xt (xt>0  for t=1, 2, …, n) and for notational convenience we define x0 = 0, the 

integrating factor is computed from xt, the age of vaccination immediately before age x, 

to x,  

( ) ( )[ ]µ x a dx a xi
xt

x

i t=











= −∫exp ' exp x  

The solution is, 

( ) ( ) ( ) ( ) ( ) ( )f x a e f x dx e f x ei i
a x x

ix

x a x x
i t

a x xi t

t

i t i t= +−
−

−
− − − −∫1 1  (A2)' ' '

  

We use integration by parts to evaluate the integral,  

( ) ( )
( )

( )
( ) ( )

e f x dx
e

a
f x

f x
a

e
a

d f x
dx

dxa x x
i

a x x

i
i

i t

i
x

x
a x x

i
x

x ii t

i t

t

i t

t

'
'

' '
( ' )
'

'−
−

−

−
−

−
−= −












−∫ ∫ 1 1

1 1
 

using (A1) to substitute the derivative on the right-hand side,  
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( ) ( )
( )

( ) ( )
e f x dx

e
a

f x
f x

a
a x x

i

a x x

i
i

i t

i
x

x
i t

i t

t

' ' '−
−

−

−
−= −













−∫  1 1
1

( )−∫
1
a

e a
i

a x x

x

x
i t

t

' [ ]− −− − − −2 2 1 1f x a f xi i i i( ') ( ') 'dx  

leading to a recurrence relation for the integral 

( ) ( ) ( ) ( ) ( ) ( ) ( )e f x dx
a a
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Substituting into (A2),  
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or, in a more compact form,  

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )f x
a
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f x e f x f x ei

c i j

i i jj

c
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a x x
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c
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

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−
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−

=

−
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11

1

   (A3)                 

 
The proportion of individuals at age x in class is thus given by the term 

, representing the decay of the proportion since the age of vaccination 

before x, f

i

f x ei t
a x xi t( ) ( )− −

i

i(xt ), plus a dynamical term representing the contribution of class i-c to class 

(the factor in square brackets), weighted by a quotient of outflow rates. 

 

 For example, f2(x) is the proportion of susceptibles in equilibrium at age x. A 

direct application of (A3) is, 

    
( ) ( ) ( ) ( )[ ] ( ) ( )f x

a
a a

f x e f x f x ea x x
t t

a x xt t
2

1
1 1 2

2 2=
−

− +− − − −1

2                                          

and by substitution of the corresponding transfer rates and classes of hosts, this leads 

to equation (3.1b) of the main text. Equations (3.1) are solutions for all epidemiological 

classes obtained in the same way from (A3). 
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FIGURE CAPTION 

 

 

Figure 1. The dependence (see equation 5.1) of the critical proportion immunized in the 

second dose, q2, required to eradicate the disease, on the proportion immunized in the 

first dose, q1. The lines are for different ages at which the second dose is given (3, 6, 

11 years); the age of the first dose of the vaccine was fixed at 15 months. Other 

parameters used were L= 75 years and A = 6 years.  
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