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Abstract

Separation of geochemical anomalies from background has always been a ma-
jor concern of exploration geochemistry. The search for methods that can make
this analysis quantitative and objective aims not only at the reduction of subjec-
tiveness but also at providing an automatic routine in exploration, assisting the
interpretation and production of geochemical maps. This report discusses two
methodologies which aim at the same objective of geochemistry anomaly sepa-
ration: multifractal theory and geostatistics. Geostatistics is a powerful tool for
the analysis of regionalized variables, and factorial kriging has been successfully
applied to map di¤erent components of a random function in a domain. These
components, in geochemical analysis, correspond to the di¤erent average grades
in an area, each one related to a given geological structure responsible for the
phenomenon. This same problem has also been approached in a di¤erent manner,
by means of multifractal modeling. At the present time, a proposed multifractal
model is the only ones which aims at giving quantitative values for the anomalous
thresholds by means of the relations between areas enclosing a given concentration
and concentrations. This model relies on the assumption that the collection of
geochemical values follow a multifractal model, i.e. the measured concentrations
in a given area are self-similar at any scale. It is also discussed, in relation to the
multifractal model, how to prove if a given data set is multifractal or not. How-
ever, it has been shown that the model is e¢cient even if such proof fails, which
opens a series of questions regarding the true multifractal nature of the model.
It is brie‡y discussed that some measurements still need the geostatistical frame-
work in order to be representative and robust, and a comparative study should
be performed between multifractal models and factorial kriging. Since it is not
proved that the multifractal model is universal, although it is extremely simple to
implement and can give very quick results, its combination with factorial kriging
could give a very powerful and robust method used in geochemical exploration.



1. Introduction

The de…nition of geochemical anomalies from background in areas where the con-
centration of elements reveal a potential economic interest is a major objective
in the analysis and interpretation of geochemical data. Some of the methods
proposed comprise empirical models, others come from the developments of the-
oretical geostatistics, and from the theory of multifractals. The objective of this
technical report is to present some of these methods, and discuss the way they
may be applied to geochemical data.

Di¤erent types of substances can be analyzed in a given area in order to eval-
uate its geochemical interest. These may be rock samples, soil samples, ground
and surface waters, mineral concentrates and stream sediments. Depending on
the type of sampling performed, so too the analysis of the results must be dif-
ferent. The methods here described can be applied to any of this kind of sample
sets, although this report will focus only in applications to soil sampling analy-
sis. Soil samples show a multitude of chemical elements that can be explained
as contributions from di¤erent source rocks. As a matter of fact, it is virtually
impossible to fully separate which amount of a given element concentration is
due to a particular rock type (mixtures are obviously expected). Soils may also
be subjected to motion from one location to another, giving rise to geochemical
dispersion haloes rather than anomalous spots (or more circumscribed areas with
anomalous values) as it would be expected if the rock was analyzed instead. So,
one important thing when such analyses are performed is to have quantitative
information about the chemical nature of the di¤erent rocks appearing in an area
which is about to be explored. Other parameters such as the thickness of the soil,
local drainage, topography and geological structural features are very important
to be able to make a correct interpretation of the obtained results. If any of these
parameters is not properly evaluated, severe risks occur of misunderstanding some
of the results and of incorrect interpretation of the data.

The development to follow does not explore very much the problem of dealing
correctly with the sample set. This problem is extensively treated in several
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books on statistics and geostatistics however, part of it must also come from the
researcher’s own feeling for the problem to study. It will be discussed in a very
broad sense some applications already made using geostatistics and multifractal
modeling as approaches to the problem. The ultimate goal shall be to establish a
comparative study of both methodologies in order to infer their applicability and
advantages of use.
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2. Models for geochemical anomaly
separation

The approaches to the separation of geochemical anomalies from background val-
ues has deserved attention for a long time, and methods such as moving averages,
kriging and probability plots have been used to deal with this problem. The con-
cern here is to introduce two important methodologies used to de…ne a geochemical
anomaly: geostatistics and multifractal theory. Both of these methodologies have
been used but there is not much cross-reference of data from other sources that
could be taken as a validation criteria of the results obtained, especially when
one deals with soil geochemistry given the problems it may rise in the interpre-
tation of the results. It is worth noting as well that no work has been done yet
comparing the di¤erent approaches. This is a very important remark since the
di¤erent methodologies require that the data set should be analyzed di¤erently
and the amount of time needed to do it is di¤erent as well. This obviously depends
on the objective underlying the study, however it may be apparent that a given
methodology is accessible and easily implemented just to give some quick results.

The work of Cheng et al. [3] has shown how geochemical data sets can be
modeled and treated as distributions that follow a multifractal model. The model
proposed is indeed very simple and straightforward, which puts it in a very priv-
ileged situation as a potential tool for a rapid analysis of geochemical anomalies.
The basic principle of this approach relies on the observation of the way areas
(de…ned by contour lines) enclosing values greater than a given grade vary as the
grade is changed. In general, if A(½) is the area enclosing values greater than the
concentration value ½ de…ned by the contour line, and if º represents the threshold
of the anomaly, the following empirical model holds:

A(½ · º) _ ½¡®1 (2.1)

and
A(½ > º) _ ½¡®2 . (2.2)
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In these equations ®1 and ®2 are constants, and it is immediately evident that in
a log-log plot the relation between area and concentration gives two straight lines
with slopes ®1 and ®2. The point where the slope changes is coincident with the
value of ½ = º, which must satisfy both equations simultaneously (considering
that equations 2.1 and 2.2 form a continuous function, so that º is a point be-
longing to both). These same authors [3] have demonstrated that, if the element
concentration per unit area satis…es a fractal or multifractal model, then A(½) has
a power-law type relation with ½. For a range of ½ close to its minimum value,
½min, the predicted multifractal power-law relations are:

A(½) = C1½
¡®1 (2.3)

and
A(T )¡ A(½) = C½¯, (2.4)

where A(T ) represents the total area, C1 and C are constants, and ®1 and ¯ are
exponents associated with the maximum singularity exponent. For a range of ½
close to its maximum value, ½max, the predicted power-law relation is simply

A(½) = C2½
¡®2 , (2.5)

where C2 is a constant and ®2 is the exponent associated with the minimum
singularity exponent.

Although these models may describe a geochemical data set, they not nec-
essarily mean that such data set shows a multifractal distribution. However,
appropriate measurements can be performed in the data in order to test the mul-
tifractal hypothesis [6], which will be object of discussion later on. This question
is actually a very striking one, since this model has already been successfully ap-
plied to data sets that fail to comply to the multifractal hypothesis. This will be
an issue for further discussion.

Besides the paper of Cheng et al. [3] this model has not deserved very much
attention yet. Subsequent works [7, 8] have applied the method successfully to
data sets for the de…nition of anomalies in areas with potential gold mineral-
izations and also to chromium-nickel and vanadium mineralizations in basic and
ultrabasic rocks, respectively. Another paper [5] presents a di¤erent method of
separation of geochemical anomalies, minimizing misclassi…cation of anomalous
and background samples using a moving average technique on a new spatial sta-
tistical approach, which give a good agreement with the results of the multifractal
model.
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The geostatistical approach is based in the identi…cation of di¤erent spatial
structures evidenced by data at di¤erent scales. The experimental variogram is
the basic tool to model the correlation between sample points as a function of
distance within the geostatistical framework. Factorial kriging is a theoretical
development due to Matheron [15] in which kriging is presented as a tool to map
the di¤erent structures of a given random function or, in a complementary way,
to …lter some of these structures. These structures, in soil geochemistry, may be
viewed as the background and anomalous concentrations displayed by a set of
samples in a given region. The approach may be univariate or multivariate (if
more than one chemical element is important to the characterization of a given
area). Matheron [15] presents the problem by decomposing a random function
in a series of uncorrelated factors which in turn are linearly estimated using the
appropriate set of kriging equations. The application of factorial kriging, like
geostatistics in general, largely surpass the aims of geochemistry and mining, and
several papers show the application of this method to ground and surface waters
as well as to soil geochemistry [16, 9, 12, 17].

The sections to follow will discuss shortly the fundamentals of the theory be-
hind each presented approach. As a …nal statement some reasons will be advanced
for the need to undertake a comparative study between them.
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3. The geostatistical framework

Geostatistics has been the most widely used method for the analysis of spatial
data, ever since its …rst applications to mining. The purpose of this introduction
is not to give a full account of the geostatistical theory, but only a very general
and fundamental description of its theoretical basis, necessary to justify what is
developed in the sections ahead. The reader should be referred to some reference
books [11, 13, 18], in which the presentation below is based. A most interesting
paper of Matheron [14] is also worth noting since it presents, in a very concise
way, the theory of regionalized variables by the time mining was the main (and
only) application of geostatistics.

Considering a domain D, we call regionalized variable to the associated func-
tion z(x) of x 2 D, which can be viewed as a draw from an in…nite set of random
variables. This set of random variables are realizations of the random function,
Z(x), in the domain. Therefore, an observation at any location x®, z(x®) with
® = 1; : : : ; n, is considered as an outcome of a random mechanism. Because the
underlying physical principle is in general very complex, its results are treated in
a probabilistic way and it is within this framework geostatistics is developed.

In order to simplify the problem, some assumptions must be considered such
as strict stationarity. This property implies that the random function stays the
same when a translation operation is performed on any set of n of its points,
regardless of the translation vector h. However, in geostatistics, random functions
are assumed to be second-order stationary in most of the cases. This implies that
the random function has a mean which is the same everywhere in the domain D,
and the variance between any two pairs of samples is a function of their distance
(h) alone.

The ultimate goal is to be able to estimate the variable value at a given point
from a …nite number of observations. The variable at location x0 may be linearly
estimated from known data points in the domain D according to the equation

z¤(x0) =
nX

®=1

w®z(x®), (3.1)
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where w® are the weights assigned to each known value z(x®).
In geochemical analysis, samples always show some degree of spatial corre-

lation, and the calculation of the experimental variogram allows to model the
sample correlation for any vector separation h. Therefore, for any pair of sampled
points (observations) in the domain D, far apart from each other of a quantity h,
the computed experimental variogram is

°¤(h) =
1

2n

nX

®=1

(z(x®)¡ z(x® + h))2 . (3.2)

This experimental variogram is then substituted by the theoretical variogram
function to ensure that the variance of any linear combination of sample values
is positive. This is guaranteed by the use of positive de…nite variogram functions
[11, 18].

Another way of dealing with the problem is using a covariance function C(h)
instead, which is de…ned as

C(h) = E [Z(x) ¢ Z(x+ h)]¡m2, (3.3)

where E [»] is the mathematical expectation operator1, and m is the mean. A
variogram function can be deduced from a covariance function by means of the
formula

°(h) = C(0)¡ C(h). (3.4)

However, the reverse is only true when the variogram is bounded within the
framework …xed by second order stationarity.

The variogram model obtained is used in the computation of the weights by
solution of the following ordinary kriging system of linear equations:

8
>><
>>:

nP
¯=1

w¯° (x® ¡ x¯) + ¹ = ° (x® ¡ x0)
nP
¯=1

w¯ = 1
for ® = 1; :::; n. (3.5)

The functions °(x® ¡ x¯) and °(x® ¡ x0) respectively represent the model vari-
ogram for pairs of sampled points and the variogram between sampled points and
the point to be estimated. The ordinary kriging system of linear equations has

1This is a linear operator de…ned as E [»] =
Pn

i=1 pi»i in its discrete formulation, where pi

is the probability associated with the ith observation of »:
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the restriction that the weights must sum up to 1, which is achieved by the intro-
duction of the Lagrange parameter ¹ in the derivation of the kriging equations.
In this derivation the objective is to minimize the error variance and ensuring
that, on average, the estimating error is zero. Therefore, kriging is usually re-
ferred as the best linear unbiased estimator. An important note to keep in mind
is that when data follows a normal distribution, the distribution of the kriging
estimates are conform with that of the original data values (this is actually the
most favorable situation). However, not always we are in the presence of normal
distributions, and when this happens, the distribution of the estimates may de-
viate considerably from that of the original data. As a …nal result, this is very
poor but it is sometimes possible to correct by transforming the original data in
a normal distribution before kriging is performed [13].

3.1. Ordinary lognormal kriging

Ordinary kriging corresponds to the simplest case of kriging estimation, and it
has been shown that normally distributed data is the most favorable situation for
the use of kriging as an estimation technique. However, it has been veri…ed for
some time that most distributions in geochemistry (especially for minor elements
which are the most important to mining) show log-normal distributions (the work
of de Wijs [19] is just an example), and ordinary kriging may fail to give estimates
following the same distribution as the original data.

Let Z(x) be a stationary random function with a multivariate log-normal dis-
tribution, an expectationm, a covariance function C(h) and a variance ¾2 = C(0).
Then,

Y (x®) = logZ(x®) for ® = 1; :::; n (3.6)

yields a new random function Y (x) with a multivariate normal distribution with
expectation m0, covariance function C 0(h) and variance ¾02 = C 0(0). Therefore,
the variable Y (x®) may be linearly estimated at a given location (x0) using the
equation

y¤(x0) = my +
nX

®=1

w® (y(x®)¡my)
2 , (3.7)

where my is the mean of Y (x) and w® are the kriging weights computed with
the ordinary kriging system of equations (3.5) [13]. An estimation of Z(x®) is
obtained by the back transformation of the estimated values of Y (x®), however
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not by the simple inversion of equation (3.6). Instead

z¤(x0) = XK0 exp

µ
y¤(x0) +

¾02K0

2

¶
, (3.8)

where ¾02K0
is the kriging variance of the estimation of Y (x®) and XK0 is a correc-

tion factor given by the ratio of the mean of the original data to the mean of the
estimates [13]. The correction factor may then be tested by cross-validation, i.e.,
given a set of n samples, for each point where a sample exists a value is estimated
using all the n¡ 1 samples (excluding the one at that location). The mean di¤er-
ence between the estimated and true values, done for all data set, should be close
to zero, as required by the derivation of the kriging equations. The expression
(3.8) arises due to lack of robustness of the exponential term with regard to the
multivariate log-normal hypothesis [13].

3.2. Factorial kriging

A regionalized phenomenon can be thought as being the contribution of several in-
dependent subphenomena acting at di¤erent characteristic scales. A linear model
may be set up as a sum of uncorrelated random functions, each one with its own
variogram or covariance function.

This model can be directly transferred to the problem of geochemical anomaly
de…nition. We may conceive an area where a series of mineralized bodies occur,
releasing to the soil a set of indicative chemical elements. We know that orebodies
do not have regular and constant grades. Instead, there are di¤erent parts of an
orebody which are richer than others (sometimes signi…cantly richer). We could
also think in a particular rock type (lets call it rock A) where the concentration
of a chemical element is, on average, higher than in the rest of the rocks, which
dominate in the area. It might also happen that an enrichment of that element
has occurred within rock A. Therefore, all these variations in the rocks may also
be re‡ected in the soils covering the area. In this example, lets cover all the
area with a sampling grid where a soil sample is taken at each node, and analyze
it for the element of interest; what will be the variation of the concentration
of the element in the soil as a function of its position? We may …nd average
concentrations of the element as a consequence of the contribution of the majority
of the rocks present in the area, and this concentration can be viewed as the
regional background concentration of the element in the area. However, as one
moves over the rock A, the average concentrations in the samples are higher
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than in the previous case and evidence what we may call as a regional anomaly,
since the main contribution is from a particular rock type. For samples over the
enriched zones, these average concentrations may rise even more and we are faced
with an anomaly at a local scale, which may be just one sample, depending on
the size of the enriched zone and on the sample spacing. The underlying physical
phenomenon for the concentration of the element in each of these cases is di¤erent,
because the way rocks are formed depend on their identity, and the enriched zone
may form by totally independent processes from the ones that form the host rock
(the enrichment does not even need to be formed at the same time as the rock,
which is the most common case).

Each of these concentrations have characteristic scales, i.e., the regional back-
ground concentrations are spread all over the area, and samples show long-range
correlations. The local anomalous concentrations are restricted to the neighbor-
hood of rock A and only a limited number of samples show those values, therefore
having a short-range correlation. Local anomalous concentrations may be re-
stricted to isolated samples, and if great variations occur at a length scale lesser
than sample spacing, then we have the expression of what is called a nugget e¤ect.

The model variogram for this set of measurements may reveal all these struc-
tures. The experimental variogram can be modeled as a sum of elementary vari-
ogram functions, each one with di¤erent sills revealing each spatial characteristics
of the data at a given scale. A nested variogram model is then formed, by adding
the n elementary variograms each one with coe¢cients bu as

°(h) =
nX

u=1

°u(h) =
nX

u=1

bugu(h), (3.9)

where gu(h) represent the normalized variograms.
A second-order stationary random function, Z(x), can be built by adding the

uncorrelated stationary random functions Zu(x) to a constant m, which is the
expectation of Z(x):

Z(x) =
nX

u=1

Zu(x) +m. (3.10)

The objective is to map each of these components of the random function Z(x),
and is the basis of factorial kriging.

Factorial kriging was …rst developed by Matheron [15] with the objective of
decomposing the regionalized variable into components which can be mapped sep-
arately. The problem may be treated as univariate [17] or multivariate, when more
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than one variable is considered relevant to the problem [16, 12]. The experimen-
tal variogram is the basic tool to reveal such components which, as can easily be
deduced from the example given above, it is the most frequent case to occur in
geochemical analysis. Only the univariate case will be very shortly presented.

The components of regionalization models can be extracted or, in a comple-
mentary way, …ltered using kriging. For Z(x) de…ned by equation (3.10), we may
wish to estimate a particular second-order stationary component Zu(x), which we
do with the following linear combination:

Zu¤(x0) =
nX

®=1

wu®Z(x®). (3.11)

Unbiasedness is achieved on the basis of zero sum weights, and the kriging system
for the component Zu(x0) is [18]

8
>><
>>:

nP
¯=1

wu¯°(x® ¡ x¯) + ¹u = °u(x® ¡ x0)
nP
¯=1

wu¯ = 0
for ® = 1; :::; n. (3.12)

Note that in the right hand side of equation (3.12) only the variogram function
associated with the structure to be mapped appears.
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4. Multifractal sets and self-similar
measures

The idea of multifractal modeling of geochemical data sets have been applied in
several studies [2, 3, 4]. As pointed out by Evertsz and Mandelbrot [6], multifrac-
tals is the name by which the theory of self-similar measures is usually known.
These same authors give a simple image of a multifractal using ground water as
an example. Consider a region in a map (domain) and de…ne ¹ as ’the amount of
ground water in the region’. To each subset of the map, the measure attributes
a quantity ¹(S), which is the amount of ground water below S, down to some
prescribed level. If the domain is sub-divided into two equally sized subsets, S1
and S2, the most probable thing to happen is that ¹(S1) 6= ¹(S2). If these subsets
are further divided into two equally sized pieces, S11 and S12, and S21 and S22,
their ground water contents still di¤er from each other, and so on. It is not very
hard to imagine this same picture referring to the distribution of some chemical
element at the surface of the Earth.

In the simple and straightforward method of fractal measures, it is not enough
to consider a collection of boxes of size ², covering S, in the example above, and
getting a relation of the type N(²) » ²¡D. There is a fundamental knowledge,
which is the measure, that is lacking in that description. Self-similar measures
have a quantity de…ned by

® =
log ¹(box)
log(²)

, (4.1)

called the coarse Hölder exponent, where the logarithm of the measure of the box
is divided by the logarithm of the size of the box. For a large class of self-similar
measures, ® is restricted to the interval [®min; ®max], where 0 < ®min < ®max < 1.
For each value ®, the number of boxes having a coarse Hölder exponent equal to
®, N²(®), is evaluated. If a box of size ² is selected at random among boxes whose
total number is proportional to ²¡E, the probability of hitting the value ® of the
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coarse Hölder exponent is

p²(®) =
N²(®)

²¡E
. (4.2)

It is then necessary to consider either of the functions [6]

f²(®) = ¡ logN²(®)
log ²

, (4.3)

or

C²(®) = ¡ log p²(®)
log ²

. (4.4)

As ² ! 0, both f²(®) and C²(®) tend to well de…ned limits f(®) and C(®). The
function f(®) is called the multifractal spectrum, and when exists

C(®) = f(®)¡E. (4.5)

The de…nition of f(®) means that, for each ®, the number of boxes increases for
decreasing ² andN²(®) » ²¡f(®). The exponent f(®) is a continuous function of ®,
and in the simplest cases it has the shape of the mathematical symbol \. As ² ! 0,
there is an increasing multitude (up to in…nity) of subsets, each characterized by
its own ®, and a fractal dimension f(®) - therefore the name of multifractals.
The function f(®) has one, and only one, maximum which is coincident with the
fractal dimension determined by the box counting method [10].

4.1. Estimating f(®) experimentally from data

Having a set of measurements, we may be interested to know how we could deter-
mine if this set of measures is multifractal or not. The way we may answer this
question is, once more, given by Evertsz and Mandelbrot [6] which present some
methods of estimating the f(®) function experimentally from data. The method
transcribed bellow is the Method of Moments, which has also been applied by [4]
and [1] to model geochemical data and fractures respectively, and will be discussed
later. The method is based on a quantity called the partition function. Suppose
¹(S) represents a measure of a set S in <n. The set may be partitioned into N(²)
cells of equal size ². The value ¹i(²) stands for the measure on S for the ith cell
of size ². The partition function is then de…ned as

Âq(²) =

N(²)X

i=1

¹qi (²), q 2 <. (4.6)
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The measure ¹i of the boxes may be rewritten as ¹i = ²®i, yielding Âq =PN(²)
i=1 (²

®i)q. We may also denote by N²(®)d® the number of boxes out of the total
N(²) for which the coarse Hölder exponent satis…es ® < ®i < ®+ d®, and assume
that the constants ®min and ®max exist and satisfy 0 < ®min < ® < ®max < 1
and that N²(®) is continuous. The contribution of the subset of boxes with ®i
between ® and ®+ d® to Âq(²) is N²(®)(²®)qd®. In order to add the contribution
of subsets whose coarse Hölder exponent is between ® and ® + d®, the equation
(4.6) is integrated over d®, yielding

Âq(²) =

Z
N²(®)(²

®)qd®. (4.7)

We have seen already that we may have N²(®) » ²¡f(®), thus

Âq(²) =

Z
²®q¡f(®)d®. (4.8)

In the limit ² ! 0, the dominant contribution to the integral comes from
® values close to the value that minimizes the exponent q® ¡ f(®). If f(®) is
di¤erentiable and replacing ® by ®(q), de…ned by the extremal condition, we
obtain [10, 6]

@

@®
fq®¡ f(®)g

¯̄
¯̄
®=®(q)

= 0, (4.9)

and
@2

@®2
fq®¡ f(®)g

¯̄
¯̄
®=®(q)

> 0. (4.10)

Therefore, we …nd that
@f(®)

@®

¯̄
¯̄
®=®(q)

= q (4.11)

satis…es such condition for the value of ® = ®(q) and this extremum is a minimum
if

@2f(®)

@®2

¯̄
¯̄
®=®(q)

< 0. (4.12)

Therefore, the function f(®) should be cap convex as it was already referred in
the introductory part, and for the ® = ®(q) where the minimum is attained, the
slope of f(®) is q.
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Therefore, if the measure ¹i(²) satis…es the multifractal model, we may …nd
that the partition function (4.6) has a power-law relation with the cell size ² for
any order q, where ¡1 · q · 1, which means

Âq(²) » ²¿(q). (4.13)

The function ¿ (q), is called the mass exponent of order q, and is given by (see
equation 4.8)

¿ (q) = q®(q)¡ f (®(q)) . (4.14)

The singularity exponent ®(q) may then be obtained from the expression

@¿ (q)

@q
= ®(q), (4.15)

and the multifractal spectrum f(®) can be obtained from ¿(q) using equation
(4.14), rearranging to

f (®(q)) = q®(q)¡ ¿ (q). (4.16)

The equation (4.16) is called the Legendre transform of ¿ (q).
In the general case, there is a lack of theoretical knowledge of the physical

phenomenon we are studying implying that the computation of the f(®) function
must be carried out numerically instead of analytically. To compute f(®) using
the partition function requires to follow a series of steps which will be described
next [6].

² Cover all the domain with a set of boxes fBi(²)gN(²)i=1 of size ² and determine
the corresponding box measure ¹i = ¹ [Bi(²)];

² Compute the partition function in equation (4.6) for various values of ²;

² If the plots of logÂq(²) versus log ² follow straight lines, ¿ (q) is the slope
corresponding to a given exponent q;

² Compute the value of ®(q) from equation (4.15) using a …nite di¤erence
method;

² Form f(®) from the Legendre transform of ¿ (q) (equation 4.16).
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It is very important to stress that Evertsz and Mandelbrot [6] make a severe
warning about the measure performed. While performing the third step above, all
points must be in a straight line, and if, instead, a …tted straight line is obtained
by a least square method, the result may be statistically rigorous but may turn
out to be physically meaningless.

The method of the moments suggest that a measure is multifractal if, and
only if, the function ¿(q) exist for all q 2 <. However, measures that full…l this
condition should be termed restricted multifractals, since some measures, although
multifractal, fail to comply to this criterion.

4.2. Applications of multifractal modeling

As already mentioned, some work has been done by applying the above method-
ology to geochemistry and also fracture networks, proposing a bridge between
multifractal modeling and geostatistical analysis [4]. This study used the famous
de Wijs [19] zinc assay values, which is a work about the distribution of ore ele-
ments advancing with some ideas of dealing with the problem similar to the ones
of present-day self-similar measures. The zinc assay values is a one dimensional
measuring problem, which is not very di¢cult to handle. As to the problem
of fracture network modeling [1], we face a two dimensional measuring problem
which is similar to the analysis of soil geochemistry. In this work, the authors
had to account with the subdivision of the area into equally sized cells with dif-
ferent dimensions ², and with the fact that, since the analysis is performed over a
mapped region, the outcropping rocks do not occupy the entire cell. As a matter
of fact, this situation is the commonest one. Therefore, in the use of the partition
function equation (4.6), they had to introduce a parameter to make the measure
unbiased. This parameter is a weight de…ned as wi = si=a for i = 1; :::n, where
si is the area of the exposed bedrock per cell, and a is the cell area, therefore
equation (4.6) becomes [1]

Âq(²) =

N(²)X

i=1

wi

·
¹i(²)

wi

¸q
, q 2 <. (4.17)

This equation reduces to (4.6) when q = 1, and implies that the exposed part of
the cell is representative for the entire cell.

The problem, when addressed to soil geochemistry, is very similar but some
details must be emphasized. When we deal with regularly spaced data, the prob-
lem is very much simpli…ed, but only to a limited extent. In this case, we may
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choose a grid cell size such that a single sample point falls in each cell (actually,
the smallest possible cell to use), and the measure to perform is equal to the point
value. However, when we consider larger grid cells (which may also be considered
similar to the case of irregularly spaced data), several point values may fall within
each cell, and we ask: what is the measure for this cell? The simple question of
averaging the values is not as straightforward as it seems, although Cheng and
Agterberg [4] have applied it to the de Wijs example. Geostatistics has developed
as a branch of applied mathematics precisely to deal with distributions of vari-
ables in space whose value is not independent of their position, therefore, it seems
rather dull just to forget this and deal with data in a conventional statistical way.
The problem of measure here is also a problem of estimation, and geostatistics
can not be regarded separately from this problem. Therefore, the problem of the
measure should be addressed by solving the set of kriging equations as when block
estimates are made (e.g. [11]). Following the work presented in [7], the test of
the multifractal model was made to this data set, and results always fail to prove
it as multifractal in nature (Gonçalves, unpublished data). Several reasons may
be put forward to explain such failure: di¢culties of grid subdivision due to very
irregular shape of the covered area; a large number of values (more than 50%)
bellow the detection limit of the analytical method; poor quality of the data in a
general way, not only due to the previous reason, but also because two sampling
campaigns were performed in di¤erent conditions. The problem of handling values
bellow detection limit is a very problematic one, and to the author’s knowledge,
nobody ever referred such problems and how to handling them. Such a measure
only tells us that the concentration is bellow a given value, and cannot either
be estimated by kriging nor even ignored. Therefore, without having a reliable
method of handling this sort of data, the applicability of the methods discussed
until now may be very limited. However, it is quite striking to observe that the
data of [7] as well as of [8] can be very well …tted by the models of equations (2.3)
to (2.5). In the …rst case, it was impossible to prove the multifractal model, and
in the second case this was never attempted. Still, the results obtained correlate
very well with the geological knowledge of the studied areas, and the calculated
geochemical threshold values are very close to the mean value content exhibited
by the host rocks responsible for the anomalies. We may ask next if between
equations (2.3) to (2.5) and the multifractal model is there any relation at all. It
seems that for the tested data set [7], the assumption of the multifractal model is
perfectly irrelevant. However, regarding the di¢culties in data handling and its
questionable quality, this statement should be taken more carefully. In the test of
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the multifractal hypothesis to the data set of [7], the measures in each box were
obtained by averaging the enclosed values, but we have put severe reserves to this
simple and straightforward method. This measure must be obtained by means of
block kriging estimation.
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5. Conclusions

After the presentation of the above methods and their applicability, we should
make a synthesis, and propose possible directions of future research of the prob-
lem. Both, the geostatistical and multifractal approaches have given results which
prove that the methods are e¢cient, at least to a certain degree. However, the
computational requirements for each is very di¤erent, and the multifractal method
is far more simple in some circumstances. At least, even for data sets that, ap-
parently, do not comply to the multifractal model, the multifractal approach still
gives reliable predictions about the de…nition of anomalous areas. However, the
information must always be integrated with data from other sources. At this stage
of the research it is not proven that the methodology is universal, therefore the
comparison of results is still fundamental. At least the approach to two dimen-
sional spatial data, the performance of self-similar measurements still requires the
use of kriging, by means of the block kriging equations since we are measuring
boxes (or blocks).

The application of factorial kriging is self-consistent with all the geostatistical
framework, and the e¢ciency of the results is well proven. Information from
other sources is also needed, since the results may not be readily interpreted.
This methodology does not give a quantitative value for the anomalous threshold
in an area, instead produces a map of the di¤erent components of the random
function which, in turn, may or may not be spatially related to orebodies or other
types of geological structures responsible for the anomalies.

A comparative study of both methodologies should be made in order to quan-
tify the …tness of the results produced by these methods. If both methods are in
well agreement, a possible line of research could be the integration of the methods
in a robust framework, aimed at the identi…cation of spatial geochemical anom-
alies.
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