
UNIVERSIDADE TÉCNICA DE LISBOA
INSTITUTO SUPERIOR TÉCNICO

 Classification

SimplificationDrawings
Database

 Query

Simplification

Topology
Graph

Topology
Extraction

Descriptor
Computation

Topology
Descriptor

Topological
Query

Geometry
Descriptor

Geometry
Extraction

Geometric
Query

Geometry
Descriptors

Geometry
Extraction

Insertion

Topology
Graph

Topology
Extraction

Descriptors
Computation

Topology
Descriptors

Insertion

 Matching

NB-Tree
Geometry

Drawing
IDs

Mapping IDs
to Drawings

NB-Tree
Topology

 Similars by
Topology

Refine
Query

Candidate Drawings

Sketched Query

 Interface

 Drawings

Sketch-Based Retrieval in Large Sets of
Drawings

Manuel Jõao Caneira Monteiro da Fonseca
(Master)

Dissertation for the degree of Doctor of Philosophy in
Information Systems and Computer Engineering

Adviser: Doutor Joaquim Armando Pires Jorge

Chairman: Reitor da Universidade Técnica de Lisboa

Members: Doutor Jõao Carlos Rogenmoser Lourenço Fernandes
Doutor Nuno Manuel Carvalho Ferreira Guimarães
Doutor Jõao Afonso Ramalho Sopas Pereira Bento
Doutor Mário Rui Fonseca dos Santos Gomes
Doutor Nuno Manuel Robalo Correia
Doutor Joaquim Armando Pires Jorge

July 2004

Sketch-Based Retrieval in Large Sets of Drawings

Manuel Jõao Caneira Monteiro da Fonseca

A Thesis submitted to the Graduate School
for the degree of

Doctor of Philosophy in
Information Systems and Computer Engineering

Department of

Information Systems and Computer Engineering

Instituto Superior T́ecnico

Adviser

Prof. Doutor Joaquim Armando Pires Jorge

Professor Auxiliar com Agregação from the
Department of Information Systems and Computer Engineering

Instituto Superior T́ecnico
Technical University of Lisbon

This work was funded in part by the Portuguese Foundation for Science
and Technology, project 34672/99 and the European Commission, project
SmartSketches IST-2000-28169.

c©2004 by Manuel Jõao da Fonseca

http://immi.inesc-id.pt/ ∼mjf

mjf@inesc-id.pt, mjf@ist.utl.pt

Abstract

Thanks to the proliferation of drafting packages, there are a lot of vector drawings

available for people to integrate into documents. These come in a variety of formats, such

as Corel, Postscript, CGM, WMF, DXF and recently SVG. Moreover, creative designers

and draftspeople often re-use data from previous projects, publications and libraries of

ready to use components. Usually, retrieving these drawings is a slow, complex and error-

prone endeavor, requiring either exhaustive visual examination, a solid memory, or both.

While text-driven attempts at classifying image data have been recently supplemented

with query-by-image content, these have been developed for bitmap-type data and cannot

handle vectorial information.

In this thesis we present a new approach to allow indexing and retrieving vector draw-

ings by content, using information automatically extracted from figures. Our work uses

topological relationships, visual elements and high-dimensional indexing to retrieve com-

plex figures from large databases.

Drawings are indexed based on topological relationships among objects. In particu-

lar, we produce a multilevel description of drawings using different levels of detail and

subparts of drawings. To deal with the large set of descriptors, arising from the classifica-

tion phase, we developed a new multidimensional indexing structure, the NB-Tree, which

outperforms well-known indexing methods and scales well with growing data set size and

dimension. Filtering by topology avoids an exhaustive search and comparison through the

entire drawing database, thus speeding up retrieval.

i

Our approach was tested on two different application domains as instances of the gen-

eral problem of retrieving vector drawings. Experimental evaluation with users showed

that our approach presents good results for retrieving CAD drawings, where there is a

lot of topological relationships among elements, and clip-art drawings, where geometry

provides the most discriminating information.

Keywords

Content-Based Retrieval

Sketch-Based Retrieval

Multilevel Description

High-Dimensional Indexing

Graph Spectrum

Visual Features Extraction

ii

Resumo

Devido à enorme proliferaç̃ao de programas de desenho, existe uma grande quanti-

dade de figuras vectoriais disponı́veis para as pessoas integrarem nos seus documentos.

Estes v̂em em formatos tão variados, como Corel, Postscript, CGM, WMF, DXF e mais

recentemente em SVG. Além disso, osdesignerse os desenhadores reutilizam dados de

projectos antigos, de publicações e de bibliotecas de componentes prontos a usar. Normal-

mente, recuperar estes desenhosé uma tarefa lenta, complexa e sujeita a erros, exigindo

um exame visual exaustivo, uma boa memória ou ambos. Embora as abordagens us-

ando descriç̃oes textuais tenham sido recentemente suplantadas pela pesquisa baseada no

contéudo das imagens, estas foram desenvolvidas para imagens digitais não conseguindo

lidar com informaç̃ao vectorial.

Nesta tese apresentamos uma nova abordagem que permite a indexação e a recuperação

de desenhos vectoriais com base no seu conteúdo, usando informação automaticamente

extráıda a partir destes. O nosso trabalho usa relações topoĺogicas, elementos visuais e

indexaç̃ao multidimensional para recuperar desenhos complexos guardados em bases de

dados grandes.

Os desenhos são indexados com base nas relações topoĺogicas existentes entre os ob-

jectos. Em particular, produzimos uma descrição multińıvel dos desenhos, usando difer-

entes ńıveis de detalhe e subpartes do desenho. Para lidar com o enorme conjunto de

descritores resultante da fase de classificação, desenvolvemos uma estrutura de indexação

multidimensional, a NB-Tree, que apresenta melhores desempenhos que outras estruturas

bem conhecidas e escala bem com o tamanho dos conjuntos de dados, assim como com

iii

a dimens̃ao dos descritores. A filtragem por topologia evita pesquisas e comparações

exaustivas em toda a base de dados, tornando assim a recuperação mais ŕapida.

A nossa abordagem foi testada em dois domı́nios de aplicaç̃ao diferentes, como instâncias

do problema mais geral de recuperar desenhos vectoriais. A avaliação experimental com

utilizadores mostrou que a nossa abordagem apresenta bons resultados quer na recuperação

de desenhos técnicos, onde existem muitas relações topoĺogicas entre os elementos, quer

na recuperaç̃ao de desenhosclip-art, onde a geometria fornece a informação mais dis-

criminante.

Palavras Chave

Recuperaç̃ao Baseada no Conteúdo

Recuperaç̃ao Usando Esboços

Descriç̃ao Multińıvel

Indexaç̃ao de Dados de Elevada Dimensão

Espectro de Grafos

Extracç̃ao de Caracterı́sticas Visuais

iv

Acknowledgements

First, I would like to thank my adviser, Prof. Joaquim Jorge, for his continuous

support during my PhD. He was always there to meet and talk about my ideas and to

provide me with good guidance. His constant comments and the confidence he showed to

me and to my research contributed to improve the quality of the developed work.

I wish to thank the members of my thesis committee, Professors Lourenço Fernandes,

Jõao Bento, Ḿario Rui Gomes, Nuno Guimarães and Nuno Correia for valuable contri-

butions and comments to this work.

I would like to thank Eng. Alfredo Ferreira Jr. who implemented the Sketch-Based

Retrieval prototype and Engs. Bruno Barroso and Pedro Ribeiro who coded the BajaVista

prototype. I would also like to thank all the members of the IMMI (Intelligent MultiModal

Interfaces) group for providing me with a good working environment.

Last, I would like to thank the institutions that help me concluding this work, the

INESC-ID Lisboa, where I do my research and the IST, for dispensing me from teaching

during 3 years to work on my PhD.

I dedicate this thesis to my wife Maria João Belo and my son Rui Pedro who shared

all the highs and lows throughout the whole endeavor, and with whom I did not share all

the time they deserve.

Lisboa, July 2004

Manuel Jõao Caneira Monteiro da Fonseca

v

vi

Contents

Abstract i

Resumo iii

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

List of Original Publications xvii

1 Introduction 1

1.1 Problem Description . 1

1.2 Research Goals . 3

1.3 Overview of the Present Work . 4

1.4 Thesis and Contributions . 6

1.5 Dissertation Outline . 8

2 Related Work 11

2.1 Content-Based Retrieval . 12

2.1.1 Digital Images . 12

2.1.1.1 Extracted Features . 12

2.1.1.2 Surveys . 15

2.1.2 Vector Drawings . 17

2.1.3 3D Objects . 20

vii

2.2 Shape Representation and Matching . 23

2.3 Graph Matching and Related Techniques 25

2.4 Multidimensional Indexing Structures 29

2.4.1 Indexing Structures Derived from the K-D-Tree 30

2.4.2 Indexing Structures Derived from the R-Tree 31

2.4.3 Dimension Reduction . 33

2.4.4 Other Indexing Techniques . 35

2.5 Discussion . 36

2.6 Summary . 37

3 Sketch-Based Retrieval of Drawings 39

3.1 Overview of Our Approach . 40

3.1.1 Classification . 40

3.1.2 Query and Interface . 43

3.1.3 Indexing . 43

3.1.4 Matching . 44

3.2 Data Structure for Topology Matching 44

3.2.1 Topological Relationships . 45

3.2.2 Topology Graph . 47

3.2.3 Topological Descriptors . 48

3.2.3.1 Descriptor Computation 49

3.2.3.2 Multilevel Description 49

3.2.4 Experimental Evaluation . 51

3.2.4.1 Stability . 53

3.2.4.2 Similarity . 57

3.2.4.3 Effectiveness . 58

3.3 Geometry Representation . 61

3.3.1 Geometric Features and Descriptor Computation 62

3.3.2 Experimental Evaluation . 64

3.4 Matching . 66

3.4.1 Filtering by Topology . 66

3.4.2 Refining by Geometry . 67

3.5 Summary . 69

4 Multidimensional Indexing with the NB-Tree 71

viii

4.1 The NB-Tree Structure . 72

4.1.1 Creation . 73

4.1.2 Searching . 74

4.1.3 Computational Complexity . 78

4.2 Experimental Evaluation . 80

4.2.1 Performance Measures with Uniformly Distributed Data 81

4.2.2 Performance Measures with Empirical Data Sets 86

4.2.3 Performance Measures with Variable Dimension Data Sets 87

4.3 Data Set Characterization . 89

4.3.1 Uniform Data Distribution . 89

4.3.2 Other Distributions . 90

4.4 Summary . 91

5 Applications and Experimental Results 93

5.1 Sketch-Based Retrieval of Moulds . 93

5.1.1 Application Description . 94

5.1.2 User Evaluation Tests . 95

5.1.2.1 Description of the Experiment 95

5.1.2.2 Experiment Execution 99

5.1.2.3 Analysis and Results 104

5.1.2.4 Conclusions . 107

5.2 Sketch-Based Retrieval of Clip-Art Drawings 108

5.2.1 Application Description . 108

5.2.2 User Evaluation Tests . 109

5.2.2.1 Experiment Description 109

5.2.2.2 Analysis and Results 111

5.2.2.3 Conclusions . 114

5.3 Summary . 114

6 Conclusions and Future Work 117

6.1 Summary of the Dissertation . 117

6.2 Final Conclusions and Discussion . 119

6.2.1 Benefits of the Current Approach 119

6.2.2 Limitations . 120

6.2.3 Contributions . 121

ix

6.2.4 Final Remarks . 123

6.3 Directions for Further Research . 125

A SBR Usability Tests 127

B BajaVista Usability Tests 137

C CALI: An Online Scribble Recognizer for Calligraphic Interfaces 141

C.1 Motivation and Related Work . 142

C.2 The Recognition Algorithm . 143

C.2.1 Geometric Features . 145

C.2.2 Deriving Fuzzy Sets from Training Data 150

C.2.3 Deriving Results from Fuzzy Sets 151

C.2.4 Re-segmentation . 152

C.2.5 Ambiguity . 153

C.3 Architecture . 154

C.4 Experimental Evaluation . 156

C.5 Summary . 157

Bibliography 159

x

List of Figures

1.1 Two prototypes using our approach, one for mould drawings (left) and
another for clip-art drawings (right). 5

2.1 Indexing structures derived from the K-D-Tree. 30

2.2 Indexing structures derived from the R-Tree. 31

3.1 Detailed architecture for our approach. 40

3.2 Overview of the Classification component. 41

3.3 Drawing (left) and correspondent topology graph (right). 42

3.4 Directional relationships. 45

3.5 Topological relationships. 46

3.6 Topological relationships originally defined by Egenhofer (left) and our
simplified version (right). 46

3.7 Technical Drawing (left) and correspondent topology graph (right). 47

3.8 Block diagram for topology descriptor computation. 49

3.9 Different levels of detail and the correspondent graphs. 50

3.10 Subpart of the drawing with two levels of detail and the correspondent
graphs. 51

3.11 Several representations for a given drawing, using our multilevel descrip-
tion technique. 52

3.12 Topology graphs used in our experiments. 53

3.13 Stability analysis for 10 similar graphs. 55

3.14 Stability analysis for 1,000 graphs with constraints. 56

3.15 Stability analysis for 100,000 random graphs. 56

3.16 Precision and Recall chart. 61

3.17 Block diagram for computing the geometric descriptor. 62

3.18 Special polygons of a geometric entity. 62

3.19 Example of objects stored into the test database. 64

xi

3.20 Recall-Precision comparison. 65

3.21 Block diagram for the matching process. 66

3.22 Steps to compute the geometric similarity between the sketched query and
a drawing. 68

4.1 Dimension Reduction in 2D. 74

4.2 2D Range query example. 75

4.3 Creation times as a function of a) dimension. b) data set size. 82

4.4 Range Query searching times as a function of a) dimension. b) data set size. 83

4.5 Search times for K-NN as a function of a) dimension. b) data set size. . . 84

4.6 Final tree size as a function of a) dimension. b) data set size. 85

4.7 K-NN searching times for real data sets. 86

4.8 K-NN searching times for various data sets of dimension 256. 87

4.9 Statistical values for the Euclidean norm. 89

4.10 Distribution of norms for several dimensions. 90

4.11 Distribution of norms for different types of data sets. 91

5.1 Sketch-Based Retrieval prototype. 94

5.2 Observer, user and video camera during a test session. 96

5.3 Basic Drawings. 97

5.4 Simple technical drawings of mould plates. 97

5.5 Basic drawings to search in the database. 98

5.6 Simple technical drawings to search in the database. 98

5.7 User performing the experiment. 100

5.8 Sketch for Q1 made by user A and returned drawings. 100

5.9 Sketches made by user C for Q3 (left) and Q4 (right). 101

5.10 Sketch for Q4 made by user C and returned drawings. 101

5.11 Sketch made by user A for Q6. 102

5.12 Sketch of two concentric circles. 102

5.13 Sketches for Q8, one for each user, and returned drawings. 103

5.14 Detail of the sketch made by user A for Q9. 103

5.15 Original drawing (Q10) and sketches performed by each user. 104

5.16 Overall position of the desired drawing in the results list. 105

5.17 Number of sketches drawn before finding the correct result. 105

5.18 Time spent performing queries. 106

xii

5.19 Clip-art finder prototype. 109

5.20 Example of clip-art drawings from our database. 110

5.21 Drawings used as query examples. 111

5.22 User satisfaction about returned results (1-Bad 4-Good). 112

5.23 Number of times that the wanted result appeared at a given position. . . . 112

5.24 Users’ opinion about the BajaVista prototype (1-Bad 4-Excellent). 113

C.1 Shapes identified by the recognizer. 144

C.2 Polygons used to estimate features. 145

C.3 Percentiles for theP 2
ch/Ach (left) andHer/Wer (right) ratios. 146

C.4 Percentiles for theAch/Aer (left) andAlq/Aer (right) ratios. 146

C.5 Percentiles for theAlq/Ach (left) andTl/Pch (right) ratios. 147

C.6 Percentiles for theAlt/Alq (left) andAlt/Ach (right) ratios. 147

C.7 Percentiles for thePlt/Pch (left) andP 2
ch/Ach (right) ratios. 148

C.8 Hollowness ofDelete andEllipse 149

C.9 Features used by each shape. 149

C.10 Definition of a fuzzy set. 150

C.11 Example rules to classify shapes. 151

C.12 Different types ofArrows . 152

C.13 Rules to identifyArrows andCrosses 152

C.14 Ambiguity cases among shapes. 153

C.15 Fuzzy sets representing the ambiguity cases supported by the recognizer. . 153

C.16 A simplified version of the CALI architecture. 154

C.17 Class diagram. 155

C.18 Confusion matrix (values in percentages). 157

xiii

xiv

List of Tables

3.1 Number of differences between Graph 1 and each graph of the set from
Figure 3.12. 58

3.2 Similarity provided by each approach. 59

3.3 Positions in the results list. 60

3.4 Precision vs Recall. 60

3.5 Features used to describe the geometry of objects. 63

4.1 Analysis of the NB-Tree Insertion algorithm. 78

4.2 Analysis of the NB-Tree Point Query algorithm. 79

4.3 Analysis of the NB-Tree Range Query algorithm. 79

4.4 Analysis of the NB-Tree K-NN Query algorithm. 79

4.5 Summary of the NB-Tree complexity analysis. 80

4.6 Search times for descriptors generated from 100,000 topology graphs. . . 88

xv

xvi

List of Original
Publications

The work described in this dissertation has been the subject of over 15 original pub-
lications presented to peer-reviewed journals and scientific meetings. From these publi-
cations we selected the more relevant, which in some cases complement the description
presented in this dissertation. Publications are organized by publishing venue.

Journals

1. Manuel J. Fonseca, Alfredo Ferreira Jr. and Joaquim A. Jorge
Content-Based Retrieval of Technical Drawings. To appear in a Special Issue of
International Journal of Computer Applications in Technology (IJCAT) ”Models
and methods for representing and processing shape semantics”, 2004

2. Manuel J. Fonsecaand Joaquim A. Jorge.
Towards Content-Based Retrieval of Technical Drawings Through High-Dimensional
Indexing. Computers and Graphics, 27(1):61-69, January 2003 (Reviewed version
of the paper from SIACG’02).

3. Manuel J. Fonsecaand Joaquim A. Jorge.
Experimental Evaluation of an On-Line Scribble Recognizer. Pattern Recogni-
tion Letters, 22(12):1311–1319, 2001 (Reviewed version of the paper from Rec-
PAD’00).

Collections

1. Manuel J. Fonseca, Bruno Barroso, Pedro Ribeiro and Joaquim A. Jorge
Retrieving ClipArt Images by Content. To appear In Proceedings of the 3rd Inter-
national Conference on Image and Video Retrieval (CIVR’04), Lecture Notes in
Computer Science. Springer-Verlag, 2004.

2. Manuel J. Fonseca, Bruno Barroso, Pedro Ribeiro and Joaquim A. Jorge
Retrieving Vector Graphics Using Sketches. To appear In Proceedings of the Smart
Graphics Symposium (SG’04), Lecture Notes in Computer Science. Springer-
Verlag, 2004.

xvii

3. César F. Pimentel,Manuel J. Fonseca, and Joaquim A. Jorge.
Experimental Evaluation of a Trainable Scribble Recognizer for Calligraphic In-
terfaces. In Dorothea Blostein and Young-Bin Kwon, editors, Graphics Recogni-
tion Algorithms and Applications, 4th International Workshop, GREC 2001, Se-
lected Papers, volume 2390 of Lecture Notes in Computer Science, pages 81–91.
Springer-Verlag, 2002.

4. Joaquim A. Jorge andManuel J. Fonseca.
A Simple Approach to Recognize Geometric Shapes Interactively. In A. K. Chhabra
and D. Dori, editors, Graphics Recognition Recent Advances, volume 1941 of Lec-
ture Notes in Computer Science, pages 266–274. Springer-Verlag, September 2000.

International Conferences

1. Manuel J. Fonseca, Bruno Barroso, Pedro Ribeiro and Joaquim A. Jorge
Sketch-Based Retrieval of ClipArt Drawings. To appear In Proceedings of the Ad-
vanced Visual Interfaces (AVI’04), Gallipoli, Italy, May 2004. ACM Press.

2. Manuel J. Fonsecaand Joaquim A. Jorge.
Indexing High-Dimensional Data for Content-Based Retrieval in Large Databases.
In Proceedings of the 8th Int. Conference on Database Systems for Advanced Ap-
plications (DASFAA’03), pages 267–274, Kyoto, Japan, March 2003. IEEE Com-
puter Society Press.

3. Manuel J. Fonsecaand Joaquim A. Jorge.
Towards Content-Based Retrieval of Technical Drawings through High-Dimensional
Indexing. In Proceedings of the 1st Ibero-American Symposium in Computer Graph-
ics (SIACG’02), pages 263–270, Guimarães, Portugal, July 2002.

4. Manuel J. Fonseca, César Pimentel and Joaquim A. Jorge.
CALI: An Online Scribble Recognizer for Calligraphic Interfaces. In Proceedings
of the 2002 AAAI Spring Symposium - Sketch Understanding, pages 51–58, Palo
Alto, USA, March 2002.

5. César F. Pimentel,Manuel J. Fonseca, and Joaquim A. Jorge.
Experimental Evaluation of a Trainable Scribble Recognizer for Calligraphic In-
terfaces. In Proceedings of the Fourth Int. Workshop on Graphics Recognition
(GREC 01), Canada, September 2001.

6. Manuel J. Fonsecaand Joaquim A. Jorge.
Using Fuzzy Logic to Recognize Geometric Shapes Interactively. In Proceedings
of the 9th Int. Conference on Fuzzy Systems (FUZZ-IEEE 00), volume 1, pages
291–296, San Antonio, USA, May 2000.

7. Manuel J. Fonsecaand Joaquim A. Jorge.
Experimental Evaluation of an On-Line Scribble Recognizer. In Proceedings of the
11th Portuguese Conference on Pattern Recognition (RecPAD’00), pages 23–30,
Porto, Portugal, May 2000.

xviii

8. Joaquim A. Jorge andManuel J. Fonseca.
A Simple Approach to Recognize Geometric Shapes Interactively. In Proceedings
of the Third Int. Workshop on Graphics Recognition (GREC’99), pages 251–258,
Jaipur, India, September 1999.

xix

xx

1
Introduction

Present–day CAD systems and vector–based drawing applications provide power-

ful tools to create and edit vector graphics in many domains, such as architecture, me-

chanics, automobile industry or mould industry (for technical drawings) and presentation

charts, clip-art drawings or illustration graphics (for more general drawings). Even though

reusing past drawings is common practice in such domains, there are almost no developed

mechanisms to support this activity in an automated manner. Thus, it becomes important

to develop new systems to support automatic classification and retrieval of vector draw-

ings based on their contents, rather than relying solely on textual annotations or metadata

for such purposes.

The remainder of this chapter describes the problem, enumerates the key objectives

of our dissertation research, presents a short overview of our work, summarizes the main

contributions and finally presents the dissertation outline.

1.1 Problem Description

Research in the domain of technical drawings [Do 98], indicates that project libraries

with old case studies are crucial to help designers identify relevant features to include or

problems to avoid in new designs. Moreover, in some design firms, designers often work

by making or copying diagrams from colleagues in their design team for further devel-

opment [Do 95]. Furthermore, during task analysis performed in the context of ongoing

research projects [Consortium 00] and in informal conversations with draftspeople, we

1

2 Chapter 1. Introduction

found out that industrial designers often include elements from libraries of ready-to-use

components. Indeed, designers also re-use old drawings during the creation phase of a

new project, to get at ideas or review insights from previous problems and their solutions.

For more general vector drawings, such as clip-arts, currently there are a lot of figures

available for integration into documents, either on the Internet or on collections sold in

optical media. Typically, such drawings tend to be archived and accessed by categories

(e.g. food, shapes, transportation, etc.). Although people find it useful to incorporate

such figures in their documents (presentations, thesis, reports, etc.), finding a particular

drawing among hundreds of thousands is not an easy task. Granted, reusing drawings

often saves time. However, manually searching for them is usually slow and problematic,

requiring users to browse through large and deep file directories or navigate a complex

maze of menus, dialogs and categories for component libraries or drawings. Moreover,

CAD systems and vector-based editing tools while making the creation of new drawings

easier, exacerbate the retrieval problems, because they do not provide adequate search

mechanisms. Indeed, present-day CAD systems rely on conventional database queries and

direct-manipulation to retrieve information. Furthermore, such search becomes humanly

impossible when the number of drawings increases to tens of thousands, except for very

well established ancilliary classification schemes.

Some solutions to this problem use textual databases to organize the information

[Bakergem 90, Clayton 91]. These classify drawings by keywords and additional in-

formation, such as designer name, style, date of creation/modification and a textual de-

scription. However, solutions based on textual queries are not satisfactory, because they

force users to know in detail the meta-information used to characterize drawings. Worse,

these approaches also require humans to produce such information when cataloging data.

Moreover, textual description is not adequate to describe layout, shape and topology

[Goodrum 00], suffers from low term agreement across indexers [Markey 88] and also

between indexers and user queries [Enser 93, Seloff 90].

In contrast to the textual organization, we propose a visual classification scheme based

1.2 Research Goals 3

on shape, geometry and spatial relationships, which are better suited to this problem,

because they take advantage of users’ visual memory and explore their ability to sketch

as a query mechanism. Indeed, recent studies [Gross 95, Do 98] show that designers

use a small set of common graphical elements to describe the same drawings, validating

our approach of using sketches to specify queries to databases of drawings. This visual

classification scheme is combined with an indexing method that efficiently supports large

sets of drawings, and classification schemes that allow us to hierarchically describe figures

by level of detail and graph-based techniques to compute descriptors for such drawings in

a form suitable for machine processing.

1.2 Research Goals

The primary goal of this work is to show that a reduced number of topological rela-

tionships combined with geometric information can be successfully used to describe and

retrieve vector drawings based on their content. To that end we provide a Sketch-Based

Retrieval (SBR) approach that allows users to quickly enter a sketch, as a query to find

similar drawings in a database.

Drawings can be very complex and contain lots of details. However, when users

want to search for a drawing, they might want to omit details and just specify a sketchy

representation of its salient features. Or, in other situations, users just recall a specific

part of the drawing. As a consequence, another goal of this work is to offer a multilevel

description scheme that supports searching both by level of detail and by subparts of

drawings.

Topological relationships among elements in drawings naturally translate to topology

graphs. However, both graph and subgraph isomorphism are NP-complete problems,

making the matching process complex, computationally very costly and hard to scale.

Therefore, another goal of the present research is to find an alternative and more efficient

method to graph matching.

4 Chapter 1. Introduction

Currently, any designer, draftsperson or ordinary user has ready access to thousands

of drawings and any small company can have dozens of thousands of technical drawings

in digital form. If we apply a multilevel description scheme to classify drawings, we

can end up with hundreds of thousands or even millions of descriptors (depending on the

complexity of drawings). As a consequence, another goal of this research is to develop a

multidimensional indexing structure, to deal with large data sets of descriptors, offering

mechanisms to compute measures of similarity between descriptors of drawings.

Finally, our last objective is to develop and evaluate, with potential users, a working

prototype application for sketch-based retrieval of vector drawings by content, combining

all implemented techniques, in order to validate our approach and its components.

1.3 Overview of the Present Work

In this thesis, we present a new approach to support classification, indexing and re-

trieval of drawings by content. Our method supports efficient processing of hand-sketched

queries and automatic feature extraction from drawings. These are indexed based on

the topological relationships between objects, avoiding an exhaustive search through the

entire database, during the matching process. Additionally, we also store geometric in-

formation about each drawing. For simplicity, drawings are described in terms of two

topological relationships, Inclusion and Adjacency. For geometry, we use a set of geo-

metric features, such as ratios between areas and perimeters of some special polygons,

like the convex hull, the enclosing rectangle or the largest inscribed triangle. The set of

topological relationships between picture elements are converted into a topology graph.

Before extracting this information from drawings, we apply a simplification step, where

useless objects are removed.

Since graph matching is computationally costly, we convert graphs into descriptors

by computing their spectrum, which is defined by the eigenvalues of its adjacency ma-

trix. Then, we perform ”graph matching”, by comparing graph descriptors, since similar

1.3 Overview of the Present Work 5

graphs have similar descriptors.

To offer flexibility in specifying queries, we developed a new multilevel description

technique, which describes drawings and subparts of it using different levels of detail.

This way, users can retrieve drawings by providing either a complete sketch, a coarse

representation of the drawing, or a subpart of it.

Descriptors created during the classification phase are then inserted into a multidi-

mensional indexing structure, the NB-Tree, which provides a very efficient nearest neigh-

bor search algorithm. This indexing structure also supports descriptors of variable dimen-

sion and can deal with large data sets. Using this indexing structure avoids the exhaustive

search and comparison with all elements in the descriptor set.

We developed two prototype applications to index and retrieve drawings by content

using our approach. One prototype works with technical drawings from the mould indus-

try and other can search for clip-art drawings. We chose these two domains to validate our

approach, because mould drawings have very rich topological information, while clip-arts

are characterized mainly by geometric information. Figure 1.1 shows sample screen-shots

of the two developed prototypes.

Figure 1.1: Two prototypes using our approach, one for mould drawings (left) and another
for clip-art drawings (right).

6 Chapter 1. Introduction

1.4 Thesis and Contributions

The work described in this dissertation provides new mechanisms to classify, index

and retrieve large databases of drawings by content. This is achieved by integrating mul-

tilevel description methods to support indexing different details of the same drawing,

multidimensional indexing structures to speed up search and graph spectrum techniques

to compute descriptors from topology graphs, in a modular architecture for sketch-based

retrieval systems. The contributions of this research include the following:

• New data structure for multilevel description

One original concept explored in our work is the description by level of detail

[Fonseca 04d]. This technique explores different views of the same drawing, where

the number of details increases while we “zoom-in” figures. This multilevel scheme

is also applied to subparts of drawings, producing an hierarchical description. All

these views of the same drawing are then mapped into multidimensional descrip-

tors, providing us with a way to describe and retrieve either by partial matching

or by coarse representation of drawings. This method of describing drawings by

level is new in the area of content-based retrieval, since most approaches describe

drawings as a whole.

• Heuristic based on graph spectrum to speed-up search

Topology graphs describing drawings need to be compared during matching. How-

ever, graph isomorphism is an NP-complete problem. To overcome this, we have

developed heuristics, computationally lighter than graph matching, that provide a

mechanism to quickly filter-out unwanted drawings during the matching process

[Fonseca 04d]. Topology graphs constructed during the classification phase are

converted into multidimensional points by computing graph spectra. These descrip-

tors are then used to index drawings by their topology and to compute the similarity

between graphs. While similar approaches have been proposed elsewhere, ours

is unique in using the full spectrum of the graph. We have found that this yields

1.4 Thesis and Contributions 7

superior performance.

• Indexing structure for multidimensional data points of variable dimension

We developed the NB-Tree [Fonseca 03a, Fonseca 03b], a new multidimensional

indexing structure based on dimension reduction. The NB-Tree offers simple, yet

efficient indexing mechanisms for high-dimensional data points of variable dimen-

sion, while existent structures only support data of fixed dimension. Our technique

offers methods for point, range and nearest-neighbor queries, presents good results

for large data sets (around 1 million) and for data points of high dimensionality

(greater than 200) and outperforms well known indexing structures.

• Library of features to describe geometry

To acquire geometric information from drawings we developed a recognition li-

brary called CALI [Jorge 99, Fonseca 00b, Fonseca 00d, Fonseca 00c, Jorge 00,

Fonseca 01, Fonseca 02b]. This library is able to identify a set of geometric shapes

and gestural commands. However, instead of using CALI to recognize shapes or

gestures from polygons, we use it to compute a set of geometric features, such as

area and perimeter ratios from special polygons. This set of features are computed

for each polygon in the drawing to yield a multidimensional feature vector that de-

scribes its geometry. While these features describe objects independently of their

orientation, scale or line type, the set of describable objects is not limited by im-

posinga priori classification. Furthermore, our method presents better precision

values than well established techniques.

• Generic architecture for content-based retrieval

The architecture embodied in our approach [Fonseca 04d, Fonseca 02a, Fonseca 03c]

also introduces a marked departure from previous techniques. Indeed, it combines

the “normal” components presented in this systems (feature vector computation,

feature vector matching and returning of similar results) with a multidimensional

indexing structure, to deal with large sets of drawings, and with a pre-filtering step

that uses topology graphs and graph spectrum. Additionally, our approach is de-

8 Chapter 1. Introduction

signed to deal with vector drawings, while almost all existent methods and systems

process digital images (bitmaps).

1.5 Dissertation Outline

The rest of this dissertation is organized into five chapters and three appendices.

Chapter 2 surveys the work related to our research, which includes content-based re-

trieval of images, drawings and 3D objects. We also present research on multidimensional

indexing structures, graph matching and shape representation.

In Chapter 3 we describe our approach for sketch-based retrieval of drawings by con-

tent. We also present our method based on graph spectra to perform topology matching

and a new multilevel scheme for hierarchical description and indexing using levels of de-

tail . Finally, we describe our method for representing geometric information and detail

our matching algorithm.

Chapter 4 introduces our multidimensional indexing structure, the NB-Tree, describ-

ing its associated algorithms and the analysis to determine its computational complexity.

A complete set of experimental tests, comparing its performance to other well known

indexing structures is also presented.

In Chapter 5 we describe two prototypes developed using our approach. One system

retrieves mould drawings while the other aims at retrieving clip-art drawings. We discuss

experimental results garnered from using these systems and present the main outcomes

from corresponding usability tests.

Chapter 6 presents an overall discussion of our work and proposes conclusions on

applying our approach to retrieve drawings by content. We discuss possible extensions to

the present work and propose new directions for further research.

Finally, we complete this dissertation with additional materials contained in three ap-

pendices. Appendices A and B present the protocol used during experimental evaluation

1.5 Dissertation Outline 9

of our prototypes. Appendix C describes our recognition library, CALI, presenting an

experimental evaluation of its recognition rate using representative data.

10 Chapter 1. Introduction

2
Related Work

Recently there has been considerable interest in querying Multimedia databases by

content. However, most such work has focused on image databases as surveyed by Shi-

Kuo Chang [Chang 99]. Another relevant survey by Yong Rui [Rui 99] analyzes work on

image retrieval systems that use color and texture as main features to describe image con-

tent. Notwithstanding drawings in electronic format are represented in different structured

form, (vector graphics), which requires wholly different approaches from image-based

methods. While some early work [Bakergem 90, Clayton 91] attempted to index tech-

nical drawings through textual databases, such approaches are not suited to use the rich

visual association mechanisms and draftspeople use of sketches to recover information.

Sketch-Based Retrieval of vector drawings is closely related to a number of struc-

tural techniques aimed at image understanding and pattern recognition. Indeed, our work

spans a cluster of related fields ranging from retrieval of images by content, to indexing

techniques used to speed up search, to graph and tree isomorphism to perform topology

matching and to shape representation and matching (pattern recognition) to describe and

compare visual elements in both queries and candidate drawings. In this chapter we first

look briefly at the previous work on Content-Based Retrieval of digital images. Then

we review the main approaches to Content-Based Retrieval of vector drawings, examin-

ing their methods and domains of application. Then, we briefly survey recent work on

Content-Based Retrieval of 3D objects and review methods for shape representation. Fi-

nally, we study techniques for graph and tree isomorphism and analyze in depth current

indexing structures for multidimensional data points.

11

12 Chapter 2. Related Work

2.1 Content-Based Retrieval

A current trend in multimedia information processing is toward Content-Based Re-

trieval. Rather than manually generate text-based descriptions, content-based retrieval

works by matching the query against an automatically generated representation of the

content of the element to retrieve. There are multiple types of visual entities that can

be retrieved based on their content. In this section we analyze content-based retrieval of

digital images, vector drawings and 3D objects.

2.1.1 Digital Images

Content-based image retrieval (CBIR) relies on characterizing primitive features such

as color, shape and texture that can automatically be extracted from images using simple

processing techniques. Queries to CBIR systems are expressed mainly by providing vi-

sual exemplars of the type of image or image attribute to search for. In such systems

users may specify queries either by entering an existing image, by submitting a sketch, by

clicking on a texture palette or by selecting a particular shape of interest. The system then

returns stored images which exhibit the highest degree of similarity to requested features.

In the remainder of this section, we briefly describe prevailing features used for CBIR,

namely Color, Texture, Shape and Color Layout. Finally, we present recent and relevant

surveys in the CBIR area.

2.1.1.1 Extracted Features

Features extracted from the whole image are called global features. These include

color, texture or image layout. While global features convey information about the image

as a whole, local features are extracted from an object, or a segment of an image to convey

information just about that object. Local features can describe the location of a particular

object within an image, its intersection with neighboring features, its shape, etc. When

querying large collections of images, global features can be very useful to narrow down

2.1 Content-Based Retrieval 13

the search space. On the other hand they cannot provide enough information to estimate

the similarity between images. For this, they must be supplemented by local features.

This subsection briefly presents the features most often used to describe digital images.

Color

Color is one of the most widely used visual features in Image Retrieval. It is relatively

robust to background complication and independent of image size and orientation. Typi-

cally, retrieving images based on color similarity is achieved by computing color features

for each image in the database. Color Histograms are the most commonly used color fea-

ture representation since it is insensitive to small object distortions and is easy to compute.

Color histograms represent the proportion of pixels within an image holding specific col-

ors. They are computed by splitting the range of the data into equally sized bins, where

the value of each bin is the number of pixels that have the same color. Besides Color His-

tograms, other color feature representations have been applied in Image Retrieval, such

as Color Moments [Striker 95] and Color Sets [Smith 95]. Although these color features

describe approximations of color histograms, they have the advantage of producing more

compact representations.

Color moments are the statistical measures that characterize the histogram distribu-

tion. Resulting descriptors include the first (average), the second (variance) and third-

order (skewness) moments of the color histogram. Color Sets are an approximation to

Color Histograms, providing a compact alternative for representing color information.

Because color sets are binary feature vectors, a binary search tree can be used to allow

fast search in large-scale image collections.

Texture

Texture refers to visual patterns having properties of homogeneity that do not result from

the presence of a single color or intensity [Smith 96, Ma 95]. Indeed, texture is an innate

property of virtually all surfaces, including clouds, trees, bricks, hair, fabric, etc. It con-

14 Chapter 2. Related Work

tains important information about the structural arrangements of surfaces and their rela-

tionship to the surrounding environment. Methods for texture feature extraction generally

fall into four categories: statistical methods, geometric methods, model-based methods

and signal processing methods. The statistical methods are among the earliest proposed in

the literature. They often use spatial frequency, co-occurrence matrices, edge frequency,

among other techniques. From these many simple features such as energy, entropy, ho-

mogeneity, coarseness, contrast, correlation, etc., are derived to construct descriptors.

Although the selection of features to use in Image Retrieval is application dependent, the

majority of existing CBIR systems use a combination of color and texture features to

describe image content.

Shape

The primary mechanisms used for shape retrieval, resorts to identifying features such

as lines, boundaries, aspect ratio, circularity, etc. Some of these shape representations

are invariant to translation, rotation and scaling, while others are not. Furthermore, they

can be divided into two categories, boundary-based and region-based. The former uses

only the outer boundary of shapes while the latter techniques use the entire shape re-

gion. The most successful techniques in these two categories are respectively Fourier

Descriptors [Rui 96] and Moment Invariants [Hu 77]. Fourier Descriptors use the Fourier

transformed boundary as the shape feature, while Moment Invariants use region-based

statistical moments. Shape queries are generally achieved by computing feature vectors

from an example image provided by the system or from an user sketched shape.

Color Layout

Although global color features are simple to calculate and can provide reasonable discrim-

inating power in Image Retrieval, they tend to yield too many false positives when the im-

age collection is large. Many research results suggested that color layout, (by combining

color features to spatial relations between regions), can provide a better solution to Image

Retrieval [Carson 97]. The extension of global color features to local regions, is naturally

2.1 Content-Based Retrieval 15

achieved by dividing the whole image into sub-blocks, as suggested in [Chua 97].

2.1.1.2 Surveys

Aigrain et al’s survey provides a comprehensive overview of approaches to image

similarity matching for database retrieval [Aigrain 96], while Idris and Panchanathan ex-

amine in detail approaches to image indexing and retrieval based on shape, color, texture

and spatial location [Idris 97].

Gudivada and Raghavan provided a taxonomy for CBIR approaches describing their

characteristics and limitations [Gudivada 97]. The authors examine a number of image

database applications to identify their retrieval requirements and to structure them from

a domain independent perspective. From this study, the authors define a taxonomy for

image attributes and identify a number of generic query operators. Finally, they propose a

novel system architecture for CBIR that supports generic query operators. Their architec-

ture is structured in a way to enable systems to inherit only those query operators that are

useful to the specific domain of the application. Authors also demonstrate the versatility

and effectiveness of their architecture by configuring a prototype for two image retrieval

applications: realtor information system and face retrieval system.

Eakins et al most complete report [Eakins 99] reviews the current state of the art

in CBIR. Their findings were based both on a review of the relevant literature and on

discussions with researchers and practitioners in the field. Authors identify three levels

of abstraction to characterize images, namely, primitive features, such as color, texture or

shape, logical features, such as the identity of objects shown, and abstract attributes, such

as the significance of the scenes depicted. Although current CBIR systems operate only on

the lowest of these levels, authors found that most users demand higher levels of retrieval.

Authors conclude that despite its current limitations, CBIR is a fast developing technology

with considerable potential that should be exploited. Finally, this report presents a set of

recommendations for users, managers of image collections, UK government agencies,

software developers, etc., concerning the research in this field.

16 Chapter 2. Related Work

Rui and Chang produced an extended survey [Rui 99], from more than 100 papers,

covering technical achievements in the research area of CBIR. The authors address re-

search aspects of image feature representation and extraction, multidimensional indexing

and system design. Authors concluded the survey by identifying open research issues

and by suggesting future promising research directions, such as the inclusion of human

in the image retrieval process (e.g.relevance feedback), the use of high-level concepts to

describe images, the evolution to web-based search engines, the development of effec-

tive high dimensional indexing techniques to deal with large collections of images, the

definition of performance evaluation criterion and standard testbed, the study of human

perception of image content and finally, the integration of disciplines and media.

Smeulders et al presented a review of 200 references in CBIR [Smeulders 00]. They

start by discussing the scope of the content-based retrieval, analyzing the characteristics

of the domain and sources of knowledge. After, authors analyze methods to describe

image content, such as color texture and local shape. The interpretation of a single image,

the similarity between a pair of images, query definition, result displaying and interaction

are also addressed. Finally, the authors present their view at the system level, discussing

indexing techniques, system architecture and evaluation performance.

More recently Goodrum provide an overview of current research in image information

retrieval, focusing on three aspects of image research: text-based retrieval, content-based

retrieval and user interactions with image information retrieval systems [Goodrum 00].

The authors also suggest an outline of areas for future research, such as cross-disciplinary

approaches utilizing both text and image features for retrieval, efficient indexing struc-

tures, classification mechanism, vocabulary control, users needs, similarity measures and

presentation of retrieval results. Finally, they conclude their review with a call for image

retrieval evaluation studies.

2.1 Content-Based Retrieval 17

2.1.2 Vector Drawings

In the last decade, the majority of indexing and retrieval systems were developed for

digital images. Vector drawings, which required different approaches, only in recent years

received attention from researchers. In the remainder of this section we present systems

and approaches related to the retrieval of vector drawings.

Gross’s Electronic Cocktail Napkin [Gross 95, Do 95, Gross 96a] addressed a vi-

sual retrieval scheme based on diagrams, to indexing databases of architectural draw-

ings. Users draw sketches of buildings, which are compared with annotations (diagrams),

stored in a database and manually produced by users. Even though this system works

well for small sets of drawings, the lack of automatic indexation and classification makes

it difficult to scale the approach to large collections of drawings.

Nabil et al [Nabil 96] presented a set of techniques for similarity retrieval based on

the 2D Projection Interval Relationships representation (2D-PIR), including methods for

dealing with rotated and reflected images. 2D-PIR is a symbolic representation of direc-

tional as well as topological relationships among spatial objects. It adapts three existing

representation formalisms (Allen’s temporal intervals [Allen 83], 2D-Strings [Chang 87]

and topological relationships [Egenhofer 91]) and combines them in a novel way to pro-

duce a unified representation of pictures. Authors claim that their method offers more

information about spatial relationships between objects in a picture than traditional meth-

ods. However, during matching the query gets compared to all the symbolic representa-

tions stored in the database, making this work difficult to scale up for large collections of

images.

The S3 system [Berchtold 97b] supports managing and retrieving industrial CAD

parts, described by their geometry (2D contour) and thematic attributes. S3 retrieves

parts using bi-dimensional contours drawn using a graphical editor. Contours can also be

taken from sample parts stored in a database. S3 supports four similarity algorithms, to

describe and match queries against parts in the database, namely a modified version of the

18 Chapter 2. Related Work

Mehrotra-Gary algorithm [Mehrotra 93] that determines angles and lengths of segments

in a region, the Angular profile [Badel 92], which computes angles between line segments

defined by sample points from the contour, Section coding that determines the proportion

of the contour inside each sector resulting from equally dividing the surrounding circle of

the polygon, and finally, a Fourier-based method [Berchtold 97a] to allow partial similar-

ity. Authors also used this system as a testbed for developing and testing new indexing

algorithms, such as the R*-Tree and the X-Tree. S3 relies exclusively on matching con-

tours, ignoring spatial relations and shape information, making this method unsuitable for

retrieving complex multi-shape drawings.

Müller and Rigoll presented a novel approach [Müller 99] to retrieve engineering

drawings based on stochastic models. Drawing databases are searched using sketches or

shapes which represent details in mechanical parts. Their approach aims to retrieve im-

ages containing certain specified details and locating these details in the retrieved images.

Authors represent drawings and queries using a pseudo 2-D Hidden Markov Model aug-

mented with filler states, which describe the remaining part of the engineering drawing

apart from the query shape. However, their method only supports simple queries, repre-

senting a single element. More complex queries including several elements with spatial

relationships between them are not contemplated. Furthermore, the search mechanism

is not appropriate for large collections of drawings, since they perform a sequential scan

through the database comparing the query with all indexed drawings.

Park and Um described an approach to retrieve complex 2D drawings of mechani-

cal parts based on the dominant shape [Park 99]. Objects are described by recursively

decomposing its shape into a dominant shape, auxiliary components and their spatial re-

lationships (Inclusion and adjacency). Their approach breaks, a complex drawing into

many adjacent closed loops or blocks, each with an arbitrary polygonal shape. Spatial

relationships among blocks are extracted to create a graph. Then, each block is decom-

posed and recursively divided into many fragments of primitive shapes, yielding another

type of graph that describes the geometry of blocks. The combination of these two types

2.1 Content-Based Retrieval 19

of graphs produces a complex graph structure, where each node of the graph describ-

ing spatial arrangement, has another graph describing the geometry of the correspondent

block. The small set of base geometric primitives and the not-so-efficient matching algo-

rithm, based on the breadth-first tree matching, make it hard to handle large databases of

drawings.

Huet et al devised two alternative methods for content-based retrieval of technical

drawings representing patents [Huet 01]. One approach describes drawings using his-

tograms of attributes and retrieves similar occurrences by comparing histograms. To

make their representation insensitive to rotation, translation or scaling, authors describe

each line of the drawing in relation to all other lines, using the relative angle and the rel-

ative position of the two lines. Also, to reduce the number of attributes and to increase

the influence of local visual information, the authors construct a n-nearest neighbor at-

tributed graph from the line-segment set. Nodes in the graph represent lines, while edges

represent the n closest lines. From this graph, the histograms are computed, by consid-

ering the neighborhood of each line. The other approach uses these attributed graphs

to describe drawings and computes a graph similarity measure in the retrieval process.

Searching from similar drawings takes a considerable amount of time (in both algorithms),

which is directly dependent on the size and complexity of schemes stored in the database.

Worse, each of the retrieval algorithms requires comparing the query to each drawing in

the database.

Leung and Chen proposed a sketch retrieval method to store and retrieve unstructured

free-form hand-drawings stored in the form of multiple strokes [Leung 02]. They use

shape information from each stroke exploiting the geometric relationship between mul-

tiple strokes for matching. Their approach then computes a matching score between the

query and each sketch in the database. More recently, authors improved their system by

also considering spatial relationships between strokes [Leung 03b, Leung 03a]. Authors

use a graph based description, which is similar to ours [Fonseca 02a], but their method

only considers inclusion, while we also describe adjacency between drawing elements.

20 Chapter 2. Related Work

Their approach has two drawbacks. First, they use a restricted number of basic shapes

(circle, line and polygon) to classify strokes. Second, their approach is difficult to scale to

large databases of drawings, since they explicitly compare the query with all the figures

in the database.

Looking at the majority of existing content-based retrieval systems for drawings, we

can observe three things. The first is scalability: most published works use databases

with few elements (typically less than 100). The second is complexity: figures stored in

the database are simple elements not representing sets of real drawings. Third, complex

matching schemes (graph matching) make it difficult to adopt efficient algorithms.

2.1.3 3D Objects

Although the retrieval of 3D objects is not directly related to our work, we decided

to examine current research approaches in this area to understand the new trends and

challenges. Furthermore, we can see this domain of application as a new area where the

core of our approach can be extended with small changes in our algorithms.

Elad et al present a technique to searching for similar objects in a database of 3D

objects [Elad 01], specified using VRML. Authors tried to address the subjective matter of

object similarity, by providing an approach based not only on geometric feature similarity

but also letting the user influence subsequent searches by marking some of the results as

”good” or ”bad”. This way users indicate personal preferences to prescribe both content

and semantics. This algorithm, which is both iterative and interactive, uses statistical

moments computed from 3D objects’ surfaces as features to define object signatures. To

make the similarity measure invariant with changes in spatial position, scale and rotation,

all feature vectors are normalized. Experiments exhibit promising results, since after very

few iterations (usually, 1-4) searching seems to converge to objects that users had in mind.

However, it is not clear that this approach scales well for large collections of 3D Objects,

since they do not use any indexing structure to avoid a sequential scan of the complete

database. Authors suggest that their work can be extended with new features, such as

2.1 Content-Based Retrieval 21

topological traits, color and texture.

Lau and Wong surveyed some representative work on 3D model retrieval [Lau 02], fo-

cusing their analysis in feature matching, dividing existing methods into three approaches:

geometry-based, frequency-based and topology-based. They also show how these ap-

proaches were implemented and compare their relative performance using a common

geometry database. One key finding is that-frequency based methods perform signifi-

cantly better than geometry-based. Moreover, authors propose using Haar wavelets for

3D model matching and evaluated it. Experimental results revealed that they are easy to

implement and have a good retrieval performance at a minimal feature size.

Chen et al proposed a system for retrieving 3D models based on the visual similarity

among objects [Chen 03], using 2D projections. The main idea is that if two 3D objects

are similar then they will also look similar from all viewing angles. To apply this idea,

the authors encode multiple orthogonal projections of a 3D object using both Zernike

moments and Fourier descriptors. To create query models authors provide an interface

allowing users to use an existent 3D model or to draw 2D shapes. Queries specified in

2D are easy to depict and can be compared to 3D models readily, since in their approach

descriptors for 3D models are composed of 2D shapes. Authors demonstrate that their

approach is robust against similarity transformation, noise, model degeneracy, etc., and

provides better performance than other competing approaches. Although authors use a

scheme to speed up the retrieval process, they can not avoid the comparison between

the query and each of the models in the database. For databases with a large number

of models this procedure is impracticable, requiring some kind of indexing. Moreover,

according to authors, partial matching is still a problem for their approach.

Funkhouser et al [Funkhouser 03] describe a method for retrieving 3D shapes using

textual keywords, 2D sketched contours, 3D sketches or a combination of both. The au-

thors developed a new 3D shape descriptor based on spherical harmonics that is descrip-

tive, concise, efficient to compute and invariant to rotations. Authors find that queries

combining both text and shape produce better results than either one alone and that users

22 Chapter 2. Related Work

prefer to specify queries in 2D than in 3D. While their approach relies on silhouettes

and their fitting to projections of 3D images, our method, which is based on structural

matching of graphical constituents, uses both shape and spatial relations.

Shokoufandeh et al presented a framework, in its preliminary stage, for shape match-

ing through scale-space decomposition of 3D models [Bespalov 03]. Their algorithm is

based on efficient hierarchical decomposition of metric data using its spectral properties.

3D objects are mapped into binary rooted trees, thus recasting the problem of finding a

match between 3D models as the much simpler technique of comparing rooted trees. The

authors are planning to use the structural parameters of tree representation as signatures

for indexing purposes. This way, they expect to avoid the comparison between a query

and every model in the database.

More recently Lou et al presented an approach for searching 3D engineering shapes

[Lou 04]. Their system incorporates multiple feature vectors, relevance feedback, query

by example and browsing. Additionally, they use a multidimensional indexing structure

based on the R-Tree to support efficient execution. The system extracts four feature vec-

tors, namely moment invariants, geometric ratios, principal moments and eigenvalues of

the skeletal graph, to represent 3D objects. The extraction of these feature vectors is

performed after applying different transformations, namely, shape normalization, vox-

elization, skeletonization and skeletal graph construction. A drawback of using various

types of features vectors to describe shapes, is the space needed to store descriptors. Au-

thors utilized the system to perform extensive experimentation, using a database of 113

real engineering shapes to test the effectiveness of the four methods. Experimental tests

revealed the following descending order of the average precision of feature vectors: prin-

cipal moments, moments invariants, geometric parameters and eigenvalues. Authors also

proposed and evaluated a multistep similarity search strategy, that combines moment in-

variants and geometric parameters, to improve effectiveness. Experimental evaluation

revealed that this technique presents a precision value 51% higher than the best individ-

ual feature vector (principal moments). Another drawback of this system is that it only

2.2 Shape Representation and Matching 23

supports query by example, requiring the use of shape models, either created using a 3D

modeling tool or picked from a set of shapes sampled from the database. It is not possible

to specify a query using sketches or a rough representation of the desired shape. Finally,

results are presented in a 3D view, allowing users to manipulate models and offering a

better way to evaluate the similarity of results.

2.2 Shape Representation and Matching

Since shape is one of the primary low level image features used in content-based

image retrieval, shape representation became a fundamental issue in this type of applica-

tions. The main objective of shape description is to measure geometric attributes of an

object, that can be used for classifying, matching and recognizing objects. Moreover, a

shape representation scheme should be affine invariant, robust, compact, easy to derive,

easy to match and perceptually meaningful.

There is a lot of related work on shape representation. Mehtre et al grouped exist-

ing techniques into two categories: boundary-based and region-based [Mehtre 97]. The

former use only the contour or border of the object shape, which is crucial to human per-

ception in judging shape similarity, and completely ignore its interior. The latter exploit

shape interior information, besides the boundary. More recently Safar et al presented a

taxonomy [Safar 00b] that complements Mehtre’s classification.

As examples of boundary-based methods we have Fourier descriptors [Persoon 77],

chain code [Freeman 78], autoregressive models [Kauppinen 95], polygonal approxima-

tion [Gu 95], curvature scale space [Mokhtarian 96] and shape signature [Davies 97]. In

region-based methods, we encountered geometric moments [Hu 62], Zernike moments

[Mehtre 97], grid representation [Lu 99] and area.

Kupeev and Wolfson presented an algorithm for the detection of perceptual similar-

ity among planar shapes [Kupeev 94, Kupeev 96]. Their technique divides a contour by

straight lines which are simultaneously parallel to the X axis and tangent to the contour.

24 Chapter 2. Related Work

The area restricted by these lines and by the contour, called a lump, will correspond to

the vertices of a special weighted graph used to represent shapes, while edges correspond

to the adjacency relationships between lumps. During comparison graphs are reduced

using a ”small leaf” trimming procedure until the resulting graphs are isomorphic. From

this representation they compute a similarity measure via a polynomial-time complex-

ity algorithm. Although this method is effective in recognizing shapes represented by

closed planar curves without self-intersections, it is not effective when we consider con-

vex shapes.

Safar et al presented a study where they measured the effectiveness of the similarity

retrieval of four boundary-based methods for shape representation, under different con-

ditions [Safar 00a]. They compared a Fourier descriptor method, a grid-based method,

a Delanay triangulation method and their Touch-point-vertex-angle-sequence (TPVAS)

technique. Their TPVAS method describes the shape of an object using touch points and

vertex angle sequence, extracted from the objects’ minimum bounding circle. Experimen-

tal results demonstrated that their technique outperformed all the other methods and that

it is the most robust.

Zhang and Lu studied and compared several shape descriptors [Zhang 01], namely,

Fourier descriptors (FD), curvature scale space descriptors (CSSD), Zernike moment de-

scriptors (ZMD) and grid descriptors, against properties like robustness, compactness,

computation complexity, etc. Authors concluded that Zernike moment descriptors and

Fourier descriptors get more credits than the other two methods and suggested to include

Fourier descriptors as a shape representation method in MPEG-71, like CSSD and ZMD

were.

Shock trees [Kimia 95] are another method to describe and compare shapes. Pelillo

presented a solution to matching two shock trees by constructing the association graph

[Pelillo 99]. Authors illustrate the power of this approach by matching articulated and

1MPEG-7 is an international standard, also known as ”Multimedia Content Description Interface”, that
specify a set of descriptors (features) that can be used to describe various types of multimedia information
[Jeannin 00].

2.3 Graph Matching and Related Techniques 25

deformed shapes described by shock trees. Shokoufandeh et al developed another ap-

proach to perform shock tree matching based on graph spectrum and Voronoi diagrams

[Shokoufandeh 99]. While these approaches use trees (graphs) to describe the contour of

simple shapes, we use graphs to represent the spatial structure of complex drawings.

More recently, Zhang and Lu performed two more studies, one comparing three

region-based methods [Zhang 02] and another comparing two contour-based methods

[Zhang 03]. In both studies authors used standard principles and standard MPEG-7 data-

bases [Kim 00]. In the former, authors compared Zernike moment descriptors, grid de-

scriptors and geometric moments descriptors. Results showed that the ZMD outperformed

the other two methods, being the most suitable for effective and efficient shape retrieval.

The latter study compared Fourier descriptors and curvature scale space descriptors. Ex-

perimental results showed that FD outperformed CSSD in terms of robustness, low com-

putation, hierarchical representation, retrieval performance and suitability for efficient

indexing.

Although contour-based methods, such as the Fourier descriptors, presented good

results in these studies, they have limited applications. These methods cannot capture

shape interior content and cannot deal with disjoint shapes, where the boundary may not

be available. On the other hand, region-based methods can be applied to more general

shapes, but usually require more computation resources.

2.3 Graph Matching and Related Techniques

Most of the techniques described so far, resort to statistic properties of image content.

Spatial organization in a figure is a very important feature used to describe content. Since

spatial relationships extracted from pictures are, most of the times, represented symboli-

cally by a tree or a graph, we acn decide whether two pictures are similar by comparing

the corresponding graph representations.

However, graph isomorphism in the general case is non polynomial (NP), while sub-

26 Chapter 2. Related Work

graph isomorphism is known to be NP-Complete [Garey 79]. Thus, comparing a graph

with a set of graphs or finding occurrences of a subgraph in a set of graphs stored in

a database becomes impracticable, mainly when these databases have thousands to mil-

lions of graphs. Despite the intensive research for over three decades still no efficient

(polynomial-bound) algorithm for graph isomorphism is known. However, by finding

approximate results or by imposing certain restrictions on the underlying graphs it is pos-

sible to derive algorithms of polynomial-time complexity. In the remainder of this section,

we present a number of alternative solutions proposed in the past few years.

In 1976 Ullman presented an algorithm for both graph and subgraph isomorphism

detection [Ullmann 76], based on backtracking and on a refinement procedure. Although

this method presents an exponential behavior with the size of graphs, it is considered one

of the fastest algorithms for the subgraph isomorphism problem, and still is one of the

most used.

Messmer and Bunke proposed a new approach based on a preprocessing step in which

model graphs are used to create a decision tree [Messmer 99, Messmer 95]. To that end

they generate the set of all permutations of the adjacency matrix of a model graph and

then organize it in a decision tree. At run time, subgraph isomorphisms are detected

by means of decision tree traversal. The computational complexity of their algorithm

is only polynomial (quadratic) in the number of vertices of the input graph, remaining

independent of the number of model graphs in the database and of the number of edges in

any of the graphs. The major drawbacks of their approach are the size of the decision tree

and the preprocessing step, that grow exponentially with the size of the model graphs.

To overcome these problems, authors presented some pruning techniques to cut down

the size of the decision tree, with the cost of introducing some limitations to the original

algorithm. In summary, this approach works well on small graphs, but does not scale well

to larger graphs or large databases of graphs.

Jiang and Bunke introduced the concept of ordered graphs and ordered graph iso-

morphism [Jiang 99]. These graphs have the particularity of having all edges incident to

2.3 Graph Matching and Related Techniques 27

a vertex uniquely ordered. Authors show that the ordered graph isomorphism problem

can be optimally solved in quadratic time by utilizing particular properties of ordered

graphs. Experimental evaluation demonstrated that their, simple and easy to implement,

algorithm outperforms Ullman’s approach. However, this technique cannot be applied to

general graphs.

In 1998 Bunke and Shearer proposed a new graph distance measure, based on the

maximal common subgraph of two graphs [Bunke 98]. Authors formally proof that this

new distance measure is a metric and arg that it is superior to graph edit distances, since

it does not depend on edit costs. However, algorithms to compute the maximum common

subgraph (MCS) of two graphs are conceptually simple, but are NP-complete. Several

algorithms for approximate and exact MCS detection have been developed in the last

years. Bomze et al surveyed a set of approximate algorithms, including analysis of their

complexity and potential applications [Bomze 99].

Shearer et al presented a new algorithm to solve the largest (maximum) common

subgraph problem [Shearer 00], based on the previous work developed by Messmer and

Bunke [Messmer 99]. Authors use the largest common subgraph between the graphs

representing images as a measure of image similarity. Although this algorithm presents

a significant performance improvement over previous approaches, it inherits the major

drawbacks from Messmer work, namely the exponential complexity for the preprocessing

step and the exponential space required to store the decision tree.

Recently, Bunke et al presented a performance comparison of two exact algorithms

for maximum common subgraph detection [Bunke 02]. One algorithm computes all pos-

sible MCSs between two graphs and them choose the larger. The other algorithm, first

computes the association graph between the two graphs and then the maximum clique of

the latter graph, that will be the MCS. Although both algorithms have a time complex-

ity that grows exponentially with the number of nodes, the first is better for low density

graphs while the second is better for high edge density graphs.

28 Chapter 2. Related Work

Giugno and Shasha described GraphGrep [Giugno 02], an application-independent

method for querying graphs, finding all the occurrences of a subgraph in a database of

graphs. Their algorithm uses hash-based fingerprinting to represent the graphs in an ab-

stract form and to filter the database. Their approach is made of three steps, first they

build the database to represent graphs as sets of paths and index it using an hash table;

second, they filter the database based on the submitted query to reduce the search space;

finally, they look for all matching subgraphs in the remaining graphs. Querying times are

linear in the size of the database and exponential in the size of the query graph.

Raymond et al introduced a new graph similarity calculation procedure, RASCAL,

for comparing labeled graphs [Raymond 02]. The method consists of an initial screening

process to roughly determine a measure of similarity between two graphs, followed by

a rigorous maximum common edge subgraph (MCES) detection algorithm to compute

the exact degree and composition of similarity. The screening procedure is intended to

determine rapidly whether the graphs being compared exceed some specified minimum

similarity threshold (without resulting in any false dismissals) in order to avoid unneces-

sary calls to the more computationally demanding, graph matching procedure. The main

disadvantage of this approach is that we have to compute the rough similarity measure

between the query graph and each of the model graphs in the database and additionally,

for each different query we have to compute new similarity values.

Another technique to overcome the complexity of graph isomorphism is based on

graph spectrum [Cvetković 97]. Graphs can be characterized by some properties called

invariants, their spectrum is one of them. Graphs are represented as a vector of eigenval-

ues (spectrum) computed from the adjacency matrix of the graph. Then, the similarity

between graphs is measured by computing the Euclidean distance (for example) between

the two descriptors. Although this technique assures that similar graphs have similar

spectra, there are some collisions and different graphs can have the same spectrum.

Shokoufandeh et al developed an approach using this technique [Shokoufandeh 99].

However, to reduce the size of the resulting feature vector, the authors decided to use

2.4 Multidimensional Indexing Structures 29

the sum of eigenvalues, instead of using all eigenvalues directly. Then, to compute the

distance between descriptors of graphs the authors use a Voronoi diagram.

From all the surveyed techniques to measure graph similarity, we decided to use an

approach based on graph spectrum. Contrary to Shokoufandeh’s approach, we use all

eigenvalues to describe graphs and an efficient multidimensional indexing structure to

determine the similarity between graphs.

2.4 Multidimensional Indexing Structures

From the previous analysis we can conclude that shape information is converted to

feature vectors by using a number of methods surveyed to describe shape. Furthermore,

spatial information coded through graphs can also be mapped into multidimensional de-

scriptors by computing the spectrum of the graph. In summary, all extracted information

from figures can be mapped into multidimensional feature vectors. Thus, a content-based

retrieval system using these type of information must include in its architecture an effi-

cient multidimensional indexing structure.

To support processing large amounts of high–dimensional data, a variety of indexing

approaches have been proposed in the past few years. Some of them are structures for

low–dimensional data that were adapted to high–dimensional data spaces. However, such

methods while providing good results on low–dimensional data, do not scale up well to

high–dimensional spaces. Recent studies [Weber 98] show that many indexing techniques

become less efficient than sequential search, for dimensions higher than ten. Other index-

ing mechanisms are incremental evolutions from existing approaches, where sometimes,

the increased complexity does not yield comparable enhancements in performance. Other

indexing techniques based on dimension reduction return only approximate results. Fi-

nally, structures combining several of the previous approaches have emerged. Often, the

corresponding algorithms are very complex and unwieldy.

We describe existing indexing techniques by dividing these in four main categories.

30 Chapter 2. Related Work

K-D (75)

Adaptive K-D (79)

K-D-B (81) Extended K-D (84) LSD (89)

VAMSplit K-D (96) LSD (98)h

Hybrid (99)

Figure 2.1: Indexing structures derived from the K-D-Tree.

The first two include all structures derived from the K-D-Tree (see Figure 2.1) and deriva-

tives of the R-Tree (see Figure 2.2). The main difference between these two categories

lies in the approach to dividing the data space. Structures in the first category use space-

partitioning methods that divide the data space along predefined hyper-planes regardless

of data distribution. The resulting regions are mutually disjoint, with their union being the

complete space. Structures from the second class use data-partitioning methods, which

divide the data space according to their distribution. This can yield possible overlapping

regions. The other two categories of indexing structures include dimension reduction ap-

proaches and a class of indexing schemes combining several methodologies to improve

performance.

2.4.1 Indexing Structures Derived from the K-D-Tree

White and Jain presented the VAM-Split K-D-Tree [White 96a], which is an exten-

sion to the K-D-Tree [Ooi 87] to improve the efficiency and to reduce the storage space.

The main difference between these two trees is in the way they split the data space. While

the K-D-Tree uses the 50% quantile, the VAM-Split K-D-Tree uses the maximum vari-

ance and the median. This tree outperforms the K-D-Tree and the SS-Tree, but while these

two are dynamic index structures, the VAM-Split K-D-Tree is a static structure,e.g.all

data items must be available at creation time.

2.4 Multidimensional Indexing Structures 31

R+ (87)

R (84)

Packed R (85) Sphere (90) VAMSplit R (96)

Cell (88)

R* (90)

X (96)SS (96) TR* (91) TV (94)

SR (97) DC (00)

A (00)

Figure 2.2: Indexing structures derived from the R-Tree.

In 1998 Henrich proposed the LSDh-Tree [Henrich 98] as an improvement to the

LSD-Tree [Henrich 89]. The paging routine of the LSDh-Tree keeps part of the tree in

main memory and stores some sub-trees in disk, when the structure becomes to large,

keeping the tree balanced. The LSDh-Tree combines the low fanout from K-D-Trees with

the advantage that R-Trees have in not covering empty space. This structure is slightly

better than the X-Tree.

The Hybrid-Tree [Chakrabarti 99] was introduced by Chakrabarti in 1999 to combine

the advantages from space-partitioning structures and data-partitioning structures. The

Hybrid-Tree always splits a node using a single dimension to guarantee that the fanout is

independent of data dimension. However, this method allows overlapping regions as data-

partitioning structures do. This structure outperforms both the SR-Tree and the hB-Tree

[Lomet 90].

2.4.2 Indexing Structures Derived from the R-Tree

White and Jain presented the SS-Tree [White 96b], an R-Tree-like index structure

that uses minimum bounding spheres (MBSs) instead of minimum bounding rectangles

(MBRs). Even though the use of spheres reduce the overlapping of regions and conse-

quently the SS-Tree outperforms the R*-Tree, spheres tend to overlap for high-dimensional

32 Chapter 2. Related Work

spaces.

The VAMSplit R-Tree [White 96a] was introduced in 1996 by White et al, which is a

static index structure that splits the data space depending on the maximum data variance,

like the VAM-Split K-D-Tree. While this structure seems to outperform the R-tree, it

has the shortcoming that all data need to be knowna priori. Thus it is not suited for

dynamically varying data sets and environments.

Berchtold, Keim and Kriegel proposed the X-Tree [Berchtold 96], an index struc-

ture adapting the algorithms of R*-Tree to high-dimensional data. The X-Tree uses two

techniques to deal with high-dimensional data: First, it introduces an overlap-free split

algorithm, which is based on the split history of the tree. Second, where the overlap-free

split algorithm would lead to an unbalanced directory, the X-Tree omits the split and the

according directory node is enlarged becoming a super-node. The X-Tree outperforms

both the R*-Tree and the TV-Tree [Lin 94].

In 1997 Katayama proposed the SR-Tree [Katayama 97], an improvement to the

SS-Tree combining concepts from both the R*-Tree and SS-Tree approaches. This struc-

ture uses both MBRs and MBSs as an approximation in the directory. This way, the region

spanned by a node is the intersection of the MBR and MBS associated to that node, thus

reducing region overlap between sibling nodes. This structure has been shown to outper-

form both the R*-Tree and the SS-Tree. Furthermore, Sakurai presented an experimental

evaluation [Sakurai 00], using non-uniform data, where the SR-Tree outperforms the VA-

File [Weber 98].

Recently, Sakurai proposed the A-Tree [Sakurai 00], which is an index structure for

high-dimensional data that introduced the notion of relative approximation. The basic

idea of the A-Tree is the use of Virtual Bounding Rectangles to approximate minimum

bounding rectangles or objects. Thus, on one node of the tree we have information about

the exact position of the region MBR and an approximation of the relative position of its

sons. Authors claim that the A-Tree outperforms the VA-File and the SR-Tree.

2.4 Multidimensional Indexing Structures 33

2.4.3 Dimension Reduction

Berchtold et al’ Pyramid Technique [Berchtold 98] uses a special partitioning strategy

optimized for high-dimensional data. Its basic idea is to perform a dimension reduction

allowing the use of efficient unidimensional index structures to store and search data.

The Pyramid Technique divides the data space into 2D pyramids whose apexes lie at the

center point. In a second step, each pyramid is cut into several slices parallel to the basis

of the pyramid forming the data pages. The Pyramid Technique associates to each high-

dimensional point a single value, which is the distance from the point to the top of the

pyramid, according to a specific dimension (jmax). This value is later used as a key in

the B+-Tree. Points in the same slice will have the same identification value. As a result,

for skewed distributions, many points in the B+-Tree will be indexed by the same key.

The Pyramid Technique outperforms the X-Tree and the sequential scan using uniformly

distributed data. Although the Pyramid Technique was developed mainly for uniformly

distributed data, authors suggested an extended version to handle real (skewed) data. This

version works by shifting the center point to the barycenter of the data. However, in a

dynamic scenario, this implies the recalculation of all index values,i.e. redistribution of

points among the pyramids and reconstruction of the B+-Tree, each time the center of the

cluster changes.

Shepherd et al presented an overview of an efficient file-access method for similarity

searching in high-dimensional spaces, named CurveIx [Shepherd 99]. The basic idea is

to order the d-dimensional space in many ways, with a set of (one-dimensional) space-

filling curves. Each curve constitutes a mapping fromRd → R1, yielding a linear order-

ing of all points in the data set. During retrieval only points whose location is close to the

curve-location of the query are considered. Their approach uses standard one-dimensional

indexing schemes such as the B-Tree to perform searching. Close points along the space-

filling curve tend to correspond to close points in the d-dimensional feature space. How-

ever, some near neighbors may be mapped far apart along a single space-filling curve. As

a result, this method does not have an accuracy of100%, i.e.some near neighbors may be

34 Chapter 2. Related Work

ignored.

Yu et al proposed a new index scheme, called iMinMax(θ) [Yu 04], that maps high-

dimensional points to single dimension values determined by their maximum or minimum

coordinate values. By varying theθ value they can optimize the iMinMax structure to dif-

ferent distributions of data sets. As other dimension reduction methods, this scheme also

uses a B+-Tree to index the resulting single dimension points. The iMinMax structure

was mainly developed to address window search (range queries) while still supporting

approximate K-NN search (with accuracy lower than 100%) at the expense of increased

runtimes for higher accuracy. This approach outperforms both the VA-File and the Pyra-

mid Technique for range queries.

Another new technique for KNN search, called iDistance [Yu 01], was presented by

Yu et al in 2001. Their approach relies on partitioning the data and defining a reference

point for each partition. Points are then indexed through the distance to the reference

point of its partition, using a B+-Tree. The effectiveness of iDistance depends on how

the data are partitioned and how reference points are selected. To do that their approach

first compute a set of statistics on points distribution from the database and then based on

this it defines partitions and predicts clusters. Although the iDistance outperforms both

the A-Tree and the iMinMax(θ), it has the shortcoming that all data must be available at

creation time to extract statistics. This way, it is not suitable for dynamic contexts where

there are a lot of insertions and deletions into the database. Moreover, when the dimension

increases, the radius of each cluster becomes very large, resulting in the intersection of

almost every cluster during a KNN query.

More recently, Zhang et al presented a new structure called P+-Tree [Zhang 04],

that supports both window and KNN queries efficiently. This approach divides the data

space into subspaces based on clustering, then points in each subspace are mapped onto

a single dimensional space using the Pyramid Technique and finally data are stored in a

B+-Tree. According to authors’ performance study, the P+-Tree outperforms the Pyra-

mid Technique, the iMinMax(θ) and the iDistance approaches, both for KNN and window

2.4 Multidimensional Indexing Structures 35

queries. Although authors claim that their structure performs well for high dimensional

data points, they just present results for points with dimensions up to 32. Like the iDis-

tance structure, one of the P+-Tree drawbacks is the need to know the entire data seta

priori , to compute clusters. Another disadvantage of this structure is the need to rebuild

the entire P+-Tree after a number of insertions and deletions of data points, since clusters’

centers change, affecting the overall performance of the indexing structure.

2.4.4 Other Indexing Techniques

In 1998 Weber et al proposed the VA-File [Weber 98], a method to search points of

high dimension. The authors show that existing structures (R*-Tree and X-Tree) are out-

performed on average by a simple sequential scan if the dimension exceeds around ten.

So, instead of developing another indexing structure they proposed to speed-up the se-

quential scan. The basic idea of the VA-File is to keep two files; one with an approximate

version of data points and other with the exact representation. When searching points,

the approximation file is sequentially scanned with some look-ups to the exact file when-

ever it is necessary. The VA-File outperforms both the R*-Tree and the X-Tree when the

dimension is higher than six, but its performance is very sensitive to data distribution.

Berchtold et al described a new contribution to the near neighbor search through pre-

computation and indexing the solution space [Berchtold 00b]. First, they precompute the

result of any nearest neighbor search, which corresponds to computing the Voronoi cell

of each data point. In a second step, they store approximations of each Voronoi cells in

an indexing structure, the X-Tree. Subsequently, searching for the nearest neighbor maps

to a simple point query on the index structure. Although the complexity of these approx-

imations increases quickly with the data dimension, this new technique outperforms the

X-Tree.

More recently, Berchtold et al proposed the IQ-Tree [Berchtold 00a] which combines

a compression method with an index structure trying to join the best of both worlds. The

IQ-Tree is a three-level structure, with a regular directory level, a compression level and

36 Chapter 2. Related Work

a third level that contains the actual data. While the VA-File uses a fixed number of

bits to compress all partitions, the IQ-Tree uses a different compression scheme for each

partition depending on the density of data points. This structure outperforms both the

X-Tree and the VA-File.

2.5 Discussion

Content-Based Image Retrieval approaches herein surveyed use mainly primitive fea-

tures, such as color, texture and shape to describe the content of digital images. Although

vectorial drawings require different features and approaches to describe their content,

some techniques from CBIR systems could be applied to vector drawing retrieval (e.g.in-

dexing structures).

Existent methods for vector drawing retrieval rely mainly on shape information to

describe drawing content. Few of them [Park 99, Leung 03a] combine shape and topo-

logical information. Furthermore, only the S3 system includes an indexing structure in its

architecture, allowing the manipulation of large sets of drawings.

Shape representation techniques described in this chapter are mainly applied to ob-

jects extracted from digital images after a segmentation process. Although they can be

applied to vector drawings, the algorithms are complex and computationally costly.

For structural comparison, many techniques resort to graph-based descriptions. How-

ever, graph matching and subgraph isomorphism are NP-Complete problems for which

we do not have efficient solutions. Researchers have tried to find approximate results or

to explore particularities of graphs to achieve algorithms of polynomial-time complexity.

However, such solutions are only valid for specific types of graphs or impose too many

restrictions both on the number and size of graphs.

From all surveyed indexing structures, techniques using dimension reduction present

some of the more promising results. However, even the more recent ones [Zhang 04],

that claim good performance are not dynamic, requiring all data points to be known at

2.6 Summary 37

creation time. Furthermore, all analyzed indexing mechanisms do not support data points

of variable dimension, an important requirement in the context of our work, where the

dimension of feature vectors can vary from object to object and the maximum dimension

can not be predicted in advance. In such scenarios, current indexing structures will define

a (maximum) fixed dimension for the data space and feature vectors of smaller dimensions

will be padded with zeros. However, if we are to insert new feature vectors of larger than

a specified maximum dimension, the indexing structure must be rebuilt to accommodate

the new data, at the sacrifice of interactive performance.

2.6 Summary

This chapter reviewed the large set of matters related to content-based retrieval of

vector drawings from large databases. This body of work was focused in areas relevant

to our approach, such as content-based retrieval (of digital images, vector drawings and

3D objects), shape representation, graph matching and multidimensional indexing. Our

research is unique in that it combines these technologies allowing users to efficiently and

effectively retrieve vector drawings by content from large databases, using sketches as

queries, as we will show in the next chapter.

38 Chapter 2. Related Work

3
Sketch-Based Retrieval of

Drawings

As we have seen in the previous chapter, the majority of existent content-based re-

trieval approaches deal with digital images (bitmaps), requiring methods based mainly on

color and texture to describe their content. Vector drawings (CAD, clip-arts, etc.), on the

other hand, require different features to describe their content.

In this chapter we describe our approach that improves on systems developed by

Berchtold [Berchtold 97b], Park [Park 99] and Leung [Leung 03a], since we aim to re-

trieve vector drawings privileging the use of spatial relationships and geometric informa-

tion. Indeed, our method is more ambitious in the sense that we do automatic simplifica-

tion, classification and indexation of existing drawings, to make the retrieval process both

more effective and accurate. These activities imply specifying a description mechanism

to describe drawings and sketched queries. Additionally, fast and efficient algorithms to

perform similarity matching between sketched queries and a large database of drawings

are required.

We start this chapter by presenting an overview of the main components from our ap-

proach: Classification, Interface & Query, Indexing and Matching. After, we deeply de-

scribe and evaluate two of our main contributions: a data structure for topology matching

and a mechanism to describe geometric information. Finally, we describe our matching

process.

39

40 Chapter 3. Sketch-Based Retrieval of Drawings

 Classification

SimplificationDrawings
Database

 Query

Simplification

Topology
Graph

Topology
Extraction

Descriptor
Computation

Topology
Descriptor

Topological
Query

Geometry
Descriptor

Geometry
Extraction

Geometric
Query

Geometry
Descriptors

Geometry
Extraction

Insertion

Topology
Graph

Topology
Extraction

Descriptors
Computation

Topology
Descriptors

Insertion

 Matching

NB-Tree
Geometry

Drawing
IDs

Mapping IDs
to Drawings

NB-Tree
Topology

 Similars by
Topology

Refine
Query

Candidate Drawings

Sketched Query

 Interface

 Drawings

Figure 3.1: Detailed architecture for our approach.

3.1 Overview of Our Approach

Our approach solves both scalability, complexity and matching problems, identified

in previous surveyed work, by developing a mechanism for retrieving vector drawings,

in electronic format through hand-sketched queries, taking advantage of user’s natural

ability at sketching and drawing. Furthermore, unlike the majority of systems cited in the

previous chapter, our method was developed to support large sets of drawings. To that

end, we devised a multidimensional indexing structure (NB-Tree) that scales well with

growing data set size.

Figure 3.1 presents a very detailed diagram of our system architecture, identifying its

main components, which we describe in the remainder of this chapter.

3.1.1 Classification

Content-based retrieval of pictorial data, such as digital images, drawings or graphics,

uses features extracted from the corresponding picture. Typically, two kinds of features

3.1 Overview of Our Approach 41

Simplified
Drawing

Geometry
Descriptors

Topology
Graph

Topology
Descriptors

Drawing
Simplification

Topology Extraction Descriptors
Computation

Geometry Extraction

Figure 3.2: Overview of the Classification component.

are used. Visual features encode information, such as color, texture and shape. Relation-

ship features describe topological and spatial relationships among objects in a picture.

While digital images rely mainly on color and texture to describe their content, for vector

drawings these features are irrelevant. Thus, we focus on topology, a global feature of

drawings, and geometry, a local feature.

Our classification process starts by applying a simplification step, to eliminate most

useless elements (see Figure 3.2). The majority of drawings contains many details, which

are not necessary for a visual query and increase the cost of searching. We try to remove

visual details (i.e. small-scale features) while retaining the perceptually dominant ele-

ments and shapes in a drawing. The main goal of this step is to reduce the number of

entities to analyze in subsequent steps of the classification process, in order to speed up

queries.

After simplification we identify visual elements, namely polygons and lines, and ex-

tract shape and topological information from drawings. We only use two relationships,

Inclusion andAdjacency, which are a simplified subset of the topological relationships

defined by Egenhofer [Egenhofer 92]. Relationships thus extracted are then compiled in

a Topology Graph, where ”parent” edges meanInclusion and ”sibling” connections

meanAdjacency , as illustrated in Figure 3.3. Even though our relationships are less

discriminating than Egenhofer’s original set, they hold regardless of rotation and trans-

lation. Evidently, the limitations of this scheme lie in that only two very simple spatial

relations are considered. While this may not seem very effective for simple, trivial graph-

ics, it becomes more and more efficient as the structure of drawings increases.

42 Chapter 3. Sketch-Based Retrieval of Drawings

0

1

2

3

4 5

Adjacency

Inclusion

1 2 3

4
5

Figure 3.3: Drawing (left) and correspondent topology graph (right).

However, topology graphs are not directly used for searching similar drawings, since

graph matching is a NP-complete problem. We use the corresponding graph spectra in-

stead. For each topology graph to be indexed in a database we compute descriptors based

on its spectrum [Cvetković 97]. In this way, we reduce the problem of isomorphism be-

tween topology graphs to computing distances between descriptors. To support partial

drawing matches, we also compute descriptors for subgraphs of the main graph. More-

over, we use a new multilevel description scheme to describe drawings, by dividing them

in different levels of detail and then computing descriptors at each level. This combina-

tion of subgraph descriptors and levels of detail, provides a powerful way to describe and

search both for drawings or subparts of drawings, which is a novel feature of our work.

To compute the graph spectrum we start by determining the eigenvalues of its adja-

cency matrix. The resulting descriptors are multidimensional vectors, whose size depends

on graph (and corresponding drawing) complexity. Very complex drawings will yield de-

scriptors with higher dimensions, while simple drawings will result in descriptors with

lower size.

To acquire geometric information about drawings we use a general shape recognition

library called CALI [Fonseca 00d, Fonseca 01, Fonseca 02b]. This enables us to use ei-

ther drawing data or sketches as input, which is a desirable feature of our system, as we

shall see later on. After submitting each polygon of the drawing to this recognition library,

we end up with a set of multidimensional feature vectors that describe their geometry.

The geometry and topology descriptors thus computed are inserted in two different in-

3.1 Overview of Our Approach 43

dexing structures, one for topological information and another for geometric information,

respectively.

3.1.2 Query and Interface

Our system includes a Calligraphic Interface [Jorge 94] to support the specification

of hand-sketched queries, to supplement and overcoming limitations of conventional tex-

tual methods. The query component performs the same steps as the classification process,

namely simplification, topological and geometric feature extraction, topology graph cre-

ation and descriptor computation. This symmetrical approach is unique to our method.

In an elegant fashion two types of different information (vector drawings + sketches) are

processed by the same pipeline.

3.1.3 Indexing

Since we need to index most subgraphs of a given graph to allow for subgraph match-

ing, indexing hundreds to thousands of drawings yields a large database comprising tens

of thousands or potentially millions of descriptors. Thus, at the core of our approach, we

need to develop efficient indexing structures for storing these descriptors. Such indexing

mechanisms should minimize the number of false positives that have to be tested by a

similarity search. However, indexing should not discard any relevant drawings. Good

indexing methods should also be dynamic, allowing on-line insertion and removal of de-

scriptors and should also scale well with growing data set sizes. Furthermore, the indexing

structure should support data points of variable dimension, since descriptors have different

sizes of which we do not know in advance the maximum. Additionally, to support match-

ing similar drawings the indexing structure needs a fast and reliable K nearest-neighbors

scheme, since most interesting candidates will probably yield near matches to the query.

However, nearest neighbor search in high-dimensional data spaces is a difficult problem

[Gaede 98].

44 Chapter 3. Sketch-Based Retrieval of Drawings

We developed a new multidimensional indexing structure, the NB-Tree [Fonseca 03a,

Fonseca 03b], that satisfies the requirements enumerated before, providing us with an ef-

ficient indexing mechanism for high-dimensional data points of variable dimension. In

Chapter 4 we present a detailed description of our indexing structure and the correspon-

dent experimental evaluation.

3.1.4 Matching

We perform the matching between a sketched query and drawings into the database

in two steps. First, we select a set of drawings topologically similar to the query. This

step works as a filter, reducing the number of potential candidates to compare in the next

step. Second, we use geometric information to further refine the set of candidates. At the

end, we have a measure of similarity between the sketched query and drawings retrieved

from the database.

3.2 Data Structure for Topology Matching

Content-Based Retrieval systems use information extracted from objects and spatial

relationships between them. Thus spatial information presented in drawings should be

preserved during the classification process so that users can easily retrieve those from the

database. Our approach not only preserve topological information, but use it to index

drawings in a database. We choose to index by topology because it is a global feature of

drawings, providing us with a good characteristic to distinguish figures from each other.

This way, our searching process starts by selecting drawings with similar topology and

then computes the geometric similarity between drawings. Topological information ex-

tracted is combined in a Topology Graph that describes the global topology among all

elements in a drawing.

Since graph isomorphism is a well-known NP-complete problem, we try to avoid its

computation, by reducing the problem to the calculation of distances between descriptors.

3.2 Data Structure for Topology Matching 45

To that end, we map topology graphs into a multidimensional vector and perform nearest

neighbor queries, in this D-space, to find associated similar graphs. In this manner, and

since drawings have a reach topological structure, we can use topology as a discriminating

index to reduce the number of candidate results.

In the remainder of this section, we identify the more relevant topological relation-

ships and show how they are combined to create a topology graph. After, we describe how

topology graphs are mapped into multidimensional vectors and present our novel multi-

level description scheme to describe drawings hierarchically by level of detail. Finally,

we present experimental results to validate our data structure for topology description and

matching.

3.2.1 Topological Relationships

Spatial relationships may be classified intodirectionalandtopologicalrelations. The

most frequently used directional relationships areNorth , South , East , West , North-

East , NorthWest , SouthEast andSouthWest , as depicted in Figure 3.4.

N

S

EW

NENW

SW SE

Figure 3.4: Directional relationships.

For topological relationships Egenhofer [Egenhofer 89, Egenhofer 92] presented a

set of eight relations between two planar regions, namelyDisjoint , Meet , Overlap ,

Contain , Inside , Cover , Covered-By andEqual as illustrated in Figure 3.5.

We decided to restrict spatial relationships to those that are independent of translation

and rotation of drawings. Since directional relationships do not guarantee that, we just

46 Chapter 3. Sketch-Based Retrieval of Drawings

Disjoint Meet Contain
Inside

Overlap Cover
Covered By

Equal

Figure 3.5: Topological relationships.

consider topological relationships. Moreover, to both make our approach less restrictive

and the topology graph simpler, we simplified the topological relationships defined by

Egenhofer, starting from his neighborhood graph for topological relationships (depicted

in Figure 3.6 (left) and described in [Egenhofer 92]). Our set of topological relationships

groups neighbor relations, yielding three topological relationships between two polygons:

Disjoint , Include andAdjacent (see Figure 3.6 (right) and definitions below).

Definition 3.1 If all intersections among all faces are empty then the two poly-

gons areDisjoint.

Definition 3.2 If polygon P1 contains completely polygon P2 or P1 equals P2

then P1IncludesP2.

Definition 3.3 If two polygons meet or if they intersect then they areAdjacent.

Contain

Disjoint

Overlap

Meet

Covered By

Inside

Cover

Equal Contain

Disjoint

Overlap

Meet

Covered By

Inside

Cover

Equal

Adjacent

Include

Figure 3.6: Topological relationships originally defined by Egenhofer (left) and our sim-
plified version (right).

3.2 Data Structure for Topology Matching 47

By reducing the number of relationships, we made our approach less restrictive and,

more important, we got a simpler topology graph. Furthermore, by using only these two

relationships, we guarantee the stability of graphs when drawings are subject to changes.

Thus, similar drawings will be described by similar topology graphs.

Leung’s approach [Leung 03a] reduced even more the number of relations, using just

inclusion. In our opinion, this simplification is excessive, because inclusion alone is not

enough to correctly describe topological relationships between objects and increases the

number of collisions among graphs.

3.2.2 Topology Graph

Topological relationships extracted from drawings are compiled in a Topology Graph,

where ”vertical” edges meanInclude and ”horizontal” connections meanAdjacent ,

as illustrated in Figure 3.7.

1 23

45

6

7

8

9

0

7

1 2 3 4 5

6 8

9

Adjacency

Inclusion

Figure 3.7: Technical Drawing (left) and correspondent topology graph (right).

Our topology graph has a well defined structure, being very similar to ”a rooted tree

with side connections”. It has always a root node, representing the whole drawing. Sons

from the root represent the dominant blocks (polygons) from the drawing,i.e.blocks that

are not contained in any other block. The next level of the graph describes polygons

contained by the blocks identified before. This process is applied recursively until we get

the complete hierarchy of blocks. As a conclusion, we can say that each graph level adds

more drawing details. So, by going down in the depth of the graph, we are ”zooming in”

in drawing details. Based on this, we can present the following definitions.

48 Chapter 3. Sketch-Based Retrieval of Drawings

Definition 3.4 A Topology Graphis a ”tree-like” graph G(V,I,A), where V is a

finite nonempty set of nodes representing objects (polygons) in the drawing,

I is a set of edges representing inclusion and A is a set of edges representing

adjacency.

Definition 3.5 Inclusion edgesconnect nodes from two consecutive levels of the

graph, whileAdjacency edgesconnect sibling nodes in the same level.

3.2.3 Topological Descriptors

As we said before, we reduce the graph matching problem to the computation of

distances between descriptors. To achieve this we use graph spectra [Cvetković 97] to

map graphs into vector descriptors that can be manipulated through a multidimensional

indexing structure. The spectrum of a graphG (which consist ofn eigenvalues) is com-

puted from the eigenvalues of its adjacency matrixA. The eigenvalues ofG (that cor-

respond to the eigenvalues ofA) are usually denoted byλ1, · · · , λn, and we assume that

λ1 ≥ λ2 ≥ · · · ≥ λn. Finally, the largest eigenvalue,µ1(G) = λ1, is called the index of

the graph.

Since the spectrum of a graph is a graph invariant it is natural to think that it would

provide a polynomial algorithm to decide whether two graphs are isomorphic and thereby

solve the graph isomorphism problem. However, graph spectrum is not acomplete in-

variant. A graph invariantφ is said to be complete if, for any graphsG, H, the equality

φ(G) = φ(H) implies thatG is isomorphic toH. Although, isomorphic graphs have the

same spectrum1, two graphs with the same spectrum need not be isomorphic.

According to Cvetkovíc [Cvetkovíc 97] and Shokoufandeh [Shokoufandeh 99] the

use of graph spectrum as an indexing method is valid since: (1) it captures local topology,

(2) is invariant to subgraph re-order and (3) is stable, since small changes in the graph

produce little changes in its spectrum. However, resulting descriptors are not unique.

1Graphs with the same spectrum are called cospectral or isospectral graphs.

3.2 Data Structure for Topology Matching 49

Topology Graph Adjacency Matrix Eigenvalues Topology Descriptor

-1.92
-1.00
-0.75
0.29
1.00
2.38

40 1 2 3
0
1
2
3
4

0 1 0 0 0
1 0 1 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 0 0

5

5

0
1
0
0
1

0 1 0 0 1 0

0

1

2

3

4 5
[2.38, 1.92, 1, 1, 0.75, 0.29]

Figure 3.8: Block diagram for topology descriptor computation.

More than one graph can have the same spectrum, which gives rise to collisions similar

to these in hashing schemes. In [Shokoufandeh 99] authors argue that these collisions

occur rather infrequently, a claim seemingly verified by our experiments, described in

Section 3.2.4.1.

3.2.3.1 Descriptor Computation

Figure 3.8 presents the block diagram for computing the topology descriptor. First

we compute the adjacency matrix of the graph, second we compute its eigenvalues and

finally we sort the absolute values to obtain the topology descriptor. Resulting descriptors

are multidimensional points, whose dimension depends on graph (and drawing) complex-

ity. Very complex drawings will produce descriptors with high dimensions, while simple

drawings will produce descriptors with low dimensions.

We assume that our topology graphs are undirected graphs, yielding symmetric adja-

cency matrices and assuring that eigenvalues are always real. Furthermore, by computing

the absolute value and sorting it decreasingly, we exploit the fact that the largest eigenval-

ues are more informative about the graph structure. Additionally, the largest eigenvalues

are stable under minor perturbation of the graph structure, making our topological de-

scriptors also stable.

3.2.3.2 Multilevel Description

As we have seen previously, the topological organization of a drawing is described

using a topology graph, which we map into a multidimensional descriptor. This way,

50 Chapter 3. Sketch-Based Retrieval of Drawings

0

1 2 3 4 5

0

7

1 2 3 4 5

6 8

0

7

1 2 3 4 5

6 8

9

1 23

45

6

7

8

9

1 23

45

6

7

8

1 23

45

Level 1 Level 2 Level 3

Figure 3.9: Different levels of detail and the correspondent graphs.

we get a descriptor for each graph (drawing) and we can compute the similarity between

graphs by calculating a distance between the correspondent descriptors. However, when

we have complex drawings in the database and users want to retrieve them, they might not

remember or they might not want to sketch a complete query that includes every parts and

details of the desired drawing. Thus, we need a mechanism to easy the task of sketching

queries for complex drawings.

One solution is to divide the drawing in several parts and compute a descriptor for

each. This way, we can search complex drawings by providing subparts of it as queries.

Although this solves one problem, another still exist. Complex drawings have lots of

details that sometimes users forget to draw when sketching a query. To overcome this

we propose a novel multilevel description scheme to describe drawings hierarchically by

levels of detail, allowing the use of rough approximations of drawings as queries. To that

end we compute several descriptors for each drawing, one for each level of detail. At the

end we have one descriptor per level, allowing the matching between a query and several

representations of the same drawing.

To compute descriptors for subparts of drawings and for different levels of detail,

we resort to the topology graph (see Figure 3.7). For subparts, we recursively divide

the graph into various subgraphs and then we compute descriptors for each. To describe

3.2 Data Structure for Topology Matching 51

3

6

7

8

7

3

6 8

3

6

7

89

7

3

6 8

9

Subpart Level 1 Subpart Level 2

Figure 3.10: Subpart of the drawing with two levels of detail and the correspondent
graphs.

different levels of detail, we exploit the ”tree-like” structure of our topology graph, and

compute a descriptor for each level of the graph. Looking at Figure 3.9 we can see that

by going down in the structure of our topology graph, we are adding more detail to the

drawing. In this figure we can identify three different graphs, one for each degree of

detail. So, if we now compute a descriptor for each of these levels, we end up with

three ways to search for the current drawing, using more or less detail. This approach

has also the merit to allow classifying subparts of drawings by computing descriptors for

subgraphs of the main graph. Figure 3.10 illustrates the subgraphs thus extracted and

their corresponding part of the drawing. We recursively apply the description by levels

of detail to these subgraphs. The result of this process is a set of graphs and subgraphs

that describe both the topology at different levels of detail and the different subparts of a

drawing. In summary, after this multilevel description we have descriptors for the parts

of the drawing shown in Figure 3.11.

3.2.4 Experimental Evaluation

To validate our selection of graph spectrum as the mechanism to describe and index

topology graphs, we performed three experiments. The first study the stability of the

graph spectrum under changes on its structure. The second, and the third measure and

compare the accuracy of our approach based on all eigenvalues of a graph with other

52 Chapter 3. Sketch-Based Retrieval of Drawings

3

6

7

8

3

6

7

89

3

7

9

1 23

45

6

7

8

9

1 23

45

6

7

8

1 23

45

1 23

45

6

7

8

9

Figure 3.11: Several representations for a given drawing, using our multilevel description
technique.

existing methods.

To that end we first create a small set of similar topology graphs with little differences

from each other (see Figure 3.12). First we generated Graph 1. Then we created nine very

similar graphs from this one, by removing or adding nodes and links (Graphs 2, 3, 4, 6, 7,

9, 10, 11 and 14). Finally, we created four graphs (Graphs 5, 8, 12 and 13) more different

from Graph 1 than the others, by deleting a larger number of nodes and links. This set of

graphs forms the basis for all tests described here and have the same structure as topology

graphs built from topological relationships extracted from drawings.

3.2 Data Structure for Topology Matching 53

Graph 1

28 29 30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 9 10 11 12

1 32 4

0
Graph 2

28 29 30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 19 20 21 22 23 24 25 26 27

5 7 8 9 10 11 12

1 32 4

0

Graph 1 Graph 2

Graph 3

28 29 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 10 11 12

1 32 4

0
Graph 4

28 29 30 31 32 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 27

5 6 7 8 9 10 11 12

1 32 4

0

Graph 3 Graph 4

Graph 5

28 29 30 33 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 9 10 11 12

1 32 4

0
Graph 6

28 29 30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 9 10 11 12

1 32 4

0

Graph 5 Graph 6

Graph 7

28 29 30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 9 10 11 12

1 32 4

0

Graph 8

30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23

5 6 7 9 10 11 12

1 32 4

0

Graph 7 Graph 8

Graph 9

28 29 30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 9 10 11 12

1 3 4

0

Graph 10

28 29 30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 9 10 11 12

1 32 4

0

Graph 9 Graph 10

Graph 11

28 29 30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 9 10 11 12

1 32 4

0

42 43

Graph 12

28 29 30 31 32 33 34 35 36 37 38 39 40 4124 25 26 27

8 9 10 11 12

1 32 4

0

Graph 11 Graph 12

Graph 13

13 14 15 16 17 18 19 20 21 22 23

5 6 7

1 32 4

0 Graph 14

28 29 30 31 32 33 34 35 36 37 38 39 40 4113 14 15 16 17 18 19 20 21 22 23 24 25 26 27

5 6 7 8 9 10 11 12

1 32 4

0

42 43

44

Graph 13 Graph 14

Figure 3.12: Topology graphs used in our experiments.

3.2.4.1 Stability

Some authors presented theoretical demonstrations [Cvetković 97, Shokoufandeh 99]

on the stability of graph spectrum. Authors proved that small perturbations on the graph

54 Chapter 3. Sketch-Based Retrieval of Drawings

structure produced small changes on its eigenvalues. Additionally, Sarkar and Boyer

[Sarkar 96] presented an experimental study that ascertain the stability and robustness of

eigenvalues when the number and weight of links change, while the number of nodes

remains the same.

For the graph spectrum to form the basis for stable measures we need to study its

sensitivity to the addition or deletion of nodes and links. To that end we performed three

experiments. In the first we analyzed the behavior of eigenvalues within a set of ten similar

graphs. For the second we used a set of 1,000 graphs generated with some constraints and

finally we used a set of 100,000 graphs generated randomly. All graphs used in these

studies respected the structure of topology graphs.

10 Similar Graphs

Our first study was made using the set of ten similar graphs mentioned before, namely

Graphs 1, 2, 3, 4, 6, 7, 9, 10, 11 and 14, from Figure 3.12. We computed a topological

descriptor for each graph using all eigenvalues. We must recall now that each position of

the vector descriptor correspond to an eigenvalue and that they are ordered decreasingly.

This way, the smallest index positions store the largest eigenvalues, while the largest index

positions store the smallest eigenvalues. After, we computed the minimum, maximum

and the average for each index position of the descriptors. Obtained results are depicted

in Figure 3.13.

From Figure 3.13 we can see that the variation of the eigenvalues is low and tightly

bounded. The horizontal axis denote the index of the eigenvalue in the graph descriptor,

while the vertical axis presents the normalized values of eigenvalues.

During this study we also observed that the addition (removal) of nodes increases

(decreases) the number of eigenvalues and consequently the dimension of the resulting

descriptor. On the other hand, the addition (removal) of links only affects the values of the

eigenvalues. This observation is also supported by Cvetković et al [Cvetkovíc 97], where

they state that any proper subgraph ofG has smaller index thanG and soµ1(G
′) < µ1(G)

3.2 Data Structure for Topology Matching 55

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

V
al

ue

Descriptor Index

Minimum
Maximum

Average

Figure 3.13: Stability analysis for 10 similar graphs.

wheneverG′ is obtained fromG by deleting an edge or a vertex. By the same token,

µ1(G
′′) > µ1(G) wheneverG′′ is obtained fromG by adding an edge or a vertex.

1,000 Graphs with Constraints

In the second study we generated 1,000 graphs randomly, but imposing some constraints,

such as, the number of levels of the graph was always four and the number of nodes in the

first level was always five. This way, we got a set of 1,000 different graphs, but with a very

similar structure. Resulting graphs had 40 to 200 nodes and correspondent descriptors had

dimensions from 40 to 190. Figure 3.14(left) shows the maximum, minimum and average

values for each component of the descriptor, considering just positions from 0 to 40.

In Figure 3.14(right) we present the same values, but now for all index positions of the

descriptor.

From Figure 3.14 we can see that for positions larger than 40, the minimum value

is always near zero. This happens because descriptors have different dimensions, and

consequently, the last index position has always the smallest eigenvalue. We also observed

that this set of eigenvalues have a larger variation than in the previous study, but they still

bounded.

56 Chapter 3. Sketch-Based Retrieval of Drawings

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

V
al

ue

Descriptor Index

Minimum
Maximum

Average

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

V
al

ue

Descriptor Index

Minimum
Maximum

Average

Figure 3.14: Stability analysis for 1,000 graphs with constraints.

100,000 Random Graphs

Our last stability study involved a set of 100,000 graphs randomly generated without any

restriction. Resulting graphs had from 2 to 380 nodes, and correspondent descriptors had

dimensions from 2 to 330. The main goal of this study was to observe the behavior of the

eigenvalues when we have a very large set of heterogeneous graphs. From Figure 3.15 we

can see that the variation of the eigenvalues increases, relatively to the previous study, but

they still bounded. Moreover, and because we have descriptors with very low dimensions

(2) the minimum value of eigenvalues approximates zero for very low indexes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

V
al

ue

Descriptor Index

Minimum
Maximum

Average

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

V
al

ue

Descriptor Index

Minimum
Maximum

Average

Figure 3.15: Stability analysis for 100,000 random graphs.

As a conclusion, we can say that the use of all eigenvalues as a mechanism to describe

topology graphs is stable, since resulting eigenvalues are always within a range of values,

even for large sets of very different graphs.

3.2 Data Structure for Topology Matching 57

3.2.4.2 Similarity

This second experiment intent to evaluate the accuracy of each method on measuring

the similarity between graphs. To that end, we compared our approach, using all eigen-

values, to a set of similarity metrics. We used the metric defined by Bunke and Shearer

[Bunke 98], Johnson’s metric [Johnson 85], the RASCAL metric [Raymond 02] and an

approach based on eigenvalues defined by Shokoufandeh et al [Shokoufandeh 99].

The metric proposed by Bunke and Shearer compute the similarity between two

graphs using the maximal common subgraph (MCS) of the two graphs. In their approach

they use the relation between the number of nodes in the MCS and the number of nodes

in the largest graph, as the similarity measure.

Johnson’s metric uses the number of nodes and the number of edges of the maximum

common edge subgraph (MCES) and the nodes and edges of the two graphs to be com-

pared. The main disadvantage of this metric and of Bunke metric is the need to compute

the MCES and MCS respectively.

The RASCAL metric, developed by Raymond et al, is a novel method to compute an

upper-bound on the similarity between a pair of graphs. This approach is lighter compu-

tationally than Johnson’s metric, because it does not require the calculation of the MCES.

Shokoufandeh’s approach is also based on eigenvalues, but they sum these to reduce

the dimension of descriptors rather than using eigenvalues by themselves (as we do). This

is because efficient indexing structures for high dimensional data points were not used.

In this experiment we used the 14 graphs presented in Figure 3.12. We started our

test by computing the difference in the number of nodes and links between Graph 1 and

the other graphs from the set. Results are displayed in Table 3.1.

We then computed a measure of similarity between Graph 1 and the other graphs from

the set, using each of the different approaches. Table 3.2 presents the achieved results,

ordered by similarity, with the most similar on top.

58 Chapter 3. Sketch-Based Retrieval of Drawings

Graph ∆ Nodes ∆ Links Σ Differences
1 0 0 0
6 0 -1 1
7 0 -2 2
10 0 2 2
3 -2 -2 4
9 -1 -3 4
11 2 2 4
2 -2 -3 5
14 3 3 6
4 -2 -5 7

5 -4 -5 9
8 -7 -12 19
12 -14 -15 29
13 -23 -37 60

Table 3.1: Number of differences between Graph 1 and each graph of the set from Figure
3.12.

From these results, we can see that all approaches, except the sum of eigenvalues,

isolate the four least similar graphs. In what concerns the five most similar graphs, all

methods identify the same five graphs, except Shokoufandeh’s approach (sum of eigenval-

ues) and Bunke’s metric. Finally, we can observe that the RASCAL metric and Johnson’s

metric present the same result, except for graphs 3 and 9. Furthermore, our approach only

have 3 graphs out of order when comparing to the RASCAL metric.

In summary, we can say that the use of all eigenvalues to describe graphs provides a

good measure of similarity between graphs.

3.2.4.3 Effectiveness

This last experiment compared the retrieval effectiveness of our approach to the RAS-

CAL metric and Shokoufandeh’s method. We chose these two approaches because they

are lighter computationally than the other two metrics. Bunke and Johnson’s metrics

require the computation of the maximum common subgraph, which has a high computa-

tional complexity.

3.2 Data Structure for Topology Matching 59

Graph Metrics Eigenvalues
Position Bunke Johnson RASCAL All Sum

1 1 1 1 1 1
2 6 6 6 11 14
3 7 10 10 6 11
4 10 7 7 7 6
5 9 11 11 10 10
6 11 3 9 9 5
7 2 9 3 3 4
8 3 2 2 2 7
9 4 14 14 14 9
10 14 4 4 4 2
11 5 5 5 5 3
12 8 8 8 8 8
13 12 12 12 12 12
14 13 13 13 13 13

Table 3.2: Similarity provided by each approach.

For this test we consider the ten most similar topology graphs from Figure 3.12,

namely Graphs 1, 2, 3, 4, 6, 7, 9, 10, 11 and 14. Then, we randomly generated 100,000

topology graphs and added them to the previous ten graphs. After, we computed descrip-

tors for each of the 100,000+ graphs using both eigenvalues methods (this time we did

not compute descriptors either by levels of detail or for each subgraph). We inserted the

resulting descriptors into two different indexing structures (one for each method). From

the set of original graphs we selected five, namely Graph 1 (Q1), 2 (Q2), 3 (Q3), 4 (Q4)

and 6 (Q5), to be used as queries. We computed the corresponding descriptors for each

query and used these to perform KNN queries (K = 100) to both indexing structures,

getting the 100 more similar graphs to the given query. For the RASCAL metric we com-

puted the similarity distance between query graphs and each graph from the set. Results

were then ordered decreasingly by similarity distance. Table 3.3 summarizes the results

for each approach and for each query. Values in the table represent the position in the

list of results that then similar graph appeared. For instance, for the RASCAL approach,

the sixth similar graph for query Q1 was in position ten of the results list. Since we only

analyzed the first 100 results, the value 150 in the table, means that the expected similar

graph was not in the 100 first results.

60 Chapter 3. Sketch-Based Retrieval of Drawings

Similar All Eigenvalues Sum of Eigenvalues Rascal
Graph Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 40 5 2 2 2 2 2 2
3 3 3 3 3 3 3 3 150 6 3 3 3 3 3 3
4 4 4 4 4 4 4 83 150 7 5 4 4 4 4 4
5 5 6 6 6 5 5 85 150 8 7 5 5 5 21 21
6 6 7 7 23 6 9 88 150 11 8 10 22 7 150 22
7 7 8 8 60 7 34 91 150 22 35 11 26 8 150 25
8 8 16 10 81 8 89 150 150 76 81 32 150 32 150 42
9 9 25 11 150 11 95 150 150 150 150 35 150 150 150 100
10 12 150 150 150 17 150 150 150 150 150 150 150 150 150 150

Table 3.3: Positions in the results list.

To compute the retrieval effectiveness, we used the two standard metrics for measur-

ing the accuracy of individual methods,recall andprecision, defined as follows:

Recall =
number of relevant graphs retrieved

total number of all relevant graphs in the database

Precision =
number of relevant graphs retrieved

total number of graphs retrieved

We determined the precision value at each point by varying the recall value. To

calculate the effectiveness for each approach, we computed the average percentage of

precision from the five queries. Results for each method are shown in Table 3.4 and

depicted in Figure 3.16. From this figure we can observe that our method has the highest

precision performance, while Shokoufandeh’s approach has the lowest. Moreover, our

approach assures a precision of 100% for recall values up to 40%,i.e. for all queries, the

Recall All Eigenvalues Sum of Eigenvalues Rascal
10 100.0 100.0 100.0
20 100.0 69.0 100.0
30 100.0 70.4 100.0
40 100.0 48.9 100.0
50 90.0 48.6 69.5
60 79.5 41.4 40.9
70 77.3 28.4 42.1
80 68.0 10.9 15.9
90 61.1 6.8 10.5
100 32.4 7.4 6.7

Table 3.4: Precision vs Recall.

3.3 Geometry Representation 61

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

All Eigenvalues
Sum of Eigenvalues

Rascal

Figure 3.16: Precision and Recall chart.

first four results were always from the set of relevant graphs. Finally, our method offers a

precision greater than 60% for recall values up to 90%.

On the other hand, the RASCAL metric outperforms the Shoukfandeh approach,assuring

also a precision of 100% for recall values up to 40%. For recall values between 60% and

100%, both methods have similar precisions.

Experimental evidence reveals that using the sum of eigenvalues (Shokoufandeh’s

approach) yields higher collision frequency than when we use the eigenvalues themselves.

Still, it is important to note that the use of all eigenvalues does not assure the unity of

descriptors,i.e. we can have different graphs with the same descriptor. However there

seem to be less collisions than using Shokoufandeh’s approach.

3.3 Geometry Representation

While topology convey global information about the drawing, the shape of an object

represents local characteristics which can be used to narrow down the search.

To describe the geometry of entities from vector drawings, we developed a general

62 Chapter 3. Sketch-Based Retrieval of Drawings

Polygon
Geometry
Descriptor

CALI
[0.99, ... , 0.81]

Figure 3.17: Block diagram for computing the geometric descriptor.

shape recognition library which is able to identify a set of geometric figures and ges-

tural commands called CALI [Fonseca 00d, Fonseca 01, Fonseca 02b, Fonseca 00a]. In

our approach instead of using CALI to recognize a shape or a gestural command from

polygons, we compute a set of geometric features such as area and perimeter ratios from

special polygons and store them in a multidimensional vector (see Figure 3.17). Using

geometric features instead of polygon classification, allows us to index and store poten-

tially unlimited families of shapes. We obtain a complete description of geometry in a

drawing, by applying this method to each geometric entity from the drawing.

3.3.1 Geometric Features and Descriptor Computation

Our geometric description method uses a set of global geometric properties extracted

from drawing entities. We start the calculation of geometric features by computing the

Convex Hullof the provided element, using Graham’s scan [O’Rourke 98]. Then, we

compute three special polygons from the convex hull: theLargest Area Triangleand

the Largest Area Quadrilateralinscribed in the convex hull [Boyce 85], and finally, the

Smallest Area Enclosing Rectangle[Freeman 75]. Figure 3.18 depicts the special poly-

Figure 3.18: Special polygons of a geometric entity.

3.3 Geometry Representation 63

Feature Observation

PerimeterConvexHull
2

AreaConvexHull

This feature measures the similarity to a circular shape.

Height EnclosingRectangle

WidthEnclosingRectangle
The aspect ratio measures the thinness of shapes.

AreaConvexHull

AreaEnclosingRectangle

PerimeterConvexHull

Perimeter EnclosingRectangle

AreaLargestQuadrilateral

AreaEnclosingRectangle
This set of features measures the similarity to a rectangle.

AreaLargestQuadrilateral

AreaConvexHull

Perimeter LargestQuadrilateral

PerimeterConvexHull

AreaLargestTriangle

AreaConvexHull

Perimeter LargestTriangle

PerimeterConvexHull

This set of features measures the similarity to a triangle.

AreaLargestTriangle

AreaLargestQuadrilateral

TotalLengthShape

PerimeterConvexHull

This feature measures the complexity of shapes,i.e. it mea-
sures the length of strokes within a limited area (convex
hull).

Table 3.5: Features used to describe the geometry of objects.

gons computed from a geometric entity.

Finally, we compute the ratios between area and perimeter from each special polygon.

We experimentally evaluated several ratios, as described in detail in Appendix C, before

we reach the set of features listed in Table 3.5. This set of features allow the description

64 Chapter 3. Sketch-Based Retrieval of Drawings

of shapes independently of their size, rotation, translation or line type. This way, such

features can either be used to classify drawings or hand-sketched queries.

3.3.2 Experimental Evaluation

In order to evaluate the retrieval capability (i.e.accuracy) of our method, we measured

recall and precision performance figures using calibrated test data. Recall is the percent-

age of similar drawings retrieved with respect to the total number of similar drawings in

the database. Conversely, precision is the percentage of similar drawings retrieved with

respect to the total number of retrieved drawings.

We compared our method to describe shapes (CALI) with five other approaches,

namely Zernike Moments (ZMD), Fourier descriptors (FD), grid-based (GB), Delaunay

triangulation (DT) and Touch-point-vertex-angle-sequence (TPVAS). To that end we used

results of an experiment previously performed by Safar [Safar 00a], where he compared

his method (TPVAS) with the FD, GB and DT methods. In that experiment, authors used

a database containing 100 contours of fish shapes2, as the ones presented in Figure 3.19.

From the set of 100 shapes in the database, five were selected randomly as queries. Be-

fore measuring the effectiveness of all methods, Safar performed a perception experiment

where users had to select (from the database) the ten most similar to each query. This

yielded the ten most perceptually similar results that each query should produce.

Figure 3.19: Example of objects stored into the test database.

2This database is available from ftp://ftp.ee.surrey.ac.uk/pub/vision/misc/fishcontours.tar.Z

3.3 Geometry Representation 65

We repeated this experiment, using the same database and the same queries, using

our method and an implementation of Zernike moments. First we computed descriptors

for each of the 100 shapes in the data set and inserted them in our indexing structure

(NB-Tree). Then for each query, we computed the correspondent descriptor and used it

to perform a nearest-neighbor search in the NB-Tree. Returned results are in decreasing

order of similarity to the query. For each of the five queries, we determined the positions

for the 10 similar shapes in the order response set. Using results from our method and the

values presented in Table 2 from [Safar 00a] we produced the precision-recall plot shown

in Figure 3.20.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on

Recall

CALI
GB
DT
FD

TPVAS
ZMD

Figure 3.20: Recall-Precision comparison.

Looking at Figure 3.20 we can see that CALI outperforms all the other algorithms, in-

cluding the Zernike moments, which according to an experimental evaluation [Zhang 03],

was considered the best method to describe shape. Furthermore, we can see that it presents

good precision for recall values up to 50%. Although, the set of features used by CALI

is more suited to classify and describe geometric shapes, we can conclude, from this ex-

perimental evaluation, that it can also be used to describe more general shapes, as the

contours from this database.

66 Chapter 3. Sketch-Based Retrieval of Drawings

3.4 Matching

Computing the similarity between a hand-sketched query and all drawings in a database

can entail prohibitive costs especially when we consider large sets of drawings. However,

since drawings and queries are represented symbolically by topology graphs, we can de-

cide whether or not these are similar by determining the similarity of graphs.

Thus, to speed up searching, we divide our matching process in a two-step procedure

as shown in Figure 3.21. The first step relies on the global feature extracted from draw-

ings, topology. It searches for topologically similar drawings, working as a first filter to

avoid unnecessary geometric matches between false candidates. In the second step we

compare the local geometric information from the query to that of drawings that passed

the topology step. At the end of the matching process we get a measure of similarity, that

combines topology and geometry, between the sketched query and drawings retrieved

from the database.

Search by
Topology

Refine using
Geometry

Candidate
Results

ResultsQuery

Figure 3.21: Block diagram for the matching process.

3.4.1 Filtering by Topology

Our matching procedure first ranks drawings in the database according to their topo-

logical similarity to the query. This is accomplished by performing a KNN query to the

topology indexing structure, using the topological descriptor computed from the sketched

query. Results returned by the indexing structure represent a set of descriptors similar

(near in the space) to the query descriptor. Each returned descriptor correspond to a spe-

cific topology graph or subgraph stored in the topology database, which will be used in

the geometric matching.

Filtering based on topology drastically reduces the number of drawings to compare

3.4 Matching 67

in the geometric matching, by selecting only drawings with a high likelihood of being

similar to the sketched query. Each returned result has a degree of similarity that will

contribute to the final similarity measure.

Topology plays an important role on the description and filtering of drawings for

two reasons. One, topology is a global feature, providing a good mechanism to index

drawings. Second, users always explore the spatial arrangement of query elements to

convey more information.

3.4.2 Refining by Geometry

The reduced set of drawings resultant from topology filtering are then compared to the

sketched query, yielding a measure of geometric similarity for each drawing. The similar-

ity measure is obtained through the computation of distances between query descriptors

and geometric data stored in an indexing structure. In our approach each drawing has its

own indexing structure with the geometric information, to simplify the matching process.

Thus, during polygon comparison we only compute similarity distances between relevant

descriptors.

We start the matching procedure by computing a geometric descriptor for each entity

specified in the query, using the CALI library. Then, each of these descriptors are used

to perform a KNN search (being K the number of polygons in the sketched query) to

each geometric indexing structure, one for each topologically similar drawing. Returned

results have a distance associated that convey similarity. Smaller distances mean more

similar while larger distances mean less similar. Finally, we iteratively select the pair of

polygons (one from the query and other from the drawing) that has the smallest distance.

After each selection the pair of polygons is eliminated from the list of results.

We will now explain in detail how we compute the geometric similarity measure re-

sorting to an example. Consider that we have a query with four polygons and a geometric

indexing structure with five polygons, belonging to a drawing. After performing four 4-

68 Chapter 3. Sketch-Based Retrieval of Drawings

NN queries to the indexing structure, we build a matrix representing distances from each

polygon in the query (qP1–qP4) to all polygons in the drawing (dP1–dP5), as the one

depicted in Figure 3.22 (top-left).

dP1 dP2 dP3 dP4 dP5

qP1

qP2

qP3

qP4

0.3 0.4 0.2 0.4 0.1

0.5 0.12 0.3 0.2 0.6

0.2 0.45 0.4 0.3 0.2

0.7 0.5 0.3 0.4 0.16

dP1 dP2 dP3 dP4 dP5

qP1

qP2

qP3

qP4

0.3 0.4 0.2 0.4 0.1

0.5 0.12 0.3 0.2 0.6

0.2 0.45 0.4 0.3 0.2

0.7 0.5 0.3 0.4 0.16

dP1 dP2 dP3 dP4 dP5

qP1

qP2

qP3

qP4

0.3 0.4 0.2 0.4 0.1

0.5 0.12 0.3 0.2 0.6

0.2 0.45 0.4 0.3 0.2

0.7 0.5 0.3 0.4 0.16

Γ(D1)= (0.1+0.12+0.2+0.3) / 4
Γ(D1)= 0.72 / 4 = 0.18

dP1 dP2 dP3 dP4 dP5

qP1

qP2

qP3

qP4

0.3 0.4 0.2 0.4 0.1

0.5 0.12 0.3 0.2 0.6

0.2 0.45 0.4 0.3 0.2

0.7 0.5 0.3 0.4 0.16

dP1 dP2 dP3 dP4 dP5

qP1

qP2

qP3

qP4

0.3 0.4 0.2 0.4 0.1

0.5 0.12 0.3 0.2 0.6

0.2 0.45 0.4 0.3 0.2

0.7 0.5 0.3 0.4 0.16

Figure 3.22: Steps to compute the geometric similarity between the sketched query and a
drawing.

To compute the similarity value, we first find the row of the matrix with the smallest

value (0.1). Then, we store this value and delete the corresponding row (qP1) and column

(dP5). From the remaining matrix we perform the same steps, selecting the new smallest

value (0.12) and deleting row qP2 and column dP2. We continue this iterative process

until we have selected values for all polygons of the query. Finally, we sum all selected

values and divide by the number of polygons in the query. When the drawing has less

polygons than the query, we compute values for the query polygons most similar to those

in the drawing and divide the sum by the number of polygons in the drawing. This process

of computing the geometric similarity value is then applied to the remaining drawings that

passed through the topology filtering, yielding a list of drawings with a geometric measure

3.5 Summary 69

of similarity to the sketched query.

This method does not return the ”optimum” result, since it does not minimize the

similarity value. The final result depends on the order by which values are selected. For

instance if we select 0.2 in (qP1,dP3) then 0.12 in (qP2, dP2) then 0.16 in (qP4,dP5) and

finally 0.2 in (qP3,dP1) we getΓ = (0.2 + 0.12 + 0.16 + 0.2)/4 = 0.17, which is smaller

than the value computed before (0.18). However, the computation of this minimum value

is very expensive computationally.

Although, our similarity metric for geometry returns approximate results, its algo-

rithm is simple and has a low computational complexity. Furthermore, we think we

achieve a good trade-off between complexity and quality of results, since experimental

tests revealed good similarity identification.

To finish the matching process, we combine the similarity measure from topology

with the similarity measure from geometry. To that end, we first normalize the similarity

values from topology and geometry (separately), dividing all values from each set by

the biggest value of the set. The sum of both similarity values represents the measure

of similarity between queries and drawings. If for any reason we want to give different

weights to topology and geometry, we just need to apply these during the last sum.

3.5 Summary

We have described an integrated solution for indexing and retrieving vector drawings

based on their content within large data sets. Our approach describes drawings using topo-

logical and geometric information. Furthermore, it avoids graph matching by combining

a set of heuristics based on graph spectra and simple algorithms.

First, we presented an overview of our approach, introducing its main components.

Classification, which extracts symbolic descriptions from drawings, using topological and

geometric information. Query & Interface that allows the specification of queries using

sketches. And finally, Indexing that incorporates multidimensional indexing structures to

70 Chapter 3. Sketch-Based Retrieval of Drawings

support efficient searching in large sets of drawings.

After, we described and evaluated our main contributions, namely, the novel multi-

level description of drawings that allows searching using different levels of detail. The

use of graph spectra to describe and compare graphs, avoiding traditional graph matching

algorithms that are NP-Complete. Finally, we presented our method to describe shape

using global geometric features extracted from drawings.

Due to the definition of a new approach and new methods, we introduced new con-

cepts, such as the concept ofTopology Graph, which describes the topological relation-

ships between the elements of a drawing and two topological relationships,Inclusion and

Adjacency, which are a simplified subset of the relationships defined by Max Egenhofer.

To validate the method that we use to compute topological descriptors (the use of all

eigenvalues from a graph), we performed a set of experimental tests. First, we checked its

stability, showing that small perturbations in the graph structure produced small changes

in the descriptor. Second, we compared our method to a set of graph similarity metrics to

check its accuracy. Finally, we computed recall and precision measures, comparing our

method to a similar one developed by Shokoufandeh (that uses the sum of eigenvalues)

and to a new graph similarity metric, RASCAL, which do not require the computation of

maximum common subgraphs. Experimental results shown that the use of all eigenvalues

to measure graph similarity, presents the highest precision values.

Afterwards, we explained our method to calculate geometric descriptors from draw-

ings using our CALI library. Comparative studies with other shape description techniques

revealed that our method outperforms all of them.

Finally, we described our matching mechanism, performed in two steps. One, where

we select drawings topologically similar to the sketched query and another where the

geometry of these drawings is compared to the query geometry.

4
Multidimensional

Indexing with the NB-Tree

A general approach to efficiently support drawing retrieval from large databases has

not been developed so far. The majority of current approaches are designed to only handle

dozens or at most a few hundreds of images. Therefore, a sequential search of all images

into a database will not affect the system’s performance significantly. Due to this reason,

only a few existing systems feel the need to use an indexing scheme. Our approach

takes the size of databases in consideration. Thus, to achieve a fast retrieval speed and

make the retrieval system truly scalable to large size drawing collections, an effective

multidimensional indexing structure is an indispensable part of the whole system.

Many indexing approaches for high–dimensional data points have evolved into very

complex and hard to code algorithms. Sometimes this complexity is not matched by

increase in performance. Motivated by these ideas, we take a step back and look at sim-

pler approaches to indexing multimedia data. In this chapter we present a simple, (not

simplistic) yet efficient indexing structure for high–dimensional data points of variable

dimension, using dimension reduction. Multidimensional points are mapped to a 1D line

by computing their Euclidean Norm. In a second step we sort these mapped points using

a B+-Tree on which we perform all subsequent operations. We exploit B+-Tree efficient

sequential search to develop simple, yet performant methods to implement point, range

and nearest-neighbor queries.

To evaluate our technique we conducted a set of experiments, using both synthetic and

real data. We analyzed creation, insertion and query times as a function of data set size and

71

72 Chapter 4. Multidimensional Indexing with the NB-Tree

dimension. Results so far show that our simple scheme outperforms current approaches,

such as the Pyramid Technique, the A-Tree and the SR-Tree, for many data distributions.

Moreover, our approach seems to scale better both with growing dimensionality and data

set size, while exhibiting low insertion and search times.

We start this chapter by explaining the basic idea of the NB-Tree, its algorithms for

insertion and search and the complexity analysis. Section 4.2 describes our experimental

evaluation and shows performance results comparing our structure to the best recently

published approaches. We conclude the chapter by presenting experimental studies to

characterize the different data sets used for evaluation.

4.1 The NB-Tree Structure

Unlike other existing approaches, we use a very simple dimension reduction function

to map high-dimensional points into a one-dimensional value. Our approach is motivated

by three observations. First, real data sets tend to have a lot of clusters distributed along

the data space. Thus, the Euclidean norm of points tend to be ”evenly” distributed (see

section 4.3). Second, the set of resulting nearest neighbors will lie inside a narrow range

of norm values, thus reducing the number of data points to examine during search. Third,

some application domains need to manipulate large amounts of variable dimension data

points, which calls for an approach that can handle variable data in a natural manner.

Based on these requirements, we developed the NB-Tree1, an indexing technique based

on a simple, yet efficient algorithm to search points in high–dimensional spaces with

variable dimension, using dimension reduction. Our approach supports all typical kinds

of queries, such as point, range and nearest neighbor queries (K-NN).

The NB-Tree provides a simple and compact means to indexing high-dimensional

data points of variable dimension, using a light mapping function that is computationally

inexpensive. The basic idea of the NB-Tree is to use the Euclidean norm value as the index

1Norm +B+-Tree =NB-Tree

4.1 The NB-Tree Structure 73

key for high-dimensional points. Thus, values resulting from the dimension reduction can

be ordered and later searched in the resulting one-dimensional structure. To index data

points sorted by their Euclidean norm we use the B+-Tree, since it is the most efficient

indexing structure for one dimension and also, because it is supported by all commercial

Database Management Systems (DBMSs).

The use of the Euclidean norm as a mapping function fromRD → R1, assures that

near high-dimensional points will have near Euclidean norms. Consequently, when per-

forming a query (of any type) the system only examine points whose norm is in the neigh-

borhood of the query point norm. Moreover, the B+-Tree has the particularity that its

leaves are linked as an ordered list. Thus, walking sequentially through all the elements

of the B+-Tree is a costless operation.

4.1.1 Creation

In the following discussion, we consider that the data space is normalized to the

unit hypercube[0..1]D and that an arbitrary data point in the hyperspace is defined as

P = (p0, p1, · · · , pD−1).

To create an NB-Tree we start by computing the Euclidean norm of each D-dimen-

sional point from the data set, using the Formula:‖P‖ =
√

p2
0 + p2

1 + · · ·+ p2
D−1. D-di-

mensional points are then inserted into a B+-Tree, using the norm as key, as described in

the pseudo-code of INSERT-POINT.

INSERT-POINT(point)
1 pointNorm← EUCLIDEAN-NORM(point)
2 INSERT-POINT-BTREE(point, pointNorm)

After inserting all points we get a set of D-dimensional data ordered by norm value.

Figure 4.1 shows an example of dimension reduction for 2D data points. As we can see,

with this mapping function, different points can have the same key value, but on the other

hand near data points have similar keys (norms).

74 Chapter 4. Multidimensional Indexing with the NB-Tree

P3P1

P2

P4

1D

2D

0

0
0

Norm

X

Y

Figure 4.1: Dimension Reduction in 2D.

4.1.2 Searching

The searching process in the NB-Tree starts by computing the norm of the query

point. Then we perform a search in the 1–dimensional B+-Tree, whose steps will depend

of the query type. Current indexing structures usually support three types of queries. The

first is Point Query, which checks if a specific point belongs or not to the database. The

second type,Range Query, returns the points inside a specific range of values. In our

case that range will be specified by an hyper-ball. Finally, theK-NN Query (K Nearest

Neighbors) returns the K nearest neighbors of the query point. This is the most often-used

query in content–based retrieval.

Point Query After computing the Euclidean norm of the query point, we use this value

as key to search the B+-Tree. For the point(s) returned by the B+-Tree (if any) we compute

the distance to the query point. If we get a distance of zero, it means the query point exists

in the NB-Tree. The pseudo-code for POINT-QUERY is listed below.

4.1 The NB-Tree Structure 75

POINT-QUERY(query)
1 queryNorm← EUCLIDEAN-NORM(query)
2 point← SEARCH-POINT-IN-BTREE(queryNorm)
3 while point 6= NIL

4 do
5 distance← DISTANCE-TO-QUERY(point, query)
6 if distance = 0
7 then
8 return TRUE
9 point← NEXT-POINT-FROM-BTREE

10 return FALSE

Range Query The next step for a range query, after computing the query norm, is

to compute the lower and the higher bounds on the norm for the corresponding query.

lowerLimit = ‖Q‖ − bRadius andhigherLimit = ‖Q‖+ bRadius, wherebRadius is

the radius of the hyper–ball, which spans the search range.

After that, we search the B+-Tree for the point withlowerLimit as key. After finding

the first point we sequentially scan the B+-Tree until we reach thehigherLimit. As we

said before, scanning the B+-Tree sequentially is an inexpensive operation. For each point

P2

1D

2D

0

0
0 X

Y

P1

P7

P8

P6
P5

P4

higherLimit

2 x bRadius

P3

Q

lowerLimit

Norm

Figure 4.2: 2D Range query example.

76 Chapter 4. Multidimensional Indexing with the NB-Tree

with a norm value in the interval[lowerLimit, higherLimit], we compute the distance

to the query point. If this distance is smaller than or equal to thebRadius, the point is

added to the list of points to be returned. This list is ordered by distance to the query point.

Figure 4.2 illustrates a ball query in 2D, where we can see that an interval in the 1D space

corresponds to part of a D–dimensional hypersphere. The next pseudo-code implements

the BALL -QUERY algorithm.

BALL -QUERY(query, bRadius)
1 queryNorm← EUCLIDEAN-NORM(query)
2 lowerLimit← queryNorm− bRadius
3 higherLimit← queryNorm + bRadius
4 point← SEARCH-POINT-IN-BTREE(lowerLimit)
5 while pointNorm ≤ higherLimit
6 do
7 distance← DISTANCE-TO-QUERY(point, query)
8 if distance ≤ bRadius
9 then

10 ADD-POINT(pointList, point)
11 point← NEXT-POINT-FROM-BTREE

12 return pointList

K-NN Query Before we start describing our K-NN algorithm we have to define some

relevant concepts:higherLimit and lowerLimit are the norm values used to define the

upper and lower bounds to search for nearest neighbors;delta - value by which the previ-

ous limits are incremented at each step;priority list - list with K nodes, where we store

K points that temporarily store for intermediate results. The last element of this list is the

farthest nearest neighbor so far. Thus, when we want to insert a new neighbor into the

list, we just have to compare its distance against the last.

We start the nearest neighbor search by locating a point in the B+-Tree with a key

equal (or near) the norm of the query point, as described in the KNN-QUERY pseudo-

code. After this positioning in the 1D line, we execute a set of iterative steps until we

get all the desired results. Since the B+-Tree has its leaves linked sequentially, we only

navigate at the leaves level, as if we were using a double linked ordered list. Below we

4.1 The NB-Tree Structure 77

describe all the steps to achieve the final K-NN points.

KNN-QUERY(query, knn)
1 queryNorm← EUCLIDEAN-NORM(query)
2 lowerLimit← queryNorm
3 higherLimit← queryNorm
4 repeat
5 point← SEARCH-POINT-IN-BTREE(higherLimit)
6 higherLimit← higherLimit + delta
7 while pointNorm ≤ higherLimit
8 do
9 distance← DISTANCE-TO-QUERY(point, query)

10 if distance < farthest
11 then
12 DELETE-LAST-POINT(pointList)
13 ADD-POINT(pointList, point)
14 point← NEXT-POINT-FROM-BTREE

15 point← SEARCH-POINT-IN-BTREE(lowerLimit)
16 lowerLimit← lowerLimit− delta
17 while pointNorm ≥ lowerLimit
18 do
19 distance← DISTANCE-TO-QUERY(point, query)
20 if distance < farthest
21 then
22 DELETE-LAST-POINT(pointList)
23 ADD-POINT(pointList, point)
24 point← PREVIOUS-POINT-FROM-BTREE

25 until ENOUGH-POINTS(pointList, knn)
26 return pointList

After positioning in the 1D line we define theupperLimit and thelowerLimit based

on thedelta value. Next we go through all points until we reach theupperLimit or the

point whose norm follows the limit. In this case thelowerLimit is changed to keep the

symmetry to the query. After, we do the same for thelowerLimit. During this forward

and backward advance we compute the distance from each point to the query point. As

described before, if the distance to the query point is smaller than the distance of the

farthest current near neighbor, we store that point in the list. After going up and down,

we check whether there are enough points inside the hypersphere of diameter equal to the

difference between limits. This iterative process happens until all K neighbors from the

78 Chapter 4. Multidimensional Indexing with the NB-Tree

list are contained in the previously defined hypersphere.

In summary, we compute the K-NN through an iterative process, where the size of

the searching ball increases gradually until we get all the points specified by the query.

4.1.3 Computational Complexity

In this subsection, we present the computational complexity of the NB-Tree insertion,

point, range and K-NN query algorithms. We describe the running time of the algorithms

as a function of data point dimension and data set size. It is important for our complexity

study to recall that the B+-Tree has a computational complexity ofO(lgN) for insertion

and searching algorithms and requires linear space for storage.

Insertion From the pseudo-code for INSERT-POINT we conclude that inserting points

into a NB-Tree requires two operations: the computation of the Euclidean Norm and an

insertion into the B+-Tree. Table 4.1 presents the running time for each operation as a

function of data set size (N) and data point dimension (D).

Operation N D
Computation of the Norm O(1) O(D)
Insertion into the B+-Tree O(lgN) O(1)

Total Running Time O(lgN) O(D)

Table 4.1: Analysis of the NB-Tree Insertion algorithm.

Point Query As described previously the main operations of a point query are the com-

putation of the Euclidean Norm, a search in the B+-Tree and the calculation of a distance.

Table 4.2 shows running times for the point query algorithm.

Range Query From the pseudo-code for BALL -QUERY, we can identify the computa-

tion of the Euclidean Norm, a search in the B+-Tree, the calculation of N distances (in the

worst case), the insertion of M points into a B+-Tree (the ones inside the ball,M << N)

4.1 The NB-Tree Structure 79

Operation N D
Computation of the Norm O(1) O(D)
Search in the B+-Tree O(lgN) O(1)
Calculation of a distance O(1) O(D)

Total Running Time O(lgN) O(D)

Table 4.2: Analysis of the NB-Tree Point Query algorithm.

and N sequential steps in the B+-Tree (in the worst case), as main operations. Therefore,

the total running time for the range query algorithm is presented in Table 4.3.

Operation N D
Computation of the Norm O(1) O(D)
Search in the B+-Tree O(lgN) O(1)
N x Calculation of a distance O(1) O(D)
M x insertion into a B+-Tree O(lgM) O(1)
N x sequential step O(N) O(1)

Total Running Time O(N) O(D)

Table 4.3: Analysis of the NB-Tree Range Query algorithm.

K-NN Query From the pseudo-code presented KNN-QUERY we can extract the follow-

ing operations: computation of the Euclidean Norm, a search in the B+-Tree, the calcu-

lation of N distances (in the worst case), the insertion of M points into a list (M << N)

and N sequential steps in the B+-Tree (in the worst case). Table 4.4 shows the running

times for the K-NN algorithm.

Operation N D
Computation of the Norm O(1) O(D)
Search in the B+-Tree O(lgN) O(1)
N x Calculation of a distance O(1) O(D)
M x insertion into a list O(lgM) O(1)
N x sequential step O(N) O(1)

Total Running Time O(N) O(D)

Table 4.4: Analysis of the NB-Tree K-NN Query algorithm.

In Table 4.5 we present a summary of the complexity analysis. As we can see, the

80 Chapter 4. Multidimensional Indexing with the NB-Tree

NB-Tree presents a logarithmic running time for insertion and point query and a linear

running time for range query and K-NN query, when we consider the size of the data set.

If we now consider the dimension, the NB-Tree has a worst-case running time linear with

the dimension.

NB-Tree Algorithm N D
Insertion O(lgN) O(D)
Point Query O(lgN) O(D)
Range Query O(N) O(D)
K-NN Query O(N) O(D)

Table 4.5: Summary of the NB-Tree complexity analysis.

4.2 Experimental Evaluation

While our method seems to yield commensurable times to other structures tested, we

had difficulties comparing it to other approaches, since some of them crashed on data sets

of significant size, preventing comparison. We chose the SR-Tree, the A-Tree and the

Pyramid Technique as benchmarks because they are the more recent indexing structures

and because there are reliable and stable implementations, which provide correct results

and scale up to our intended test data sizes.

In this section we describe the experimental evaluation performed to compare our

NB-Tree with the SR-Tree, the A-Tree and the Pyramid Technique. We conducted a

set of experiments to analyze final tree size (on disk), creation times and query times

as a function of data set dimension and size. All experiments were performed on a PC

Pentium II @ 233 MHz running Linux 2.4.8, with 384 MB of RAM and 15GB of disk.

Our NB-Tree algorithms were developed using thedbmimplementation of the B+-Tree.

First, we present the results of the evaluation for several synthetic data sets of uni-

formly distributed data. Then, we introduce our observations for some real data sets and

for data sets of variable dimension.

We did not measure I/O accesses for four reasons: First, nowadays computers can

4.2 Experimental Evaluation 81

handle databases of millions of high–dimensional points in main memory. Second, after

a dozen queries all the indexing structure is loaded into main memory. Third, users of

content-based retrieval systems do not care about the number of I/O operations, but they

do care about response time. Fourth, in many indexing schemes, data structure overhead

dominates I/O, especially after most of the database is memory–resident. Finally, we

assume that locality of reference holds for well–behaved features.

Thus, during our experimental evaluation we start by loading all the structures into

main memory and after that we measure search times. We think that the time taken to

load the NB-Tree into main memory is not significant, taking into account that it is done

just one time. The NB-Tree takes less than one minute to load, for dimensions up to 100

and less than 4 minutes for dimensions up to 256.

4.2.1 Performance Measures with Uniformly Distributed Data

While data points generated from a uniformly distributed set of coordinates arguably

represent any ”real” distribution, most published approaches provide performance mea-

surements and comparisons based on such data. Thus it becomes logical to evaluate our

indexing structure using these data sets. Moreover, as we will show in the present section,

many algorithms (including ours) seem to perform poorly with these data, which makes

better suited for the task at hand than most empirical data sets.

We evaluated the structures using data sets of randomly generated uniformly dis-

tributed data points of fixed size (100,000) and various dimensions (10, 20, 30, 40, 60,

80, 100, 150 and 256). We also created data sets with fixed dimension (20) and various

sizes (250,000, 500,000, 750,000 and 1,000,000). Additionally, we randomly generated

a set of 100 queries for each dimension, which we later used to evaluate the searching

performance of each approach.

We selected the number of nearest neighbors to search for to be always ten, while

the radius (width) of the ball (rectangle) was different for each data set depending on the

82 Chapter 4. Multidimensional Indexing with the NB-Tree

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

T
im

e
(m

in
)

Dimension

SR-Tree
Pyramid
NB-Tree

0

50

100

150

200

250

300

350

400

250000 500000 750000 1e+06

T
im

e
(m

in
)

Dataset Size

SR-Tree
Pyramid
NB-Tree

a) Data set size of 100,000 points b) Data points of dimension 20

Figure 4.3: Creation times as a function of a) dimension. b) data set size.

dimension of the data points. This variation in radius is due to increasing average distance

between points when the dimension increases.

In the following paragraphs we present the results of our experimental evaluation

organized by creation, searching and final tree size.

Creation Times Most published work tends to ignore tree insertion times. This is be-

cause conventional scenarios focus on large static databases which are far more often

queried upon than updated. However, there are many applications requiring frequent up-

dating of data sets. For these applications, low insertion times are an important usability

factor.

We have compared the creation times to these of the SR-Tree, A-Tree and Pyramid

Technique. Figure 4.3.a shows the time spent to create each structure when the dimen-

sion of the data changes. We do not present the creation times for the A-Tree because

they are very high, even for low dimensions (around 300 minutes for dimensions 10 and

20). As we can see, the NB-Tree and the Pyramid Technique largely outperform the SR-

Tree. While the NB-Tree takes 24 seconds to insert 100,000 points of dimension 10, the

SR-Tree takes 23 minutes. If we now consider higher dimensions, such as 80, the dif-

ference increases even more with the NB-Tree taking 2 minutes and the SR-Tree taking

40 minutes. The Pyramid Technique reveals creation times below the two minutes, for

4.2 Experimental Evaluation 83

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300

T
im

e
(s

ec
)

Dimension

SR-Tree
NB-Tree

0

5

10

15

20

25

30

35

40

45

250000 500000 750000 1e+06

T
im

e
(s

ec
)

Dataset Size

SR-Tree
NB-Tree

a) Data set size of 100,000 points b) Data points of dimension 20

Figure 4.4: Range Query searching times as a function of a) dimension. b) data set size.

dimensions up to 256.

Figure 4.3.b shows insertion times for data sets of varying size. Although, all struc-

tures seem to exhibit linear growth with dimension, SR-Tree creation times grow faster

than those of the NB-Tree and of the Pyramid Technique. While the NB-Tree requires

no more than 15 minutes to create a tree with one million data points, the SR-Tree takes

around six hours and the Pyramid Technique takes only two minutes. From this observa-

tion it is clear that the Pyramid Technique and the NB-Tree are more suited to large data

sets than the SR-Tree.

We were not able to create the SR-Tree for data sets of dimension bigger than 100, in

our system. Thus, in the following subsections we do not display values for dimensions

higher than 100 corresponding to the SR-Tree.

Range Query Times Another useful primitive in multidimensional data is the range

query, where we want to look for data points within a specified distance of the target.

Figure 4.4.a shows performance for both trees as a function of the dimension. Once

again the NB-Tree largely outperforms the SR-Tree for all dimensions. While our ap-

proach exhibits searching times smaller than one second for dimensions up to 60, and

smaller than 2 seconds for dimensions up to 100, the SR-Tree needs more than six sec-

84 Chapter 4. Multidimensional Indexing with the NB-Tree

0

5

10

15

20

25

0 50 100 150 200 250 300

T
im

e
(s

ec
)

Dimension

SR-Tree
A-Tree

Pyramid
NB-Tree

0

5

10

15

20

25

30

250000 500000 750000 1e+06

T
im

e
(s

ec
)

Dataset Size

SR-Tree
Pyramid
NB-Tree

a) Data set size of 100,000 points b) Data points of dimension 20

Figure 4.5: Search times for K-NN as a function of a) dimension. b) data set size.

onds. Additionally we can see that the NB-Tree has a linear growth with the dimension

while the SR-Tree seems to grow quadratically.

Figure 4.4.b plots times required for range queries with varying data set sizes. The

NB-Tree outperforms the SR-Tree for all data set sizes. The NB-Tree takes only five

seconds to perform a range query in a 1 million point data set, while the SR-Tree spends

around 40 minutes to yield the same results.

We do not present results for the A-Tree, because the available implementation of the

A-Tree does not support range queries. While we have tried hard to evaluate the range

query algorithm of the Pyramid Technique we have been unable to reproduce results using

the currently available implementation.

K-NN Query Times Nearest-neighbor queries are useful when we want to look at the

point in the data set which most closely matches the query.

Figure 4.5.a depicts the performance of nearest neighbor searches when data dimen-

sion increases. We can see that the NB-Tree outperforms all the structures evaluated,

for any characteristic dimension of the data set. Our approach computes the ten nearest

neighbors in less than one second for dimensions up to 40, less than two seconds for di-

mensions up to 100 and less than five seconds for dimensions up to 256. Moreover, we can

4.2 Experimental Evaluation 85

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300

S
tr

uc
tu

re
 S

iz
e

(M
B

)

Dimension

SR-Tree
A-Tree

Pyramid
NB-Tree

0

50

100

150

200

250

300

350

400

250000 500000 750000 1e+06

S
tr

uc
tu

re
 S

iz
e

(M
B

)

Dataset Size

SR-Tree
Pyramid
NB-Tree

a) Data set size of 100,000 points b) Data points of dimension 20

Figure 4.6: Final tree size as a function of a) dimension. b) data set size.

notice that the NB-Tree shows linear behavior with the dimension while the SR-tree and

the A-Tree seems to exhibit at least a quadratic growth or worse. The Pyramid Technique

performs better than the A-Tree and the SR-Tree, but it shows worst search times than the

NB-Tree, for all dimensions. Figure 4.5.b also shows that the NB-Tree outperforms all

structures for K-NN queries when the size of the data set increases.

Storage Requirements Looking at Figure 4.6 we can realize that the NB-Tree requires

less storage space than any other structure. The SR-Tree uses at least three times more

storage space than the NB-Tree, while the Pyramid Technique requires more than twice

the storage space used by our structure. The A-Tree seems to use a storage space of the

same size of the Pyramid Technique. Furthermore, the SR-Tree size seems to increase

quadratically with the data dimension while the NB-Tree and the Pyramid Technique

grow linearly. This linear growth is inherited from the B+-Tree. We can also see that

all structures present a linear growth with data set size (c.f. Figure 4.6.b). However, the

storage requirements from our approach grow slower than those from the SR-Tree and

the Pyramid Technique. Even though, the NB-Tree and the Pyramid Technique share a

B+-Tree to store information and even though they store the same information (high–

dimensional point + 1D value) the files produced by the Pyramid Technique are around

twice the size of the ones from the NB-Tree. The only explanation that we encounter is the

86 Chapter 4. Multidimensional Indexing with the NB-Tree

Color Histogram Layout Histogram NIST DataBase
0

0.5

1

1.5

2

2.5

3

3.5
NB-Tree
SR-Tree
Pyramid
A-Tree

Data Set Type

Ti
m

e
(s

ec
)

Figure 4.7: K-NN searching times for real data sets.

different implementations used. We used thedbmversion, while the Pyramid Technique

uses their own.

4.2.2 Performance Measures with Empirical Data Sets

After our experimental evaluation with synthetic uniformly distributed data sets, we

evaluate the indexing structures using three data sets from real data. Two of them had

dimension 32 and contain image features extracted from Corel image collection. One

contains 68,000 color histograms, while the other contains 66,000 color histogram lay-

outs. The last real data set, from the NIST database, has 100,000 points of dimension 256

and each one represents an instance of a hand-drawn digit.

Since the K-NN search is the most often-used query in content-based retrieval, we

just present experimental values for this kind of query.

Figure 4.7 presents times for real data sets. Looking at the two data sets from the left

(Histograms) we can see that the NB-Tree and the SR-Tree have the best performance,

with query times around 270 milliseconds. We can also notice from Figure 4.7 that the

performance of the SR-Tree is very influenced by the size of the data set. For a data set of

66,000 points (Layout Histogram), the SR-Tree outperforms the NB-Tree, but when we

4.2 Experimental Evaluation 87

Uniform Real Variable Dim
0

2.5

5

7.5

10

12.5

15

17.5

20

22.5
NB-Tree

Pyramid

Data Set Type

T
im

e
(S

ec
)

Figure 4.8: K-NN searching times for various data sets of dimension 256.

move to a data set with more 2,000 points (Color Histogram), the SR-Tree decreases its

performance, while the NB-Tree takes about the same time.

The A-Tree once again presents the worst results, taking five times longer than our

approach. Considering now the data set from the NIST database, with dimension 256,

we can see that the NB-Tree and the Pyramid Technique have very similar times, but with

some advantage to the NB-Tree. We do not present values for the A-Tree and the SR-Tree,

because these structures can not handle data sets of this dimension (256).

Contrary to published experimental values [Sakurai 00], we have found better query

times for the SR-Tree over the A-Tree. Maybe a fine tuning would yield a different

outcome. This did not succeed for the many combinations we have tried.

4.2.3 Performance Measures with Variable Dimension Data Sets

Finally, we evaluated the indexing structures with other synthetic data set that try to

simulate data points of variable dimensions. To that end, we filled the firstN coordinates

of points with values and the rest (D−N) with zeros. We generate points with dimensions

between 4 and 256 (but all points have 256 coordinates). We had to do this, because the

88 Chapter 4. Multidimensional Indexing with the NB-Tree

other structures do not support points of multiple dimensions at the same time.

From Figure 4.8 (right) we can see that the NB-Tree is six times faster than the Pyra-

mid Technique finding the ten nearest neighbors.

Figure 4.8 presents results for the NB-Tree and the Pyramid Technique using three

data sets, uniformly distributed data points (left), a real data set from the NIST database

(center) and a synthetic data set to simulate data points of variable dimension (right).

From this figure we can see that the NB-Tree is always faster than the Pyramid Technique

for any kind of data set with dimension 256. Moreover, Figure 4.8 shows that the NB-

Tree presents the best results when we consider real data sets or data sets that simulate the

context where we are using our indexing structure (data points with variable dimension).

Finally, we evaluated our indexing structure in two more experiments where we tried

to simulate our domain of application. To that end, instead of generating descriptors, we

generated topology graphs and then we computed the corresponding descriptors. We used

the 100,000 topology graphs described in Section 3.2.4.1. Then, we computed descriptors

for those graphs using our multilevel scheme (i.e. we compute descriptors for subgraphs

and for different levels of detail) and not using it (i.e. one descriptor for each topology

graph). Table 4.6 summarizes the results for KNN queries, withK = 10, for the NB-Tree

and the Pyramid Technique (only for 100,000 descriptors). Times presented in the table

are average figures obtained from performing 100 KNN queries.

Descriptor Type No of Descriptors Max. Dimension NB-Tree Pyramid Tech.
Without levels 100,000 330 0.04 Sec 0.25 sec

With levels 1,524,000 330 1.15 Sec —–

Table 4.6: Search times for descriptors generated from 100,000 topology graphs.

As a conclusion, and looking at Table 4.6, we can say that our indexing structure

presents low searching times for very large data sets containing information from our

domain of application,i.e.descriptors computed from topology graphs.

4.3 Data Set Characterization 89

0

2

4

6

8

10

12

0 50 100 150 200 250 300

S
ta

tis
tic

al
 V

al
ue

s

Dimension

Minimum
Maximum

Average
Median

Std Deviation

Figure 4.9: Statistical values for the Euclidean norm.

4.3 Data Set Characterization

To validate the approach used in our NB-Tree, we performed an experimental study

to characterize the different data distributions that we used during the experimental eval-

uation of the different indexing structures. The first data sets analyzed were of uniformly

distributed data, with independent attributes. After, we analyzed the real data and finally

the synthetic data set simulating a data space of variable dimension. We assume that the

data space, for all kinds of data sets, is normalized to the unit hypercube[0..1]D.

We start by analyzing the distribution of Euclidean norms of data points thus gener-

ated to illustrate relevant artifacts characteristic of high-dimensional data spaces to show

how the growing dimensionality affects performance of our data structure.

4.3.1 Uniform Data Distribution

We start our data analysis by computing statistical moments for the Euclidean norm

of data points. We calculate the minimum, the maximum, the average, the median and

the standard deviation for data sets of dimension 10, 20, 40, 60, 80, 100, 150 and 256.

Figure 4.9 shows the results we got. As we can see, the average and the median have

90 Chapter 4. Multidimensional Indexing with the NB-Tree

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8 9 10 11

N
um

be
r

of
 P

oi
nt

s

Norm

D = 20
D = 60

D =100
D =256

Figure 4.10: Distribution of norms for several dimensions.

the same value for all dimensions, meaning that we have a normal distribution for the

values of the Euclidean norm. We can also observe that the standard deviation as a value

near zero and that it remains the same for all dimensions. The amplitude (maximum −

minimum) of the norm values is always constant for all dimensions. Finally, we can see

that the minimum, the maximum, the average and the median present the same evolution

along the dimension.

Our next step was to study the distribution of points according to the Euclidean norm.

To that end we compute the mode of the norm for each dimension, using intervals of 0.1.

Figure 4.10 presents the point distribution for dimensions 20, 60, 100 and 256. As we can

see points have the same distribution (normal) for all dimensions.

4.3.2 Other Distributions

Besides the uniformly distributed data, we also analyzed a data set of real data from

the NIST database. Data points have a dimension of 256 and coordinate values can each

take the value zero or one. Finally, to simulate an application domain where the data

points have different dimensions, we generated synthetic data with variable dimensions

and analyzed it.

4.4 Summary 91

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
um

be
r

of
 P

oi
nt

s

Norm

Real Data
Uniform Data

Variable Dimension

Figure 4.11: Distribution of norms for different types of data sets.

The main objective of this study was to achieve some conclusions about the behavior

of the Euclidean norm when we move from uniformly distributed data to real data and see

what kind of data sets yield worst performance for the NB-Tree approach. To that end,

we computed the distribution of points per norm interval and present it in Figure 4.11.

As we can see, for uniformly distributed data the values of the norm form a ”tight”

cluster around a single value. In the case of the real data and of points with variable

dimensions, the values of the norm are more evenly distributed. This wide distribution of

the norm values seems to validate the NB-Tree approach of using the Euclidean norm as

a method to index high-dimensional real data sets of fixed or variable dimensions.

4.4 Summary

In this chapter we presented a simple, yet efficient structure for data of highly–

variable dimensionality, the NB-Tree, using the Euclidean norm to reduce dimension and

a B+-Tree to store the 1D values. We described simple algorithms for insertion, point,

range and nearest neighbor queries.

We have conducted experimental evaluations using either uniformly distributed data

92 Chapter 4. Multidimensional Indexing with the NB-Tree

sets, variable dimension and real data. Results show our method to outperform the Pyra-

mid Technique2, the SR-Tree and the A-Tree. Difference in performance is expected

to increase as data dimensionality and data set size increase, and for real (skewed) data

points.

Our experimental evaluation indicates that the NB-Tree can efficiently support a wide

type of queries, including point, range and the most used (at least in multimedia databases)

nearest neighbor queries. This is significant because most indexing structures proposed

for range queries are not designed to efficiently support similarity search queries (K-

NN) and metric-based approaches proposed for similarity queries are considerably more

difficult to apply to range queries. In contrast to other approaches which use complex

algorithms (combination of MBRs and MBSs to describe partitions, division of the space

using hyper-pyramids, etc.) ours relies on very simple (and therefore practical) methods.

Tree-based techniques do not seem to scale up well with growing data set sizes typ-

ical of multimedia databases, where it is relatively easy to assemble large collections of

documents. The overhead introduced by data-structure traversal and book keeping in

these approaches far outweighs the potential advantages of sophisticated spatial indexing

structures.

For a seemingly ”bad” point set, generated from uniformly distributed data, both the

range and K-NN search algorithms can degenerate into a sequential search, where we have

to compute the distance from the query point to all the points in the data set. However, as

we have seen in section 4.3 real data and data of variable dimension both exhibit Euclidean

norm distributions that better match our selection and indexing methods. We conjecture

that our approach tends to excel for sparsely–distributed data where clusters tend to be

evenly distributed throughout the hyperspace. Moreover, since our algorithms are very

simple, response times remain reasonable for data sets of considerable size and dimension.

2K-NN queries only. We were not able to reproduce results in range queries.

5
Applications and

Experimental Results

This chapter describes two prototypes developed using our approach. One is for re-

trieving technical drawings of moulds. This application has been developed within the

European project SmartSketches[Consortium 00]. The other helps users in retrieving clip-

art drawings. We selected these two types of media objects to search for, because both

are well structured figures and are complex enough to represent a good testbed for our

approach. On the other hand, technical drawings are characterized by very rich topolog-

ical information. Furthermore, their visual elements are mostly basic geometric shapes.

In contrast, clip-art drawings present more generic visual entities and a poorer spatial or-

ganization. In the remainder of this chapter we define the goals behind each prototype

and shortly describe their functionalities. Finally, we present results from preliminary

usability tests.

5.1 Sketch-Based Retrieval of Moulds

Draftspeople from the mould industry while drawing a mould for a new object usu-

ally consult previous projects, searching for something similar. This way, they can use

solutions already achieved in the past, reducing the time needed to produce a new mould.

We developed a Sketch-Based Retrieval (SBR) system [Fonseca 04d] able to find a

small set of drawings in a large technical drawing database through a hand-sketched query.

To evaluate the current status of our SBR prototype and the performance of its algorithms,

93

94 Chapter 5. Applications and Experimental Results

Figure 5.1: Sketch-Based Retrieval prototype.

we made a preliminary usability test with users at CENTIMFE1. We asked users to sketch

a set of queries, to comment the returned results and to answer a questionnaire, while

we collected the produced data and videotaped the tests. This experiment involved three

users a database with 78 drawings and 12 queries.

5.1.1 Application Description

Using the techniques described before, we developed a Sketch-Based Retrieval pro-

totype to retrieve technical drawings2. Our system allows retrieving sets of technical

drawings, in CAD format, similar to a hand-sketched query. Figure 5.1 depicts a screen-

shot of our application, where we can see on the left the sketch of a plate and on the right

the results returned by the implied query. These results are ordered from top to bottom

and from left to right, with the most similar on top.

We also developed the simplification and classification component, to extract topo-

logical and geometric information from drawings. Information thus collected was used to

1CENTIMFE is a technological training center for the Portuguese Mould Industry.
2More information can be found inhttp://immi.inesc-id.pt/projects/sbr/ .

5.1 Sketch-Based Retrieval of Moulds 95

compute geometric descriptors and to create the topology graph, and correspondent topo-

logical descriptors. Resulting descriptors were then inserted into two indexing structures

(NB-Trees), one for topology and another for geometry.

5.1.2 User Evaluation Tests

The main goal of this experiment was to test classification and retrieval algorithms

and collect users’ opinions about the answers to their queries. Additionally, we also asked

them to evaluated the user interface, suggesting changes to improve the next version of

the prototype. The complete user evaluation tests, including the setup of the material for

the experiment, took around five hours, and was performed at CENTIMFE headquarters.

5.1.2.1 Description of the Experiment

The evaluation tests involved three users from CENTIMFE and was divided in three

parts. First, we explained the experiment and introduced the SBR prototype to users. Dur-

ing the second part users executed two sets of queries using the prototype, first sketching

basic drawings and after querying for simple technical drawings. Finally, users answered

a questionnaire, where we try to figure out their profile, their opinions about the prototype

and their evaluation of the user interface. We also asked them, in an informal manner,

about suggestions and ideas to improve the current version of the SBR prototype.

We conceived the experiment to take around 90 minutes per user and to be videotaped

and photographed (see Figure 5.2). Our tests were made entirely of individual sessions,

to minimize the impact of the experiment in users work routine. Each individual session

included the following steps:

• Description of the experiment;

• Introduction to the SBR prototype;

• Accomplishment of tasks (querying) using two sets of queries;

96 Chapter 5. Applications and Experimental Results

Figure 5.2: Observer, user and video camera during a test session.

• Answering to the questionnaire;

• Informal conversation about the SBR system.

During the execution of tasks users were encouraged to make comments (“think

loud”) and even raise questions to observers. This form of interaction proved to be very

fruitful, since we were able to collect useful information from users.

The query session comprised two parts, one using basic geometric shapes and another

using simple technical drawings. After the querying session each user answered to a ques-

tionnaire about their previous experience in drawing, their opinion about the SBR system

and about its user interface. At the end of each session we had an informal conversation

with the user focusing the concepts beyond SBR, the functionality of the prototype and its

application to real situations in the mould industry. From these conversations we gathered

relevant information, since users were not constrained by previously prepared questions.

Drawing Database

The drawing database used in this experiment was constructed by joining two sets, one

with basic drawings and other with simple technical drawings of plates, in a total of

78 drawings. Some instances are rotated or inverted versions of other drawings in the

database, because we want to check that our retrieval algorithm is orientation indepen-

5.1 Sketch-Based Retrieval of Moulds 97

Figure 5.3: Basic Drawings.

dent. The set of basic drawings has 38 elements, composed mainly by simple shapes or

combinations of two or three simple shapes, as depicted in Figure 5.3, while the set of

simple technical drawings has 40 elements, which are simplifications of technical draw-

ings of mould plates (see Figure 5.4).

Figure 5.4: Simple technical drawings of mould plates.

Queries

In this section we present the twelve drawings that users were asked to search for using

our prototype, and the reasons why we selected them. Users started by sketching six basic

drawings and then they sketched six simple technical drawings. This order of actions

98 Chapter 5. Applications and Experimental Results

Q1 Q2 Q3 Q4 Q5 Q6

Figure 5.5: Basic drawings to search in the database.

assured that the first retrieving task (basic drawing) work as a training session. This way,

when users perform the second task they already are used to the prototype.

We presented six basic drawings, Q1 to Q6, (see Figure 5.5) to users and ask them

to search for these drawings in the database, by sketching something similar. The query

session started by a simple shape, a triangle (Q1), passing to a more complex shape, a

Chantal’s comb (Q2). Drawings Q3 and Q4 are composed by two simple shapes arranged

in different manners. The last couple of drawings have two simple shapes inside a rectan-

gle, Q5 had a triangle and a square and Q6 had two triangles.

We selected queries Q1 and Q2 to allow users to practice shape sketching and to

provide us with some input on how users sketch simple geometric shapes. Queries Q3

and Q4 were included to validate our matching algorithm, since both queries have the

same geometric elements, but with different topological relationships (in Q3 we have

inclusion, while in Q4 we have adjacency). Finally, we presented drawings Q5 and Q6 to

see how users sketch similar drawings, with the same topology but different geometry in

just one shape and to check the behavior of our algorithm in this situation.

Drawings Q7 to Q12 are simple technical drawings (see Figure 5.6) that users were

Q7 Q8 Q9 Q10 Q11 Q12

Figure 5.6: Simple technical drawings to search in the database.

5.1 Sketch-Based Retrieval of Moulds 99

asked to search in the database. The first technical drawing presented to users (Q7) is the

most simple, consisting of a plate with four holes. Drawings Q8 and Q9 were selected

mainly to see how users will sketch two similar drawings with just a small difference.

To check if users respect relative sizes among shapes, we presented Q10 to them. This

drawing has the particularity of having a very large circle in the middle and four small

circles at each corner. Finally, we asked users to search for two very similar drawings,

Q11 and Q12, where the last one had some more shapes.

Final Questionnaire

The questionnaire was divided in three parts and can be found in Appendix A. One was

designed to collect general information about users experience on sketching, drawing

tools usually used and input devices preferred and most used. In the second part we

questioned users about the use of the SBR prototype to retrieve technical drawings. Users

were asked about the time spent to get results and about the quality of results. Finally, we

have a set of questions to evaluate the user interface in terms of window layout, size

of the main areas and icons of buttons. The time to complete the questionnaire was

approximately 10 minutes.

5.1.2.2 Experiment Execution

All tests took place in a meeting room, where we installed the video camera and setup

the Tablet PC running the prototype. While users were performing the requested tasks (see

Figure 5.7), one of the observers was taking some notes and the other was controlling the

video camera and the digital still camera.

Users involved in the experiment have a good know-how on drafting with CAD tools

and no prior experience on using an SBR system. This way, they are initially unbiased.

However, after the first sketching session we give them some tips on how to sketch “good

queries” for our retrieval system.

These tests only involved three users, because the prototype was in its first iteration

100 Chapter 5. Applications and Experimental Results

Figure 5.7: User performing the experiment.

and more than collect good usability results, we wanted to validate our approach (and

algorithms) and get feedback from real users in order to improve the next version of the

prototype.

Basic Drawings

Sketches drawn to search for a triangle have noticeable differences from the original

shape. Among these differences we highlight the fact that users ignore the angles and

the aspect ratio of the triangle. This situation occurs in sketch S1A (Sketch performed

by user A for query Q1). However, our algorithm was always able to return the correct

drawing within the first ten results. In this case the correct result was the first one, as

Sketched Query Returned Results

Figure 5.8: Sketch for Q1 made by user A and returned drawings.

5.1 Sketch-Based Retrieval of Moulds 101

Figure 5.9: Sketches made by user C for Q3 (left) and Q4 (right).

depicted in Figure 5.8 (results are order from left to right and top to bottom).

When users had to sketch a more complex shape, for instance the Chantal’s Comb

(Q2), it was clear that they had some difficulty in representing it at the first try. While

sketching this shape, users used the UNDO command very often, because they made a lot

of mistakes. However, when they executed the query the results were very good, since the

wanted drawing was always the first in the results list.

To execute queries for Q3 and Q4 users had to draw a triangle and a square or rectan-

gle. As in Q1 the triangles sketched for Q3 and Q4 did not respect angles or aspect ratio.

Moreover, users did not distinguish sketching a rectangle and a square, as illustrated in

Figure 5.9, where user C sketches the rectangle and the square similarly.

The lack of accuracy in sketches had a major effect in results for Q3, since the desired

drawing did not appeared in the firsts results. On the other hand the query for Q4 produced

good results despite the inaccurate sketches, as depicted in Figure 5.10.

Sketched Query Returned Results

Figure 5.10: Sketch for Q4 made by user C and returned drawings.

102 Chapter 5. Applications and Experimental Results

Figure 5.11: Sketch made by user A for Q6.

In queries for Q5 and Q6 users searched for similar drawings with a small geomet-

ric difference, one had two triangles inside a rectangle while the other had a square and

a triangle. This difference was clearly represented in sketches produced by users. Ad-

ditionally to the lack of accuracy referred previously, users also had no concerns about

shape alignments, as depicted in Figure 5.11. However, the results for queries Q5 and Q6

fully satisfied users, because the desired drawing was always in first or second.

Simple Technical Drawings

The major problem encountered by users when sketching a query for Q7, and for the other

drawings, was the accuracy used to draw circles. However, after a few tries users success-

fully sketched what they wanted. Despite the problems encountered during sketching,

users were very satisfied with returned results.

Sketching a query for Q8 highlighted the problem of drawing circles, because users

represented all six circles of the original drawing. The task of sketching these circles

was error-prone and sketched circles were just rough approximations of a real circle, as

depicted in Figure 5.12.

Figure 5.12: Sketch of two concentric circles.

5.1 Sketch-Based Retrieval of Moulds 103

Sketched Queries Returned Results

Figure 5.13: Sketches for Q8, one for each user, and returned drawings.

Despite the lack of accuracy in sketches for Q8, the SBR prototype always returned

the desired drawing in first place. Moreover, the first four results were the same for all

users, as illustrated in Figure 5.13.

The major difference between Q8 and Q9 was that users had to draw two squares in-

stead of two circles in the corners of the part. In spite of roughly sketched circles, squares

were easily identified, because users sketch them correctly, as shown in Figure 5.14. In-

deed sketched squares were closer to a rectangle than to a square but the resemblance is

greater than that between the sketched circle and the circle itself.

Users respected the topological relationships of shapes while drawing their sketches.

Queries for Q10 were a good example of this, because regardless the accuracy of sketched

shapes, users positioned these taking into account their relative position. In this case all

users sketched the outer rectangle and the five circles with little geometric accuracy but

respecting the placement of shapes in the original drawing, as depicted in Figure 5.15.

Figure 5.14: Detail of the sketch made by user A for Q9.

104 Chapter 5. Applications and Experimental Results

Original Drawing Sketched Queries

Figure 5.15: Original drawing (Q10) and sketches performed by each user.

Drawings for Q11 and Q12 were more complex to sketch than previous ones, because

both had several circles with different sizes and some of them were concentric. Although,

users did not represent all the circles, our system returned the wanted drawing within the

first eight results. These were due mainly because of our multilevel description scheme

that computes descriptors for several representations of the same drawing, using different

levels of detail.

5.1.2.3 Analysis and Results

During test sessions each user performed a set of sketched-queries, with the objective

of obtaining the complete filename of each searched drawing. To achieve this users had

to locate the wanted drawing in the result list returned by the SBR prototype and then

opened a pop-up window were he could find some details about the drawing. However, to

have a well defined end, we consider the task accomplished as soon as the user selected

the drawing from the results list, ignoring the time spent opening and resizing the pop-up

window to obtain the filename.

Since sketches are rough approximations of original drawings, it is acceptable that the

wanted drawing is not the first returned result. Therefore, the SBR prototype used in this

evaluation is able to return twenty similar results for each query, displaying ten at a time.

If the wanted drawing is not in the first ten results the user must proceed to the next ten.

This operation takes time and causes some mistrust to the user. So, to make our prototype

usable and trustful the desired drawing should appear in the first set of results.

We checked the position of the desired drawing within the returned results for each

query and summarized it in Figure 5.16. From the analysis of the depicted chart it is clear

5.1 Sketch-Based Retrieval of Moulds 105

0

5

10

15

20

25

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Query

O
ve

ra
ll

P
os

iti
on

User A
User B
User C

Figure 5.16: Overall position of the desired drawing in the results list.

that in the majority of the queries, wanted drawings were in the first five returned results.

Moreover, we can see that in all queries, except one, the desired drawing was within the

ten first results, giving some trust to the user.

These results report to successful queries - queries that produce a set of results that

include the desired drawing. Unsuccessful queries occurred mainly because of incorrect

polygon identification, due to the lack of accuracy in sketches.

Another measure used to evaluate our prototype was the number of sketched-queries

necessary to achieve the desired drawing. The correspondent values are presented in

Figure 5.17. Looking at this chart we can observe that in the majority of the cases we

have a successful query with the first sketch. However, there are some situations where

users had to repeat the sketch. Most of the times another iteration was enough to achieve

a successful query. Even in the worst situation users re-sketch the query only four times.

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Query

 S
ke

tc
he

s User A
User B
User C

Figure 5.17: Number of sketches drawn before finding the correct result.

106 Chapter 5. Applications and Experimental Results

0
20
40
60
80

100
120
140
160

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

Query

Ti
m

e
(s

ec
on

ds
)

User A
User B
User C

Figure 5.18: Time spent performing queries.

To be useful, a SBR system must provide good results on short notice. We measured

the total time including sketching and query execution on a Tablet PC (Pentium III @ 800

MHz, running Windows XP with 256 MB of RAM). Query execution proper took from

two to ten seconds, while the total time for users to draw the sketch and obtain results was

less than one minute, in most cases. Values for each query are shown in Figure 5.18.

Defining what is considered a short time was one of the purposes of this usability test.

From informal conversations with users and analysing their feedback during the sketching

session we noticed that they were satisfied with the amount of time spent sketching and

waiting for results.

Questionnaire

The first set of questions in the questionnaire was meant to know previous experience of

users and what kind of input devices they usually use and prefer to use. From results, we

conclude that users have a good experience with CAD tools, for 2D, 3D and modeling.

Moreover, we can say that users usually use the mouse as input device.

From the second part of the questionnaire, we tried to extract some feedback from

users about the performance of the SBR prototype to retrieve technical drawings using

sketches. Results show that users like the idea of specifying a query using sketches, that

the quality of results and the time needed to find the desired drawing are very satisfactory.

Finally, from the third part of the questionnaire, we wanted to know what users think

5.1 Sketch-Based Retrieval of Moulds 107

about the user interface of the SBR prototype. All users considered the drawing area

too small and the buttons area too big, but they liked the general layout of the window.

Users required a new design for the Query icon, but considered that the others are good.

Another suggestion common to all users was the substitution of the Up and Down buttons

by a Scrollbar to control the displayed results. Regarding to the presentation of results,

users refer that it was difficult to locate at a glance a specific drawing among ten similar

ones. They suggested displaying only five results at a time.

5.1.2.4 Conclusions

We have described our preliminary usability test for the Sketch-Based Retrieval pro-

totype. We tried to evaluate the main retrieval algorithms and the user interface of the

prototype. This experiment was also important to see how users sketch queries using a

Tablet PC and a pen. To that end we involved three draftspeople working in the mould in-

dustry. Subjects performed different sketching tasks to search for a set of drawings using

our prototype.

Notwithstanding the low number of users involved, preliminary results are very en-

couraging. In the majority of the queries, sought drawings were among the first five results

and almost always within the first ten results, which gave some trust to users. One of the

things that we observed during the execution of tasks was that users did not care about

where in the order of retrieval the intended drawing appears, the important fact being that

it was there. One of the users produced this comment ”It [the SBR system] found it [the

drawing]! That is what counts!”

In summary, users liked the interaction paradigm very much (sketches as queries),

were satisfied with returned results and pleased with the short time they had to spend to get

what they wanted in contrast to more traditional approaches. From users’ comments and

suggestions, and from our observations, we are improving our prototype and algorithms.

We plan to test the new version of the prototype with a larger number of users and with a

larger database of drawings, to get more supported results and conclusions.

108 Chapter 5. Applications and Experimental Results

5.2 Sketch-Based Retrieval of Clip-Art Drawings

These days there are a lot of vector drawings available for people to integrate into doc-

uments. Typically, such clip-art drawings tend to be achieved and accessed by categories

(e.g. food, shapes, transportation, etc.). However, to find a drawing among hundreds of

thousands is not an easy task.

In this section we present and evaluate an application to index and retrieve clip-art

drawings by content, using topological and geometric information automatically extracted

from graphics [Fonseca 04a, Fonseca 04c, Fonseca 04b]. This prototype can already han-

dle databases with thousands of drawings using commodity hardware. To evaluate it we

conducted preliminary usability tests with twelve users that performed two tasks and an-

swered a questionnaire at the end. The experiment involved a database of 968 clip-art

drawings and seven queries.

5.2.1 Application Description

We developed a prototype to retrieve clip-art drawings, called Bajavista3, which al-

lows retrieving sets of drawings similar to a hand-sketched query.

Figure 5.19 depicts a screen-shot of our application. On the top-left we can see the

sketch of a cloud and on the bottom results returned by the implied query. These results

are ordered from left to right, with the most similar on the left. It is also possible to

perform Query-by-Example allowing the user to select a result and use it as the next

query, since our classification scheme handles graphics and sketches in the same manner.

Additionally, this system also includes a set of heuristics to simplify drawings. These

eliminate redundant information and useless elements from vector graphics, increasing

the processing speed and reducing the complexity of extracted information. The classi-

fication component of this system extracts topological and geometric information from

drawings, convert it in descriptors and insert these into the correspondent topological and

3More information can be found inhttp://immi.inesc-id.pt/projects/bajavista/

5.2 Sketch-Based Retrieval of Clip-Art Drawings 109

Figure 5.19: Clip-art finder prototype.

geometric indexing structures. In this application we created an indexing structure with

the topological information from all drawings and an indexing structure for each drawing

with its geometric information. Additionally, we had to create another indexing structure

with geometric information from all drawings. This extra indexing structure is used when

users draw just a polygon as query. In this situation, there is no topological information

and consequently the fastest way is to only perform geometric matching using this extra

structure.

5.2.2 User Evaluation Tests

These tests served mainly to evaluate the quality of returned results, and consequently

of the classification and retrieval algorithms. Additionally, we collected feedback about

the general utility of an application of this kind and about its user interface functionality,

through a questionnaire.

5.2.2.1 Experiment Description

We conducted preliminary usability tests using a Wacom Cintiq LCD digitizing tablet

and a cordless stylus to sketch queries. We involved twelve users, 8 males and 4 females,

110 Chapter 5. Applications and Experimental Results

from 23 to 31 years old. All users were used to computers, but none of them have ever

used a digitizing tablet. For testing, we used a database of 968 clip-art drawings. These

drawings were classified using our multilevel scheme to derive descriptors for each level

of detail and for each subpart. This way, we not only describe the overall drawing, but we

also describe subparts and different levels of representation of it. Resulting descriptors

were then inserted into NB-Trees.

Our experiment was made of three parts. First, we gave users a brief description of

our prototype, and allowed them to practice using the digitizing tablet. Second, users

performed two tasks, one where they searched drawings from a verbal description and

other where we provided sample drawings. Finally, users answered to a questionnaire.

Clip-art Database The set of 968 clip-art drawings used in our experimental evaluation

was extracted from a sample clip-art CD. We selected drawings from different categories,

such as, food, transportation, etc. Figure 5.20 shows some clip-art drawings from our

database.

Figure 5.20: Example of clip-art drawings from our database.

Task 1 This task comprises the searching of drawings by providing users with verbal

queries describing objects. We asked users to search for:

5.2 Sketch-Based Retrieval of Clip-Art Drawings 111

• Q1 - A car.

• Q2 - A cloud.

• Q3 - A bunch of grapes.

• Q4 - A beret.

The main goal of this task was to measure users satisfaction about returned results. We

told users that they could also use Query-by-Example,i.e. they could use a result as query,

to get at more results.

Task 2 In Task 2 we asked users to search for drawings provided by us. The goal of

this experiment was to check in what position of the result list the corresponding drawing

appeared.

Q5 Q6 Q7

Figure 5.21: Drawings used as query examples.

5.2.2.2 Analysis and Results

Task 1 The outcome from this task revealed that searching by sketch was in general

less successful than using Query-by-Example (QbE), as shown in Figure 5.22. This is

due mainly to the way people drew objects described verbally.

Task 2 The second task produced diverse outcomes, which must be analyzed one by

one (see Figure 5.23). Drawing Q5 produced the best results, because it is made of simple

112 Chapter 5. Applications and Experimental Results

2,58

3.5

1

2

3

4

S
at

is
fa

ct
io

n

Sketch QbE

2.58

3.5

1

2

3

4

S
at

is
fa

ct
io

n

Sketch QbE

Q1 Q2

2.67
2.17

1

2

3

4

S
at

is
fa

ct
io

n

Sketch QbE

2.42
2.92

1

2

3

4

S
at

is
fa

ct
io

n
Sketch QbE

Q3 Q4

Figure 5.22: User satisfaction about returned results (1-Bad 4-Good).

geometric shapes (and consequently easy to draw) and has topological relationships be-

tween its elements. The wanted drawing for this query was almost always among the first

six results. Drawing Q6 presented average to poor results, because it has a very strong ge-

ometric component, requiring the user to have some drawing skill. Thus, if the user does

not draw it carefully and precisely, the final result is not the best. Finally, drawing Q7

achieved the poorest results. This drawing has some small details, which we knewa pri-

ori would be eliminated by our simplification heuristics. However, users were not aware

of that and drew all details, producing a sketch different topologically (and geometrically)

from the stored representation.

6

2
1

3

0
1
2
3
4
5
6
7
8
9

Fr
eq

ue
nc

y

[1,6] [7,12] [13,18] 19+

Image Position

0

3
2

7

0
1
2
3
4
5
6
7
8
9

Fr
eq

ue
nc

y

[1,6] [7,12] [13,18] 19+

Image Position

0
1

2

9

0
1
2
3
4
5
6
7
8
9

Fr
eq

ue
nc

y

[1,6] [7,12] [13,18] 19+

Image Position

Q5 Q6 Q7

Figure 5.23: Number of times that the wanted result appeared at a given position.

5.2 Sketch-Based Retrieval of Clip-Art Drawings 113

1

2

3

4

Utility Easy of Use Quality User Interface

Figure 5.24: Users’ opinion about the BajaVista prototype (1-Bad 4-Excellent).

Questionnaire In general, users enjoy the interaction paradigm very much (sketches as

queries), even though some did not like the idea of sketching “too much detail” when

looking for more complex drawings. They were satisfied with the returned results and

pleased with the short time they had to spend to get what they wanted in contrast to more

traditional approaches. Query times, using an AMD Duron @ 1.3GHz were between 1

and 2 seconds, which most users found satisfactory. Furthermore, users liked the user

interface and its layout, but suggested redrawing the icons.

Finally, we collected some comments from users, which we transcribe:

• ”After all this work sketching a query, I was expecting better results!” (retrieving

drawing Q6)

• ”This requires that I have some drawing skills!”

• ”I was expecting something more similar to my sketch, but this one is even better!”

(retrieving drawing Q2)

• ”Yes, it was something like this that I was searching for.”

• ”Great! It found all of this!” (searching a car using Query-by-Example in Task 1)

114 Chapter 5. Applications and Experimental Results

5.2.2.3 Conclusions

We have described our prototype to retrieve clip-art drawings and the preliminary

usability test to evaluate it. We conducted tests involving twelve users, that performed

two types of queries.

Experimental results show that the BajaVista system performs better for drawings

which contain collections of easy-to-draw shapes, with a strong topological component.

In these cases, the topological filtering is effective and reduces the number of drawings to

compare in the geometric matching. Furthermore, easy-to-draw shapes assure that users

will sketch something very similar to what is stored in the database.

5.3 Summary

In this chapter we presented two prototypes developed using the principles and com-

ponents from our approach. The Sketch-Based Retrieval prototype was developed to re-

trieve technical drawings, while the BajaVista system was developed to retrieve clip-art

drawings. These systems attack two different domains, one where the topological struc-

ture of drawings is very rich (technical drawings) and other where the geometric infor-

mation is more relevant (clip-art drawings). However, experimental evaluation with users

revealed that our approach presents good results for both domains.

We also describe the two usability tests, one with real users and other with generic

users. The main goals of these tests were to evaluate the accuracy of the classification and

retrieval algorithms and to collect feedback from users. Results from the usability tests

showed that these goals were met, since users were able to retrieve requested drawings

in a short time. Moreover, users liked the use of sketches as queries, were satisfied with

returned results and with the short time needed to achieve the desired results.

We consider our results very encouraging and comparable to other systems perfor-

mance. For instance, a comparison study of three systems for Content-Based Retrieval

5.3 Summary 115

of Images [Heesch 03] revealed that the fastest will need at least 5 seconds to find results

within a collection of 2,000 images, on a Pentium IV @ 1.8GHz. On the other hand, our

systems take less than 2 seconds to return results from a data set of 1,000 drawings using

an AMD Duron @ 1.3GHz.

116 Chapter 5. Applications and Experimental Results

6
Conclusions and Future

Work

When men speak about the future, the gods laugh.
— Chinese proverb

This chapter summarizes the dissertation, presents the final conclusions, where we

enumerate the benefits of the current approach and discuss its limitations and contribu-

tions. In addition we present new research topics opened by our work.

6.1 Summary of the Dissertation

We can divide our dissertation in three main parts: 1) a review of related work; 2) an

approach and correspondent components to support retrieving drawings from large data

sets; and 3) results and experimental evaluation. The main goal of this work was to de-

velop a set of techniques to efficiently and effectively support the retrieval of drawings

from large databases, using sketches. First, we reviewed existent research works to un-

derstand the current techniques and to explore new possibilities. Then, we combined pat-

tern recognition techniques, shape representation methods, topology information, graph

matching algorithms and multidimensional indexing structures into a new approach for

content-based retrieval of drawings. Finally, we developed prototypes using our approach

and evaluated these with users. In the next paragraphs we will summarize how each chap-

ter addressed these issues.

117

118 Chapter 6. Conclusions and Future Work

Chapter 2 started by reviewing content-based retrieval approaches for three different

domains of application, namely, images, vector drawings and 3D objects. Although, the

core of these approaches could be shared, relevant features and feature extraction mech-

anisms are different. The second part of this chapter analyzed techniques to describe

objects shape. The third part of Chapter 2 reviewed graph and subgraph isomorphism

algorithms and similarity measures between graphs. Our approach describes the spatial

organization of drawings using a topology graph. So, at the core of our approach we

would need a mechanism to compute the similarity between graphs. Finally, we deeply

analyzed current indexing structures for high-dimensional data points. Usually, retrieval

approaches convert drawing features into multidimensional vectors and the matching pro-

cess into a distance calculation between a query and a set of models stored into a database.

Normally, indexing structures are used to compute these distances efficiently. A realistic

approach to retrieve drawings from large data sets must include a very efficient indexing

structure, or else a bottle neck in the retrieval process will be created.

In Chapter 3 we first presented an overview of our approach for sketch-based re-

trieval of drawings by content. The second part of this chapter describes a data structure

for topology matching. We defined a reduced set of topological relationships (Inclusion

and Adjacency) based on Egenhofer’s set of relations and we explained how we create

our topology graphs. After, we described the computation of topological descriptors from

graphs, using graph spectrum. Our novel method to compute a multilevel description of

drawings, using levels of detail, was also presented in Chapter 3. In order to assess the

stability and accuracy of our method to describe graphs, we conducted a set of experi-

mental evaluations. In part three, we described our technique for shape representation

and compared its performance to other existing methods. Finally, we describe our two

step matching process, that first filters results employing topology and then refines results

using the geometric information.

Chapter 4 introduced another element from our approach, the multidimensional in-

dexing structure (NB-Tree). We described its algorithms, determined its computational

6.2 Final Conclusions and Discussion 119

complexity and presented a complete experimental evaluation, comparing its performance

with other well known indexing structures. The outcome from these tests revealed that

our NB-Tree outperforms all the other indexing structures. Moreover, it is important to

notice that our structure is the only one that supports data points of variable dimension.

Finally, Chapter 5 presented two prototypes for content-based retrieval of drawings,

employing our approach. One for retrieving technical drawings and the other for re-

trieving clip-art drawings. Additionally, we described preliminary usability tests, which

revealed a good acceptance from users and demonstrated that our approach can be applied

to different domains of application with success.

6.2 Final Conclusions and Discussion

While the majority of surveyed work focuses on particular aspects of content-based

retrieval, in this thesis we attacked it in three flanks, namely, content description, index-

ing and user interface. Although we have obtained results in all of them, we consider

the NB-Tree, our multidimensional indexing structure, the CALI library for shape char-

acterization and the Multilevel description method, both for content description, the most

important results. The prototype applications and correspondent usability tests at the user

interface, have been done mostly as concept demonstrators, to show that it is possible to

combine all parts of our approach in a functional system. We will now describe the bene-

fits introduced by our techniques, their limitations and review our main contributions.

6.2.1 Benefits of the Current Approach

From task analysis and informal conversations with users, we found out that there was

a need for searching and retrieving past drawings. Existent approaches based on textual

classification were not suited for their needs and other systems based on drawing-content

do not support large sets of drawings or complex drawings.

Our approach overcomes existent problems by developing mechanisms for content-

120 Chapter 6. Conclusions and Future Work

based retrieval of drawings, through hand-sketched queries. Using a pen as input device

provides the user with a more natural way of interaction, compared to other input devices

such as the keyboard. Moreover, it takes advantage of user’s natural ability at sketching

and drawing to specify queries. Unlike the majority of retrieving systems, our supports

large sets of drawings by integrating a new multidimensional indexing structure. Further-

more, from usability tests we noticed that users take advantage of our multilevel descrip-

tion scheme, because during query sessions, users did not sketch all the details of the

wanted drawing. Additionally, users liked the idea of using sketches to specify queries,

considered the returned results satisfactory and were pleased with the short time needed

to achieve the wanted drawing.

6.2.2 Limitations

Although our approach overcomes problems unsolved by other systems, it also has

some limitations. In the following paragraphs we describe the limitations of each of the

components from our approach.

One of the limitations of our indexing structure, the NB-Tree, is its degeneration in

a sequential search, when we have data sets of points with very similar Euclidean norms.

In this situation our range and KNN algorithms have to compute the distance from the

query point to all the points in the data set. However, even in this situation, our NB-Tree

outperforms other structures, such as the Pyramid Technique. On the other hand, real and

variable dimension data sets present Euclidean norm distributions that favor our indexing

technique, as illustrated in Section 4.3. Another limitation of the indexing structure is

the main memory (RAM) available, since it was designed to be load to memory before

performing any operation. Although current PCs have enough memory to accommodate

an NB-Tree with dozens of millions of data points, older PCs (with less RAM), may not

support data sets of that size.

The CALI library that we are using to describe the geometry of objects is based

mainly on global geometric features, which are good to classify simple geometric shapes.

6.2 Final Conclusions and Discussion 121

Although, experimental evaluation revealed that it also performed well describing more

general shapes, such as fish contours, we think that it will have some difficulties in de-

scribing more complex shapes.

The generic approach for content-based retrieval of drawings, described in this dis-

sertation, assumes that classified and retrieved drawings are strongly related topologically

(e.g. mould drawings, architectural plants, mechanical drawings, etc.). In other appli-

cation domains where geometry predominates over topology, the first filtering based on

topology is not fruitful. For example, in the BajaVista system we notice that the best

results were achieved when we provide reach topological information in the query.

Although results from our preliminary tests were very promising, we think that the

number of users involved and the size of the drawing sets used did not come up to our ex-

pectations. We would like to had performed tests with thousands of drawings and dozens

of users, to state with more confidence that our approach has good performance and ac-

curacy for very large sets of drawings. Even though we used a small database in our tests,

our approach has the potential to deal with large sets of drawings. The indexing structure,

that could prove the main bottle neck during retrieval, has shown good performance for

data sets around one million elements, as illustrated in Figure 4.5 (right) and Table 4.6.

From these, we believe that our approach will present good performance for large sets of

drawings.

6.2.3 Contributions

Our approach demonstrates that we can retrieve complex drawings by content from

large databases, using sketches as queries. We grouped the contributions of this research

into concepts and techniques, artifacts and experimental results.

Concepts and Techniques To reach its goals, this dissertation presented new concepts

and techniques. First, we developed a multilevel description scheme that describes draw-

ings using different levels of detail. This way, we compute several descriptors for the

122 Chapter 6. Conclusions and Future Work

same drawing, offering a mechanism to search using both coarse or very detailed rep-

resentations. Second, we created a new indexing structure that supports large sets of

high-dimensional points of variable dimension, something that is new, since all existent

indexing structures only support data points of fixed dimension. In addition, we devel-

oped a recognition library to describe the geometry of elements from drawings, that out-

performs well known techniques usually used to describe shapes. Finally, we resort to

the graph spectra to overcome the graph isomorphism problem, converting it in a simple

comparison of vector descriptors.

Artifacts Our research produced various artifacts under the form of software compo-

nents1. Two prototypes, one to classify and retrieve technical drawings and other to clas-

sify and retrieve clip-art drawings. A gesture recognition library, CALI, able to identify

a set of simple geometric shapes and some gestural commands (Appendix C presents

a detailed description of this library). A library that implements our multidimensional

indexing structure, NB-Tree, and an application to measure the performance of its algo-

rithms. Finally, an application that integrates all our theoretical developments, namely,

the multilevel description, the computation of topological descriptors using graph spec-

trum, the CALI library to compute the geometric information and the NB-Tree indexing

structure to index topological and geometric descriptors. This application can be used

(called) by any content-based retrieval system that uses our scheme (topology graphs and

geometric information) to describe objects.

Experimental Results At the practical level, the efficiency of our methodology has

been assessed. Usability tests showed that our approach is indeed usable to quickly find

drawings using sketches.

Preliminary tests of our prototypes with users revealed very encouraging results.

Users were pleased with both the returned results and the interaction mechanism (sketches).

1All these software packages are available under the GNU Public License,
at http://immi.inesc-id.pt/∼mjf.

6.2 Final Conclusions and Discussion 123

Indeed, for the majority of the queries, drawings sought were found among the topmost

five results and could almost always be found within the top ten results. These results

gave some confidence to users.

6.2.4 Final Remarks

This thesis proposed to investigate a way of enabling users to retrieve drawings from

large databases, using sketches as queries. We believe our research has met this goal.

In this dissertation, we presented interesting solutions to many problems in original

ways. For example, we described our novel multilevel description concept, that not only

offers a hierarchical description of drawings, but also allows describing drawings using

different levels of detail. This scheme computes several descriptors from the topology

graph of a drawing, allowing the retrieval either by partial matching or by coarse spec-

ification of queries. This mechanism offers a transparent way of ignoring small details

present from drawings.

To address the problem of indexing data points of variable dimension, we developed a

simple and fast multidimensional indexing structure, that outperforms current approaches.

Experimental evaluation showed that our NB-Tree can efficiently support point, range and

nearest neighbor queries for large data sets of high dimensional points.

To overcome the NP-Problem of the graph isomorphism problem, we used the graph

spectra theory to convert graphs into descriptors. Eigenvalues from the adjacency matrix

of topology graphs are combined to create topological descriptors. Then, we measured

the similarity between topology graphs by calculating the difference between descriptors

(using the Euclidean distance). Although this mapping of graphs into descriptors is not

unique, the number of collisions is small, providing us with a polynomial method to

compute approximate and inexact graph and subgraph matching.

We implemented a method to describe the shape of objects in drawings, based on

a generic gesture recognition library. This algorithm uses global geometric features

124 Chapter 6. Conclusions and Future Work

extracted from strokes to describe drawings regardless of size, rotation and number of

strokes. Each geometric element from the drawing is mapped into a descriptor that de-

scribes its geometry. Geometric similarity is then measured by computing the Euclidean

distance between descriptors.

Finally, we integrated all created components in a seamless architecture for the de-

velopment of content-based retrieval systems. The resulting approach provides an effec-

tive representation, suited for automated processing, and efficient indexing and searching

methods to retrieve drawings from large databases. For this, we proposed a combina-

tion of algorithms to generate the representation of drawings (shape and topology), a new

indexing technique to speed-up search in large data sets of drawings and a new method

based on eigenvalues of graphs to compute descriptors for topology information. We be-

lieve that our approach is general enough to handle different types of drawings (technical

or clip-art drawings, for instance) and flexible enough to handle queries specifying the

whole drawing or just subparts of it.

To test our prototypes we selected a set of potential users and not programmers writ-

ing the code. We evaluated our prototypes with real users and real drawings, performing

tasks in a possible scenario. Results from these experiments showed that users liked the

new mechanism to retrieve drawings and provided us with very important information to

improve our prototypes and algorithms.

In summary, we have presented a generic approach suitable for content-based retrieval

of structured graphics and drawings. Our method hinges on recasting the general picture

matching problem as an instance of graph matching using vector descriptors. To this end

we index drawings using a topology graph which describes adjacency and containment

relations for parts and subparts. We then transform these graphs into descriptor vectors

in a way similar to hashing to obviate the need to perform costly graph-isomorphism

computations over large databases, using spectral information from graphs. Finally, a

novel approach to multidimensional indexing provides the means to efficiently retrieve

sub-drawings that match a given query in terms of its topology.

6.3 Directions for Further Research 125

6.3 Directions for Further Research

The outcomes from this dissertation make the way for direct extensions and concep-

tual improvements to the current work. With the goal of offering an efficient and effective

mechanism to retrieve complex drawings from large databases, we foresee four areas in

which some research problems still need to be solved.

Topology Graph Currently, our topology graph only code two topological relation-

ships, Inclusion and Adjacency. One possible extension is the use of weights in adjacency

links to code different types of adjacency. This way, instead of having “adjacent” and

“not adjacent” we will have Adjacent, Very Near, Near, Far and Very Far, for instance. Or

else we could use Fuzzy Logic to convey different degrees of adjacency. There are stud-

ies [Sarkar 96] and theorems [Cvetković 97] that support and demonstrate the stability of

eigenvalues with changes in the weights of links. Moreover, Sarkar and Boyer [Sarkar 96]

verified that graphs with similar weight distribution tend to have similar spectra. Thus,

our method of using the spectrum of graphs to compute graph similarity is still valid.

Another extension to topology graphs could be the integration of both the topological

information and the geometric information into a single graph. Thus, at the end we will

have a graph and correspondent descriptor that describes simultaneously topology and

geometry. The codification of the geometric information could be done using the weights

of the Inclusion links of the topology graph.

Although these two extensions to the topology graph will provide a richer description

of drawings, some care must be taken while choosing weights for links to assure that

drawings with similar topology and geometry still have similar descriptors.

Indexing Structure Even though our indexing method outperforms current indexing

structures and supports large data sets of high-dimensional points of variable dimension,

its algorithms are linear. One possible improvement to the NB-Tree could be the research

126 Chapter 6. Conclusions and Future Work

and implementation of sub-linear algorithms. This will imply new and deeper studies of

the particularities of the Euclidean norm.

Another possibility is the development of a parallel version of the NB-Tree, allowing

the creation of a powerful search engine for drawings. Since its algorithms are simple, we

believe that this improvement to the indexing structure will not be very hard to understand

and implement.

Geometric Description and Matching Our library to describe the shape of objects is

based mainly on global geometric features. The addition and evaluation of new features to

describe shape could be one of the extensions to this library. Furthermore, these features

only allow the description of 2D objects, but if we want to extrapolate our approach to 3D

objects or surfaces, more new features will be needed.

Our current geometric matching algorithm is very simple and as we said before it

does not assure the best result, but it provides a good result in a short time. A possible im-

provement to our approach is the development of a new matching algorithm that provides

a better comparison between drawings and queries. It could for instance compare only

objects in the same level of graphs, distinguishing a circle inside a square from a square

inside a circle.

Domain of Application We have applied our approach in the development of proto-

types to retrieve vector drawings, namely technical and clip-art drawings. However, there

is no limitation to these type of data. We believe that if some effort is placed in the de-

scription part, this approach will be suitable for retrieving 3D objects or even 3D surfaces.

The important is to produce a topology graph, similar to ours, from extracted information.

This way, all existent algorithms can be used.

Some of the extensions and improvements mentioned here are part of proposed projects

or are already being tackled. The current status of this research makes us fill confident

about future outcomes from these new research areas.

A
SBR Usability Tests

This chapter presents the protocol specified for the user tests performed at CEN-

TIMFE, to evaluate our Sketch-Based Retrieval prototype.

Our experiment involved three users from CENTIMFE and was divided in three parts,

as described in the protocol. First, we gave a brief description of the experiment, then

users performed a set of tasks and finally they answered a questionnaire.

With this experimental evaluation we wanted to get feedback from users about our

first Sketch-Based Retrieval prototype and of its user interface. We videotaped all exper-

iments, measured times and took notes of users’ comments or suggestions.

During the experiment we collected the following information:

• Number of Undos

• Number of News (new query) per query

• Number of queries per search until the final results

• Time spent before finding the desired result

• Number of strokes sketched per query

127

128 Appendix A. SBR Usability Tests

Sketch-Based Retrieval Prototype

Usability evaluation session

Thank you for having accepted to participate in this experiment. Its main objectives

are the evaluation of the underlying ideas of our Sketch-Based Retrieval prototype and

the validation of its algorithms. This prototype allows the retrieval of technical drawings

using sketches to specify the desired drawing.

The schedule of this session is described in the following table, indicating the esti-

mated time for each of the foreseen tasks, with an expected total time of about 1 hour and

30 minutes.

1 Experiment Description 10 m
2 Accomplishment of tasks using our prototype50-60 m
3 Questionnaire about users, prototype and tasks10 m

This experiment intends to evaluate the utility and the effectiveness of our prototype,

so, all comments and suggestions are welcome. “Think loud” during task execution and

do not feel inhibited to point out negative or positive aspects, of the prototype.

To finish, we would like to thank you the time and effort spent.

129

Consent form

Part of this evaluation session will be videotaped and we would like to include some

excerpts in a small film about the system. Please indicate whether you authorize or not

the diffusion of the excerpts where you appear:

Yes2

No 2

Name:

Signature:

130 Appendix A. SBR Usability Tests

First set of Tasks

(Simple Drawings)

Duration: 20 min

Please perform the following 6 (six) queries using the Sketch-Based Retrieval System

and comment the returned results. Do not hesitate in making comments in loud voice, or

in asking for help whenever necessary. Start the construction of each model only after

you have been told to do so.

Query Comments

Q1

Q2

Q3

Q4

Q5

Q6

131

Second set of Tasks

(Plate Drawings)

Duration: 30 min

Please perform the following 6 (six) queries using the Sketch-Based Retrieval System

and comment the returned results. Do not hesitate in making comments in loud voice, or

in asking for help whenever necessary.

Start the construction of each model only after you have been told to do so.

Query Comments

Q7

Q8

Q9

132 Appendix A. SBR Usability Tests

Query Comments

Q10

Q11

Q12

133

Questionnaire

General questions

1 - Do you have previous experience on free-hand sketching? Yes2 No 2

2 - What kind of drawing tools do you usually use?(You can select more than one option)

a) CAD 2D 2

b) CAD 3D 2

c) Modeling 2

d) Other:

3 - How long have you been using drawing tools?

4 - What input devices have you already used?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

5 - What input device do you use most for drawing?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

6 - What input device do you prefer for drawing?(You can select more than one option)

a) Mouse 2

b) Pen and tablet 2

c) 3D Mouse 2

d) Keyboard 2

e) Other:

134 Appendix A. SBR Usability Tests

Questions about the Prototype

Please characterize the adaptation of our Sketch-Based Retrieval prototype to retrieve

technical drawings, according to:

1 - Use of sketches to specify queries. Bad Excellent

Comments:

2 - Number of iterations to achieve the wanted result. Bad Excellent

Comments:

3 - Total time to get the wanted result. Bad Excellent

Comments:

4 - Quality of results. Bad Excellent

Comments:

5 - Critics and suggestions to the Sketch-Based Retrieval prototype:

135

Questions about the User Interface

Please characterize the user interface of our Sketch-Based Retrieval system, accord-

ing to:

1 - Size of the Sketching area. Too Small2 OK 2 Too Big2

2 - Size of the Result area. Too Small2 OK 2 Too Big2

3 - Size of the Buttons area. Too Small2 OK 2 Too Big2

4 - Layout of the window. Are the three areas well distributed in the window?

Yes2 No 2

5 - Quality of Button Icons

a) Quit button Bad Excellent

Comments:

b) Help button Bad Excellent

Comments:

c) Query button Bad Excellent

Comments:

d) Undo button Bad Excellent

Comments:

136 Appendix A. SBR Usability Tests

e) New button Bad Excellent

Comments:

f) Up button Bad Excellent

Comments:

g) Down button Bad Excellent

Comments:

6 - Functionality Bad Excellent

Comments:

7 - Critics, suggestions or new functions to integrate in the user interface of the prototype:

B
BajaVista Usability Tests

Task 1

Suppose you want to find a set of drawings related to the objects described below.

Please draw a sketch for each of the objects described. If one of the results is similar to

what you are looking for, you can use this result as a new query (Query-by-Example). For

each of the following objects, please classify your degree of satisfaction.

Q1 - Car
Using Sketches Discontent Very Pleased

Using Query-by Example Discontent Very Pleased

Q2 - Cloud
Using Sketches Discontent Very Pleased

Using Query-by Example Discontent Very Pleased

Q3 - Bunch
of grapes

Using Sketches Discontent Very Pleased

Using Query-by Example Discontent Very Pleased

Q4 - Beret
Using Sketches Discontent Very Pleased

Using Query-by Example Discontent Very Pleased

137

138 Appendix B. BajaVista Usability Tests

Task 2

Suppose that you are searching for the drawings depicted below. Please draw a sketch

to retrieve these drawings and take note of the position where it appeared.

Q5
Position in the Results list

2 - between 1 and 6

2 - between 7 and 12

2 - between 13 and 18

2 - greater than 19

Q6
Position in the Results list

2 - between 1 and 6

2 - between 7 and 12

2 - between 13 and 18

2 - greater than 19

Q7
Position in the Results list

2 - between 1 and 6

2 - between 7 and 12

2 - between 13 and 18

2 - greater than 19

139

Questionnaire

Please classify the BajaVista prototype according to the following points:

1 - Utility of a program of this kind.

Bad Excellent

2 - Easyness in finding what you want.

Bad Excellent

3 - Quality of results.

Bad Excellent

4 - Quality of the user interface.

Bad Excellent

140 Appendix B. BajaVista Usability Tests

C
CALI: An Online Scribble

Recognizer for
Calligraphic Interfaces

User interfaces are evolving away from the classical WIMP (windows, icons, mouse

and pointing) paradigm. Among the new generation of intelligent systems there is a broad

class based on new modalities such as sketching, hand-drawing and stylus input gestures,

which we call calligraphic interfaces [Jorge 94]. These interfaces rely on gesture recog-

nition components to identify sets of visual elements and commands, and help people use

computers in more engaging and natural modes. To this end, we have developed a sim-

ple recognizer capable of identifying the most common constructs and gestures used in

drawings. The techniques described in this appendix, have been put to good use in shape

characterization (see Section 3.3). We have found out that the features used for geometric

classification of gestures can also be used for describing arbitrary shapes effectively. Here

we describe our techniques applied to gesture and shape recognition.

We will now describe our shape and gesture recognizer, called CALI. It is a fast,

simple and compact online recognizer that identifies Scribbles (multi-stroke geometric

shapes) drawn with a stylus on a digitizing tablet. Our method is able to identify shapes

of different sizes and rotated at arbitrary angles, drawn with dashed, continuous strokes

or overlapping lines. We use temporal adjacency to allow users to input the most com-

mon shapes in drawing such as triangles, lines, rectangles, circles, diamonds and ellipses,

using multiple strokes. We have further extended this approach to identify useful shapes

such as arrows, crossing lines and unistroke gesture commands and have developed a li-

141

142 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

brary of software components to make this software generally available. The recognition

algorithm uses Fuzzy Logic and geometric features, combined with an extensible set of

heuristics to classify scribbles. Evaluation results show recognition rates over 97%.

The rest of the this chapter is organized as follows. First we describe related work

about calligraphic interfaces and gesture recognizers. Then we present our gesture rec-

ognizer, CALI. In Section C.2 we identify the geometric features used by the recognizer,

we explain how Fuzzy Logic is integrated in the recognizer and how it models ambiguity.

The next section describes CALI architecture and its main classes. Finally, we present the

results of our experimental evaluation and some conclusions.

C.1 Motivation and Related Work

The idea of calligraphic interfaces is not new. Sutherland presented Sketchpad the

first interactive system that used one light pen to draw diagrams directly over the screen

surface [Sutherland 63]. Nevertheless, due in part to ergonomic problems with the light

pen and the invention of the mouse in 1964, current graphical interfaces relegated pen-

based interactions to specific CAD applications. Things changed with the appearance of

the first pen computers in 1991, even though pens were used mainly to input text through

handwriting recognition.

The Newton system [Kounalakis 93], one of the first hand-held pen-based computers,

incorporates handwriting, shape and gesture recognizers. While the shape recognizer only

handles uni-stroke, axis-aligned shapes, the gesture recognizer is more suitable for text

editing than for drawing schematics.

Our work is based on a first approach to recognize schematic drawings developed at

the University of Washington [Apte 93], which recognized a small number of non-rotated

shapes and did not distinguish open/closed, dashed or bold shapes. Zhao described an

interactive editor [Zhao 93] based on the StateCharts [Harel 87] formalism. Although the

editor uses a mouse and direct manipulation, many of the ideas described by Zhao express

C.2 The Recognition Algorithm 143

an approach based on diagram recognition guided by syntax. Gross described a system

fundamentally based on sketches that are partially interpreted for use in architecture draw-

ings, using a recognizer substantially simpler and less robust than ours [Gross 96b]. Al-

though this recognizer is trainable, the number of identified shapes is apparently smaller

than ours. Landay uses a recognizer developed by Rubine [Rubine 91] to sketch graph-

ical arrangements of bidimensional documents [Landay 96]. Rubine’s recognizer is a

trainable single-stroke gesture recognizer that uses a classic linear discriminator-training

algorithm. One main advantage of our approach over Rubine’s is that our method allows

the user to draw scribbles without any restriction and as close as possible to the intended

shapes. This way, we can recognize shapes without the limitation of being single-stroked

(i.e., without having to rule out crosses or arrows).

Other authors [Ulgen 95] have proposed more complex methods, involving neural

networks, to identify a small number of geometric shapes (rectangles, squares, circles,

ellipses and triangles). These shapes are recognized independently of size and rotation,

but they cannot be drawn using dashed or bold lines. Even though the authors claim good

performance for their method, the paper does not present clear measurements to back their

claims.

C.2 The Recognition Algorithm

The recognition method used in CALI is based on three main ideas. First, we use en-

tirely global geometric properties extracted from input shapes, because we are interested

in identifying geometric entities. Second, to enhance recognition performance, we use

a set of filters either to identify shapes or to remove unwanted shapes using distinctive

criteria. Third, to overcome uncertainty and imprecision in shape sketches, we use fuzzy

logic [Bezdek 92] to associate degrees of certainty to recognized shapes, thereby handling

ambiguities naturally.

This algorithm recognizes elementary geometric shapes, such asTriangles , Rec-

144 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

Figure C.1: Shapes identified by the recognizer.

tangles , Diamonds , Circles , Ellipses , Lines andArrows , and five gesture

commands,Delete , Cross , WavyLine , Move andCopy, as depicted in Figure C.1.

Shapes are recognized independently of rotation, size or number of strokes.

The set of shapes selected and presented in Figure C.1 are the basic elements to al-

low the construction of technical diagrams such as electric or logic circuits, flowcharts or

architectural sketches. These diagrams also require distinguishing between solid, dashed

and bold depictions of shapes in the same family. Typically, architects will use multiple

overlapping strokes to embolden lines in sketches, a mechanism commonly used in draw-

ing packages. We are therefore interested in recognizing different renderings of a given

shape as illustrated in Figure C.1. We are just interested in collecting qualitative differ-

ences, not in obtaining precise values for attributes, without regard to different line-styles

and widths.

The algorithm works by collecting strokes from a digitizing tablet. A stroke is the set

of points from pen-down to pen-up. We collect strokes into scribbles until a set timeout

value is reached. Recognized scribbles are classified as shapes. A shape associates a

scribble with a class (e.g.Triangle) and a set of geometric attributes, such as start-

and end-points and bounding box. The recognizer works by looking up values of specific

features in fuzzy sets associated to each shape. This process may yield a list of plausible

shapes ordered by degree of certainty. If the recognizer cannot associate any shape to the

scribble, it will return theUnknown shape, together with some basic geometric attributes,

such as line-style and “openness”.

C.2 The Recognition Algorithm 145

Figure C.2: Polygons used to estimate features.

C.2.1 Geometric Features

After collecting each scribble from the digitizing tablet, we compute the convex hull

(ch) of its points, using Graham’s scan [O’Rourke 98]. We then use this convex hull

to compute three special polygons. The first two are the largest area triangle (lt) and

quadrilateral (lq) inscribed in the convex hull [Boyce 85]. The third is the smallest area

enclosing rectangle (er) [Freeman 75] (see Figure C.2). Finally we compute the area and

perimeter for each special polygon, to estimate features and degrees of membership for

each shape class.

To select features that best identify a given shape, we built percentile graphics for

each feature. These graphics illustrate the statistical distribution of feature values over the

different classes, extracted from sample drawings. For each shape, the solid bar spans the

25% to 75% percentiles, while the line extends from 10% to 90% of all observed values

of a given feature.

Our initial selection of features takes into account specific properties of shapes to

identify. Associated with these features we infer fuzzy sets from training data, which ex-

press the allowable values of a feature for a given shape. Usually one feature alone is not

enough to distinguish shapes, yielding incorrect classifications. We then add extra fea-

tures (with corresponding fuzzy sets) to prevent unwanted classifications, yielding more

complex rules as needed. The main features we use are ratios between perimeters and

areas of the special polygons described above.

146 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

12.5
13.5
14.5
15.5
16.5
17.5
18.5
19.5
20.5

L
in

e

C
ir

cl
e

E
lli

ps
e

R
ec

ta
ng

le

D
ia

m
on

d

T
ri

an
gl

e

D
el

et
e

W
av

yL
in

e

C
op

y

M
ov

e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

L
in

e

E
lli

ps
e

R
ec

ta
ng

le

D
ia

m
on

d

T
ri

an
gl

e

D
el

et
e

W
av

yL
in

e

C
op

y

M
ov

e

Figure C.3: Percentiles for theP 2
ch/Ach (left) andHer/Wer (right) ratios.

To distinguishCircles from other shapes we use theThinnessratio (P 2
ch/Ach),

whereAch is the area of the convex hull andP 2
ch is its perimeter squared. The thin-

ness of a circle is minimal, since it is the planar figure with smallest perimeter enclosing a

given area, yielding a value near4π (see Figure C.3-left). In this figure the thinness values

for Lines andWavyLines lie outside the range of values indicated. We chose not to

indicate these values in order to make the range of values forCircles more visible.

We identifyLines using the aspect ratio, which compares the height of the enclosing

rectangle (Her) with its width (Wer). TheHer/Wer ratio will have values near zero for

lines and bigger values for other shapes (see Figure C.3-right).

In order to identifyRectangles we use two ratios. One relates the convex hull to

the enclosing rectangle while the other measures the largest quadrilateral that fits inside

the convex hull against the enclosing rectangle. For rectangular shapes the area of the

convex hull will be very close to that of the enclosing rectangle (Aer) and this one will be

very close to the largest quadrilateral’s (Alq). TheAch/Aer andAlq/Aer ratios will have

values near unity for rectangles (see Figure C.4).

0.5
0.6
0.7
0.8
0.9

1

E
lli

ps
e

R
ec

ta
ng

le

D
ia

m
on

d

T
ri

an
gl

e

D
el

et
e

W
av

yL
in

e

C
op

y

M
ov

e

0.5
0.6
0.7
0.8
0.9

1

E
lli

ps
e

R
ec

ta
ng

le

D
ia

m
on

d

T
ri

an
gl

e

D
el

et
e

W
av

yL
in

e

C
op

y

M
ov

e

Figure C.4: Percentiles for theAch/Aer (left) andAlq/Aer (right) ratios.

C.2 The Recognition Algorithm 147

0.6
0.7
0.8
0.9

1

E
lli

ps
e

D
ia

m
on

d

T
ri

an
gl

e

D
el

et
e

W
av

yL
in

e

C
op

y

M
ov

e 0
1
2
3
4
5

D
ia

m
on

d

T
ri

an
gl

e

D
el

et
e

W
av

yL
in

e

C
op

y

M
ov

e

Figure C.5: Percentiles for theAlq/Ach (left) andTl/Pch (right) ratios.

We identifyEllipses by comparing the area of the largest quadrilateral to that of

the convex hull. TheAlq/Ach ratio will have values near 0.7 for ellipses and bigger values

for other shapes (see Figure C.5-left). This is more robust than usingAch/Aer which is

too ambiguous.

Since this recognizer is intended for interactive use, we are interested in detecting

gestures such as a set of zigzag strokes drawn in succession to signify erasing objects

underneath. Using our geometry approach, we detect this pattern by comparing the total

length of strokes (Tl) drawn to the perimeter of the convex hull (Pch). TheTl/Pch ratio

has large values for theDelete command, and smaller values for other shapes (see

Figure C.5-right).

To distinguishDiamonds from other shapes we divide the area of the largest triangle

that fits inside the convex hull (Alt) by the area of the largest quadrilateral. TheAlt/Alq ra-

tio has values between 0.5 and 0.6 for diamonds and bigger ones for other shapes (see

Figure C.6-left).

To identify Triangles andMove gestures we compare the area and perimeter of

0.5
0.6
0.7
0.8
0.9

1

D
ia

m
on

d

T
ri

an
gl

e

W
av

yL
in

e

C
op

y

M
ov

e

0.4
0.5
0.6
0.7
0.8
0.9

1

Triangle WavyLine Copy Move

Figure C.6: Percentiles for theAlt/Alq (left) andAlt/Ach (right) ratios.

148 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

0.875

0.9

0.925

0.95

0.975

1

Triangle WavyLine Copy Move

10

20

30

40

50

WavyLine Copy

Figure C.7: Percentiles for thePlt/Pch (left) andP 2
ch/Ach (right) ratios.

the largest triangle to that of the convex hull.Alt/Ach andPlt/Pch ratios will have values

near unity for triangles and moves, and smaller values for other shapes (see Figure C.6-

right and C.7-left). We distinguish these two shapes using the openness of the move

command. TheCopy command is recognized using the thinness ratioP 2
ch/Ach (see Figure

C.7-right). It has values near 15 while others have bigger values.

TheWavyLine gesture has two attributes that allow the distinction from other shapes.

First it is a little “fatter” than lines, so theHer/Wer ratio has bigger values (see Figure C.3-

right). Second, its total length is smaller than the total length of theDelete command,

so theTl/Pch ratio has smaller values (see Figure C.5-right).

To distinguishDashed from solid lines we use the ratioPch×Ns/Tl whereNs is the

number of strokes in the scribble. Because dashed shapes have a large number of strokes,

with a small total length, this ratio exhibits large values for dashed shapes and smaller

values for closed shapes. TheTl/Pch ratio separatesBold from solid lines. Values bigger

than 1.5 indicate redundant strokes (i.e. Bold lines).

Recognizing shapes drawn using overlapping strokes to signifyBold line-style con-

flicts with theDelete command, because we use the same feature (Tl/Pch) in the same

manner to identify both. To solve this conflict we introduce a heuristic feature to distin-

guish “filled” from “hollow” shapes. Hollow shapes do not have points near the barycen-

ter. To computehollownesswe first calculate a triangle, whose dimensions are roughly

60% of the largest triangle that fits inside the convex hull and shares the same barycenter.

We then count scribble points lying inside the smaller triangle. Shapes likeTriangles ,

C.2 The Recognition Algorithm 149

Figure C.8: Hollowness ofDelete andEllipse .

Rectangles , Circles , Ellipses or Diamonds should not have any point inside,

butWavyLines or Delete gestures must have (see Figure C.8).

Figure C.9 lists all shapes identified by the recognizer and the features used by each.

As described earlier, conductive rules combine assertions or negations of these features

as we shall see in the next section.

A
ch

/A
er

A
lq

/A
ch

A
lt/

A
ch

A
lq

/A
er

A
lt/

A
lq

Pl
t/P

ch

Pc
h/

Pe
r

Pl
q/

Pc
h

N
st

ro
ke

s

H
ol

lo
w

ne
ss

Pc
h2

/A
ch

H
er

/W
er

T
l/P

ch

Pc
h*

N
s/

T
l

Line X
Arrow X
Triangle X X X X X
Rectangle X X X
Circle X X
Ellipse X X X
Diamond X X X X X
Delete X X X X
WavyLine X X X X
Copy X X X X X X
Move X X X X X X
Cross X X X

Figure C.9: Features used by each shape.

150 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

Figure C.10: Definition of a fuzzy set.

C.2.2 Deriving Fuzzy Sets from Training Data

To choose the “best” fuzzy sets describing each shape class we used a training set

developed by three subjects, who drew each shape thirty times; ten times using solid lines,

ten times using dashed lines and ten times using bold lines. Based on this training set we

defined several ratios, combining among others the area and perimeter of the polygons

described above.

Each shape is defined by several fuzzy sets, some of which identify the shape while

others serve to avoid “wrong” results. We do not use the same number of features for all

shapes. Some shapes require no more then one or two features. In general we tend to avoid

using “too many” fuzzy sets to characterize a shape. This requires careful data analysis

and experimentation to find the “right values”, that is, those yielding higher recognition

rates and less misrecognitions (false positives). The simplest case is that of a line, which

is distinguished by thinness alone.

A fuzzy set is defined by four values, as depicted in Figure C.10. After selecting the

features for each shape, we compute these four values based on the percentiles. Valuesb

andc correspond to the 10% and 90% percentiles respectively, anda andd to the “min-

imum” and “maximum” after we have identified outliers in each distribution. Removing

these outliers minimizes confusion between different shape families, which rises from

overlap in distributions. Thus, there is a trade-off in designing fuzzy sets from statistical

data. If a and d are set very wide apart the recognition rate increases, as well as the

number of false positives. “Narrower” values decrease the number of false classifications

at the cost of a much lower recognition rate. Abe and Lan [Abe 96] discuss an automated

procedure for collecting this information using activation and inhibition hyper-boxes. We

C.2 The Recognition Algorithm 151

chose to generate rules manually, since their approach is not sufficiently flexible for our

purposes.

C.2.3 Deriving Results from Fuzzy Sets

After collecting input points from the tablet and computing the special polygons from

scribble data, the recognizer calculates the degree of membership (dom) for each shape

class. This degree is the result ofANDing together degrees of membership for the relevant

fuzzy sets. In the following paragraphs we exemplify how to build rules that classify

shapes. The first rule identifiesLines while the second definesDiamonds .

The rule on the left of Figure C.11 is the simplest rule used in our recognizer. It

ascertains that “very thin” (Her/Wer ' 0) scribbles should be classified asLines . A

more complicated rule (Figure C.11-right) recognizesDiamonds , whereANDdenotes

the conjunction of fuzzy predicatesµx(fANDg) = min(µx(f), µx(g)) andNOTis defined

by µx(NOT f) = 1− µx(f).

The algorithm distinguishes betweenSolid , Dashed andBold styles after identi-

fying “basic” shapes. This enables us to treat line-style as an attribute orthogonal to shape,

making the design of our recognizer more modular and easier to add different shapes in

the future.

IF Scribble IS VERY THIN IF Scribble IS LIKE Diamond AND
THEN Scribble IS NOT LIKE Ellipse AND

Shape IS A Line Scribble IS NOT LIKE Bold Line AND
Scribble IS NOT LIKE Rectangle
THEN

Shape IS A Diamond

Figure C.11: Example rules to classify shapes.

152 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

Figure C.12: Different types ofArrows .

C.2.4 Re-segmentation

An approach based entirely on global geometric properties has some limitations.

Even thoughArrows or Crosses cannot be recognized using this approach, it would

be useful if our recognizer identified them, since they are commonly used in most dia-

gram notations. In order to recognize these shapes we must look for new properties that

characterize them. Among those, we can consider the small number of strokes, or the ex-

istence of a stroke that uniquely identifies the shape, or a distinct spatial relation between

strokes. For exampleArrows are built of a variable set of strokes terminated by a last

stroke which is either aTriangle or aMove shape, as shown in Figure C.12. Finally, a

Cross consists of two intersecting strokes (that must beLines).

The next two rules presented in Figure C.13 show how we classify these shapes. The

first rule identifiesArrows while the second definesCrosses . We analyze these new

properties by re-segmenting the original scribble and by applying the recognition process

to some specific strokes, e.g. the last stroke in theArrow . Re-segmentation allows

recognizing new gestures that could not be identified using just geometric properties.

IF NumStrokes >= 2 AND IF NumStrokes == 2 AND
(LastStrk IS LIKE Triangle OR FirstStrk IS LIKE Line AND
LastStrk IS LIKE Move) SecondStrk IS LIKE Line AND

THEN FirstStrk INTERSECT SecondStrk
Shape IS A Arrow THEN

Shape IS A Cross

Figure C.13: Rules to identifyArrows andCrosses .

C.2 The Recognition Algorithm 153

Figure C.14: Ambiguity cases among shapes.

C.2.5 Ambiguity

Considering the shapes identified by the recognizer, we present four special cases

which can yield ambiguous results. Ambiguity exists betweenLines andWavyLines ,

WavyLines andDeletes , Circles andEllipses , Diamonds andRectangles .

These cases are presented in Figure C.14.

Humans solve this natural ambiguity between geometric shapes, by identifying more

than one shape and making the final distinction based on the surrounding context or using

feedback from others. The recognizer described in this paper deals with ambiguity be-

tween shapes in a similar way, i.e. when it can not uniquely identify a geometric shape, it

returns a list of plausible candidates. The application can then choose the best candidate

using context information. The ambiguities between shapes are modeled naturally using

fuzzy logic to associate degrees of certainty to recognized shapes. Figure C.15 illustrates

corresponding fuzzy sets for the ambiguous cases shown in Figure C.14.

Figure C.15: Fuzzy sets representing the ambiguity cases supported by the recognizer.

154 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

Figure C.16: A simplified version of the CALI architecture.

C.3 Architecture

The CALI library was developed to be platform independent. Actually, there are two

packages available [Fonseca 00a], one for Linux and another for MS Windows.

Figure C.16 shows the main blocks of the recognizer as well as the blocks to develop

on the application side. One of the blocks, on the application side, is responsible for col-

lecting the individual points of the strokes, while the other is responsible for receiving and

manipulating the shapes returned by the recognizer. The code developed on the applica-

tion side is machine dependent, unless we use a graphical package, like the wxWindows

or the Qt toolkit.

The first block of the recognizer receives strokes from the application and computes

the corresponding geometric features. The second identifies the correct shape based on

the values computed before. The recognized shapes are inserted in a list, order by degree

of certainty, and returned to the application.

Figure C.17 presents the main interface classes exposed to clients of the CALI library,

which we describe below.

C.3 Architecture 155

Figure C.17: Class diagram.

CIRecognizer Main component of the library that interacts directly with calligraphic

applications identifying hand drawn scribbles. This class implements a recognizer

of geometric shapes and gesture commands based mainly on geometric information.

CIGesture Defines all the recognized entities, shapes and commands. The objects of this

class have the original scribble and the recognition degree of certainty associated to

them.

CIShape A Shape is a special case of gesture, that models all geometric shapes (Line,

Circle, Rectangle, etc.). All instances of this class have attributes, like open, dashed

or bold, and a geometric definition (a set of points).

156 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

CICommand A special case of gesture, but without attributes or geometric definition.

Commands do not have a visual representation and usually trigger an action.

CIScribble This class represents a scribble, which is built from a set of strokes. From a

scribble we can compute some special polygons, like the Bounding Box, the Convex

Hull, the Largest Triangle, etc., used during the recognition process.

CIStroke Defines a stroke composed by a set of points. It has methods to add points, to

know the number of points, to get the points and to compute the total length of the

stroke.

CIPoint Models a bidimensional point with a time stamp.

C.4 Experimental Evaluation

To evaluate the recognition algorithm, we asked nine subjects to draw each multi-

stroke shape 40 times, using solid, dashed and bold lines, 30 times each uni-stroke shape

and a simple Entity/Relationship diagram with 22 shapes. All these drawings yield a total

of 4068 shapes. Subjects were told that the experiment was meant to test recognition, so

they did not try to draw “unnatural” shapes.

We used a Wacom PL-300 LCD digitizing tablet and a cordless stylus to draw the

shapes. We gave a brief description of the recognizer to the users, including the set of rec-

ognizable shapes. We also told them about the multi-stroke shape recognition capabilities

and the independence of changes with rotation or size. Novice subjects had a short prac-

tice session in order to become acquainted to the stylus/tablet combination. During the

drawing session the recognizer was turned off in order not to interfere with data collection

and to avoid any kind of adaptation from the user.

The recognizer successfully identified 95.8% of the scribbles drawn considering just

the first shape identified. It is fast: each scribble requires, on average, less than 50 ms

(using a Pentium II @ 233 MHz) to be recognized, from feature vector computation to

C.5 Summary 157

Recognized

Shapes

L
in

e

A
rr

ow

T
ri

an
gl

e

R
ec

ta
ng

le

D
ia

m
on

d

C
ir

cl
e

E
lli

ps
e

D
el

et
e

W
av

iL
in

e

C
op

y

M
ov

e

C
ro

ss

U
nk

no
w

n

Line 97.7 0.5 1.4 0.2 0.2
Arrow 0.5 90.2 0.3 0.3 8.7
Triangle 0.3 0.8 97.8 0.6 0.6
Rectangle 0.2 0.5 96.9 1.4 0.2 0.7
Diamond 0.8 8.4 87.8 0.3 0.3 0.5 1.9
Circle 0.3 97.2 2.5
Ellipse 1.1 97.6 0.5 0.8
Delete 0.4 98.9 0.7
WavyLine 2.0 2.7 94.6 0.7
Copy 99.6 0.4
Move 3.0 94.8 2.2
Cross 97.0 3.0

D
r
a
w
n

Figure C.18: Confusion matrix (values in percentages).

final classification.

A cursory analysis of the confusion matrix, shown in Figure C.18, reveals thatDia-

monds are often confused withRectangles , and have the lowest recognition rate.

Arrows are other shape which exhibits low recognition rate. The former is due to the

ambiguity betweenRectangles and Diamonds that favorsRectangles and the

latter is due to incorrect drawing (single-stroke) of arrows by users. We can also identify

other cases of confusion between shapes, such asCircles with Ellipses , Moves

with Triangles and finallyWavyLines with Lines and withDeletes . In fact, the

confusion between these shapes is both an acceptable andintuitivebehavior.

Since ambiguity is one of the main characteristics of our recognizer, we prefer to

consider the top three shapes identified instead of just the most likely one. Using this,

when we take this route, the recognition rate increases to 97%.

C.5 Summary

We have described a simple, fast and robust approach to recognize multi–stroke geo-

metric shapes drawn with different line styles and rotated at arbitrary angles. Additionally,

158 Appendix C. CALI: An Online Scribble Recognizer for Calligraphic Interfaces

it also identify a set of gesture commands, that can be used to trigger actions. Our intent

was to provide more a means to support calligraphic interaction rather than a totally robust

and “foolproof” approach to reject shapes outside the domain of interest.

The recognizer uses fuzzy rules to classify geometric shapes and introduced re-seg-

mentation to identify higher-level patterns such asArrows andCrosses . Additionally,

it uses fuzzy logic to model ambiguities between shapes.

The high recognition rates (97%) and fast response characteristic (less than 50ms in

a Pentium II) of this recognizer make it very usable in interactive applications. Finally,

we have developed a library of software components, making the source code of this

recognizer publicly available athttp://immi.inesc-id.pt/cali .

Bibliography

[Abe 96] Shigeo Abe and Ming-Shong Lan. Efficient Methods for Fuzzy Rule

Extraction From Numerical Data. In C. H. Chen, editor,Fuzzy Logic

And Neural Networks Handbook, pages 7.1–7.33. IEEE Press, 1996.

[Aigrain 96] P. Aigrain, H.J. Zhang, and D. Petkovic. Content-Based Representa-

tion and Retrieval of Visual Media: A State-of-the-Art Review.Mul-

timedia Tools and Applications, 3(3):179–202, November 1996.

[Allen 83] J. F. Allen. Maintaining Knowledge About Temporal Intervals.Com-

munications of the ACM, 26(11):832–843, November 1983.

[Apte 93] Ajay Apte, Van Vo, and Takayuki Dan Kimura. Recognizing Multi-

stroke Geometric Shapes: An Experimental Evaluation. InProceed-

ings of the Sixth ACM Symposium on User Interface Software and

Technology (UIST’93), pages 121–128, Atlanta, GA, USA, 1993.

[Badel 92] A. Badel, J. P. Mornon, and S. Hazout. Searching for Geometric

Molecular Shape Complementary Using Bidimensional Surface Pro-

files. Journal of Molecular Biology, 10:205–211, December 1992.

[Bakergem 90] D. V. Bakergem. Image Collections in The Design Studio. InThe

Electronic Design Studio: Architectural Knowledge and Media in

the Computer Age, pages 261–272. MIT Press, 1990.

[Berchtold 96] Stefan Berchtold, Daniel A. Keim, and Hans-Peter Kriegel. The X-

tree: An Index Structure for High-Dimensional Data. InProceed-

ings of the 22nd International Conference on Very Large Data Bases

(VLDB’96), pages 28–39, Bombay, India, September 1996.

[Berchtold 97a] S. Berchtold, D.A. Keim, and H.P. Kriegel. Using extended feature

object for partial similarity retrieval.The International Journal on

Very Large Data Bases, 6(4):333–348, 1997.

159

160 Bibliography

[Berchtold 97b] Stefan Berchtold and Hans-Peter Kriegel. S3: Similarity in CAD

Database Systems. InProceedings of the International Conference

on Management of Data (SIGMOD’97), pages 564–567, Tucson,

Arizona, USA, May 1997. ACM Press.

[Berchtold 98] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegel. The

Pyramid-Technique: Towards Breaking the Curse of Dimensional-

ity. In Proceedings of the International Conference on Management

of Data (SIGMOD’98), pages 142–153, Seattle, Washington, USA,

June 1998. ACM Press.

[Berchtold 00a] Stefan Berchtold, Christian Bohm, H. V. Jagadish, Hans-Peter

Kriegel, and Jorg Sander. Independent quantization: An index

compression technique for high-dimensional data spaces. InPro-

ceedings of the 16th International Conference on Data Engineering

(ICDE’00), pages 577–588, San Diego, USA, 2000.

[Berchtold 00b] Stefan Berchtold, Daniel Keim, Hans-Peter Kriegel, and Thomas

Seidl. Indexing the solution space: A new technique for nearest

neighbor search in high-dimensional space.IEEE Transactions on

Knowledge and Data Engineering, 12(1):45–57, 2000.

[Bespalov 03] Dmitry Bespalov, Ali Shokoufandeh, William C. Regi, and Wei Sun.

Scale-space representation of 3d models and topological matching.

In ACM Symposium on Solid Modeling and Applications, pages 208–

215. ACM, June 2003.

[Bezdek 92] James C. Bezdek and Sankar K. Pal.Fuzzy Models for Pattern Recog-

nition : Methods that Search for Structures in Data. IEEE Press, NY,

1992.

[Bomze 99] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo.The Max-

imum Clique Problem”, volume 4 ofHandbook of Combinatorial

Optimization. Kluwer Academy Pub., 1999.

[Boyce 85] J. E. Boyce and D. P. Dobkin. Finding Extremal Polygons.SIAM

Journal on Computing, 14(1):134–147, February 1985.

[Bunke 98] Horst Bunke and Kim Shearer. A Graph Distance Metric Based

on the Maximal Common Subgraph.Pattern Recognition Letters,

19:255–259, 1998.

Bibliography 161

[Bunke 02] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento.

A Comparison of Algorithms for Maximum Common Subgraph on

Randomly Connected Graphs. InProceedings of the IAPR Workshop

on Structural and Syntactic Pattern Recognition, volume 2396 of

Lecture Notes in Computer Science, pages 123–132. Springer-Verlag,

2002.

[Carson 97] C. Carson. Region-Based Image Querying. InProceedings of the

IEEE Workshop on Content-Based Access to Image and Video Li-

braries, pages 42–49, San Juan, Puerto Rico, 1997.

[Chakrabarti 99] Kaushik Chakrabarti and Sharad Mehrotra. The Hybrid Tree: An in-

dex structure for high dimensional feature spaces. InProceedings of

the 15th International Conference on Data Engineering (ICDE’99),

pages 440–447, 1999.

[Chang 87] S. K. Chang, Q. Y. Shi, and C. W. Yan. Iconic Indexing by 2D

Strings. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 9(3):413–428, May 1987.

[Chang 99] S. K. Chang, B. Perry, and A. Rosenfeld.Content-Based Multimedia

Information Access. Kluwer Press, 1999.

[Chen 03] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung.

On Visual Similarity Based 3D Model Retrieval.Computer Graphics

Forum, 22(3):223–232, September 2003.

[Chua 97] Tat Seng Chua, Kian-Lee Tan, and Beng Chin Ooi. Fast Signature-

Based Color-Spatial Image Retrieval. InProceedings of the IEEE

International Conference on Multimedia Computers and Systems,

pages 362–369. IEEE Press, 1997.

[Clayton 91] M. Clayton and H. Wiesenthal. Enhancing the Sketchbook. InPro-

ceedings of the Association for Computer Aided Design in Architec-

ture (ACADIA’91), pages 113–125, Los Angeles, CA, 1991.

[Consortium 00] SmartSketches Consortium. SmartSketches Project (IST-2000-

28169).http://sketch.inesc.pt/ , 2000.

[Cvetkovíc 97] Dragos Cvetković, Peter Rowlinson, and Slobodan Simić.

Eigenspaces of Graphs. Cambridge University Press, United

Kingdom, 1997.

162 Bibliography

[Davies 97] E. R. Davies.Machine Vision: Theory, Algorithms, Practicalities.

Academic Press, 1997.

[Do 95] Ellen Y. Do. What’s in a Diagram that a Computer Should Under-

stand? InProceedings of The Sixth International Conference on

Computer Aided Architectural Design Futures (CAADF’95), pages

103–114. The Global Design Studio, 1995.

[Do 98] Ellen Y. Do. The right tool at the right time. PhD Thesis, Georgia

Institute of Technology, September 1998.

[Eakins 99] John P. Eakins and Margaret E. Graham. Content-based Image Re-

trieval - A report to the JISC Technology Applications Programme.

Technical report, Institute for Image Data Research, University of

Northumbria at Newcastle, January 1999.

[Egenhofer 89] Max J. Egenhofer. A Formal Definition of Binary Topological Rela-

tionships. In W. Litwin and H. Schek, editors,Third International

Conference on Foundations of Data Organization and Algorithms

(FODO’89), volume 367 ofLecture Notes in Computer Science,

pages 457–472. Springer-Verlag, Paris, France, June 1989.

[Egenhofer 91] Max J. Egenhofer. Point-Set Topological Spatial Relations.Interna-

tional Journal of Geographical Information Systems, 5(2):161–174,

1991.

[Egenhofer 92] Max J. Egenhofer and Khaled K. Al-Taha. Reasoning about Gradual

Changes of Topological Relationships. In A. Frank, I. Campari, and

U. Formentini, editors,Theory and Methods of Spatio-Temporal Rea-

soning in Geographic Space, volume 639 ofLecture Notes in Com-

puter Science, pages 196–219. Springer-Verlag, Pisa, Italy, Septem-

ber 1992.

[Elad 01] Michael Elad, Ayellet Tal, and Sigal Ar. Content Based Retrieval of

VRML Objects - An Iterative and Interactive Approach. InProceed-

ings of the sixth Eurographics workshop on Multimedia 2001, pages

97–108, Manchester, UK, September 2001.

[Enser 93] P. Enser and C. McGregor. Analysis of Visual Information Retrieval

Queries. British Library Research and Development Report, 6104,

1993.

Bibliography 163

[Fonseca 00a] Manuel J. Fonseca and Joaquim A. Jorge. CALI : A Soft-

ware Library for Calligraphic Interfaces. INESC-ID, available at

http://immi.inesc-id.pt/cali/ , 2000.

[Fonseca 00b] Manuel J. Fonseca and Joaquim A. Jorge. CALI: Uma Biblioteca de

Componentes para Interfaces Caligráficas. InActas do 9o Encon-

tro Portugûes de Computaç̃ao Gráfica, Marinha Grande, Portugal,

February 2000.

[Fonseca 00c] Manuel J. Fonseca and Joaquim A. Jorge. Experimental Evaluation

of an on-line Scribble Recognizer. InProceedings of the 11th Por-

tuguese Conference on Pattern Recognition (RecPAD’00), pages 23–

30, Porto, Portugal, May 2000.

[Fonseca 00d] Manuel J. Fonseca and Joaquim A. Jorge. Using Fuzzy Logic to

Recognize Geometric Shapes Interactively. InProceedings of the 9th

International Conference on Fuzzy Systems (FUZZ-IEEE’00), vol-

ume 1, pages 291–296, San Antonio, USA, May 2000.

[Fonseca 01] Manuel J. Fonseca and Joaquim A. Jorge. Experimental Evalua-

tion of an on-line Scribble Recognizer.Pattern Recognition Letters,

22(12):1311–1319, 2001.

[Fonseca 02a] Manuel J. Fonseca and Joaquim A. Jorge. Towards Content-Based

Retrieval of Technical Drawings through High-Dimensional Index-

ing. In Proceedings of the 1st Ibero-American Symposium in Com-

puter Graphics (SIACG’02), pages 263–270, Guimarães, Portugal,

July 2002.

[Fonseca 02b] Manuel J. Fonseca, César Pimentel, and Joaquim A. Jorge. CALI: An

Online Scribble Recognizer for Calligraphic Interfaces. InProceed-

ings of the 2002 AAAI Spring Symposium - Sketch Understanding,

pages 51–58, Palo Alto, USA, March 2002.

[Fonseca 03a] Manuel J. Fonseca and Joaquim A. Jorge. Indexing High-

Dimensional Data for Content-Based Retrieval in Large Databases.

In Proceedings of the 8th International Conference on Database Sys-

tems for Advanced Applications (DASFAA’03), pages 267–274, Ky-

oto, Japan, March 2003. IEEE Computer Society Press.

[Fonseca 03b] Manuel J. Fonseca and Joaquim A. Jorge. Indexing High-

Dimensional Data for Content-Based Retrieval in Large Databases.

164 Bibliography

(Extended version of DASFAA’03 paper), INESC-ID, IMMI, Jan-

uary 2003.

[Fonseca 03c] Manuel J. Fonseca and Joaquim A. Jorge. Towards Content-Based

Retrieval of Technical Drawings through High-Dimensional Index-

ing. Computers and Graphics, 27(1):61–69, January 2003.

[Fonseca 04a] Manuel Fonseca, Bruno Barroso, Pedro Ribeiro, and Joaquim Jorge.

Sketch-Based Retrieval of ClipArt Drawings. InProceedings of the

Advanced Visual Interfaces (AVI’04) (To appear), Gallipoli, Italy,

May 2004. ACM Press.

[Fonseca 04b] Manuel J. Fonseca, Bruno Barroso, Pedro Ribeiro, and Joaquim A.

Jorge. Retrieving ClipArt Images by Content. InProceed-

ings of the 3rd International Conference on Image and Video Re-

trieval (CIVR’04) (To appear), Lecture Notes in Computer Science.

Springer-Verlag, 2004.

[Fonseca 04c] Manuel J. Fonseca, Bruno Barroso, Pedro Ribeiro, and Joaquim A.

Jorge. Retrieving Vector Graphics Using Sketches. In Andreas Butz,

Antonio Krüger, and Patrick Olivier, editors,Proceedings of the 4th

International Symposium on Smart Graphics (SG’04), volume 3031

of Lecture Notes in Computer Science, pages 66–76. Springer-Verlag,

May 2004.

[Fonseca 04d] Manuel J. Fonseca, Alfredo Ferreira Jr., and Joaquim A. Jorge.

Content-Based Retrieval of Technical Drawings.Special Issue of

International Journal of Computer Applications in Technology (IJ-

CAT) ”Models and methods for representing and processing shape

semantics” (To appear), 2004.

[Freeman 75] Herbert Freeman and Ruth Shapira. Determining the Minimum-area

Encasing Rectangle for an Arbitrary Closed Curve.Communications

of the ACM, 18(7):409–413, July 1975.

[Freeman 78] H. Freeman and A. Saghri. Generalized Chain Codes for Planar

Curves. InProceedings of the International Joint Conference on Pat-

tern Recognition, pages 701–703, Kyoto, Japan, November 1978.

[Funkhouser 03] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen,

Alex Halderman, David Dobkin, and David Jacobs. A search engine

for 3d models.ACM Transactions on Graphics, 22(1), January 2003.

Bibliography 165

[Gaede 98] Volker Gaede and Oliver Günther. Multidimensional access methods.

ACM Computing Surveys, 30(2):170–231, 1998.

[Garey 79] M. Garey and D. Johnson.Computers and Intractability: A Guide to

the Theory of NP-Completeness. Freeman and Company, 1979.

[Giugno 02] Rosalba Giugno and Dennis Shasha. GraphGrep: A Fast and Uni-

versal Method for Querying Graphs. InProceedings of the 16th

International Conference on Pattern Recognition (ICPR’02), pages

112–115, 2002.

[Goodrum 00] Abby A. Goodrum. Image Information Retrieval: An Overview of

Current Research.Informing Science, Special Issue on Information

Science Research, 3(2):63–67, 2000.

[Gross 95] Mark D. Gross. Indexing Visual Databases of Designs with Dia-

grams. In A. Koutamanis, H. Timmermans, and I. Vermeulen, edi-

tors,Visual Databases in Architecture, pages 1–14, Avebury: Alder-

shot, UK, 1995.

[Gross 96a] Mark Gross and Ellen Do. Demonstrating the Electronic Cocktail

Napkin: a paper-like interface for early design. InProceedings of

the Conference on Human Factors in Computing Systems (CHI’96),

pages 5–6, 1996.

[Gross 96b] Mark D. Gross. The Electronic Cocktail Napkin - A computational

environment for working with design diagrams.Design Studies,

17(1):53–69, 1996.

[Gu 95] Chuang Gu.Multivalued Morphology and Segmentation-based Cod-

ing. Phd thesis, Signal Processing Lab. of Swiss Federal Institute of

Technology at Lausanne, 1995.

[Gudivada 97] Venkat N. Gudivada and Vijay V. Raghavan. Modeling and retriev-

ing images by content.Information Processing and Management,

33(4):427–452, 1997.

[Harel 87] David Harel. StateCharts: A Visual Formalism for Complex Sys-

tems.Science of Computer Programming, 8(3):231–274, June 1987.

[Heesch 03] Daniel Heesch, Alexei Yavlinsky, and Stefan M. Rüger. Performance

Comparison of Different Similarity Models for CBIR with Relevance

Feedback. In E. Bakker, T. Huang, M. Lew, N. Sebe, and X. Zhou,

166 Bibliography

editors,Proceedings of the International Conference on Image and

Video Retrieval (CIVR’03), volume 2728 ofLecture Notes in Com-

puter Science, pages 456–466, Urbana-Champaign, IL, USA, July

2003. Springer.

[Henrich 89] A. Henrich, H.-W. Six, and P. Widmayer. The LSD tree: Spatial

access to multidimensional point and non-point objects. InProceed-

ings of the 15th International Conference on Very Large Data Bases

(VLDB’89), pages 45–53, 1989.

[Henrich 98] A. Henrich. The LSDh-tree: An access structure for feature vectors.

In Proceedings of the 14th International Conference on Data Engi-

neering (ICDE’98), pages 362–369, 1998.

[Hu 62] Ming-Kuei Hu. Visual Pattern Recognition by Moment Invariants.

IRE Transactions on Information Theory, 8:179–187, 1962.

[Hu 77] M. K. Hu. Visual Pattern Recognition by Moment Invariants. In

Computer Methods in Image Analysis, pages 113–121. IEEE Com-

puter Society, 1977.

[Huet 01] Benoit Huet, Gennarino Guarascio, Nicky Kern, and Bernard Meri-

aldo. Relational Skeletons for Retrieval in Patent Drawings. InPro-

ceedings of the IEEE International Conference on Image Processing

(ICIP’01), volume 2, pages 737–740, Thessaloniki, Greece, October

2001.

[Idris 97] F. Idris and S. Panchanathan. Review of Image and Video Indexing

Techniques.Journal of Visual Communication and Image Represen-

tation, 8(2):146–166, 1997.

[Jeannin 00] S. Jeannin, L. Cieplinski, J. R. Ohm, and M. Kim. MPEG-7 Vi-

sual part of Experimentation Model Version 7.0. Technical report,

ISO/IEC JTC17SC29/WG11/N3521, Beijing, China, July 2000.

[Jiang 99] Xiaoyi Jiang and Horst Bunke. Optimal quadratic-time isomorphism

of ordered graphs.Pattern Recognition, 32:1273–1283, 1999.

[Johnson 85] M. Johnson. Relating metrics, lines and variables defined on graphs

to problems in medicinal chemistry. In Y. Alavi, G. Chartrand,

L. Lesniak, D. Lick, and C. Wall, editors,Graph Theory and Its

Applications to Algorithms and Computer Science, pages 457–470.

Wiley, New York, 1985.

Bibliography 167

[Jorge 94] Joaquim A. Jorge.Parsing Adjacency Grammars for Calligraphic

Interfaces. PhD thesis, Rensselaer Polytechnic Institute, Troy, New

York - USA, December 1994.

[Jorge 99] Joaquim A. Jorge and Manuel J. Fonseca. A Simple Approach to

Recognize Geometric Shapes Interactively. InProceedings of the

Third Int. Workshop on Graphics Recognition (GREC’99), pages

251–258, Jaipur, India, September 1999.

[Jorge 00] Joaquim A. Jorge and Manuel J. Fonseca. A Simple Approach to

Recognize Geometric Shapes Interactively. In A. K. Chhabra and

D. Dori, editors, Graphics Recognition – Recent Advances, vol-

ume 1941 ofLecture Notes in Computer Science, pages 266–274.

Springer-Verlag, September 2000.

[Katayama 97] N. Katayama and S. Satoh. The SR-tree: An Index Structure for

High-Dimensional Nearest Neighbor Queries. InProceedings of the

International Conference on Management of Data (SIGMOD’97),

pages 369–380. ACM Press, 1997.

[Kauppinen 95] Hannu Kauppinen, Tapio Seppanen, and Matti Pietikainen. An Ex-

perimental Comparison of Autoregressive and Fourier-Based De-

scriptors in 2D Shape Classification.IEEE Trans. on Pattern Analysis

and Machine Intelligence (TPAMI), 17(2):201–207, 1995.

[Kim 00] Hae-Kwang Kim and Jong-Deuk Kim. Region-based shape descrip-

tor invariant to rotation, scale and translation.Signal Processing:

Image Communication, 16(1-2):87–93, September 2000.

[Kimia 95] B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Shapes, shocks, and

deformations, i: The components of two-dimensional shape and the

reaction-diffusion space.International Journal of Computer Vision,

15(3):189–224, 1995.

[Kounalakis 93] M. Kounalakis and D. Menuez. Defying gravity: The making of

newton. Beyond Words Publishing Co, 1993.

[Kupeev 94] Konstantin Y. Kupeev and Haim J. Wolfson. On Shape Similarity. In

Proceedings of the 12th IAPR International Conference on Pattern

Recognition (ICPR’94), volume 1, pages 227–231, 1994.

168 Bibliography

[Kupeev 96] Konstantin Y. Kupeev and Haim J. Wolfson. A New Method of Es-

timating Shape Similarity.Pattern Recognition Letters, 17(8):873–

887, July 1996.

[Landay 96] James A. Landay.Interactive Sketching for the Early Stages of User

Interface Design. PhD thesis, Carnegie Mellon University, Computer

Science, Pittsburgh - USA, December 1996.

[Lau 02] Rynson Lau and Ben Wong. Web-Based 3D Geometry Model Re-

trieval. World Wide Web: Internet and Web Information Systems,

5(3):193–206, 2002.

[Leung 02] Wing Ho Leung and Tsuhan Chen. User-Independent Retrieval of

Free-Form Hand-Drawn Sketches. InProceedings of the IEEE In-

ternational Conference on Acoustics Speech and Signal Processing

(ICASSP’02), volume 2, pages 2029–2032, Orlando, Florida, USA,

May 2002. IEEE Press.

[Leung 03a] Howard Wing Ho Leung. Representations, Feature Extraction,

Matching and Relevance Feedback for Sketch Retrieval. PhD Thesis,

Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, June

2003.

[Leung 03b] Wing Ho Leung and Tsuhan Chen. Hierarchical Matching for Re-

trieval of Hand-Drawn Sketches. InProceedings of the IEEE In-

ternational Conference on Multimedia and Exposition. (ICME’03),

volume 2, pages 29–32, Baltimore, USA, July 2003. IEEE Press.

[Lin 94] K.-I. Lin, H. Jagadashi, and C. Faloutsos. The TV-tree: An index

structure for high-dimensional data.The VLDB Journal, 3(4):517–

543, 1994.

[Lomet 90] D. Lomet and B. Salzberg. The hb-tree: A multiattribute indexing

mechanism with good garanteed performance.ACM Transactions on

Database Systems, 15(4), 1990.

[Lou 04] Kuiyang Lou, Sunil Prabhakar, and Karthik Ramani. Content-based

Three-Dimensional Engineering Shape Search. InProceedings of

the 20th International Conference on Data Engineering (ICDE’04),

pages 754–765, Boston, USA, April 2004.

Bibliography 169

[Lu 99] G. J. Lu and A. Sajjanhar. Region-Based Shape Representation

and Similarity Measure Suitable for Content-Based Image Retrieval.

Multimedia System, 7:165–174, 1999.

[Ma 95] W. Y. Ma and B. S. Manjunath. A Comparison of Wavelet Trans-

form Features for Texture Image Annotation. InProceedings of

the IEEE International Conference on Image Processing (ICIP’95),

pages 256–259. IEEE Press, 1995.

[Markey 88] K. Markey. Access to Iconographical Research Collections.Library

Trends, 37(2):154–174, 1988.

[Mehrotra 93] R. Mehrotra and J. E. Gary. Feature-Based Retrieval of Similar

Shapes. InProceedings of the 9th International Conference on Data

Engineering (ICDE’93), pages 108–115, Vienna, Austria, 1993.

[Mehtre 97] B. M. Mehtre, M. S. Kankanhali, and W. F. Lee. Shape Measures for

Content Based Image Retrieval: A Comparison.Information Pro-

cessing and Management, 33(3):319–337, 1997.

[Messmer 95] B. T. Messmer.Efficient Graph Matching Algorithms for Prepro-

cessed Model Graphs. PhD Thesis, Institut fur Informatik und ange-

wandte Mathematik, Universitat Bern, Switzerland, 1995.

[Messmer 99] B. T. Messmer and H. Bunke. A decision tree approach to graph

and subgraph isomorphism detection.Pattern recognition, 32:1979–

1998, 1999.

[Mokhtarian 96] F. Mokhtarian, S. Abbasi, and J. Kittler. Efficient and Robust Re-

trieval by Shape Content through Curvature Scale Space. InInterna-

tional Workshop on Image Databases and Nultimedia Search, pages

35–42, Amsterdam, The Netherlands, 1996.

[Müller 99] Stefan M̈uller and Gerhard Rigoll. Searching an Engineering Draw-

ing Database for User-specified Shapes. InProceedings of the In-

ternational Conference on Document Analysis and Recognition (IC-

DAR’99), pages 697–700, Bangalore, India, 1999.

[Nabil 96] Mohammad Nabil, Anne H.H. Ngu, and John Shepherd. Picture

Similarity Retrieval Using the 2D Projection Interval Representation.

IEEE Transactions on Knowledge and Data Engineering, 8(4):533–

539, August 1996.

170 Bibliography

[Ooi 87] B. C. Ooi, R. Sacks-Davis, and K. J. McDonell. Spatial K-D-tree:

An indexing mechanism for spatial databases. InProceedings of

the 11th Annual IEEE International Computer Software and Appli-

cations Conference (COMPSAC’87), pages 433–438, 1987.

[O’Rourke 98] Joseph O’Rourke.Computational Geometry in C. Cambridge Uni-

versity Press, 2nd edition, 1998.

[Park 99] Jong Park and Bong Um. A New Approach to Similarity Retrieval of

2D Graphic Objects Based on Dominant Shapes.Pattern Recognition

Letters, 20:591–616, 1999.

[Pelillo 99] M. Pelillo, K. Siddiqi, and S. W. Zucker. Matching hierarchical struc-

tures using association graphs.IEEE Pattern Analysis and Machine

Intelligence, 21(11):1105–1120, November 1999.

[Persoon 77] Eric Persoon and King-Sun Fu. Shape Discrimination Using Fourier

Descriptors. IEEE Trans. on Systems, Man and Cybernetics,

7(3):170–179, 1977.

[Raymond 02] John W. Raymond, Eleanor J. Gardiner, and Peter Willet. RAS-

CAL: Calculation of Graph Similarity using Maximum Common

Edge Subgraphs.The Computer Journal, 45(6):631–644, 2002.

[Rubine 91] Dean Harris Rubine.The Automatic Recognition of Gestures. PhD

thesis, Carnegie Mellon University, Computer Science, Pittsburgh -

USA, December 1991.

[Rui 96] Yong Rui, Alfred C. She, and Thomas S. Huang. Modified Fourier

Descriptors for Shape Representation - A Practical Approach. In

Proceedings of the First International Workshop on Image Databases

and Multimedia Search, 1996.

[Rui 99] Yong Rui, Thomas S. Huang, and Shih-Fu Chang. Image Retrieval:

Current Techniques, Promising Directions, and Open Issues.Journal

of Visual Communication and Image Representation, 10(1):39–62,

March 1999.

[Safar 00a] Maytham Safar, Cyrus Shahabi, and Chung hao Tan. Resiliency and

Robustness of Alternative Shape-Based Image Retrieval Techniques.

In Proceedings of IEEE International Database Engineering and Ap-

plications Symposium (IDEAS’00), pages 337–348, 2000.

Bibliography 171

[Safar 00b] Maytham Safar, Cyrus Shahabi, and Xiaoming Sun. Image Retrieval

By Shape: A Comparative Study. InProceedings of the IEEE In-

ternational Conference on Multimedia and Exposition. (ICME’00),

pages 141–144, 2000.

[Sakurai 00] Yasushi Sakurai, Masatoshi Yoshikawa, Shunsuke Uemura, and

Haruhiko Kojima. The A-tree: An Index Structure for High-

Dimensional Spaces Using Relative Approximation. InProceed-

ings of the 26th International Conference on Very Large Data Bases

(VLDB’00), pages 516–526, Cairo, Egypt, 2000.

[Sarkar 96] S. Sarkar and K.L. Boyer. Quantitative Measures of Change Based

on Feature Organization: Eigenvalues and Eigenvectors. Technical

report, Image Analysis Research Lab, University of South Florida,

1996.

[Seloff 90] G. A. Seloff. Automated Access to the NASA-JSC Image Archive.

Library Trends, 38(4):682–696, 1990.

[Shearer 00] Kim Shearer, Horst Bunke, and Svetha Venkatesh. Video Indexing

and Similarity Retrieval by Largest Common Subgraph Detection us-

ing Decision Trees.Pattern Recognition, 34:1075–1091, 2000.

[Shepherd 99] J. Shepherd, X. Zhu, and N. Megiddo. A fast indexing method for

multidimensional nearest neighbor search. InSPIE Conference on

Storage and Retrieval for Image and Video Databases, pages 350–

355, 1999.

[Shokoufandeh 99] A. Shokoufandeh, S. Dickson, K. Siddiqi, and S. Zucker. Indexing

Using a Spectral Encoding of Topological Structure. InIEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR’99), pages

2491–2497. IEEE Computer Society, 1999.

[Smeulders 00] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amar-

nath Gupta, and Ramesh Jain. Content-Based Image Retrieval at the

End of the Early Years.IEEE Transactions on Pattern Analysis and

Machine Intelligence, 22(12):1349–1380, 2000.

[Smith 95] John R. Smith and Shih-Fu Chang. Single Color Extraction and Im-

age Query. InProceedings of the IEEE International Conference on

Image Processing (ICIP’95), pages 528–531. IEEE Press, 1995.

172 Bibliography

[Smith 96] John R. Smith and Shih-Fu Chang. Automated Binary Texture

Feature Sets for Image Retrieval. InProceedings of the IEEE In-

ternational Conference on Acoustics Speech and Signal Processing

(ICASSP’96). IEEE Press, 1996.

[Striker 95] M. Striker and M. Orengo. Similarity of Color in Images. In W. R.

Niblack and R. C. Jain, editors,Proceedings of SPIE Storage and

Retrieval for Image and Video Databases, pages 381–392, 1995.

[Sutherland 63] Ivan E. Sutherland. Sketchpad: A Man-Machine Graphical Commu-

nication System. InSpring Joint Computer Conference, pages 2–19.

AFIPS Press, 1963.

[Ulgen 95] F. Ulgen, A. Flavell, and N. Akamatsu. Geometric Shape Recog-

nition with Fuzzy Filtered Input to a backpropagation Neural Net-

work. IEICE Transations Information & Systems, E78-D(2):174–

183, February 1995.

[Ullmann 76] J. R. Ullmann. An Algorithm for Subgraph Isomorphism.Journal of

the ACM (JACM), 23(1):31–42, January 1976.

[Weber 98] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantita-

tive analysis and performance study for similarity-search methods

in high-dimensional spaces. InProceedings of the 24th International

Conference on Very Large Data Bases (VLDB’98), pages 194–205,

New York, USA, 1998.

[White 96a] David A. White and Ramesh Jain. Similarity Indexing: Algorithms

and Performance. InProceedings SPIE Storage and Retrieval for

Image and Video Databases, pages 62–73, 1996.

[White 96b] David A. White and Ramesh Jain. Similarity indexing with the SS-

tree. InProceedings of the 12th IEEE International Conference on

Data Engineering (ICDE’96), pages 516–523, 1996.

[Yu 01] Cui Yu, Beng Chin Ooi, Kian-Lee Tan, and H. V. Jagadish. Indexing

the Distance: An Efficient Method to KNN Processing. InThe VLDB

Journal, pages 421–430, 2001.

[Yu 04] Cui Yu, St́ephane Bressan, Beng Chin Ooi, and Kian-Lee Tan.

Querying high-dimensional data in single dimensional space.The In-

ternational Journal on Very Large Data Bases, 13(2):120–147, May

2004.

Bibliography 173

[Zhang 01] D. S. Zhang and G. Lu. Content-Based Shape Retrieval Using Dif-

ferent Shape Descriptors: A Comparative Study. InProceedings of

the IEEE International Conference on Multimedia and Exposition.

(ICME’01), pages 317–320, Tokyo, Japan, 2001.

[Zhang 02] D. S. Zhang and G. Lu. A Comparative Study of Three Region Shape

Descriptors. InIn Proceedings of the Sixth Digital Image Comput-

ing ? Techniques and Applications (DICTA’02), pages 86–91, Mel-

bourne, Australia, January 2002.

[Zhang 03] D. S. Zhang and G. Lu. A Comparative Study of Curvature Scale

Space and Fourier Descriptors.Journal of Visual Communication

and Image Representation, 14(1):41–60, 2003.

[Zhang 04] Rui Zhang, Beng Chin Ooi, and Kian-Lee Tan. Making the Pyramid

Technique Robust to Query Types and Workloads. InProceedings of

the International Conference on Data Engineering (ICDE’04), pages

313–324, 2004.

[Zhao 93] Rui Zhao. Incremental Recognition in Gesture-Based and Syntax-

Directed Diagram Editors. InProceedings of the INTERCHI’93:

ACM Conference on Human Factors in Computing Systems, pages

95–100, Amsterdam, Netherlands, 1993.

174 Bibliography

