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Abstract

We present a fast, simple and compact approach to recognize scribbles (multi-stroke
geometric shapes) drawn with a stylus on a digitizing tablet. Regardless of size, rota-
tion and number of strokes, our method identifies the most common shapes used in
drawings, allowing for dashed, continuous or overlapping strokes. Our method com-
bines temporal adjacency, Fuzzy Logic and geometric features to classify scribbles
with measured recognition rates over 97%.
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1 Introduction

User Interfaces are developing away from the classical WIMP (Windows, Icons,
Mouse and Pointing) paradigm. Among the new generation of intelligent sys-
tems there is a broad class based on new modalities such as sketching, hand
drawing and stylus input gestures, which we call Calligraphic Interfaces. These
seem natural, because people use diagrams to think, to represent complex mod-
els and ideas, to reason about and discuss designs in domains as diverse as
architecture, engineering and music. Despite the ”G” in the current genera-
tion of Graphical User Interfaces, these instances are characterized by discrete
interaction modalities such as selecting items from menus, pointing to things
on the screen and pressing buttons. The drawing paradigm, so powerful and
so useful for humans goes largely underutilized.
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Our aim is to develop simple components to help people use computers in more
engaging and ”natural” modes. To this end, we have developed a simple rec-
ognizer capable of identifying the most common constructs and gestures used
in drawings. In this paper we review the state of the art in on-line graphics
recognition, describe the geometric features used and examine the experimen-
tal results from evaluating our approach. While the method uses very simple
concepts and a reduced set of geometric features, it is surprisingly robust and
extensible, making it usable in a wide variety of practical environments.

2 Related Work

The idea of calligraphic interfaces is not new, even if we discount that sketches
and planar diagrams as a way of communication precede the invention of
writing by more than 30 centuries (Harley and Woodward, 1987). Sutherland
(1963) presented Sketchpad, the first interactive system that used one light
pen to draw diagrams directly over a screen surface. The main limitation of
this system resided in the recognition capabilities, limited resources and high
cost of the computer used.

Nevertheless, due in part to ergonomic problems with the light pen and the
invention of mouse in 1964, current graphical interfaces relegated pen-based
interactions to specific CAD applications. Things changed with the appearance
of the first pen computers in 1991, even though pens were used mainly to input
text through handwriting recognition.

The Newton system (Kounalakis and Menuez, 1993), one of the first hand-
held pen based computers, incorporates handwriting, shape and gesture rec-
ognizers. While the shape recognizer only handles uni-stroke, axis-aligned
shapes, the gesture recognizer is more suitable for text editing than for drawing
schematics, which are the main scope of our work.

Even though handwriting recognition is not the main target of our work, we
will shortly analyze the Graffiti (Blinkenstrofer, 1995) system. This system
recognizes characters drawn with a single stroke. While this makes the recog-
nition process easier, on the other hand it forces users to learn a new vocab-
ulary. Graffiti, as is typical with most handwriting recognition systems, uses
local features, such as drawing speed, while our method uses global geometric
information to characterize drawings. As a result, our recognition process uses
simpler features and analyzes complex shapes as a whole, regardless of the
way individual strokes were drawn. Further, our vocabulary is considerably
smaller than Graffiti’s, thus requiring a much smaller number of features.

Our work is based on a first approach to recognize schematic drawings devel-



oped at the University of Washington (Apte et al., 1993), which recognized
a small number of non rotated shapes and did not distinguish open/closed,
dashed or bold shapes. Tappert et al. (1990), provide an excellent survey of
the work developed in the area of non-interactive graphics recognition for the
introduction of data and diagrams in vectorial CAD systems. Zhao (1993)
describes an interactive editor based on the StateCharts (Harel, 1987) formal-
ism. Although the editor uses a mouse and direct manipulation, many of the
ideas described by Zhao express an approach based on diagram recognition
guided by syntax.

Gross (1996) describes a system fundamentally based on sketches that are
partially interpreted for use in architecture drawings, using a recognizer sub-
stantially simpler and less robust than ours. Although this recognizer is train-
able, the number of identified shapes is apparently smaller than ours and they
can only be rotated by multiples of 90o because of the zoning approach used.
Landay (1996), uses a recognizer developed by Rubine (1991) to sketch graph-
ical arrangements of bidimensional documents. Although Rubine’s recognizer
is trainable, it does not achieve a high recognition rate to ensure a consistent
use. Despite the simplicity of our recognizer and the fact it is not trainable,
it allows the identification of a larger number of geometric shapes robustly,
making it a complementary approach to Rubine’s work.

Other authors have proposed more complex methods, involving neural net-
works (Ulgen et al., 1995), to identify a small number of geometric shapes
(rectangles, squares, circles, ellipses and triangles). These shapes are recog-
nized independently of size and rotation, but they can not be drawn using
dashed or bold lines. Even though the authors claim good performance for
their method, the paper does not present clear measurements to back their
claims.

3 The Recognition Algorithm

The recognition method is based on three main ideas. First, we use entirely
global geometric properties extracted from input shapes, because we are inter-
ested in identifying geometric entities. Second, to enhance recognition perfor-
mance, we use a set of filters either to identify shapes or to remove unwanted
shapes using distinctive criteria. Third, to overcome uncertainty and impreci-
sion in shape sketches, we use fuzzy logic (Bezdek and Pal, 1992) to associate
degrees of certainty to recognized shapes, thereby handling ambiguities natu-
rally.

This algorithm recognizes elementary geometric shapes, such as Triangles,
Rectangles, Diamonds, Circles, Ellipses, Lines and Arrows, and five ges-



Fig. 1. Multi-stroke and uni-stroke shapes.

ture commands, Delete, Cross, WavyLine, Move and Copy, as depicted in
Fig. 1. Shapes are recognized independently of rotation, size or number of
strokes.

The set of shapes selected and presented in Fig. 1 are the basic elements to
allow the construction of technical diagrams such as electric or logic circuits,
flowcharts or architectural sketches. These diagrams also require distinguish-
ing between solid, dashed and bold depictions of shapes in the same family.
Typically, architects will use multiple overlapping strokes to embolden lines in
sketches, a mechanism commonly used in drawing packages. We are therefore
interested in recognizing different renderings of a given shape as illustrated
in Fig. 1. We are just interested in collecting qualitative differences, not in
obtaining precise values for attributes, without regard to different linestyles
and widths.

The algorithm works by collecting strokes from a digitizing tablet. A stroke is
the set of points from pen-down to pen-up. We collect strokes into scribbles un-
til a set timeout value is reached. Recognized scribbles are classified as shapes.
A shape associates a scribble with a class (e.g. Triangle) and a set of geo-
metric attributes, such as start-, end-points and bounding box. The recognizer
works by looking up values of specific features in fuzzy sets associated to each
shape. This process may yield a list of plausible shapes ordered by degree of
certainty. If the recognizer can not associate any shape to the scribble, it will
return the Unknown shape, toghether with some basic geometric attributes,
such as linestyle and “openness”. The original scribble is always available as
an attribute of the recognized shape, for use in drawing applications.

The present is an evolution of previous work (Jorge and Fonseca, 1999), which
did recognize less shapes and used a decision tree to prune out incorrect clas-
sifications. We discovered that using classification rules alone, provides more
flexibility and extensibility without sacrificing robustness.

The next subsections describe how we select geometric features, derive fuzzy
sets from experimental data and obtain the final classification results. We also
discuss re-segmentation as a way to improve recognition of specific shapes



Fig. 2. Polygons used to estimate features.

such as Arrows and Crosses. Finally, we discuss how our approach handles
ambiguous shapes in a natural manner.

3.1 Geometric Features

After collecting each scribble from the digitizing tablet, we compute the convex
hull (ch) of its points, using Graham’s scan (O’Rourke, 1998). We then use this
convex hull to compute three special polygons. The first two are the largest
area triangle (lt) and quadrilateral (lq) inscribed in the convex hull (Boyce and
Dobkin, 1985). The third is the smallest area enclosing rectangle (er) (Freeman
and Shapira, 1975) (see Fig. 2). Finally we compute the area and perimeter
for each special polygon, to estimate features and degrees of membership for
each shape class.

To select features that best identify a given shape, we built percentile graphics
for each feature. These graphics illustrate the statistical distribution of feature
values over the different classes, extracted from sample drawings. For each
shape, the solid bar spans the 25% to 75% percentiles, while the line extends
from 10% to 90% of all observed values of a given feature.

Our initial selection of features takes into account specific properties of shapes
to identify. Associated with these features we infer fuzzy sets from training
data, which express the allowable values of a feature for a given shape. Usu-
ally one feature alone is not enough to distinguish shapes, yielding incorrect
classifications. We then add extra features (with corresponding fuzzy sets) to
prevent unwanted classifications, yielding more complex rules as needed. The
main features we use are ratios between perimeters and areas of the special
polygons described above.

Fig. 3 shows the percentile graphics for features P 2
ch/Ach and Her/Wer. The

first feature, Thinness ratio, where Ach is the area of the convex hull and
P 2

ch is its perimeter squared, is used to distinguish Circles from other shapes.
The thinness of a circle is minimal, since it is the planar figure with smallest
perimeter enclosing a given area, yielding a value near 4π (see Fig. 3a). In this
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Fig. 3. a) Percentiles for the P 2
ch/Ach ratio. b) Percentiles for the Her/Wer ratio.

figure the thinness values for Lines and WavyLines lie outside the range of
values indicated. We chose not to indicate these values in order to make the
range of values for Circles more visible.

We identify Lines using the aspect ratio, which compares the height of the
enclosing rectangle (Her) with its width (Wer). The Her/Wer ratio will have
values near zero for lines and bigger values for other shapes (see Fig. 3b).
The rest of the features were selected using a similar method of analyzing all
percentile graphics, to identify unique traits for each shape.

3.2 Deriving Fuzzy Sets from Training Data

To choose the “best” fuzzy sets describing each shape class we use a training
set developed by three subjects, who drew each shape thirty times; ten times
using solid lines, ten times using dashed lines and ten times using bold lines.
Based on this training set we define several ratios, combining among others
the area and perimeter of the polygons described above.

Each shape is defined by several fuzzy sets, some of which identify the shape
while others serve to avoid “wrong” results. We do not use the same num-
ber of features for all shapes. Some shapes require no more then one or two
features. In general we tend to avoid using “too many” fuzzy sets to char-
acterize a shape. This requires careful data analysis and experimentation to
find the “right values”, that is, those yielding higher recognition rates and less
misrecognitions (false positives). The simplest case is that of a line, which is
distinguished by thinness alone.

A fuzzy set is defined by four values, as depicted in Fig. 4. After selecting the
features for each shape, we compute these four values based on the percentiles.
Values b and c correspond to the 10% and 90% percentiles respectively, and a
and d to the “minimum” and “maximum” after we have identified outliers in
each distribution. Removing these outliers minimizes confusion between dif-
ferent shape families, which rises from overlap in distributions. Thus, there
is a tradeoff in designing fuzzy sets from statistical data. If a and d are set



Fig. 4. Definition of a fuzzy set.

very wide apart the recognition rate increases, as well as the number of false
positives. “Narrower” values decrease the number of false classifications at the
cost of a much lower recognition rate. Abe and Lan (1996) discuss an auto-
mated procedure for collecting this information using activation and inhibition
hyper-boxes. We chose to generate rules manually, since their approach is not
sufficiently flexible for our purposes.

3.3 Deriving Results from Fuzzy Sets

After collecting input points from the tablet and computing the special poly-
gons from scribble data, the recognizer calculates the degree of membership
for each shape class. This degree is the result of ANDing together degrees of
membership for the relevant fuzzy sets.

In the following paragraphs we exemplify how to build rules that classify
shapes. The first rule identifies Lines while the second defines Diamonds.

IF Scribble IS VERY THIN IF Alt/Alq IS LIKE Diamond AND

THEN Alq/Ach IS NOT LIKE Ellipse AND

Shape IS A Line Alq/Aer IS NOT LIKE Bold Line AND

Alq/Aer IS NOT LIKE Rectangle

THEN

Shape IS A Diamond

The rule on the left is the simplest rule used in our recognizer. It ascertains
that “very thin” (Her/Wer ' 0) scribbles should be classified as Lines. A
more complicated rule recognizes Diamonds, where AND denotes the conjunc-
tion of fuzzy predicates µx(fAND g) = min(µx(f), µx(g)) and NOT is defined by
µx(NOT f) = 1− µx(f).

The algorithm distinguishes between Solid, Dashed and Bold styles after
identifying “basic” shapes. This enables us to treat linestyle as an attribute
orthogonal to shape, making the design of our recognizer more modular and
easier to add different shapes in the future.



Fig. 5. a) Different types of Arrows. b) Ambiguity cases among shapes.

3.4 Re-segmentation

An approach based entirely on global geometric properties has some limita-
tions. Even though Arrows or Crosses cannot be recognized using this ap-
proach, it would be useful if our recognizer identified them, since they are
commonly used in most diagram notations. In order to recognize these shapes
we must look for new properties that characterize them. Among those, we can
consider the small number of strokes, or the existence of a stroke that uniquely
identifies the shape, or a distinct spatial relation between strokes. For example
Arrows are built of a variable set of strokes terminated by a last stroke which
is either a Triangle or a Move shape, as shown in Fig. 5a. Finally, a Cross

consists of two intersecting strokes (that must be Lines).

The next two rules show how we classify these shapes. The first rule identifies
Arrows while the second defines Crosses.

IF NumStrokes >= 2 AND IF NumStrokes == 2 AND

(LastStrk IS LIKE Triangle OR FirstStrk IS LIKE Line AND

LastStrk IS LIKE Move) SecondStrk IS LIKE Line AND

THEN FirstStrk INTERSECT SecondStrk

Shape IS A Arrow THEN

Shape IS A Cross

We perform the analysis of these new properties by re-segmenting the original
scribble and by applying the recognition process to some specific strokes, e.g.
the last stroke in the Arrow. Re-segmentation allows recognizing new gestures
that could not be identified using just geometric properties.

3.5 Ambiguity

Considering the shapes identified by the recognizer, we present four special
cases which can yield ambiguous results. Ambiguity exists between Lines and
WavyLines, WavyLines and Deletes, Circles and Ellipses, Diamonds and
Rectangles. These cases are presented in Fig. 5b.



Fig. 6. Fuzzy sets representing the ambiguity cases supported by the recognizer.

Humans solve this natural ambiguity between geometric shapes, by identifying
more than one shape and making the final distinction based on the surrounding
context or using feedback from others.

The recognizer described in this paper deals with ambiguity between shapes
in a similar way, i.e. when it can not uniquely identify a geometric shape, it
returns a list of plausible candidates. The application can then choose the best
candidate using context information.

The ambiguities between shapes are modeled naturally using fuzzy logic to
associate degrees of certainty to recognized shapes. Fig. 6 illustrates corre-
sponding fuzzy sets for the ambiguous cases shown in Fig. 5b.

4 An example: Calligraphic Editor

The Calligraphic Editor presented in this section uses the recognizer described
above and allows the creation of “beautified” diagrams from “imperfect”
sketches. With this editor, users can create geometric shapes and invoke com-
mands using hand drawn sketches. Shapes can be drawn, copied, moved and
resized, using just the pen. We can delete an object or a set of objects by
drawing the gesture command Delete, as illustrated in Fig. 7a.

Fig. 7. a) Deleting a shape. b) Menu showing ambiguous shape recognition.



This editor uses a simple way to deal with the ambiguity afforded by the
recognizer. Whenever the recognizer returns more than one shape, as a result,
the editor displays a menu with all the possibilities, as shown in Fig. 7b,
allowing the user to choose the “correct” alternative. This approach makes
the creation of diagrams easier, eliminating the need for redrawing the same
sketch, to get the desired result.

We are planning to try other solutions, such as using different colors to com-
municate multiple alternative shapes or to denote the degree of certainty of
the result. When the recognition process does not yield a unique result we
should offer an interaction technique to allow circulating among all returned
shapes. Mankoff and Abowd (1999) describe some of these mechanisms to deal
with ambiguity and errors present in handwriting recognition systems.

5 Experimental Results

To evaluate the recognition algorithm, we asked nine subjects to draw each
multi-stroke shape 40 times, using solid, dashed and bold lines, 30 times each
uni-stroke shape and a simple Entity/Relationship diagram with 22 shapes.
All these drawings yield a total of 4068 shapes. Subjects were told that the
experiment was meant to test recognition, so they didn’t try to draw “unnat-
ural” shapes.

We used a Wacom LCD digitizing tablet PL-300 and a cordless stylus to draw
the shapes. Two subjects were experts in using pen and tablet while the others
had never used a digitizing tablet. We gave a brief description of the recognizer
to the users, including the set of recognizable shapes. We also told them about
the multi-stroke shape recognition capabilities, the independence of changes
with rotation or size and about the set timeout value. Novice subjects had
a short practice session in order to become acquainted to the stylus/tablet
combination. During the drawing session the recognizer was turned off in order
not to interfere with data collection and to avoid any kind of adaptation from
the user.

The recognizer successfully identified 95.8% of the scribbles drawn considering
just the first shape identified. It is fast: each scribble requires, on average, less
than 50 ms (using a Pentium II @ 233 MHz) to be recognized, from feature
vector computation to final classification.

A cursory analysis of the confusion matrix, shown in Fig. 8, reveals that
Diamonds are often confused with Rectangles, and have the lowest recog-
nition rate. Arrows are other shape which exhibits low recognition rate. The
former is due to the ambiguity between Rectangles and Diamonds that favors



Fig. 8. Confusion matrix (values in percentages).

Rectangles and the latter is due to incorrect drawing (single-stroke) of arrows
by users. We can also identify other cases of confusion between shapes, such as
Circles with Ellipses, Moves with Triangles and finally WavyLines with
Lines and with Deletes. In fact, the confusion between these shapes is both
an acceptable and intuitive behavior.

Since ambiguity is one of the main characteristics of our recognizer, we prefer
to consider the top three shapes identified instead of just the most likely one.
Using this when we take this route, the recognition rate increases to 97%,
showing a good improvement relatively to our previous approach (Jorge and
Fonseca, 1999) that had a recognition rate of 94% using less shapes and a
more complex method.

6 Conclusions

We have described a simple and fast recognizer for elementary geometric
shapes. An in-depth description of our approach can be found in (Fonseca
and Jorge, 2000), while the source code is publicly available under the GNU
GPL at http://immi.inesc.pt/∼mjf/cali. Our intent was more to pro-
vide a means to support calligraphic interaction rather than a totally robust
and “foolproof” approach to reject shapes outside the domain of interest. We
improved on previous work (Jorge and Fonseca, 1999) by increasing recog-
nition rates using fuzzy rules instead of decision trees and introducing re-
segmentation to identify higher-level patterns such as arrows. We are working
on a trainable version of this recognizer to allow us to easily add new shape
classes to the core set presented in this paper. One idea is to automatically
derive fuzzy sets from training data along the lines of (Nauck and Kruse, 1997)



and performing principle component analysis to identify the features relevant
to new shape classes.

The high recognition rates and fast response characteristic of this recognizer
make it very usable in interactive applications.
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