Equational descriptions of recognizable languages and applications

Mário Branco

CAUL, Univ. of Lisbon

CAUL - July 11-12, 2013

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013 1 / 42

• Regular languages

▲御▶ ▲理▶ ▲理▶ - 理

- Regular languages
- Semigroup equations

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

- Regular languages
- Semigroup equations
- Varieties

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages

- 3

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations

- 3

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- **OM**-varieties and equations

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- OM-varieties and equations
- Lattices of languages closed under quotients

- Regular languages
- Semigroup equations
- Varieties
- Topological aspects of the regular languages
- M-varieties and equations
- Ordered monoids and languages
- OM-varieties and equations
- Lattices of languages closed under quotients
- Polynomial closure of a lattice of languages closed under quotients

Alphabet:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

Alphabet: a (finite) set A

Alphabet: a (finite) set A Letter:

イロト 不得 とうせい かほとう ほ

Alphabet: a (finite) set A

Letter: an element of A

- 3

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Alphabet: a (finite) set A

Letter: an element of A

- 3

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Alphabet: a (finite) set A Letter: an element of A Word:

- B

・ 同 ト ・ ヨ ト ・ ヨ ト

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n)

∃ >

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 \ldots a_n$

- 3

(E)

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 \ldots a_n$

where $a_1a_2...a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

A⁺:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 ... a_n$

where $a_1 a_2 \ldots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A

- 3

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 \ldots a_n$

where $a_1 a_2 \ldots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over A Free semigroup:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 \ldots a_n$

where $a_1a_2\ldots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over AFree semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

- 3

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 \ldots a_n$

where $a_1a_2...a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over AFree semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Free monoid:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 \ldots a_n$

where $a_1a_2\ldots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over AFree semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Free monoid: $A^* = A^+ \cup \{1\}$

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 \ldots a_n$

where $a_1a_2\ldots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over AFree semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Free monoid: $A^* = A^+ \cup \{1\}$

Language:

Alphabet: a (finite) set A

Letter: an element of A

Word: finite sequence of elements of A

 (a_1, a_2, \ldots, a_n) $a_1 a_2 \ldots a_n$

where $a_1a_2\ldots a_n \in \mathbb{N}$ and $n \in \mathbb{N}$.

 A^+ : the set of all these sequences over AFree semigroup: A^+ with the concatenation product

$$a_1a_2\ldots a_n\cdot b_1b_2\ldots b_p=a_1a_2\ldots a_nb_1b_2\ldots b_p$$

Free monoid: $A^* = A^+ \cup \{1\}$

Language: a subset of A^*

Example of languages over $A = \{a, b\}$:

< 合型

Example of languages over $A = \{a, b\}$:

Ø,

→ Ξ → → Ξ →

< 合型

Example of languages over $A = \{a, b\}$:

 $\emptyset, \quad \{1\},$

Example of languages over $A = \{a, b\}$:

 $\emptyset, \{1\}, A, A^+, A^*$

イロト 不得 とうせい かほとう ほ

Example of languages over $A = \{a, b\}$:

 \emptyset , {1}, A, A⁺, A^{*} {1, a, b, aba, a⁸, aabbbab}

Example of languages over $A = \{a, b\}$:

 \emptyset , {1}, A, A⁺, A^{*} {1, a, b, aba, a⁸, aabbbab} {aⁿb^p | n, p \in \mathbb{N}}

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

・ 通 ト く 差 ト く 差 ト 差 の Q で Lisboa - July 11-12, 2013 4 / 42

Example of languages over $A = \{a, b\}$:

$$\emptyset$$
, {1}, *A*, *A*⁺, *A**
{1, *a*, *b*, *aba*, *a*⁸, *aabbbab*}
{*aⁿb^p* | *n*, *p* $\in \mathbb{N}$ }
{*aⁿbⁿ* | *n* $\in \mathbb{N}$ }

Mário Branco (CAUL, Univ. Lisbon)

・ 同 ト ・ 国 ト ・ 国 ト 一 国

Operations on Languages

Union:

$$(K,L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$
$$K + L$$

A B F A B F

Operations on Languages

Union:

$$(K,L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$
$$K + L$$

Intersection:

$$(K, L) \longmapsto K \cap L = \{u \mid u \in K \text{ and } u \in L\}$$

Operations on Languages

Union:

$$(K,L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$
$$K + L$$

Intersection:

$$(K, L) \longmapsto K \cap L = \{u \mid u \in K \text{ and } u \in L\}$$

Complementation:

$$L \longmapsto A^* \setminus L = \{ u \in A^* \mid u \notin L \}$$

∃ >
Operations on Languages

Union:

$$(K,L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$
$$K + L$$

Intersection:

$$(K, L) \longmapsto K \cap L = \{u \mid u \in K \text{ and } u \in L\}$$

Complementation:

$$L \longmapsto A^* \setminus L = \{u \in A^* \mid u \notin L\}$$

Product:

$$(K, L) \longmapsto KL = \{uv \mid u \in K \text{ and } v \in L\}$$

Mário Branco (CAUL, Univ. Lisbon)

3

Operations on Languages

Union:

$$(K,L) \longmapsto K \cup L = \{u \mid u \in K \text{ or } u \in L\}$$
$$K + L$$

Intersection:

$$(K, L) \longmapsto K \cap L = \{u \mid u \in K \text{ and } u \in L\}$$

Complementation:

$$L \longmapsto A^* \setminus L = \{ u \in A^* \mid u \notin L \}$$

Product:

$$(K, L) \longmapsto KL = \{uv \mid u \in K \text{ and } v \in L\}$$

Star:

$$L \longmapsto L^* = \{ u_1 \cdots u_n \mid u_1, \dots, u_n \in L, n \in \mathbb{N}_0 \}$$

the submonoid of A^* generated by L

э

Operations on Languages

Quotients $(a \in A)$:

$$L \longmapsto a^{-1}L = \{u \mid au \in L\}$$
$$L \longmapsto La^{-1} = \{u \mid ua \in L\}$$

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

- ∢ ≣ ▶ Lisboa - July 11-12, 2013 6 / 42

-

3

Mário Branco (CAUL, Univ. Lisbon)

- 2

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

```
Rational, or regular, language: element of Rat(A^*).
```

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$:

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$,

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with *a* and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ ($= \{a\} + \{b\}$).

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\} = \emptyset^*,$$

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A,$$

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ ($= \{a\} + \{b\}$).

$$\{1\}=\emptyset^*,\quad A,\quad A^*,$$

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with a and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ ($= \{a\} + \{b\}$).

$$\{1\}=\emptyset^*,\quad A,\quad A^*,\quad A^+=AA^*$$

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with *a* and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A, \quad A^*, \quad A^+ = AA^*$$
$$\{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\}$$

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with *a* and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ ($= \{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A, \quad A^*, \quad A^+ = AA^*$$
$$\{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\}$$
$$\{1, a, b, aba, a^8, aabbbab\}$$

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with *a* and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ ($= \{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A, \quad A^*, \quad A^+ = AA^*$$

$$\{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\}$$

$$\{1, a, b, aba, a^8, aabbbab\}$$

$$a^*,$$

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with *a* and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A, \quad A^*, \quad A^+ = AA^*$$
$$\{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\}$$
$$\{1, a, b, aba, a^8, aabbbab\}$$
$$a^*, \quad a^*b^* = \{a^n b^p \mid n, p \in \mathbb{N}_0\}$$

 $\operatorname{Rat}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

Rational, or regular, language: element of $Rat(A^*)$.

Example of rational languages over $A = \{a, b\}$: We identify $\{a\}$ with *a* and write, for instance, a^* instead of $\{a\}^*$, a + b instead of $\{a, b\}$ (= $\{a\} + \{b\}$).

$$\{1\} = \emptyset^*, \quad A, \quad A^*, \quad A^+ = AA^* \\ \{abaa\} = \{a\} \cdot \{b\} \cdot \{a\} \cdot \{a\} \\ \{1, a, b, aba, a^8, aabbbab\} \\ a^*, \quad a^*b^* = \{a^nb^p \mid n, p \in \mathbb{N}_0\} \\ (ab + ba)^*bbaabb(bba)^* + ((aaa + bbb)^* + a^5)^* b \in \mathbb{R}$$

Mário Branco (CAUL, Univ. Lisbon)

æ

<ロ> <同> <同> < 同> < 同>

Automaton \mathcal{A} :

Mário Branco (CAUL, Univ. Lisbon)

э

()

< 同 ▶

Automaton \mathcal{A} :

Words recognized by \mathcal{A} :

1, a, aa, a^3 , a^4 , a^2b , a^4baba^6b , ba, $(ba)^2$, aba, $(ab)^2a$, ...

Automaton \mathcal{A} :

Words recognized by \mathcal{A} :

1, a, aa,
$$a^3$$
, a^4 , a^2b , a^4baba^6b , ba, $(ba)^2$, aba, $(ab)^2a$, ...

$$L(\mathcal{A}) = \left(a(ab)^*\right)^* + (ba)^* + (ab)^*a$$

Mário Branco (CAUL, Univ. Lisbon)

æ

<ロ> <同> <同> < 同> < 同>

Alphabet $A = \{0, 1\}$ Automaton \mathcal{A} :

э

Alphabet $A = \{0, 1\}$ Automaton \mathcal{A} :

Words recognized by A are precisely the words that represent the multiples of 3 on base 2, for instance 0, 00, 11, 0011, 1001, 1000110100.

Alphabet $A = \{0, 1\}$ Automaton \mathcal{A} :

Words recognized by A are precisely the words that represent the multiples of 3 on base 2, for instance 0, 00, 11, 0011, 1001, 1000110100. $L(A) = (0 + 1(01^*0)^*1)^*$

Mário Branco (CAUL, Univ. Lisbon)

æ

<ロ> <同> <同> < 同> < 同>

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

イロト 不得 トイヨト イヨト 二日

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

3

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union,

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product

イロト 不得 トイヨト イヨト 二日

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the operations of union, product and star.

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, product and star.

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

 $Rat(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, and product.
Recognizability

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

star-free

 $\overline{SF}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, and product.

イロト 不得 トイヨト イヨト 二日

Recognizability

A language $L \subseteq A^*$ is recognizable if it L = L(A) for some finite automaton.

Theorem (Kleene)

 $L \subseteq A^*$ is recognizable if and only if it is rational.

Proposition

 $Rat(A^*)$ is closed under intersection, complementation and quotients.

star-free

 $\overline{SF}(A^*)$ is the smallest set of languages over A that has the emptyset and the languages $\{a\}$, with $a \in A$, and is closed under the boolean operations, and product.

Is there an algorithm to test whether a language belongs to $SF(A^*)$?

イロト 不得 トイヨト イヨト 二日

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

æ

11 / 42

<ロ> <同> <同> < 同> < 同>

Alphabet $A = \{a, b\}$ Automaton \mathcal{A} :

AP.

э

Alphabet $A = \{a, b\}$ Automaton \mathcal{A} :

The transitions of \mathcal{A} can be defined by the following two binary relations:

$$\begin{array}{rcl} a & \longmapsto & \overline{a} = \big\{ (1,1), \, (1,2), \, (2,3), \, (3,1) \big\} \\ b & \longmapsto & \overline{b} = \big\{ (2,1), \, (3,2) \big\} \end{array}$$

Alphabet $A = \{a, b\}$ Automaton A:

The transitions of \mathcal{A} can be defined by the following two binary relations:

$$\begin{array}{rcl} a & \longmapsto & \overline{a} = \big\{ (1,1), \, (1,2), \, (2,3), \, (3,1) \big\} \\ b & \longmapsto & \overline{b} = \big\{ (2,1), \, (3,2) \big\} \end{array}$$

For words, for instance:

babba
$$\mapsto$$
 $\overline{babba} = \{(3,1), (3,2)\}$

11 / 42

Alphabet $A = \{a, b\}$ Automaton A:

The transitions of \mathcal{A} can be defined by the following two binary relations:

$$\begin{array}{rcl} a & \longmapsto & \overline{a} = \big\{ (1,1), \, (1,2), \, (2,3), \, (3,1) \big\} \\ b & \longmapsto & \overline{b} = \big\{ (2,1), \, (3,2) \big\} \end{array}$$

For words, for instance:

$$babba \longmapsto \overline{babba} = \{(3,1), (3,2)\}$$
$$= \overline{b} \circ \overline{a} \circ \overline{b} \circ \overline{b} \circ \overline{a}$$

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013 12 / 42

æ

<ロ> <同> <同> < 同> < 同>

Transition monoid of A: $M(A) = {\overline{u} \mid u \in A^*}$ with composition. We have the morphism

$$\varphi \colon A^* \longrightarrow (M(\mathcal{A}), \circ)$$

 $u \longmapsto \overline{u}$

伺 と く ヨ と く ヨ と

3

Transition monoid of \mathcal{A} : $M(\mathcal{A}) = \{\overline{u} \mid u \in A^*\}$ with composition. We have the morphism

$$\varphi \colon A^* \longrightarrow (M(\mathcal{A}), \circ)$$

 $u \longmapsto \overline{u}$

and

$$u \in L(\mathcal{A}) \iff (u)\varphi \in \underbrace{(L(\mathcal{A}))\varphi}_{\text{finite set}}$$

3

12 / 42

Transition monoid of A: $M(A) = {\overline{u} \mid u \in A^*}$ with composition. We have the morphism

$$\varphi \colon A^* \longrightarrow (M(\mathcal{A}), \circ)$$

 $u \longmapsto \overline{u}$

and

$$u \in L(\mathcal{A}) \iff (u)\varphi \in \underbrace{(L(\mathcal{A}))\varphi}_{\text{finite set}}$$

A monoid *M* recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and $P \subseteq M$ s.t. $L = (P)\varphi^{-1}$.

Transition monoid of A: $M(A) = {\overline{u} \mid u \in A^*}$ with composition. We have the morphism

$$\varphi \colon A^* \longrightarrow (M(\mathcal{A}), \circ)$$

 $u \longmapsto \overline{u}$

and

$$u \in L(\mathcal{A}) \iff (u)\varphi \in \underbrace{(L(\mathcal{A}))\varphi}_{\text{finite set}}$$

A monoid *M* recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and $P \subseteq M$ s.t. $L = (P)\varphi^{-1}$.

$$u \in L \iff (u)\varphi \in P$$

12 / 42

Mário Branco (CAUL, Univ. Lisbon)

æ

<ロ> <同> <同> < 同> < 同>

Proposition

For $L \subseteq A^*$, TFAE:

L is recognized by a finite automaton, i.e. L is recognizable.

L is recognized by a finite monoid. 2

3

Proposition

For $L \subseteq A^*$, TFAE:

1 *L* is recognized by a finite automaton, i.e. L is recognizable.

2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Proposition

For $L \subseteq A^*$, TFAE:

1 *L* is recognized by a finite automaton, i.e. *L* is recognizable.

2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

 $u \sim_L v$ if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$

イロト 不得 トイヨト イヨト 二日

Proposition

For $L \subseteq A^*$, TFAE:

L is recognized by a finite automaton, i.e. L is recognizable.

2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

 $u \sim_L v$ if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$ Syntactic monoid of L: $M(L) = A^* / \sim_L$

13 / 42

Proposition

For $L \subseteq A^*$, TFAE:

L is recognized by a finite automaton, i.e. L is recognizable.

2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

 $u \sim_L v$ if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$ Syntactic monoid of L: $M(L) = A^* / \sim_L$ Syntactic morphism of L: $\eta \colon A^* \longrightarrow M(L)$ $u \longmapsto [u]_{\sim_L}$

Mário Branco (CAUL, Univ. Lisbon)

13 / 42

Proposition

For $L \subseteq A^*$, TFAE:

L is recognized by a finite automaton, i.e. L is recognizable.

2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

 $u \sim_L v$ if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$ Syntactic monoid of L: $M(L) = A^* / \sim_L$ Syntactic morphism of L: $\eta \colon A^* \longrightarrow M(L)$ $u \longmapsto [u]_{\sim_L}$ M(L) recognizes L, since $L = (L\eta)\eta^{-1}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Proposition

For $L \subseteq A^*$, TFAE:

1 *L* is recognized by a finite automaton, i.e. L is recognizable.

2 L is recognized by a finite monoid.

Let $L \subseteq A^*$.

Syntactic congruence of L, \sim_L on A^* :

 $u \sim_L v$ if and only if $\forall x, y \in A^* (xuy \in L \Leftrightarrow xvy \in L)$ Syntactic monoid of L: $M(L) = A^* / \sim_L$ Syntactic morphism of L: $\eta \colon A^* \longrightarrow M(L)$ $u \longmapsto [u]_{\sim_L}$ M(L) recognizes L, since $L = (L\eta)\eta^{-1}$. M recognizes L $\iff M(L)$ is homomorphic image of a submonoid of M.

Mário Branco (CAUL, Univ. Lisbon)

æ

(人間) くちり くちり

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

3

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A=a+b,$$

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b$$
, $A^* = A^* \setminus \emptyset$,

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b, \quad A^* = A^* \setminus \emptyset, \quad \{1\} = A^* \setminus AA^*,$$

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b, \quad A^* = A^* \setminus \emptyset, \quad \{1\} = A^* \setminus AA^*, \quad A^*bA^*,$$

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$A = a + b, \quad A^* = A^* \setminus \emptyset, \quad \{1\} = A^* \setminus AA^*, \quad A^*bA^*,$$

 $a^* = A^* \setminus A^*bA^*,$

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

$$egin{aligned} &A=a+b, \quad A^*=A^*\setminus \emptyset, \quad \{1\}=A^*\setminus AA^*, \quad A^*bA^*,\ &a^*=A^*\setminus A^*bA^*,\ &(ab)^*=A^*\setminus \left(bA^*+A^*a+A^*aaA^*+A^*bbA^*
ight) \end{aligned}$$

Is there an algorithm to test whether a language (given by an automaton or by a rational expression) belongs to $SF(A^*)$?

Examples of star-free languages over $A = \{a, b\}$:

$$\begin{aligned} A &= a + b, \quad A^* = A^* \setminus \emptyset, \quad \{1\} = A^* \setminus AA^*, \quad A^*bA^*, \\ a^* &= A^* \setminus A^*bA^*, \\ (ab)^* &= A^* \setminus (bA^* + A^*a + A^*aaA^* + A^*bbA^*) \end{aligned}$$

The answer is Yes.

Theorem (Schützenberger)

For $L \subseteq A^*$, TFAE:

L is star-free.

2 L is recognized by an aperiodic finite monoid.

3 M(L) is finite and aperiodic .

its subgroups are trivial

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Mário Branco (CAUL, Univ. Lisbon)

æ

(人間) くちり くちり

Example:

On the alphabet $A = \{a, b\}$,

∃ ▶

3

Example:

- On the alphabet $A = \{a, b\},\$
- a^* and $(ab)^*$ are star-free,

3

Example:

```
On the alphabet A = \{a, b\},
```

```
a^* and (ab)^* are star-free,
```

but

```
(aa)^* is not star-free, since M((aa)^*) is not aperiodic.
```

물 문 문 물 문 문 물

Variety of languages

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013 16 / 42

3

(人間) くちり くちり

Variety of languages

Variety of languages \mathcal{V} :

$(A^*)\mathcal{V}$ Α \mapsto alphabet subset of $Rat(A^*)$

э
Variety of languages \mathcal{V} :

$A \mapsto$ $(A^*)\mathcal{V}$ alphabet subset of $Rat(A^*)$

such that

(A^*) \mathcal{V} is closed under finite union, finite intersection and complementation.

Variety of languages \mathcal{V} :

such that

- (A*)V is closed under finite union, finite intersection and complementation.
- **②** $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.

Variety of languages \mathcal{V} :

such that

- (A*)V is closed under finite union, finite intersection and complementation.
- (A^{*}) 𝔅 is closed under quotients: $a^{-1}L$, $La^{-1} ∈ (A^*)𝔅$, for any $L ∈ (A^*)𝔅$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

→ □ → □ → ↓ □ → ↓ □ → ↓ 0 へ ○

Variety of languages \mathcal{V} :

such that

- **(** A^*) \mathcal{V} is closed under finite union, finite intersection and complementation.
- **2** $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}.$
- **3** if $\varphi: A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Rational languages form a variety of languages.

Variety of languages \mathcal{V} :

such that

- (A^*) \mathcal{V} is closed under finite union, finite intersection and complementation.
- **2** $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}.$
- **3** if $\varphi: A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Rational languages form a variety of languages.

Star-free languages form a variety of languages.

Variety of languages \mathcal{V} :

such that

- (A^*) \mathcal{V} is closed under finite union, finite intersection and complementation.
- **2** $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}.$
- **3** if $\varphi: A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Rational languages form a variety of languages.

Star-free languages form a variety of languages.

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

Examples: xy = yx, $x = x^2$, xy = xyx (x and y are letters).

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

Examples: xy = yx, $x = x^2$, xy = xyx (x and y are letters).

A monoid *M* satisfies an identity u = v if $u\varphi = v\varphi$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

Examples: xy = yx, $x = x^2$, xy = xyx (x and y are letters).

A monoid *M* satisfies an identity u = v if $u\varphi = v\varphi$ for every morphism $\varphi \colon A^* \to M$.

 Σ – set of identities over A.

An identity or equation over an alphabet (finite or infinite) A is a formal equality u = v, where $u, v \in A^*$.

Examples: xy = yx, $x = x^2$, xy = xyx (x and y are letters).

A monoid *M* satisfies an identity u = v if $u\varphi = v\varphi$ for every morphism $\varphi \colon A^* \to M$.

- Σ set of identities over A.
- $[\Sigma]$ class of all monoids that satisfy all identities of $\Sigma.$

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013 18 / 42

æ

- 4 回 > - 4 回 > - 4 回 >

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

variety of monoids

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Variety of monoids

Examples:

The class of all monoids: [x = x].

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Variety of monoids

Examples:

The class of all monoids: [x = x].

The class of all commutative monoids $(\forall s, t \in M, st = ts)$: [xy = yx].

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Variety of monoids

Examples:

The class of all monoids: [x = x].

The class of all commutative monoids $(\forall s, t \in M, st = ts)$: [xy = yx].

The class of all idempotent monoids ($\forall s \in M, s = s^2$): $[x = x^2]$.

イロト イポト イヨト イヨト 二日

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Variety of monoids

Examples:

The class of all monoids: [x = x].

The class of all commutative monoids $(\forall s, t \in M, st = ts)$: [xy = yx].

The class of all idempotent monoids ($\forall s \in M, \ s = s^2$): $[x = x^2]$.

The class of all idempotent and \mathcal{R} -trivial monoids $(\forall s, t \in M, (s = s^2, st = sts))$: $[x = x^2, xy = xyx]$.

Theorem (Birkhoff)

The classes of monoids that are closed under homomorphic images, submonoids and arbitrary direct products are precisely the classes of monoids of the form $[\Sigma]$.

Variety of monoids

Examples:

The class of all monoids: [x = x].

The class of all commutative monoids $(\forall s, t \in M, st = ts)$: [xy = yx].

The class of all idempotent monoids ($\forall s \in M, \ s = s^2$): $[x = x^2]$.

The class of all idempotent and \mathcal{R} -trivial monoids $(\forall s, t \in M, (s = s^2, st = sts))$: $[x = x^2, xy = xyx]$.

Mário Branco (CAUL, Univ. Lisbon)

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

• • = • • = •

э

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

M - class of all finite monoids.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

- **M** class of all finite monoids.
- $\llbracket \Sigma \rrbracket = [\Sigma] \cap \mathbf{M}$, for any set Σ of identities.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

- M class of all finite monoids.
- $\llbracket \Sigma \rrbracket = [\Sigma] \cap M$, for any set Σ of identities.

 ${\boldsymbol{\mathsf{J}}}_1$ - class of all finite idempotent and commutative monoids.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

- ${\bf M}$ class of all finite monoids.
- $[\![\Sigma]\!] = [\Sigma] \cap \boldsymbol{\mathsf{M}},$ for any set Σ of identities.
- ${\boldsymbol{\mathsf{J}}}_1$ class of all finite idempotent and commutative monoids.
- ${\bf J}$ class of all finite ${\mathcal J}\text{-trivial}$ monoids.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

- ${\boldsymbol{\mathsf{M}}}$ class of all finite monoids.
- $[\![\Sigma]\!] = [\Sigma] \cap \boldsymbol{\mathsf{M}},$ for any set Σ of identities.
- ${\boldsymbol{\mathsf{J}}}_1$ class of all finite idempotent and commutative monoids.
- ${\bf J}$ class of all finite ${\mathcal J}\text{-trivial}$ monoids.
- **A** class of all finite aperiodic monoids M.

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

- ${\bf M}$ class of all finite monoids.
- $\llbracket \Sigma \rrbracket = [\Sigma] \cap M$, for any set Σ of identities.
- ${\boldsymbol{\mathsf{J}}}_1$ class of all finite idempotent and commutative monoids.
- ${\bf J}$ class of all finite ${\mathcal J}\text{-trivial}$ monoids.
- **A** class of all finite aperiodic monoids M.
- LI class of all finite locally trivial semigroups S $(\forall s \in S, e \in E(S), ese = e).$

M-variety: class of finite monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

- ${\bf M}$ class of all finite monoids.
- $\llbracket \Sigma \rrbracket = [\Sigma] \cap M$, for any set Σ of identities.
- ${\boldsymbol{\mathsf{J}}}_1$ class of all finite idempotent and commutative monoids.
- ${\bf J}$ class of all finite ${\mathcal J}\text{-trivial}$ monoids.
- **A** class of all finite aperiodic monoids M.
- LI class of all finite locally trivial semigroups S $(\forall s \in S, e \in E(S), ese = e).$

Mário Branco (CAUL, Univ. Lisbon)

æ

<ロ> <同> <同> < 同> < 同>

For each M-variety V and each finite alphabet A, let

$$\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid M(L) \in \mathbf{V} \right\} \end{aligned}$$

Then \mathcal{V} is a variety of languages.

Theorem (Eilenberg)

The correspondence $V \mapsto V$ between the M-varieties and the varieties of languages is bijective.

For each M-variety V and each finite alphabet A, let

 $\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid M(L) \in \mathbf{V} \right\} \end{aligned}$

Then \mathcal{V} is a variety of languages.

Theorem (Eilenberg)

The correspondence $V \mapsto V$ between the M-varieties and the varieties of languages is bijective.

Thus

Theorem (Schützenberger)

For each alphabet A, $(A^*)A = SF(A^*)$.

For each M-variety V and each finite alphabet A, let

 $\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid M(L) \in \mathbf{V} \right\} \end{aligned}$

Then \mathcal{V} is a variety of languages.

Theorem (Eilenberg)

The correspondence $V \mapsto V$ between the M-varieties and the varieties of languages is bijective.

Thus

Theorem (Schützenberger)

For each alphabet A, $(A^*)A = SF(A^*)$.

How to caracterize the M-varieties by identities?

Free profinite monoid

Mário Branco (CAUL, Univ. Lisbon)

3

(人間) くちり くちり

Free profinite monoid

Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

3

伺 ト く ヨ ト く ヨ ト

Free profinite monoid

Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

Example: The words ab and a^2b are separated by any non-trivial group, but there is no idempotent monoid that separates them.
Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

Example: The words ab and a^2b are separated by any non-trivial group, but there is no idempotent monoid that separates them.

Let

$$r(u, v) = \min\{|M|: M \text{ separates } u \text{ and } v\}$$

21 / 42

Alphabet A; $u, v \in A^*$.

Let

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

Example: The words ab and a^2b are separated by any non-trivial group, but there is no idempotent monoid that separates them.

$$r(u, v) = \min\{|M|: M \text{ separates } u \text{ and } v\}$$

 $d(u, v) = 2^{-r(u,v)}$

with the conventions $\min \emptyset = +\infty$ and $2^{-\infty} = 0$.

21 / 42

Alphabet A; $u, v \in A^*$.

A finite monoid M separates u and v if there exists a morphism $\varphi \colon A^* \to M$ such that $u\varphi \neq v\varphi$.

Example: The words ab and a^2b are separated by any non-trivial group, but there is no idempotent monoid that separates them.

$$r(u, v) = \min\{|M|: M \text{ separates } u \text{ and } v\}$$
$$d(u, v) = 2^{-r(u,v)}$$

with the conventions $\min \emptyset = +\infty$ and $2^{-\infty} = 0$.

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

(人間) くちり くちり Lisboa - July 11-12, 2013

3

22 / 42

Two words are "closed" if it is needed a "big" monoid to separate them.

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

 (A^*, d) is a metric space and the multiplication $A^* \times A^* \to A^*$ is uniformly continuous.

 $\widehat{A^*}$ – topological completion of A^* .

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

 (A^*, d) is a metric space and the multiplication $A^* \times A^* \to A^*$ is uniformly continuous.

 $\widehat{A^*}$ – topological completion of A^* .

Proposition

- $\widehat{A^*}$ is a compact and totally disconnected metric space.
- A^* is dense in $\widehat{A^*}$.
- Each morphism φ: A* → M (M finite) can be extended in a unique way to a continuous morphism φ̂: Â* → M.

Two words are "closed" if it is needed a "big" monoid to separate them.

Proposition

 (A^*, d) is a metric space and the multiplication $A^* \times A^* \to A^*$ is uniformly continuous.

 $\widehat{A^*}$ – topological completion of A^* .

Proposition

- $\widehat{A^*}$ is a compact and totally disconnected metric space.
- A^* is dense in $\widehat{A^*}$.
- Each morphism φ: A^{*} → M (M finite) can be extended in a unique way to a continuous morphism φ̂: Â^{*} → M.

The multiplication on A^* induces, in a natural way, an associative multiplication on $\widehat{A^*}$, which is continuous.

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Mário Branco (CAUL, Univ. Lisbon)

3

(人間) くちり くちり

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \inf \widehat{A^*}.$

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

- $u^{\omega} = \lim u^{n!}$ in $\widehat{A^*}$.
- Let M be a finite monoid.

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \text{ in } \widehat{A^*}.$

Let M be a finite monoid. Let $\varphi \colon A^* \to M$ be a morphism and $\hat{\varphi} \colon \widehat{A^*} \to M$ be its continous morphism extension.

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \inf \widehat{A^*}.$

Let M be a finite monoid. Let $\varphi \colon A^* \to M$ be a morphism and $\hat{\varphi} \colon \widehat{A^*} \to M$ be its continous morphism extension.

 $((u\hat{\varphi})^{n!})_n$ converges in M (with the discrete topology).

Proposition

Let $u \in A^*$. The sequence $(u^{n!})_n$ is a Cauchy sequence in A^* .

 $u^{\omega} = \lim u^{n!} \inf \widehat{A^*}.$

Let M be a finite monoid.

Let $\varphi \colon A^* \to M$ be a morphism and $\hat{\varphi} \colon \widehat{A^*} \to M$ be its continous morphism extension.

 $((u\hat{\varphi})^{n!})_n$ converges in M (with the discrete topology). Since M is finite, there exists k s.t. $(u\hat{\varphi})^k = e$, an idempotent. It follows that if $n \ge k$, then $(u\hat{\varphi})^{n!} = e$, and so $\lim(u\hat{\varphi})^{n!} = e$, the idempotent power of $u\hat{\varphi}$.

Mário Branco (CAUL, Univ. Lisbon)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in A^*$.

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in A^*$.

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in \widehat{A^*}$.

Examples: xy = yx, $x^{\omega} = 1$, $x^{\omega}yx^{\omega} = x^{\omega}$ (x and y are letters).

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in \widehat{A^*}$.

Examples: xy = yx, $x^{\omega} = 1$, $x^{\omega}yx^{\omega} = x^{\omega}$ (x and y are letters).

A finite monoid M satisfies an identity u = v if $u\psi = v\psi$ for every continuous morphism $\psi : \widehat{A^*} \to M$,

イロト 不得 トイヨト イヨト 二日

An identity or equation over an alphabet (finite) A is a formal equality u = v, where $u, v \in \widehat{A^*}$.

Examples: xy = yx, $x^{\omega} = 1$, $x^{\omega}yx^{\omega} = x^{\omega}$ (x and y are letters).

A finite monoid M satisfies an identity u = v if $u\psi = v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} = v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

Examples:

M satisfies xy = yx if and only if $\forall s, t \in M, st = ts$. A finite *semigroup S* satisfies $x^{\omega}yx^{\omega} = x^{\omega}$ if and only if $\forall s \in S, e \in E(S), ese = e$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Mário Branco (CAUL, Univ. Lisbon)

æ

<ロ> <同> <同> < 同> < 同>

 Σ – set of identities.

э

- Σ set of identities.
- $\llbracket \Sigma \rrbracket \text{class of all finite monoids that satisfy all identities of } \Sigma$.

3

• • = • • = •

- Σ set of identities.
- $\llbracket \Sigma \rrbracket class$ of all finite monoids that satisfy all identities of Σ .

Theorem (Reiterman)

The **M**-varieties are precisely the classes of monoids of the form $\llbracket \Sigma \rrbracket$.

- Σ set of identities.
- $\llbracket \Sigma \rrbracket class$ of all finite monoids that satisfy all identities of Σ .

Theorem (Reiterman)

The **M**-varieties are precisely the classes of monoids of the form $\llbracket \Sigma \rrbracket$.

Examples:

- $\mathbf{J}_1 = [\![x = x^2, xy = yx]\!] \text{finite idempotent and commutative monoids.}$ $\mathbf{A} = [\![x^{\omega} = x^{\omega+1}]\!] \text{finite aperiodic monoids.}$
- $\mathbf{LI} = \llbracket x^{\omega} y x^{\omega} = x^{\omega} \rrbracket \text{finite locally trivial semigroups.}$

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

글 > - < 글 > 26 / 42 Lisboa - July 11-12, 2013

э

Variety of languages \mathcal{V} :

$A \mapsto$ $(A^*)\mathcal{V}$ alphabet subset of $Rat(A^*)$

such that

- (A^*) \mathcal{V} is closed under finite union, finite intersection and complementation.
- **2** $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}.$
- **3** if $\varphi: A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

26 / 42

Variety of languages \mathcal{V} :

$A \mapsto$ $(A^*)\mathcal{V}$ alphabet subset of $Rat(A^*)$

such that

- (A^*) \mathcal{V} is closed under finite union, finite intersection and complementation.
- **2** $(A^*)\mathcal{V}$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)\mathcal{V}$, for any $L \in (A^*)\mathcal{V}.$
- **3** if $\varphi: A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

26 / 42

Variety of languages \mathcal{V} :

$\begin{array}{rcl} A & \longmapsto & (A^*)\mathcal{V} \\ \text{alphabet} & & \text{subset of } \mathsf{Rat}(A^*) \end{array}$

such that

- **(** A^*) \mathcal{V} is closed under finite union, and finite intersection.
- ② $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any L ∈ $(A^*)V$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Positive variety of languages \mathcal{V} :

$$\begin{array}{rcl} A & \longmapsto & (A^*)\mathcal{V} \\ \text{alphabet} & \text{subset of } \mathsf{Rat}(A^*) \end{array}$$

such that

- (A^*) \mathcal{V} is closed under finite union, and finite intersection.
- ② $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Positive variety of languages \mathcal{V} :

$$\begin{array}{rcl} A & \longmapsto & (A^*)\mathcal{V} \\ \text{alphabet} & \text{subset of } \mathsf{Rat}(A^*) \end{array}$$

such that

- (A^*) \mathcal{V} is closed under finite union, and finite intersection.
- ② $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.
- **3** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

How to characterize these classes algebraically?

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

<ロ> <同> <同> < 同> < 同>

27 / 42

æ

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

 $s \leq t \implies rs \leq rt$ and $sr \leq tr$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

 $s \leq t \implies rs \leq rt$ and $sr \leq tr$

A monoid *M* recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and $P \subseteq M$ s.t. $L = (P)\varphi^{-1}$.

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

 $s \leq t \implies rs \leq rt$ and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and $P \subseteq M$ s.t. $L = (P)\varphi^{-1}$.
Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi: A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

イロト 不得 とうせい かほとう ほ

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi: A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

イロト 不得 とうせい かほとう ほ

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Leftrightarrow xuy \in L)$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic congruence of L, \sim_L on A^* :

$$u \sim_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Leftrightarrow xuy \in L)$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic congruence of L, \sim_I on A^* :

 $u \sim v$ if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

27 / 42

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic congruence of L, \leq_L on A^* :

$$u \preceq_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic preorder of L, \leq_L on A^* :

$$u \leq_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

27 / 42

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic preorder of L, \leq_L on A^* :

$$u \leq_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

 $(M(L), \leq)$ is an ordered monoid, with

$$[u]_{\sim_L} \leq [v]_{\sim_L}$$
 if and only if $u \preceq_L v$

Ordered monoid (M, \leq) : monoid M equipped with a partial order \leq compatible with the product:

$$s \leq t \implies rs \leq rt$$
 and $sr \leq tr$

An ordered monoid M recognizes $L \subseteq A^*$ if there exist a morphism $\varphi \colon A^* \to M$ and an ordered ideal P of M s.t. $L = (P)\varphi^{-1}$.

Syntactic preorder of L, \leq_L on A^* :

$$u \leq_L v$$
 if and only if $\forall x, y \in A^* (xvy \in L \Rightarrow xuy \in L)$

 $(M(L), \leq)$ is an ordered monoid, with

$$[u]_{\sim_L} \leq [v]_{\sim_L}$$
 if and only if $u \preceq_L v$

 $(M(L), \leq)$ recognizes L.

Mário Branco (CAUL, Univ. Lisbon)

Morphism of ordered monoids $\varphi \colon (M, \leq) \to (S, \leq)$: monoid morphism s.t.

$$s \leq t \implies s\varphi \leq t\varphi$$

OM-variety: class of finite ordered monoids closed under homomorphic images, submonoids and finite direct products.

Morphism of ordered monoids $\varphi \colon (M, \leq) \to (S, \leq)$: monoid morphism s.t.

$$s \leq t \implies s\varphi \leq t\varphi$$

OM-variety: class of finite ordered monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM - class of all finite ordered monoids.

Morphism of ordered monoids $\varphi \colon (M, \leq) \to (S, \leq)$: monoid morphism s.t.

$$s \leq t \implies s\varphi \leq t\varphi$$

OM-variety: class of finite ordered monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM - class of all finite ordered monoids.

 \mathbf{J}_1^+ – class of all finite idempotent and commutative monoids with the natural order.

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Morphism of ordered monoids $\varphi \colon (M, \leq) \to (S, \leq)$: monoid morphism s.t.

$$s \leq t \implies s\varphi \leq t\varphi$$

OM-variety: class of finite ordered monoids closed under homomorphic images, submonoids and finite direct products.

Examples:

OM - class of all finite ordered monoids.

 \mathbf{J}_1^+ – class of all finite idempotent and commutative monoids with the natural order.

◎ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

Mário Branco (CAUL, Univ. Lisbon)

э

For each M-variety V and each finite alphabet A, let

$$\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid M(L) \in \mathbf{V} \right\} \end{aligned}$$

< ∃ →

For each M-variety V and each finite alphabet A, let

$$\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid M(L) \in \mathbf{V} \right\} \end{aligned}$$

< ∃⇒

For each **OM**-variety **V** and each finite alphabet A, let

$$\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid M(L) \in \mathbf{V} \right\} \end{aligned}$$

-∢ ≣ ▶

For each **OM**-variety **V** and each finite alphabet A, let

 $(A^*)\mathcal{V} = \{L \subseteq A^* \mid L \text{ is recognized by some ordered monoid of } \mathbf{V} \} \\ = \{L \subseteq A^* \mid M(L) \in \mathbf{V} \}$

For each **OM**-variety **V** and each finite alphabet A, let

$$\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some ordered monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid (M(L), \leq) \in \mathbf{V} \right\} \end{aligned}$$

-∢ ≣ ▶

For each **OM**-variety **V** and each finite alphabet A, let

$$\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some ordered monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid (M(L), \leq) \in \mathbf{V} \right\} \end{aligned}$$

Then $\ensuremath{\mathcal{V}}$ is a positive variety of languages.

Theorem (Pin)

The correspondence $V \mapsto V$ between the **OM**-varieties and the positive varieties of languages is bijective.

For each **OM**-variety **V** and each finite alphabet A, let

$$\begin{aligned} (A^*)\mathcal{V} &= \left\{ L \subseteq A^* \mid L \text{ is recognized by some ordered monoid of } \mathbf{V} \right\} \\ &= \left\{ L \subseteq A^* \mid (M(L), \leq) \in \mathbf{V} \right\} \end{aligned}$$

Then $\ensuremath{\mathcal{V}}$ is a positive variety of languages.

Theorem (Pin)

The correspondence $V \mapsto V$ between the **OM**-varieties and the positive varieties of languages is bijective.

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

∃ ► < ∃ ►</p>

30 / 42

э

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \leq v$, where $u, v \in \widehat{A^*}$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A^*}$.

A finite monoid M satisfies an identity u = v if $u\psi = v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} = v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A^*}$.

A finite ordered monoid M satisfies an identity u = v if $u\psi = v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} = v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A^*}$.

A finite ordered monoid M satisfies an identity $u \le v$ if $u\psi = v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} = v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A^*}$.

A finite ordered monoid M satisfies an identity $u \le v$ if $u\psi \le v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} \le v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A^*}$.

A finite ordered monoid M satisfies an identity $u \le v$ if $u\psi \le v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} \le v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A^*}$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u\psi \leq v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} \leq v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

Theorem (Pin and Weil)

The **OM**-varieties are precisely the classes of ordered monoids of the form $[\![\Sigma]\!]$.

An identity or equation over an alphabet (finite) A is a formal expression u = v or $u \le v$, where $u, v \in \widehat{A^*}$.

A finite ordered monoid M satisfies an identity $u \leq v$ if $u\psi \leq v\psi$ for every continuous morphism $\psi \colon \widehat{A^*} \to M$, i.e. $u\hat{\varphi} \leq v\hat{\varphi}$ for every morphism $\varphi \colon A^* \to M$.

Theorem (Pin and Weil)

The **OM**-varieties are precisely the classes of ordered monoids of the form $[\![\Sigma]\!]$.

Examples:

 $J_1^+ = [x = x^2, xy = yx, x \le 1]$ – class of all finite idempotent and commutative monoids with the natural order.

 $LJ^+ = \llbracket x^{\omega}yx^{\omega} \le x^{\omega} \rrbracket$ (semigroups).

30 / 42

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

∃ ► < ∃ ►</p>

31 / 42

э

Variety of languages \mathcal{V} :

$$\begin{array}{rcl} A & \longmapsto & (A^*)\mathcal{V} \\ \text{alphabet} & \text{subset of } \mathsf{Rat}(A^*) \end{array}$$

such that

- (A*)V is closed under finite union, finite intersection and complementation.
- ② $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Variety of languages \mathcal{V} :

$$\begin{array}{rcl} A & \longmapsto & (A^*)\mathcal{V} \\ \text{alphabet} & \text{subset of } \mathsf{Rat}(A^*) \end{array}$$

such that

- (A*)V is closed under finite union, finite intersection and complementation.
- ② $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

Variety of languages \mathcal{V} :

such that

- **(** A^*) \mathcal{V} is closed under finite union, and finite intersection.
- (A^{*})𝔅 is closed under quotients: $a^{-1}L$, $La^{-1} ∈ (A^*)𝔅$, for any $L ∈ (A^*)𝔅$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

► < ∃ ► < ∃ ► < ∃ < <</p>

31 / 42

Positive variety of languages \mathcal{V} :

such that

- (A^*) \mathcal{V} is closed under finite union, and finite intersection.
- ② $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$
Other classes of languages

Positive variety of languages \mathcal{V} :

such that

- **(** A^*) \mathcal{V} is closed under finite union, and finite intersection.
- **②** $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.
- **③** if $\varphi \colon A^* \to B^*$ is a morphism and $L \in (B^*)\mathcal{V}$, then $L\varphi^{-1} \in (A^*)\mathcal{V}$

How to characterize algebraically the classes $\mathcal V$ satisfying the following?

- **(** A^*) \mathcal{V} is closed under finite union and finite intersection.
- ② $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.

3

Proposition (Almeida, Pippenger) Let $L \subseteq A^*$.

Proposition (Almeida, Pippenger)

Let $L \subseteq A^*$. L is regular if and only if \overline{L} is open.

Proposition (Almeida, Pippenger)

Let $L \subseteq A^*$. L is regular if and only if \overline{L} is open.

Profinite space or Stone space: topological space that is projective limit of finite topological spaces endowed with the discrete topology.

Proposition

Let X be a topological space. TFAE:

- **1** X is profinite.
- **2** X is Hausdorff, compact and totally disconnected.
- S X is Hausdorff, compact and admits a base of clopen sets.

イロト 不得 トイヨト イヨト 二日

Stone duality: boolean algebras \leftrightarrow Stone spaces

Boolean algebra ${\bf B} \mapsto \{ \text{morphisms from } {\bf B} \text{ to } \{0,1\} \}$ with the topology induced by the product topology in $\{0,1\}^{B}.$

Stone duality: boolean algebras \leftrightarrow Stone spaces

Boolean algebra $B \mapsto \{\text{morphisms from } B \text{ to } \{0,1\}\}$ with the topology induced by the product topology in $\{0,1\}^B$.

Stone space $X \mapsto \{ \text{clopen sets of } X \}$.

イロト 不得 トイヨト イヨト 二日

Stone duality: boolean algebras \leftrightarrow Stone spaces

Boolean algebra $\mathbf{B} \mapsto \{\text{morphisms from } \mathbf{B} \text{ to } \{0,1\}\}$ with the topology induced by the product topology in $\{0,1\}^{\mathbf{B}}$.

Stone space $X \mapsto \{ \text{clopen sets of } X \}.$

Theorem (Pippenger)

The set of recognizable languages of A^* is dual to the Stone space A^* .

Proposition (Almeida, Pippenger) Let $L \subseteq A^*$.

3

Proposition (Almeida, Pippenger)

Let $L \subseteq A^*$. L is regular if and only if \overline{L} is open.

Proposition (Gehrke, Grigorieff, Pin)

Let
$$L\subseteq A^*$$
 regular and $u\in \widehat{A^*}.$ TFAE:

$$\bullet \quad u \in L.$$

- *φ̂*(*u*) ∈ *φ*(*L*), for every morphism *φ*: *A*^{*} → *M*, where *M* is a finite monoid.
- **3** $\hat{\eta}(u) \in \eta(L)$, where $\eta: A^* \to M(L)$ is the syntactic morphism of L.

イロト イポト イヨト イヨト 二日

- $L \subseteq A^*$ regular.
- $\boldsymbol{V} = [\![\boldsymbol{\Sigma}]\!] \ \boldsymbol{OM}\text{-variety}.$

- $L \subseteq A^*$ regular.
- $\boldsymbol{V} = [\![\boldsymbol{\Sigma}]\!] \ \boldsymbol{OM}\text{-variety}.$

$$\begin{array}{rcl} L \in A^* \mathcal{V} & \Longleftrightarrow & \left(M(L), \leq \right) \in \mathbf{V} \\ & \longleftrightarrow & \left(M(L), \leq \right) \text{ satisfies the equations of } \Sigma \end{array}$$

- $L \subseteq A^*$ regular.
- $\boldsymbol{V} = [\![\boldsymbol{\Sigma}]\!] \ \boldsymbol{OM}\text{-variety}.$

$$\begin{array}{rcl} L \in A^* \mathcal{V} & \Longleftrightarrow & \left(M(L), \leq \right) \in \mathbf{V} \\ & \Longleftrightarrow & \left(M(L), \leq \right) \text{ satisfies the equations of } \Sigma \end{array}$$

 $L \subseteq A^*$ regular, $u, v \in \widehat{A^*}$.

L satisfies $u \leq v$ if $\hat{\eta}(u) \leq \hat{\eta}(v)$, where $\eta \colon A^* \to M(L)$ is the syntactic morphism of *L*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ (~)

35 / 42

- $L \subseteq A^*$ regular.
- $\boldsymbol{V} = [\![\boldsymbol{\Sigma}]\!] \ \boldsymbol{OM}\text{-variety}.$

$$\begin{array}{rcl} L \in A^* \mathcal{V} & \Longleftrightarrow & \left(M(L), \leq \right) \in \mathbf{V} \\ & \Longleftrightarrow & \left(M(L), \leq \right) \text{ satisfies the equations of } \Sigma \end{array}$$

 $L \subseteq A^*$ regular, $u, v \in \widehat{A^*}$.

L satisfies $u \leq v$ if $\hat{\eta}(u) \leq \hat{\eta}(v)$, where $\eta \colon A^* \to M(L)$ is the syntactic morphism of *L*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ (~)

35 / 42

- $L \subseteq A^*$ regular.
- $\boldsymbol{V} = [\![\boldsymbol{\Sigma}]\!] \ \boldsymbol{OM}\text{-variety}.$

$$\begin{array}{rcl} L \in A^* \mathcal{V} & \Longleftrightarrow & \left(M(L), \leq \right) \in \mathbf{V} \\ & \Longleftrightarrow & \left(M(L), \leq \right) \text{ satisfies the equations of } \Sigma \end{array}$$

$$L \subseteq A^*$$
 regular, $u, v \in \widehat{A^*}$.

L satisfies $u \leq v$ if $\hat{\eta}(u) \leq \hat{\eta}(v)$, where $\eta: A^* \to M(L)$ is the syntactic morphism of *L*.

Notice that, by the previous proposition,

$$\begin{split} \hat{\eta}(\boldsymbol{u}) &\leq \hat{\eta}(\boldsymbol{v}) &\iff \forall \boldsymbol{s}, t \in M(L) \left(\boldsymbol{s} \hat{\eta}(\boldsymbol{v}) t \in \eta(L) \Rightarrow \boldsymbol{s} \hat{\eta}(\boldsymbol{u}) t \in \eta(L) \right) \\ &\iff \forall \boldsymbol{x}, \boldsymbol{y} \in A^* \left(\hat{\eta}(\boldsymbol{x} \boldsymbol{v} \boldsymbol{y}) \in \eta(L) \Rightarrow \hat{\eta}(\boldsymbol{x} \boldsymbol{u} \boldsymbol{y}) \in \eta(L) \right) \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うの()

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

36 / 42

э

How to characterize algebraically the classes $\ensuremath{\mathcal{V}}$ satisfying the following?

- **(** A^*) \mathcal{V} is closed under finite union and finite intersection.
- **②** $(A^*)V$ is closed under quotients: $a^{-1}L$, $La^{-1} \in (A^*)V$, for any $L \in (A^*)V$.

How to characterize algebraically the classes $\ensuremath{\mathcal{V}}$ satisfying the following?

- (A^*) \mathcal{V} is closed under finite union and finite intersection.
- (A^{*}) 𝔅 is closed under quotients: $a^{-1}L$, $La^{-1} ∈ (A^*)𝔅$, for any $L ∈ (A^*)𝔅$.

Lattice of languages of A^* : set of languages of A^* closed under finite union and finite intersection.

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

э

37 / 42

Gehrke, Grigorieff, Pin (2008):

Stone duality and Priestley duality to describe by equations a lattice of regular languages.

Gehrke, Grigorieff, Pin (2008):

Stone duality and Priestley duality to describe by equations a lattice of regular languages.

Attention: another extension of equation

Gehrke, Grigorieff, Pin (2008):

Stone duality and Priestley duality to describe by equations a lattice of regular languages.

Attention: another extension of equation

Theorem (Gehrke, Grigorieff, Pin)

A set \mathcal{L} of languages of A^* is a lattice of languages closed under quotients if and only if, for some set Σ of equations of the form $u \leq v$, with $u, v \in \widehat{A^*}$, \mathcal{L} is the set of the languages of A^* that satisfy all equations of Σ .

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

(日) (同) (三) (三)

38 / 42

- 2

Joint work with J.-E. Pin.

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$:

3

(人間) くちり くちり

Joint work with J.-E. Pin.

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$: the set of languages that are finite union of $L_0a_1L_1\cdots a_nL_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_j \in A$.

3

• • = • • = •

Joint work with J.-E. Pin.

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$: the set of languages that are finite union of $L_0a_1L_1\cdots a_nL_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_j \in A$.

 $\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega}yx^{\omega} \leq x^{\omega}$, where $x, y \in \widehat{A^*}$ are such that the equations $x = x^2$ and $y \leq x$ are satisfied by \mathcal{L} .

38 / 42

Joint work with J.-E. Pin.

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$: the set of languages that are finite union of $L_0a_1L_1\cdots a_nL_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_j \in A$.

 $\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega}yx^{\omega} \leq x^{\omega}$, where $x, y \in \widehat{A^*}$ are such that the equations $x = x^2$ and $y \leq x$ are satisfied by \mathcal{L} .

Theorem (BP)

If \mathcal{L} is a lattice of regular languages of A^* closed under quotients, then $Pol(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.

イロト イポト イヨト イヨト 二日

Joint work with J.-E. Pin.

Let \mathcal{L} be a set of languages of A^* .

 $Pol(\mathcal{L})$: the set of languages that are finite union of $L_0a_1L_1\cdots a_nL_n$, with $n \in \mathbb{N}_0$, $L_i \in \mathcal{L}$, $a_j \in A$.

 $\Sigma(\mathcal{L})$: the set of equations of the form $x^{\omega}yx^{\omega} \leq x^{\omega}$, where $x, y \in \widehat{A^*}$ are such that the equations $x = x^2$ and $y \leq x$ are satisfied by \mathcal{L} .

Theorem (BP)

If \mathcal{L} is a lattice of regular languages of A^* closed under quotients, then $Pol(\mathcal{L})$ is defined by $\Sigma(\mathcal{L})$.

How to prove it?

イロト 不得 トイヨト イヨト 二日

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013 39 / 42

æ

(日) (同) (三) (三)

Proposition

If \mathcal{L} is a lattice of regular languages of A^* , then $Pol(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

イロト イポト イヨト イヨト 二日

Proposition

If \mathcal{L} is a lattice of regular languages of A^* , then $Pol(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

Easier part

3

Proposition

If \mathcal{L} is a lattice of regular languages of A^* , then $Pol(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

Easier part

 $L \subseteq A^*$ regular.

Define

$$E_{L} = \left\{ (x, y) \in \widehat{A^{*}} \times \widehat{A^{*}} \mid L \text{ satisfies } x = x^{2} \text{ and } y \leq x \right\}$$
$$F_{L} = \left\{ (x, y) \in \widehat{A^{*}} \times \widehat{A^{*}} \mid L \text{ satisfies } x^{\omega}yx^{\omega} \leq x^{\omega} \right\}$$

39 / 42

Proposition

If \mathcal{L} is a lattice of regular languages of A^* , then $Pol(\mathcal{L})$ satisfies $\Sigma(\mathcal{L})$.

Easier part

 $L \subseteq A^*$ regular.

Define

$$E_{L} = \left\{ (x, y) \in \widehat{A^{*}} \times \widehat{A^{*}} \mid L \text{ satisfies } x = x^{2} \text{ and } y \leq x \right\}$$
$$F_{L} = \left\{ (x, y) \in \widehat{A^{*}} \times \widehat{A^{*}} \mid L \text{ satisfies } x^{\omega} y x^{\omega} \leq x^{\omega} \right\}$$

Proposition

$$E_L$$
 and F_L are clopen in $\widehat{A^*} \times \widehat{A^*}$.

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

(日) (同) (三) (三)

40 / 42

- 2

Proposition

Let \mathcal{L} be a set of regular languages of A^* and K be a regular language of A*. TFAE:

• K satisfies $\Sigma(\mathcal{L})$.

3

Proposition

Let \mathcal{L} be a set of regular languages of A^* and K be a regular language of A^* . TFAE:

- K satisfies $\Sigma(\mathcal{L})$.
- **2** The set $\{F_{\mathcal{K}}\} \cup \{E_{L}^{c} \mid L \in \mathcal{L}\}$ is an open cover of $\widehat{A^{*}} \times \widehat{A^{*}}$.
Proposition

Let \mathcal{L} be a set of regular languages of A^* and K be a regular language of A^* . TFAE:

- K satisfies $\Sigma(\mathcal{L})$.
- **2** The set $\{F_{\mathcal{K}}\} \cup \{E_{L}^{c} \mid L \in \mathcal{L}\}$ is an open cover of $\widehat{A^{*}} \times \widehat{A^{*}}$.

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^* . If K satisfies $\Sigma(\mathcal{L})$, there exists a <u>finite</u> subset \mathcal{F} of \mathcal{L} such that K satisfies $\Sigma(\mathcal{F})$.

40 / 42

Proposition

Let \mathcal{L} be a set of regular languages of A^* and K be a regular language of A^* . TFAE:

- K satisfies $\Sigma(\mathcal{L})$.
- **2** The set $\{F_{\mathcal{K}}\} \cup \{E_{L}^{c} \mid L \in \mathcal{L}\}$ is an open cover of $\widehat{A^{*}} \times \widehat{A^{*}}$.

Proposition

Let \mathcal{L} be a set of languages of A^* and K be a regular language of A^* . If K satisfies $\Sigma(\mathcal{L})$, there exists a <u>finite</u> subset \mathcal{F} of \mathcal{L} such that K satisfies $\Sigma(\mathcal{F})$.

40 / 42

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013

41 / 42

An important tool: factorization forests

э

An important tool: factorization forests

A – an alphabet

factorization forest: map

$$A^2A^* \ni x \xrightarrow{F} F(x) = (x_1, x_2, \dots, x_n),$$

where $n \geq 2$ and $x_i \in A^+$

(a recursive process to factorize words up to products of letters).

3

An important tool: factorization forests

A – an alphabet

factorization forest: map

$$A^2A^* \ni x \xrightarrow{F} F(x) = (x_1, x_2, \ldots, x_n),$$

where $n \ge 2$ and $x_i \in A^+$

(a recursive process to factorize words up to products of letters).

$$F(x) = (x_1, x_2, \dots, x_n) \mapsto \text{labeled tree } t(x)$$

Height function of $F: h: A^* \to \mathbb{N}_0$

$$h(x) = \begin{cases} 0 & \text{if } x \in A \cup \{1\} \\ 1 + \max\{h(x_i) \colon 1 \le i \le n\} & \text{if } F(x) = (x_1, x_2, \dots, x_n) \end{cases}$$

Height of F: sup{h(x): $x \in A^*$ }.

Mário Branco (CAUL, Univ. Lisbon)

Equational descriptions

Lisboa - July 11-12, 2013 42 / 42

Let $\varphi \colon A^* \to M$ be a morphism, where M is a finite monoid.

A factorization forest F is said to be Ramseyan modulo φ if either $F(x) = (x_1, x_2)$

or there exists an idempotent e of M such that $F(x) = (x_1, x_2, ..., x_n)$ and $\varphi(x_1) = \varphi(x_2) = \cdots = \varphi(x_n) = e$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Let $\varphi \colon A^* \to M$ be a morphism, where M is a finite monoid.

A factorization forest F is said to be Ramseyan modulo φ if either $F(x) = (x_1, x_2)$

or there exists an idempotent e of M such that $F(x) = (x_1, x_2, ..., x_n)$ and $\varphi(x_1) = \varphi(x_2) = \cdots = \varphi(x_n) = e$.

Theorem (Simon, ...)

There exists a factorization forest F of height $\leq 3|M| - 1$ which is Ramseyan modulo φ .