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Abstract

The process of fluid-driven crack propagation in permeable rocks is investigated by a simple hydro-mechanical model and
the concept of topological derivative. Analytical and numerical computations are made to propose a promising model tested
and validated on a series of bidimensional benchmark examples. The main guidelines for this model are the use of simple
finite elements with a minimal number of user-defined algorithmic parameters.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The hydraulic fracturing process is an engineering technique used to create and/or propagate geological faults
by means of the pressure of an injected fluid in order to let the gas trapped inside the rock be extracted at the
surface. This extraction process, commonly known as fracking, can be extremely damageable for the ecosystem
due, in part, to the possibility of contamination of the soil and the creation of uncontrolled seismic effects provoked
by the initiation and propagation of the cracks. In this sense, it is essential to promote accurate developments of
theoretical studies as well as computational tools able to monitor and possibly optimize the real-world process.
This simulation-based approach eventually serves as a scientific support at the disposal of the decision and policy
makers.

The hydraulic fracturing process has been subject of intense research in last years, see for example [1–8], to
cite a few. For a comprehensive review on the subject, see the introduction section in [9], where a phase-field
approximation in the spirit of Francfort–Marigo variational approach [10,11] is proposed. See also [12] where the
full Biot system is combined with a phase-field approach for hydraulic fracture modeling in a porous medium. A
fully-coupled formulation accounting for the displacement, pressure and the phase-field itself has been proposed
in [13], based on a free energy functional governing the whole damage evolution process.
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Recently, a simplified hydraulic fracturing model also based on the minimization of the Francfort–Marigo
functional but using the concept of topological derivative [14–18] to nucleate and propagate the cracks has been
introduced in [19]. Both approaches of [9] and [19] are similar in spirit in the sense that on the one hand they are
damage or “smeared crack” approaches to fracture (that is, by means of an infinitesimal parameter), and on the other
hand they avoid the introduction of ad-hoc tools, such as geometry or crack dependent parameters. Moreover, both
are based on an unified method to compute the crack opening and the mechanical equilibrium, possibly coupled,
as in the present work, to a porous media model, computed on the same domain discretization. We stress however
that in our method, the main guideline is the minimal working assumptions, parameters, and equations into play.
We also emphasize that nucleation and propagation are both governed by a threshold approach for the topological
derivative field, leading to remarkably simple algorithm that features a minimal number of user-defined algorithmic
parameters.

In the proposed methodology of [19], the reservoir was modeled as a two dimensional idealization in which the
rock is assumed to be impermeable and with no porosity. In this particular case, the fluid pressure is constant and
confined inside the crack. Obviously, this is not what takes place in the real process of hydraulic fracture, because
the reservoir generally consists in a porous medium. Therefore, the proposed pressure evolution strategy was in
this preliminary work a severe simplification of the fracking process encountered in real world, but nonetheless the
methodology we have followed seemed promising, allowing for the detection of multiples crack tip opening and
the simultaneous computation of multiple fracture paths. Moreover, the obtained results showed typical features
of hydraulic fracture, such as the characterization of the fault-activation pressure and specific crack path growth,
allowing for kinking and bifurcations. Also, the theoretical study motivated by the fracking model, made in [20]
and consisting in a Γ -convergence result of the damage to the sharp fracture model, was a further preliminary step
to the understanding and the improvement of our model.

Indeed, in the present work, we propose an improvement of the method by letting the propagating medium
be permeable and hence we extend the strategy introduced in [19] for a porous media taking into account the
hydro-mechanical model proposed by Biot [21]. In this case, the crack propagation mechanism is activated by non
constant pressure field distributed over the whole domain. The resulting model is semi-coupled in the sense that the
equation for the displacement depends on the pressure through a source term, whereas the equation for the pressure
has no dependence on the displacement, and thus is unable to account for the influence of the fluid on the porous
matrix. Therefore, in contrast to our former work [19], a much more realistic scenario which takes into account for
pressure dropping phenomenon within the crack is considered. In addition, a specific adjoint state is introduced in
order to derive the associated sensitivities, that is solution to a semi-coupled problem in a reverse sense, where the
adjoint pressure system depends on the displacement field. This extension is non-trivial and represents the main
contribution of the paper from both theoretical and practical point of views. It should be emphasized, however, that
we are interested in the analysis of one particular aspect of the hydraulic fracturing process, namely, the effect of
a non constant distributed pressure field on the mechanism of crack propagation inside a porous medium. In this
sense, we stress that several physical aspects associated with the real hydraulic fracturing process, such as thermal
and chemicals effects or elastic waves produced by explosives, are yet neglected. The treatment of the total coupled
case, in transient regime into three spatial dimensions, is now under investigation.

The work is organized as follows. The hydro-mechanical model of hydraulic fracture is introduced in Section 2.
In Section 3, the associated topological derivative expression is derived. The topology optimization algorithm is
presented in Section 4. The numerical experiments are shown in Section 5. The theoretical results in three spatial
dimensions are presented in Section 6 for the reader convenience. Finally, some concluding remarks are presented
in Section 7.

2. Hydro-mechanical model of hydraulic fracture

Let us consider a saturated porous matrix submitted to a fluid flux that obeys the Darcy law under the quasi-static
loading assumption. The porous matrix, which represents a single block of the reservoir, is given by an open and
bounded geometric domain Ω ⊂ R2 with Lipschitz boundary ∂Ω . The domain Ω contains a subdomain ω ⊂ Ω ,
representing the geological fault into the reservoir. See Fig. 1. In the proposed model ω is a damage region, and
it is only in the limit that this damage model is a fracture model, see [20]. To characterize the damage region, a
parameter ρ, defined as

ρ = ρ(x) :=
{

1, if x ∈ Ω \ ω ,
ρ0, if x ∈ ω , (2.1)
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Fig. 1. Saturated block containing a geological fault.

with 0 < ρ0 ≪ 1, is introduced. Then, the region Ω \ω will represent the undamaged porous medium while ω the
geological fault. Since the present model is derived from the one proposed by Francfort–Marigo [10,11], the idea
consists in minimizing a shape functional Fω(u) of the form

Fω(u) = J (u)+ κ|ω| , (2.2)

with respect to the geological fault ω, at the quasi-static time step ti . The second term on the right hand side of
(2.2) is the Griffith’s energetic dissipation term while J (u) represents the total potential energy of the system and
is written as

J (u) =
1
2

∫
Ω

σ (u) · (∇u)s dx −
∫
Ω

α p div(u) dx . (2.3)

The displacement field u, at the quasi-static time step ti , is solution to the following variational problem: Find
u ∈ U , such that∫

Ω

σ (u) · (∇η)s dx =
∫
Ω

α p div(η) dx , ∀η ∈ V , (2.4)

where α is the Biot’s coefficient [21] and p is the pressure of the fluid acting into the porous matrix at the time
step ti . More precisely, p = p(x) is solution to the following variational problem: Find p ∈ P such that∫

Ω

k∇ p · ∇ϕ dx = 0 , ∀ϕ ∈ Q . (2.5)

The term σ (ϕ) in (2.3) represents the stress tensor and is defined as

σ (ϕ) = ρC(∇ϕ)s , (2.6)

with the parameter ρ given by (2.1). We consider that the reservoir is composed of an isotropic material, so that
the elasticity tensor C can be written as follows

C = 2µI+ λ(I⊗ I) , (2.7)

where I and I are the second and fourth identity tensors, respectively, and µ and λ, given by

µ =
E

2(1+ ν)
and λ =

νE
(1+ ν)(1− 2ν)

, (2.8)

are the Lamé’s coefficients. The strain tensor, denoted by (∇ϕ)s , is defined as

(∇ϕ)s
:=

1
2

(∇ϕ + (∇ϕ)⊤) . (2.9)

The permeability of the porous medium k in (2.5) assume the values

k = k(x) :=
{

kr , if x ∈ Ω \ ω ,
k f , if x ∈ ω , (2.10)
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with kr ≪ k f . The set U and the space V are defined as

V := U := H 1
0 (Ω;R2) , (2.11)

while the set P and the space Q are given by

P :=
{
ϕ ∈ H 1(Ω ) : ϕ|Γ0

= 0 , ϕ|ΓD
= pi

}
and Q :=

{
ϕ ∈ H 1

0 (Ω )
}
, (2.12)

where Γ0 := ∂Ω \ ΓD . The term pi in the set P represents a prescribed pressure on ΓD at the time step ti , such
that

pi = pi−1 +∆pi , (2.13)

where ∆pi represents the pressure increment. Then, the total prescribed pressure p is given by the sum

p = p0 +

N∑
i=1

∆pi , (2.14)

where p0 is the initial prescribed pressure and N the total number of increments. Therefore, the displacement field
u and the pressure p, in each quasi-static time step ti , are induced by the boundary condition pi prescribed on ΓD .
Finally, the following adjoint problem is introduced in order to simplify future derivations: Find q ∈ Q, such that∫

Ω

k∇q · ∇ϕ dx =
∫
Ω

α div(u)ϕ dx , ∀ϕ ∈ Q , (2.15)

where α is the Biot’s coefficient.
Taking into account all these elements, the minimization problem can be defined as: For each quasi-static time

instant ti ,

Minimize
ω⊂Ω

Fω(u), subject to (2.4) , (2.16)

where Fω(u) is given by (2.2).
The same strategy proposed in [19] to deal with the characterization of the critical pressure is adopted here,

i.e., the parameter κ is replaced by a new parameter κδ defined as

κ = κδ :=
κs

δ
, (2.17)

where κs represents a new material property and δ is the length of the initial damage. The scaling property of κ
with respect to δ is crucial in the proof of the Γ -convergence result in [20].

3. Topological derivative method

The topological derivative is defined as the first term of the asymptotic expansion of a given shape functional
with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions,
source-terms and cracks. In other words, the topological derivative measures the sensitivity of the associated shape
functional with respect to the nucleation of a singular domain perturbation. In order to introduce these ideas, let us
consider an open and bounded domain Ω ⊂ R2 with a Lipschitz boundary ∂Ω , which is subject to a nonsmooth
perturbation confined in a small region Bε(x̂) of size ε centered at an arbitrary point x̂ ∈ Ω . We introduce a
characteristic function x ↦→ χ (x), x ∈ R2, associated with the unperturbed domain, namely χ = 1Ω , such that:

|Ω | =

∫
R2
χ (x)dx , (3.1)

where |Ω | is the Lebesgue’s measure of Ω . Then, we define a characteristic function associated with the
topologically perturbed domain of the form x ↦→ χε(x̂; x), x ∈ R2. In the case of a perforation, for example,
χε(x̂) = 1Ω − 1Bε(x̂), the perforated domain is obtained as Ωε(x̂) = Ω \ Bε(x̂). Finally, we assume that a given
shape functional ψ(χε(x̂)), associated with the topologically perturbed domain, admits the following topological
asymptotic expansion:

ψ(χε(x̂)) = ψ(χ )+ f (ε)DTψ(x̂)+ o( f (ε)) , (3.2)



M. Xavier, N. Van Goethem and A.A. Novotny / Computer Methods in Applied Mechanics and Engineering 365 (2020) 112974 5

Fig. 2. Perturbed problem.

where ψ(χ ) is the shape functional associated to the original domain, that is, without perturbation, f (ε) is a positive
function such that f (ε)→ 0 when ε → 0 and o( f (ε)) is the remainder. The function x̂ ↦→ DTψ(x̂) is called the
topological derivative of ψ at x̂ , which can be used as a steepest-descent direction in an optimization process like
in any method based on the gradient of the cost functional.

Therefore, in order to evaluate the topological derivative of the shape functional (2.2), it is necessary first to
introduce the topologically perturbed problem. The idea consists in nucleate a small circular inclusion, denoted
by Bε(x̂), of radius ε and centered at the point x̂ ∈ Ω , such that Bε(x̂) ⊂ Ω and Bε(x̂) ∩ ∂ω = ∅ (see Fig. 2).
The hydro-mechanical properties at the inclusion Bε(x̂) will be the same as in the geological fault ω. In order to
introduce the topological perturbation, let us consider three piece-wise constant functions, γε, γ αε and γ f

ε , which
are defined as

γε = γε(x) :=
{

1 if x ∈ Ω \ Bε ,
γ if x ∈ Bε ,

(3.3)

γ αε = γ
α
ε (x) :=

{
1 if x ∈ Ω \ Bε ,
γ α if x ∈ Bε ,

(3.4)

and

γ f
ε = γ

f
ε (x) :=

{
1 if x ∈ Ω \ Bε ,
γ f if x ∈ Bε ,

(3.5)

that affect the elasticity tensor C, the Biot’s coefficient α and the permeability k, respectively, as described in detail
in Sections 3.1 and 3.2. The shape functional associated with the topological perturbed problem is written as

Fωε (uε) = Jε(uε)+ κ|ωε| , (3.6)

where ωε = ω ∪ Bε with ω ∩ Bε = ∅ and Jε(uε) denotes the total potential energy of the perturbed system.
Since the present problem is formulated under a linear regime, the asymptotic analysis can be done separately. In

Section 3.1, the perturbation is considered on the elastic properties (elasticity tensor) and on the Biot’s coefficient
by setting γ f

= 1, γ ̸= 1 and γ α ̸= 1. In Section 3.2, the analysis will be done with respect to a perturbation on
the permeability by setting γ = γ α = 1 and γ f

̸= 1. The final result is summarized in Section 3.3.

3.1. Perturbation on the elastic properties and on the Biot’s coefficient

As mentioned above, the topological asymptotic analysis will be done first with respect to the perturbation on
the mechanical properties and on the Biot’s coefficient, i.e., with γ ̸= 1, γ α ̸= 1 and γ f

= 1. In this case, the total
potential energy associated with the perturbed system, denoted by Jε(uε), is written as

Jε(uε) =
1
2

∫
Ω

σε(uε) · (∇uε)s dx −
∫
Ω

αε p div(uε) dx , (3.7)
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where the vector function uε is solution to the following variational problem: Find uε ∈ U , such that∫
Ω

σε(uε) · (∇η)s dx =
∫
Ω

αε p div(η) dx , ∀η ∈ V, (3.8)

with σε(uε) = γεσ (uε) and αε = γ αε α, where σ (ϕ), γε and γ αε are given by (2.6), (3.3) and (3.4), respectively,
and α is the Biot’s coefficient. In order to evaluate the difference between the energy shape functionals J (u) and
Jε(uε), defined in (2.3) and (3.7), respectively, let us take η = uε − u as test function in the variational equation
(2.4). Then, the following equality is obtained∫

Ω

σ (u) · (∇u)s dx =
∫
Ω

σ (u) · (∇uε)s dx −
∫
Ω

α p div(uε − u) dx . (3.9)

Replacing (3.9) in (2.3) we have

J (u) =
1
2

∫
Ω

σ (u) · (∇uε)s dx −
1
2

∫
Ω

α p div(uε + u) dx . (3.10)

In the same way, taking η = uε − u in (3.8), it follows that∫
Ω

σε(uε) · (∇uε)s dx =
∫
Ω

σε(uε) · (∇u)s dx +
∫
Ω

αε p div(uε − u) dx . (3.11)

After replacing (3.11) in (3.7) we get

Jε(uε) =
1
2

∫
Ω

σε(uε) · (∇u)s dx −
1
2

∫
Ω

αε p div(uε + u) dx . (3.12)

Now, taking into account the expressions (3.10) and (3.12), the variation of the energy shape functionals can be
written as

Jε(uε)− J (u) =
1
2

∫
Ω

σε(uε) · (∇u)s dx −
1
2

∫
Ω

σ (uε) · (∇u)s dx

−
1
2

∫
Ω

αε p div(uε + u) dx +
1
2

∫
Ω

α p div(uε + u) dx . (3.13)

After applying the definitions of the contrasts γε and γ αε given by (3.3) and (3.4), respectively, we have

Jε(uε)− J (u) =
1
2

∫
Ω\Bε

σ (uε) · (∇u)s dx +
1
2

∫
Bε
γ σ (uε) · (∇u)s dx

−
1
2

∫
Ω\Bε

σ (uε) · (∇u)s dx −
1
2

∫
Bε
σ (uε) · (∇u)s dx

−
1
2

∫
Ω\Bε

α p div(uε + u) dx −
1
2

∫
Bε
γ αα p div(uε + u) dx

+
1
2

∫
Ω\Bε

α p div(uε + u) dx +
1
2

∫
Bε
α p div(uε + u) dx . (3.14)

By adding and subtracting

−
1− γ α

2

∫
Bε
α p div(u) dx , (3.15)

the following expression is obtained after canceling of the identical terms

Jε(uε)− J (u) = −
1− γ

2γ

∫
Bε
σε(uε) · (∇u)s dx

+
1− γ α

2

∫
Bε
α p div(uε − u) dx + (1− γ α)

∫
Bε
α p div(u) dx . (3.16)

Now, in order to apply the topological derivative definition, it is necessary first to know the asymptotic behavior of
the function uε with respect to the parameter ε. To this end, let us consider the following ansatz:

uε = u + wε + ũε , (3.17)
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where u is solution to the unperturbed problem (2.4), wε is solution to an auxiliary exterior problem and ũε is the
remainder.

In particular, the following auxiliary boundary value problem is considered when ε→ 0: Find Sε(wε), such that⎧⎨⎩divSε(wε) = 0 in R2,

Sε(wε) → 0 in ∞ ,

[[Sε(wε)]] n = g on ∂Bε ,
(3.18)

where Sε(wε) = γεC(∇wε)s and g = [ρ−1(1− γ α)αp(x̂)I− (1− γ )S(u)(x̂)]n obtained after adding and subtracting
σ (u(x)) and p(x) at the point x̂ , with S(u) = C(∇u)s . The boundary value problem (3.18) admits an explicit
solution. For the case p(x) = 0∀x ∈ Ω see [22], for instance. For the situation with constant pressure confined at
the inclusion see [19]. For the present case, taking into account that the stress Sε(wε) is uniform inside the inclusion
Bε, the solution of (3.18) can be written in the following way

Sε(wε)|Bε = Tγ S(u)(x̂)+ ρ−1Tγ , (3.19)

where Tγ and Tγ are fourth and second order isotropic tensors, respectively. The tensor Tγ is given by

Tγ =
γ (1− γ )
2(1+ bγ )

(
2bI+

a − b
1+ aγ

I⊗ I
)

(3.20)

and Tγ is written as

Tγ = −(1− γ α)α p(x̂)
aγ

1+ aγ
I . (3.21)

The constants a and b are defined in terms of the Lamé’s coefficients as follows

a =
λ+ µ

µ
and b =

λ+ 3µ
λ+ µ

. (3.22)

After multiplying both sides of (3.19) by the parameter ρ, we have

σε(wε)|Bε = Tγ σ (u)(x̂)+ Tγ . (3.23)

Note that the result shown in (3.23) fits the famous Eshelby’s problem, see [23,24].
Let us now consider the problem associated to the term σε(ũε) in order to compensate for the discrepancies

introduced by the auxiliary problem (3.18). To this aim, the remainder ũε is solution to the following boundary
value problem: Find ũε, such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

divσε(ũε) = g0χBε in Ω ,

σε(ũε) = γερC(∇ũε)s ,

ũε = g1 on ∂Ω ,[[
ũε

]][[
σε(ũε)

]]
n

=

=

0

g2

⎫⎬⎭ on ∂ω ,

[[
ũε

]][[
σε(ũε)

]]
n

=

=

0

h

⎫⎬⎭ on ∂Bε ,

(3.24)

where g0 = (γ α − γ )α∇ p, g1 = −wε, g2 = −(1 − ρ0) S(wε)n and the term h is defined as: h = σ̃n, with
σ̃ = (1− γ α)α (p − p(x̂))I− (1− γ )(σ (u)− σ (u)(x̂)). The estimate ∥ũε∥H1(Ω;R2) = O(ε2) holds true.

Lemma 1. Let ũε be the solution of (3.24) or, equivalently, solution to the following variational problem: Find
ũε ∈ Ũε, such that∫

Ω

σε(ũε) · (∇η)s dx = −
∫

Bε
(γ α − γ )α∇ p · η dx

−(1− ρ0)
∫
∂ω

S(wε)n · η dx +
∫
∂Bε

h · η dx , ∀η ∈ Ṽε . (3.25)
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The set Ũε and the space Ṽε are defined as

Ũε :=
{
ϕ ∈ H 1(Ω;R2) : [[ϕ]]|Bε = 0, ϕ|∂Ω = ε

2g
}
, (3.26)

Ṽε :=
{
ϕ ∈ H 1(Ω;R2) : [[ϕ]]|Bε = 0, ϕ|∂Ω = 0

}
, (3.27)

with g = −ε−2wε. Then, the estimate ∥ũε∥H1(Ω;R2) = O(ε2) holds true.

Proof. From the definition of function h = σ̃n, with n used to denote the unit normal vector field on ∂Bε pointing
toward the center of the inclusion, we have∫

∂Bε
h · η dx =

∫
Bε

(γ α − γ )α∇ p · η dx −
∫

Bε
(1− γ α)α (p − p(x̂))div(η) dx

+

∫
Bε

(1− γ ) (σ (u)− σ (u)(x̂)) · (∇η)s dx , (3.28)

where we have taken into account that σ̃ = (1−γ α)α (p−p(x̂))I−(1−γ )(σ (u)−σ (u)(x̂)) and that div(σ (u)) = α∇ p,
which comes out from the variational form (2.4). From this last result, the variational form (3.25) can be rewritten
as follows∫

Ω

σε(ũε) · (∇η)s dx =
∫

Bε
(1− γ ) (σ (u)− σ (u)(x̂)) · (∇η)s dx − (1− ρ0)

∫
∂ω

S(wε)n · η dx

−

∫
Bε

(1− γ α)α (p − p(x̂))div(η) dx , ∀η ∈ Ṽε . (3.29)

By taking η = ũε − ϕε in (3.29), with ϕε ∈ Ũε, from the strong form (3.24), we have∫
Ω

σε(ũε) · (∇ũε)s dx = ε2
∫
∂Ω

σε(ũε)n · g dx +
∫

Bε
(1− γ ) (σ (u)− σ (u)(x̂)) · (∇ũε)s dx

−

∫
Bε

(1− γ α)α (p − p(x̂))div(ũε) dx − (1− ρ0)
∫
∂ω

S(wε)n · ũε dx . (3.30)

Then, by applying the Cauchy–Schwarz inequality, it follows that∫
Ω

σε(ũε) · (∇ũε)s dx ≤ ε2
∥σε(ũε)n∥H−1/2(∂Ω;R2) ∥g∥H1/2(∂Ω;R2)

+ c1
σ (u)− σ (u)(x̂)


L2(Bε;R2) ∥∇ũε∥L2(Bε;R2)

+ c2
p − p(x̂)


L2(Bε) ∥∇ũε∥L2(Bε;R2)

+ c3 ∥S(wε)n∥H−1/2(∂ω;R2) ∥ũε∥H1/2(∂ω;R2) . (3.31)

By applying the trace theorem it follows that∫
Ω

σε(ũε) · (∇ũε)s dx ≤ c4(ε2
+

x − x̂


L2(Bε;R2)) ∥ũε∥H1(Ω;R2)

≤ c5ε
2
∥ũε∥H1(Ω;R2) , (3.32)

where we have used the interior elliptic regularity of functions u and p together with the fact that the explicit
solution S(wε) is of order O(ε2) far from the inclusion Bε [22]. Finally, from the coercivity of the bilinear form on
the left hand side of the above inequality, we have

c ∥ũε∥
2
H1(Ω;R2) ≤

∫
Ω

σε(ũε) · (∇ũε)s dx . (3.33)

Then, it follows immediately that

∥ũε∥H1(Ω;R2) ≤ Cε2 , (3.34)

where C = c5/c is a constant independent of the small parameter ε. □
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Now, the integrals in (3.16) can be evaluated explicitly. In fact, after replacing the ansatz for uε given by (3.17)
in the first integral of the (3.16) we have∫

Bε
σε(uε) · (∇u)s dx =

∫
Bε
σε(u) · (∇u)s  

(a)

dx +
∫

Bε
σε(wε) · (∇u)s  

(b)

dx + E1(ε) . (3.35)

The remainder E1(ε) is given by

E1(ε) =
∫

Bε
σε(ũε) · (∇u)s dx ,

|E1(ε)| ≤ ∥σε(ũε)∥L2(Bε;R2)∥∇u∥L2(Bε;R2)

≤ c1ε∥ũε∥H1(Ω;R2) ≤ c2ε
3
= o(ε2) , (3.36)

where we have used the Cauchy–Schwarz inequality together with the obtained estimate to the remainder ũε. The
term (a) in (3.35) can be developed in terms of ε as follows∫

Bε
σε(u) · (∇u)s dx =

∫
Bε
γ σ (u) · (∇u)s dx

= πε2γ σ (u)(x̂) · (∇u)s(x̂)+ E2(ε) . (3.37)

The remainder E2(ε) is given by

E2(ε) =
∫

Bε
(h − h(x̂)) dx ,

|E2(ε)| ≤ c1ε∥x − x̂∥L2(Bε;R2) ≤ c2ε
3
= o(ε2) , (3.38)

where the notation

h − h(x̂) = γ (σ (u) · (∇u)s
− σ (u)(x̂) · (∇u)s(x̂)) , (3.39)

has been introduced. Note that we have used again the Cauchy–Schwarz inequality and, then, the interior elliptic
regularity of the solution u. Since the exact solution to the exterior problem (3.18) is known, the term (b) in (3.35)
can be written as∫

Bε
σε(wε) · (∇u)s dx = πε2(∇u)s(x̂) · (Tγ σ (u)(x̂)+ Tγ )+ E3(ε) . (3.40)

The remainder E3(ε) is given by

E3(ε) =
∫

Bε
σε(wε) · ((∇u)s

− (∇u)s(x̂)) dx ,

|E3(ε)| ≤ ∥σε(wε)∥L2(Bε;R2)∥∇u −∇u(x̂)∥L2(Bε;R2)

≤ c1ε∥x − x̂∥L2(Bε;R2) ≤ c2ε
3
= o(ε2) , (3.41)

where we have used again the Cauchy–Schwarz inequality and the interior elliptic regularity of the solution u.
By replacing the ansatz for uε given by (3.17) in the second integral of (3.16) we obtain∫

Bε
α p div(uε − u) dx =

∫
Bε
α p div(wε + ũε) dx

=

∫
Bε
α p(x̂) div(wε) dx + E4(ε)+ E5(ε) . (3.42)

The remainder E4(ε) is given by

E4(ε) =
∫

Bε
α (p − p(x̂)) div(wε) dx ,

|E4(ε)| ≤ c1∥x − x̂∥L2(Bε;R2)∥σε(wε)∥L2(Bε;R2) ≤ c2ε
3
= o(ε2) , (3.43)
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where we have used the interior elliptic regularity of the function p and the solution to the problem (3.18). For the
remainder E5(ε) we have the following estimate

E5(ε) =
∫

Bε
α p div(ũε) dx ,

|E5(ε)| ≤ c1∥p∥L2(Bε)∥∇ũε∥L2(Bε;R2)

≤ c2ε∥ũε∥H1(Ω;R2) ≤ c2ε
3
= o(ε2) . (3.44)

By using the constitutive relation and some algebraic manipulation, we obtain∫
Bε
α p(x̂) div(wε) dx =

∫
Bε
α p(x̂)

1
2ργ (µ+ λ)

trσε(wε) dx , (3.45)

where trσε(wε), evaluated inside the inclusion, is written as

trσε(wε)|Bε (x̂) =
aγ

1+ aγ
[(1− γ )trσ (u)(x̂)− 2(1− γ α)α p(x̂)] . (3.46)

The last term in (3.16) can be developed as follows∫
Bε
α p div(u) dx = πε2α p(x̂) div(u)(x̂)+ E6(ε) , (3.47)

with the remainder E6(ε) defined as

E6(ε) =
∫

Bε
(h − h(x̂)) dx ,

|E6(ε)| ≤ c1ε∥x − x̂∥L2(Bε;R2) ≤ c2ε
3
= o(ε2) , (3.48)

where the following notation has been introduced

h − h(x̂) = α p div(u)(x)− α p(x̂) div(u)(x̂) . (3.49)

Note that we have used the Cauchy–Schwarz inequality and the interior elliptic regularity of the solutions u and p.
From the above results, the variation of the energy shape functionals, given by (3.16), can be rewritten as

Jε(uε)− J (u) =− πε2 1− γ
2γ

[
γ σ (u)(x̂)+ (Tγ σ (u)(x̂)+ Tγ )

]
· (∇u)s(x̂)

+ πε2 a
2

1− γ
1+ aγ

(1− γ α)α p(x̂) div(u)(x̂)+ πε2(1− γ α)α p(x̂) div(u)(x̂)

− πε2 (1− γ α)2

2ρµ(1+ aγ )
α2 p(x̂)2

+

6∑
i=1

Ei (ε) , (3.50)

where |Ei (ε)| = o(ε2), for i = 1, . . . , 6, as shown. Rearranging the above terms, the following expression is obtained

Jε(uε)− J (u) = πε2Pγ σ (u)(x̂) · (∇u)s(x̂)

+πε2 1+ a
1+ aγ

(1− γ α)α p(x̂) div(u)(x̂)− πε2 (1− γ α)2

2ρµ(1+ aγ )
α2 p(x̂)2

+

6∑
i=1

Ei (ε) , (3.51)

where Pγ is given

Pγ = −
1
2

1− γ
1+ bγ

(
(1+ b)I+

1
2

(a − b)
1− γ

1+ aγ
I⊗ I

)
, (3.52)

with the coefficients a and b defined by (3.22).

3.2. Perturbation on the permeability

Now, we consider γ f
̸= 1 with γ = γ α = 1. In this case, the total energy of the perturbed system Jε(uε) is

given by

Jε(uε) =
1
2

∫
Ω

σ (uε) · (∇uε)s dx −
∫
Ω

αpε div(uε) dx , (3.53)
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with the vector function uε solution to the following variational problem: Find uε ∈ U , such that∫
Ω

σ (uε) · (∇η)s dx =
∫
Ω

αpε div(η) dx , ∀η ∈ V, (3.54)

where pε is solution to the problem: Find pε ∈ P , such that∫
Ω

kε∇ pε · ∇ϕ dx = 0 , ∀ϕ ∈ Q , (3.55)

with kε = γ
f
ε k, where γ f

ε is given by (3.5).
Again, in order to evaluate the difference between the energy shape functionals J (u) and Jε(uε), which are now

defined through (2.3) and (3.53), respectively, we take first η = uε − u as test function in problem (2.4). Then, the
following equality is obtained∫

Ω

σ (u) · (∇u)s dx =
∫
Ω

σ (u) · (∇uε)s dx −
∫
Ω

α p div(uε − u) dx . (3.56)

By replacing (3.56) in (2.3) we have

J (u) =
1
2

∫
Ω

σ (u) · (∇uε)s dx −
1
2

∫
Ω

α p div(uε + u) dx . (3.57)

In the same way, let us take η = uε − u as test function in (3.54) to obtain∫
Ω

σ (uε) · (∇uε)s dx =
∫
Ω

σ (uε) · (∇u)s dx +
∫
Ω

α pε div(uε − u) dx . (3.58)

After replacing (3.58) in (3.53) we get

Jε(uε) =
1
2

∫
Ω

σ (uε) · (∇u)s dx −
1
2

∫
Ω

α pε div(uε + u) dx . (3.59)

From Eqs. (3.57) and (3.59), the variation of the energy shape functionals is written as

Jε(uε)− J (u) = −
1
2

∫
Ω

α (pε − p) div(uε + u) dx . (3.60)

At this point, we write uε + u = 2u + (uε − u) to obtain

Jε(uε)− J (u) = −
∫
Ω

α (pε − p) div(u) dx + E7(ε) , (3.61)

where

E7(ε) = −
1
2

∫
Ω

α (pε − p) div(uε − u) dx . (3.62)

The estimate |E7(ε)| = o(ε2) holds true and will be verified in the next two Lemmas.
By subtracting (2.5) of (3.55) and applying the definition of the contrast γ f

ε given by (3.5), the following
expression is obtained∫

Ω\Bε
k∇ pε · ∇ϕ dx +

∫
Bε
γ f k∇ pε · ∇ϕ dx −

∫
Ω\Bε

k∇ p · ∇ϕ dx −
∫

Bε
k∇ p · ∇ϕ dx = 0 . (3.63)

By adding and subtracting the term∫
Bε

k∇(pε − p) · ∇ϕ dx , (3.64)

after canceling the identical terms, we obtain the following equality∫
Ω

k∇(pε − p) · ∇ϕ dx = (1− γ f )
∫

Bε
k∇ pε · ∇ϕ dx . (3.65)

Finally, by taking ϕ = pε − p in (2.15) and ϕ = q in (3.65), with q solution of (2.15), expansion (3.61) can be
conveniently rewritten as

Jε(uε)− J (u) = −(1− γ f )
∫

Bε
k∇ pε · ∇q dx . (3.66)
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Now, it is necessary to know the asymptotic behavior of the solution pε with respect to the small parameter ε.
To this end, let us propose the following ansatz:

pε = p + w p
ε + p̃ε , (3.67)

where p is solution to the unperturbed problem (2.5), w p
ε is solution to an auxiliary exterior problem and p̃ε is the

remainder.
The auxiliary exterior problem is defined as: Find w p

ε (x), such that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div(γ f
ε ∇w

p
ε ) = 0 in R2 ,

w
p
ε → 0 in ∞ ,[[

w
p
ε

]][[
γ

f
ε ∇w

p
ε

]]
· n

=

=

0

g

⎫⎬⎭ on ∂Bε ,

(3.68)

with g = −(1 − γ f )∇ p(x̂) · n obtained from Taylor series expansion of p(x) around the point x̂ . The problem
(3.68) has an explicit solution, namely

w p
ε (x)|

R2\Bε
=

1− γ f

1+ γ f

ε2x − x̂
2∇ p(x̂) · (x − x̂) , (3.69)

w p
ε (x)|Bε =

1− γ f

1+ γ f
∇ p(x̂) · (x − x̂) . (3.70)

For more details about the problem (3.68) and its solution see [22, Ch. 5, pp. 144], where the estimate ∥ p̃ε∥H1(Ω) =

O(ε2) can also be verified.
The next two results ensure the existence of the topological derivative associated with the case analyzed in this

section.

Lemma 2. Let p and pε be the solutions of (2.5) and (3.55), respectively. Then, the following estimate holds true:

∥pε − p∥L2(Ω) = o(ε). (3.71)

Proof. From the ansatz (3.67) proposed to pε, and by applying the triangular inequality together with the known
estimate for p̃ε, we obtain

∥pε − p∥L2(Ω) ≤
w p

ε


L2(Ω) + O(ε2) . (3.72)

By defining a ball BR(x̂) of radius R and center in x̂ ∈ Ω , so that BR(x̂) ⊃ Ω , the following result is obtainedw p
ε


L2(Ω) ≤

w p
ε


L2(BR )

=

(∫
BR\Bε

⏐⏐w p
ε

⏐⏐2 dx +
∫

Bε

⏐⏐w p
ε

⏐⏐2 dx
)1/2

. (3.73)

From w
p
ε given by (3.69) and (3.70), we can evaluate explicitly the integrals in (3.73), namelyw p
ε


L2(BR ) ≤ cε2

√
|log(ε)| = o(ε) . (3.74)

Then,

∥pε − p∥L2(Ω) = o(ε)+ O(ε2) = o(ε) . □ (3.75)

Lemma 3. Let u and uε be the solutions of (2.4) and (3.54), respectively. Then, the following estimate holds
true:

∥uε − u∥H1(Ω;R2) = o(ε). (3.76)
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Proof. By subtracting (2.4) from (3.54) and taking η = uε − u it follows that∫
Ω

σ (uε − u) · ∇(uε − u)s dx =
∫
Ω

α(pε − p) div(uε − u) dx . (3.77)

The application of the Cauchy–Schwarz inequality leads to∫
Ω

σ (uε − u) · ∇(uε − u)s dx ≤ C1∥pε − p∥L2(Ω)∥∇(uε − u)∥L2(Ω;R2)

≤ C1∥pε − p∥L2(Ω)∥uε − u∥H1(Ω;R2) . (3.78)

From the coercivity of the bilinear form at the left hand side of (3.77) we have

c∥uε − u∥2
H1(Ω;R2) ≤

∫
Ω

σε(uε − u) · ∇(uε − u)s dx . (3.79)

Then, taking into account Lemma 2, the proof is concluded with C = C1/c independent of the parameter ε. □

Let us come back to the definition of E7(ε) given by (3.62). From the Cauchy–Schwarz inequality, we obtain

|E7(ε)| ≤ c1 ∥pε − p∥L2(Ω) ∥∇(uε − u)∥L2(Ω;R2) = o(ε2) , (3.80)

where we have used Lemmas 2 and 3.
Now, replacing the ansatz (3.67) proposed to pε in the integral (3.66) we have∫

Bε
k∇ pε · ∇q dx =

∫
Bε

k∇ p · ∇q dx  
(a)

+

∫
Bε

k∇w p
ε · ∇q dx  

(b)

+ E8(ε) . (3.81)

The remainder E8(ε) is given by

E8(ε) =
∫

Bε
k∇ p̃ε · ∇q dx ,

|E8(ε)| ≤ ∥k∇ p̃ε∥L2(Bε)∥∇q∥L2(Bε)

≤ c1ε∥ p̃ε∥H1(Ω) ≤ c2ε
3
= o(ε2) , (3.82)

where we have used the Cauchy–Schwarz inequality together with the known estimate to p̃ε.
The term (a) in (3.81) can be developed in terms of ε as∫

Bε
k∇ p · ∇q dx = πε2k∇ p(x̂) · ∇q(x̂)+ E9(ε) , (3.83)

with the remainder E9(ε) defined by

E9(ε) =
∫

Bε
(h − h(x̂)) dx ,

|E9(ε)| ≤ c1ε∥x − x̂∥L2(Bε;R2) ≤ c2ε
3
= o(ε2) , (3.84)

where the notation

h − h(x̂) = k∇ p · ∇q − k∇ p(x̂) · ∇q(x̂) , (3.85)

has been introduced. In this case, we have used the Cauchy–Schwarz inequality and the interior elliptic regularity
of the function p.

Since the exact solution of the auxiliary problem (3.68) is known, the term (b) in (3.81) can be written as∫
Bε

k∇w p
ε · ∇q dx = πε2k∇w p

ε · ∇q(x̂)+ E10(ε) . (3.86)

The remainder E10(ε) is given by

E10(ε) =
∫

Bε
k∇w p

ε · (∇q −∇q(x̂)) dx ,

|E10(ε)| ≤ ∥k∇w p
ε ∥L2(Bε)∥∇q −∇q(x̂)∥L2(Bε)

≤ c1ε∥x − x̂∥L2(Bε;R2) ≤ c2ε
3
= o(ε2) . (3.87)
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Therefore, from the above results, the variation (3.66) can be rewritten as

Jε(uε)− J (u) = −πε2(1− γ f )
[
k∇ p(x̂)+ k∇w p

ε

]
· ∇q(x̂)+

10∑
i=7

Ei (ε)

= −πε2 2
1− γ f

1+ γ f
k∇ p(x̂) · ∇q(x̂)+

10∑
i=7

Ei (ε) , (3.88)

where the remainders |Ei (ε)| = o(ε2), for i = 7, . . . , 10, as shown.

3.3. Topological derivative formula

The topological derivative of the shape functional (2.2), with respect to the nucleation of a small circular inclusion
characterized by the contrasts γ , γ α and γ f , is given by the following sum

DTFω(x) = DTJ (x)+ κδDT |ω|(x) ∀x ∈ Ω . (3.89)

The last term κδDT |ω|(x) is trivially obtained and given by

κδDT |ω|(x) =
{
+κδ, if x ∈ Ω \ ω ,
−κδ, if x ∈ ω . (3.90)

The variations between the energy functionals J (u) and Jε(uε) have been developed in Sections 3.1 and 3.2. From
these variations, we can identify function f (ε) = πε2 and thus evaluate the term DTJ (x). In particular, by taking
into account the variations (3.51) and (3.88), the topological derivative [15,16,22] of the energy shape functional is
given by

DTJ (x) = Pγ σ (u)(x) · (∇u)s(x)+
1+ a

1+ aγ
(1− γ α)α p(x) div(u)(x)

−
(1− γ α)2

2ρµ(1+ aγ )
α2 p(x)2

− 2
1− γ f

1+ γ f
k∇ p(x) · ∇q(x) , (3.91)

with the polarization tensor Pγ given by (3.52).
In order to check for the correctness of result (3.91), we consider a domain Ω = (0, 1)× (0, 1) m2 representing

a clamped block with a centered inclusion denoted by Bε(x0). The Young modulus, Poisson ratio, Biot coefficient
and permeability are given by E = 17.000 MPa, ν = 0, 2, α = 0, 1 and k = 1, 0 mD in Ω \ Bε(x0) and
E = 17.000 × 10−6 MPa, ν = 0, 2, α = 1, 0 and k = 103 mD in Bε(x0), respectively. The adopted values
for the material properties are precisely the same as in Section 5, showing the numerical experiments. The bottom
of Ω is subject to a pressure of 1 MPa, whereas on its top a null pressure is prescribed. Now, let us introduce the
following quantities

δψ(ε) :=
Jε(uε)− J (u)
|Bε(x0)|

(3.92)

DTψ(x0) := lim
ε→0

δψ(ε). (3.93)

Finally, we consider ε = 2−n , with n = 3, . . . , 8 integer. The problem is discretized into 105.138 linear triangular
finite elements, with the mesh intensified toward the center of the inclusion. From these elements, the graph
δψ(ε)×1/ε is plotted in Fig. 3. We observe that the horizontal asymptote (solid line) corresponds to the topological
derivative evaluated at the center x0 of Ω , whose value is given by DTψ(x0).

4. Topology optimization algorithm

The original algorithm, proposed to study the crack nucleation/propagation based only on the topological
derivative field, was proposed in [18] and extended to the hydraulic fracture context in [19]. It is based on the
introduction of an inclusion at the region where the topological derivative is negative. This strategy is justified by
the fact that the introduction of an infinitesimal inclusion where the topological derivative is negative decreases the
values of the associated shape functional. In this way, the crack path is characterized by the sequence of inclusions
nucleated during the minimization process. Since several improvements with respect to the methodology presented
in [19] were made, the main aspects of the new algorithm are presented in the next section.
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Fig. 3. Variation of the energy shape functional δψ(ε) from (3.92) with respect to 1/ε.

4.1. Description of the algorithm

As mentioned, the size of the inclusion to be nucleated is associated with the region ω∗ where the topological
derivative is negative, i.e.,

ω∗ := {x ∈ Ω : DTFω(x) < 0} . (4.1)

Let DTF∗ω be the minimum value of the topological derivative, i.e.,

DTF∗ω := min
x∈ω∗

DTFω(x) . (4.2)

The inclusion to be nucleated inside the region ω∗, denoted by ωβ , is defined as

ωβ :=
{

x ∈ ω∗ : DTFω(x) ≤ (1− β)DTF∗ω
}
, (4.3)

where β ∈ (0, 1) is chosen in such a way that |ωβ | ≈ πδ2/4 (and |ωβ | ≤ πδ2/4) is satisfied, where δ represents the
thickness of the initial damage. The steps of the new algorithm are detailed below in the form of a pseudo-code,
see Algorithm 1.

Note that the line 13 in the Algorithm 1 represents the crack propagation process. For more details concerning
the Algorithm 1, see [19].

5. Numerical experiments

In all examples, the reference domain Ω represents one block of the reservoir which contains a single geological
fracture. In particular, the domain Ω is given by a square with dimension (5 × 5) m2 as shown in Fig. 4. The
preexisting geological fracture is represented by an initial damage with length h and width δ. The region to be
fractured is identified by the distribution of elastic material and the compliant material is used to represent the
geological fracture. Homogeneous Dirichlet boundary conditions are considered in all sides of the domain, except
in the last example concerning in-situ stress. The structure is assumed to be under plane strain assumption and
the total intensity of the prescribed pressure p̄ on ΓD is divided into N = 200 uniform increments. Finally, linear
triangular finite elements are used to discretize the hydro-mechanical coupled system.

5.1. Benchmark example

In this first example, the geological fracture is located at the center of the bottom side immediately above the
pressurization well. The modulus of elasticity E , the Poisson ratio ν, the permeability of the medium k and the
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Algorithm 1: Damage evolution algorithm.
Input : Ω , ω, δ, N , p0, ∆pi
Output: Optimal topology ω∗

1 for i = 1 : N do
2 solve the pressure problem (2.5);
3 solve the coupled elasticity system (2.4);
4 solve the adjoint state (2.15);
5 evaluate the topological derivative DTFω according to (3.89);
6 compute the threshold ω∗ from (4.1);
7 while |ω∗| ≥ πδ2/4 do
8 intensify the mesh at the crack tip;
9 solve the pressure problem and the coupled elasticity system;

10 solve the adjoint state and evaluate the topological derivative DTFω;
11 compute the threshold ω∗ from (4.1);
12 compute the threshold ωβ from (4.3);
13 nucleate a new inclusion ωβ inside ω∗;
14 update the damaged region: ω← ω ∪ ωβ ;
15 solve the pressure, elasticity and adjoint problems and evaluate DTFω;
16 evaluate the shape functional Fω from (2.2);
17 if the shape functional increases, then break;
18 else compute the threshold ω∗;
19 end while
20 end for

Fig. 4. Benchmark example: One block of the reservoir containing a single geological fracture.

Biot’s coefficients αm at the matrix and α f at the fracture corresponds to the values from [5]. All data of the present
example are summarized in Table 1, where the parameter l represents the diameter of the inclusion.

The first observed critical pressure was p1
c = 3, 68 MPa at pseudo time-step i = 184. The material distribution

after the damage evolution induced by this first critical pressure is presented in Fig. 5(a). Fig. 5(b) shows the
history of the shape functional Fω from (2.2) during the optimization process described by the internal loop of
Algorithm 1. Note that the model dissipates energy in all iterations. After then, three new critical pressures have
been detected, namely, p2

c = 3, 84 MPa at pseudo time-step i = 192, p3
c = 3, 92 MPa at pseudo time-step i = 196

and p4
c = 3, 96 MPa at pseudo time-step i = 198. The observation of distinct critical pressures is due to the pressure

drop while the geological fracture grows. Since the damage evolution associated with each new critical pressure is
small with respect to the propagation related with the first critical pressure, only the final result is shown in Fig. 6.
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Table 1
Benchmark example: Parameters.

Parameter Value Parameter Value

h 1, 0 m E 17.000 MPa
δ 0, 025 m ρ0 10−6

l (2/3)δ ν 0, 2
p 4, 0 MPa κs 590, 0 J/m
k 1, 0 mD αm 0, 1
γ f 103 α f 1, 0

Fig. 5. Benchmark example: Results for p1
c = 3, 68 MPa at pseudo time-step i = 184, (a) obtained damage distribution and (b) history of

the shape functional Fω from (2.2) during the optimization process described by the internal loop of Algorithm 1.

Fig. 6. Benchmark example: Damage distribution for p4
c =3,96 MPa at pseudo time-step i = 198.

The pressure distribution at the precise moment before the first propagation and at the end of the entirely process
can be observed in Figs. 7(a) and 7(b), respectively.
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Fig. 7. Benchmark example: Pressure distribution.

Table 2
Stratified block: Parameters.

Parameter Value Parameter Value

h 1,0 m E1 17.000 MPa
δ 0,025 m ρ0 10−6

l (2/3)δ ν 0,2
p 8,0 MPa κs 590,0 J/m
k1 1,0 mD αm 0,1
γ f 103 α f 1,0

5.2. Stratified block

In this next example, we consider a stratified block composed by two layers with different permeability and
modulus of elasticity, namely, k1 = 1 mD and k2 = 0,5 × k1 and E1 = 17 GPa and E2 = 2× E1. Two cases are
considered, which are referred to as Case 1 and Case 2. The different cases treated in this example differ from each
other by the spatial distribution of the material properties as indicated in Figs. 8(a) and 8(b), representing Case 1
and Case 2, respectively. The parameters used in this example are summarized in Table 2. In Case 1, twenty one
distinct critical pressures have been detected, the first one was p1

c = 3,80 MPa at pseudo time-step i = 190 and
the last one p21

c = 5,56 MPa at pseudo time-step i = 278. In Case 2, twelve critical pressures were observed,
with p1

c = 6,36 MPa at pseudo time-step i = 318 and p12
c = 7,88 MPa at pseudo time-step i = 394. Once again,

the observation of different critical pressures is due to the pressure drop while the geological fracture grows. The
damage distributions at the end of the optimization process are presented in Fig. 9. Combinations such as (E1, k2)
and (E2, k1) produce the similar results.

5.3. Heterogeneous medium

In this example, a heterogeneous medium is considered again. However, in this case the permeability k and
the Young’s modulus E are corrupt with White Gaussian Noise (WGN) of zero mean and standard deviation τ .
Therefore, k and E are replaced by kτ = k(1 − τps) and Eτ = E(1 + τes), where s : Ω → R is a function
assuming random values in the interval (0, 1) and τp = 0, 5 and τe = 2, 0 corresponds to the noise levels. The
parameters are presented in Table 3. Figs. 10(a) and 10(b) show the corrupted Young’s modulus Eτ (x) and the
corrupted permeability kτ (x), respectively. The resulting damage evolution associated with each detected critical
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Fig. 8. Stratified block with different material distribution.

Fig. 9. Stratified block: Final results.
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Fig. 10. Heterogeneous medium.

Table 3
Heterogeneous medium: Parameters.

Parameter Value Parameter Value

h 1,0 m E 17.000 MPa
δ 0,0625 m ρ0 10−6

l (2/3)δ ν 0,2
p 8,0 MPa κs 590,0 J/m
k 1,0 mD αm 0,1
γ f 103 α f 1,0

Table 4
Block subject to in-situ stresses effects: Parameters.

Parameter Value Parameter Value

h 1,0 m E 17.000 MPa
δ 0,0625 m ρ0 10−6

l (2/3)δ ν 0,2
p 4,0 MPa κs 190.000 J/m
k 1,0 mD αm 0,1
γ f 103 α f 1,0

pressure is presented in Fig. 11. Note that, due to the heterogeneity of the medium, we can observe kinking and
bifurcations phenomena, which is expected from the physical point of view.

5.4. Block subject to in-situ stresses effects

In this last example, we consider that the reservoir is subject to a uniaxial loading which induces a traction tension
σH = 50 MPa acting horizontally, representing the in-situ stress. The preexisting geological fracture is located at
the center of the block forming an angle of 30◦ with respect to the horizontal axis, as shown in Fig. 12(a). The
parameters used in this example are presented in Table 4. The related critical pressure was pc = 1,08 MPa at i = 54.
The result can be observed in Fig. 12(b). Note that, instead propagates straight following the main axis of the initial
fault, the crack reorients itself along the vertical direction, forming two opposite kinks at the crack tips [25].
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Fig. 11. Heterogeneous medium: damage evolution for each obtained critical pressure in MPa.

6. Towards 3D fracking

In this section we present the topological derivative associated with the hydro-mechanical model of Section 2
in three spatial dimensions. The derivations follow the same steps as presented in Section 3. In particular, the
topological derivative of the energy shape functional, written in terms of the Young modulus and Poisson ratio, is
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Fig. 12. Block subject to in-situ stresses effects.

given by

DTJ (x) = Pγ σ (u)(x) · (∇u)s(x)+ 3a(1− γ α)αp(x) div(u)(x)

−
3
2

(3a − 1)(1− 2ν)
ρE(1− γ )

(1− γ α)2α2 p(x)2
− 3

1− γ f

2+ γ f
k∇ p(x) · ∇q(x) , (6.1)

where the polarization tensor Pγ is now defined as

Pγ = −
1− γ

2
(3bI+ (a − b) I⊗ I) , (6.2)

with the coefficients a and b redefined as follows

a =
(1− ν)

3(1− ν)− (1+ ν)(1− γ )
and b =

5(1− ν)
15(1− ν)− (8− 10ν)(1− γ )

. (6.3)

The displacement u, the pressure p and the adjoint pressure q are solutions of the three dimensional counter-parts
of the variational problems (2.4), (2.5) and (2.15), respectively. We note however that in order to apply the result
(6.1) in the fracking modeling context, Algorithm 1 has to be adapted to the three dimensional case accordingly,
which seems to be not straightforward, requiring further developments.

7. Conclusion

The first challenge of this study was to show that a simple model of hydro-mechanical crack propagation in
permeable rocks was possible. Simple means (i) based on the minimization of an energy shape functional; (ii)
governed by the computation of a single field, the topological derivative, able to determine nucleation, advance,
bifurcation of multiple cracks; with a minimal number of user-defined algorithmic parameters. This aim was
achieved, and the simulations we made showed good to very good agreement with known benchmark examples
obtained by other methods. We emphasize also that an extremely simple numerical method, namely triangular finite
elements was used to compute all mechanical fields including the crack aperture. In this work the model was limited
to two-dimensional domains but the three dimensional case is already a work in progress, as shown in Section 6.
Transient effects are also a matter of future research.
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