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2CESAME, Université catholique de Louvain, Av. G. Lemaı̂tre 4, 1348 Louvain-la-Neuve, Belgium

(Received 29 October 2009; revised 4 January 2012; accepted 9 January 2012)

We develop a theory to represent dislocations and disclinations in single crystals at the

continuum (or mesoscopic) scale by directly modelling the defect densities as concentrated

effects governed by the distribution theory. The displacement and rotation multi-valuedness

is resolved by introducing the intrinsic and single-valued Frank and Burgers tensors from

the distributional gradients of the strain field. Our approach provides a new understanding

of the theory of line defects as developed by Kröner [10] and other authors [6, 9]. The

fundamental identity relating the incompatibility tensor to the Frank and Burgers vectors

(and which is a cornerstone of the theory of dislocations in single crystals) is proved in the

2D case under appropriate assumptions on the strain and strain curl growth in the vicinity

of the assumed isolated defect lines. In general, our theory provides a rigorous framework

for the treatment of crystal line defects at the mesoscopic scale and a basis to strengthen the

theory of homogenisation from mesoscopic to macroscopic scale.
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1 Introduction

Dislocations can be considered as the most complex class of defects for several kinds of

single crystals such as Gallium Arsenide, Germanium or Sapphire. Even in Silicon single

crystal growth, the rapid slip of dislocations, along the glide planes from the crystal wall

to the solid–liquid interface, can generate high stress concentration and be the cause of

crystal loss of structure. Therefore, the development of a relevant and accurate physical

model represents a key issue with a view to reducing the dislocation density in the

growing crystal by appropriate action on the processing conditions [5]. Unfortunately,

the classical models used for that purpose, such as the Alexander–Haasen–Sumino model

[13], exhibit drawbacks including their inability to model the dislocation slip over long

distances within preferential planes, and hence, there is a strong need for a more relevant

and better founded mathematical approach.

The physics of dislocations in single crystals cannot be easily captured since dislocations

are lines that either form loops or end at the single crystal boundary, or join together

at some locations, while each dislocation segment has a constant Burgers vector which

exhibits additive properties at dislocation junctions (its precise definition is given in
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Section 3.2). These properties play a fundamental role in the modelling of line defects in

single crystals at the continuum scale and induce key conservation laws at the macro-scale.

Aware of these principles and of previous pioneer works [3, 6, 8, 14, 17], Kröner [10]

considers a tensorial density to model dislocations in single crystals at the macro-scale,

in order to take into account both the dislocation orientation and the associated Burgers

vector. The dislocation density shows to be divergence-free, and hence, obeys a dislocation

conservation law. Survey contributions may be found in [8, 12]. On the contrary, no such

conservation law could exist for a polycrystal since the dislocations abruptly end at the

grain boundaries. Therefore the usual plasticity models, which are devoted to predict the

behaviour of polycristalline materials and do not take this conservation law into account,

are not able to capture the basic physics of dislocations in single crystals.

In the theory of Kröner [10], the mesoscopic scale is mainly used to give a meaning to the

diffuse macroscopic dislocation density. However, at the mesoscopic scale the dislocation

density is concentrated within the defect lines, and hence, particular tools are required to

establish a rigorous link between the mesoscopic and macroscopic scales, the goal being to

homegenise the mesoscopic fields in order to well-define their macroscopic counterparts.

Without entering the homogenisation theory (which is not the objective of this work), it

is of the utmost importance to observe that only additive (or extensive) fields, such as

stresses or internal energy, are allowed to be homegenised. Indeed, homogenisation will

typically consist in adding an ensemble of random samples, or in integrating the required

field over a representative volume, etc., in order to get the searched average.

Having this issue in mind, the present paper is devoted to develop a mesoscopic theory

of the geometry of crystal dislocations and disclinations (the latter represent less frequent

crystal line defects which are considered for the sake of generality). Since dislocations

and disclinations are lines at the continuum scale, concentrated effects are introduced

in our model by means of the distribution theory [15]. In addition, since integration

around the defect lines generates multiple-valued displacement and rotation fields with

the dislocations/disclinations as branching lines, particular care is given to multi-valued

functions. This combination of distributional effects and multi-valuedness is a key feature

of the theory of line defects at the continuum scale but unfortunately the resulting

difficulties have not well been addressed so far in the literature, the principal problem

resulting from the fact that multiple-valued fields are never additive and hence cannot

be homogenised. Our solution will consist in introducing new single-valued and intrinsic

tensors called the Burgers and Frank tensors (cf. Section 2.2) and using these tensors

everywhere possible in place of the multiple-valued displacement and rotation fields.

The principal contribution of this paper is to provide a theoretical framework for

a combined treatment of distributions and multi-valued functions and to apply this

theory to a set of isolated, moving or not, parallel line defects under the hypothesis of

a 2D elastic strain field. Although distributions were already applied to several subjects

of solid mechanics, such as fracture [2, 4], their use to highlight special aspects of the

dislocation/disclination theory was not investigated so far to the knowledge of the authors.

As a main application of our theory, we here revisit the theory of Kröner [10] at the

mesoscopic scale. In brief, Kröner states from physical reasons that the incompatibility of

the macroscopic elastic strain is the curl of the dislocation density (as represented by the

so-called contortion tensor) plus the disclination density if any. This relationship appears
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as a cornerstone for any modelling of the behaviour of line defects in single crystals. In the

present paper, we provide a complete proof of the mesoscopic counterpart of this relation

for a family of isolated 2D defect lines and under specific growth assumptions on the elastic

strain behaviour in the vicinity of the defect line(s). Starting from the mesoscopic scale is

required to achieve the proof. Previously, this equality was only known as a formal result

without taking into account the concentrated or multi-valued nature of the involved fields.

So our principal objective will be to show that, for a set of isolated parallel rectilinear

defect lines, the mesoscopic strain incompatibility

η� = −∇ × E� × ∇, (1.1)

writes as

η� = Θ� + ∇ × (κ�)T , (1.2)

where E� stands for the strain field while Θ� and κ� denote appropriate measures of the

defect densities defined for each defect line L as follows:

DISCLINATION DENSITY: Θ� := τδL ⊗ Ω�, (1.3)

DISLOCATION DENSITY: Λ� := τδL ⊗ B�, (1.4)

CONTORTION: κ� := α� − I

2
tr α�, (1.5)

with the auxiliary defect density

α� := Λ� + Θ� × (x − x0). (1.6)

In formulas (1.3)–(1.6), Ω� and B� denote the Frank and Burgers vectors attached to the

line L (cf. Section 3.2), δL and τ stand for the concentrated line measure and tangent

vector along L, symbol ⊗ is used to denote the tensor product, and x0 is a prescribed

reference point.

To give a meaning to the above theorem and definitions, let us first observe that

incompatibility is defined from (1.1) as the double (left and right) curl of the mesoscopic

strain, in such a way that η� classically vanishes whenever E� derives from an infinitesimal

displacement u�. Also, η� is a concentrated distribution on the defect lines. Then, a

non-vanishing incompatibility necessarily involves that no single-valued rotation and

displacement fields can be integrated from the linear strain, this resulting from some

rotational and/or translational integration mismatch around the defect lines. On the

other hand, equations (1.3) and (1.4) define Θ� and Λ� as concentrated defect densities

along the defect lines. Indeed, the Frank and Burgers vectors Ω� and B� are defined on the

defect lines only and hence, their multiplication by the concentrated δL provides tractable

line densities. Multiplying the result by the tangent vector τ defines the second-order defect

density tensors Θ� and Λ� [10], which contain all the information provided by the Frank

and Burgers vectors and the defect line orientation. According to these explanations,

equation (1.2) appears as a precise relationship between incompatibility and rotational or

translational line defects.

The basic concepts to represent the dislocated continuous medium are introduced in

Section 2, together with the Burgers and Frank tensors. These tensors are used in Section 3
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to resolve the multi-valuedness issue and to define the dislocation and disclination densities

by appropriate integrals. In Section 4, the 2D distributional theory of the dislocated

medium is established in the case of isolated parallel dislocations/disclinations, while

conclusions are drawn in Section 5.

2 The dislocated continuous medium

At the mesoscopic scale, dislocations and disclinations are lines whose characteristic

length is some average distance between neighbour defects. There is no need for a precise

definition of this length which is simply assumed to be much larger than a typical diameter

of the defect cores, as is generally the case in single crystal growth. Then, outside of the

defect lines, the remaining of the medium is an elastic continuum.

In general, all kinematic fields (strain, displacement, rotation . . . ) are geometrically

defined with respect to a reference configuration, which should be viewed as a motionless

virtual picture of the evolving medium. In other words, strain, displacement and rota-

tion are defined from the reference to the actual configuration. Whereas in general, in

Continuum Mechanics the reference configuration is arbitrary, it will be chosen at the

mesoscopic scale as isothermal, stress-free and without dislocations/disclinations (it is

associated with a perfect lattice), and hence, the reference configuration is completely spe-

cified up to an arbitrary rigid body motion and uniform thermal dilation. Let us emphasise

that, with this peculiar definition, the topologies of the reference and actual configurations

(in which the “internal” and “external” observers of Kröner [10] are located) differ in

the presence of dislocations/disclinations. In particular, any closed loop followed by the

external observer around a defect line will correspond to a non-closed path for the internal

observer (i.e. a path whose extremities differ). Nevertheless, the principal advantage of

taking a perfect lattice as reference configuration is to give a precise geometrical mean-

ing to the strain field, which is both frame-indifferent and invariant with respect to the

mesoscopic reference configuration (up to the selection of the reference temperature). It

should also be noted that a second and equivalent definition of the mesocopic strain can

be obtained from the constitutive equations governing the elastic medium, by expressing

the strain in terms of the frame-indifferent stress and temperature fields.

Contrarily to the strain and as long as a perfect lattice is selected as reference configur-

ation for a dislocated medium, displacement and rotation show to be multi-valued fields

at the mesoscale, and hence, take their values on a domain called a Riemann foliation

(which in general neither is the reference nor the actual configuration). Its precise defin-

ition is given in Section 3. The Riemann foliation can be univoquely associated to the

actual configuration if cuts are introduced in order to select one particular branch of the

displacement and rotation. However, this approach causes major theoretical difficulties

and will not be used in the sequel.

In this paper, linear thermo-elasticity will be considered (this assumption being generally

valid in single-crystal growth). Then, the stress–strain–temperature relationship takes the

following form:

E� = C�σ� + β�(T� − T0),

where σ� denotes the stress field, C� and β� stand for the fourth- and second-order

compliance and thermal dilation tensors, and T0 is the reference temperature.
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In linear thermoelasticity, it is usually said that strain, displacement and rotation

become “infinitesimal”, and hence, that the reference and actual configurations coincide.

In the absence of defect lines, the strain is everywhere compatible (η� = 0) in such a way

that single-valued rotation and displacement fields can be integrated from the strain field

provided the domain be simply connected. This procedure will be recalled in Section 3.

However, when disclinations or dislocations are present, rotation and displacement become

multiple-valued and this multi-valuedness, therefore, appears as a reminiscence of the

difference between Kröner’s internal and external observers.

According to the above discussion, the starting field of our analysis is the assumed linear

elastic strain, which is a single-valued and extensive field. The Burgers and Frank tensors

are directly defined from the strain gradient and share its invariance and extensiveness

properties. Also, these tensors appear as second-grade variables which can readily be

used to model the free energy density with possible application to the modelling of

dislocation/disclination motion. The Burgers and Frank vectors are integrated around the

defect lines from their tensorial counterparts and will appear as key invariant quantities

associated with the defect-lines, and from which the dislocation and disclination densities

are defined.

2.1 Basic notations and assumptions

Some mathematical conventions are required for the presentation of our theory. First, the

bounded or unbounded domain consists of a regular and a defective part.

Assumption 2.1 (Regular and defective domains) In the following sections, the assumed

open domain is denoted by Ω (in practice but not necessarily Ω is bounded), the defect

line(s) are indicated by L ⊂ Ω and ΩL is the chosen symbol for Ω \ L, which is also

assumed to be open.

Starting from the sole elastic strain, the defects are the lines along which the strain is

not compatible.

Assumption 2.2 (Mesoscopic elastic strain) Henceforth, we will assume that the linear

strain is a given symmetric L1
loc(Ω) tensor, which is also smooth and compatible on ΩL.

In other words, the incompatibility tensor η�, as defined componentwise by

STRAIN INCOMPATIBILITY: η�kl := εkpmεlqn∂p∂qE�
mn, (2.1)

where differentiation is carried out in the distribution sense, is assumed to vanish everywhere

on ΩL.

From now on, the classical indicial notation will be used together with Einstein’s

summation convention on repeated (or dummy) indices.

Careful analysis of equation (2.1) shows that the incompatibility tensor η�kl is a purely

concentrated distribution (which is more complicated than a mere Radon measure) inside
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the defect lines. There is no other way to rigorously define the mesoscopic incompatibility

and this consideration justifies our approach.

Now, the present analysis is restricted to isolated defect lines.

Assumption 2.3 (Defect lines) The set of defect lines L will consist of a set of isolated

rectifiable arcs L(k), k ∈ I, without multiple points except possibly their end-points and on

which the linear elastic strain is singular.

Here, a set of isolated arcs means a set of arcs: (i) whose extremities form a set of

isolated points of Ω in the classical sense and (ii) such that each point x̂ of these arcs

except their extremities can be located in a smooth surface S(x̂) bounded by a loop C(x̂)

and such that S(x̂) \ x̂ ∈ ΩL.

2.2 The Frank and Burgers tensors

In the following essential definitions, the strain is considered as a distribution on Ω. First,

the Frank tensor generalises the concept of rotation gradient to dislocated media.

Definition 2.1 (Frank tensor) The Frank tensor ∂mω
�
k is defined as the following distribu-

tion on Ω:

FRANK TENSOR: ∂mω
�
k := εkpq∂pE�

qm, (2.2)

in such a way that

< ∂mω
�
k , ϕ >:= −

∫
Ω

εkpqE�
qm∂pϕ dV , (2.3)

with ϕ a smooth test-function with compact support in Ω.

Let us recall that distributions are mathematically defined as linear and continuous

functionals on smooth test-functions of compact support [15]. From a physical viewpoint,

distributions are generalised functions which can exhibit concentrated effects of any

kind.

Definition 2.1 shows that the Frank tensor reduces to the rotation gradient ∂mω
�
k

outside of the defect lines (i.e. in ΩL). In addition, equations (2.1) and (2.2) show that the

incompatibility tensor η�kl is the distributional curl of the Frank tensor

η�kl = εkpm∂p(∂mω
�
l ). (2.4)

Therefore, the Frank tensor comprises all the information required to integrate the

multiple-valued rotation field ω�
k outside of the defect lines and to derive the concentrated

incompatibility field inside the defect lines.

The second key tensor used in our theory is the Burgers tensor, which plays in the

construction of the displacement field a role analogous to the Frank tensor in the

construction of the rotation field.
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Definition 2.2 (Burgers tensor) For a selected reference point x0 ∈ ΩL, the Burgers tensor

is defined on the entire domain Ω as the distribution

BURGERS TENSOR: ∂lb
�
k := E�

kl + εkpq(xp − x0p)∂lω
�
q (x). (2.5)

Both the Frank and Burgers tensors appear as single-valued extensive fields whose

averages provide key information to model the behaviour of dislocations and disclinations

at the macroscopic scale.

3 Multiple-valued fields and line invariants at the mesoscopic scale

In general, a multi-valued function from ΩL to �N consists of a pair of single-valued

mappings with appropriate properties

F → ΩL and F → �N,

where F is the associated Riemann foliation [1]. In the present case of mesoscale elasticity,

we will limit ourselves to multi-valued functions obtained by recursive line integration

of single-valued mappings defined on ΩL. Reducing these multiple line integrals to

simple line integrals, the Riemann foliation shows to be the set of equivalence classes

of paths inside ΩL from a given x0 ∈ ΩL with homotopy as equivalence relationship.

Accordingly, a multi-valued function will be called of index n on ΩL if its n-th differential

is single-valued on ΩL. No other kinds of multi-functions are considered in this work,

whether L is a single line L or a more complex set of defect lines (with possible

branchings, etc.).

3.1 Rotation and displacement vectors

The rotation and displacement vectors are defined from the linear strain together with

the rotation and displacement ω�
0k and u�0k at a given point x0.

Starting from the distributive Definition 2.1 of ∂mω
�
k , the differential form ∂mω

�
k (ξ) dξm

is integrated along a regular parametric curve Γ ⊂ ΩL with endpoints x0, x ∈ ΩL. For

selected x0 and ω�
0k , the multi-valued rotation vector is defined as

ω�
k = ω�

0k +

∫
Γ

∂mω
�
k (ξ) dξm, (3.1)

where ω�
k obviously depends on the path Γ and the rotation ω�

0k at x0. Now, from the

strain compatibility (η�kl = 0) outside of the defect lines (i.e. in ΩL), equation (2.4) also

shows that ω�
k only depends on the path Γ through the equivalence class #Γof all regular

curves homotopic to Γ in ΩL. Considering the set F of such equivalence classes for a

selected x0 and varying x, a discrete subset of classes is associated with each position x

and these different classes (or path topologies) correspond to the different branches of the

rotation ω�
k at x. Accordingly, F shows to be the Riemann foliation of the multiple-valued

rotation field ω�
k .
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Following our approach, the Burgers tensor is then integrated in the same way as the

Frank tensor along any parametric curve Γ , providing for selected ω�
0k and u�0k the index-2

multi-valued displacement vector u�k

u�k = u�0k + εklmω
�
l (xm − x0m) +

∫
Γ

∂lb
�
k(ξ) dξl , (3.2)

which again depends on x and #Γ only (this following from (2.1) and (2.5)) and so is

itself defined on the Riemann foliation F . It may be observed that ∂lb
�
k and the vector

b�k = u�k − εklmω
�
l (xm − x0m) (3.3)

are related in the same way as ∂mω
�
k and ω�

k , including the fact that ∂lb
�
k = ∂lb

�
k on ΩL.

In general, every defect line will contribute to the rotation and displacement multi-

valuedness, and hence, these latter fields are defined over ΩL and do not share the

structure of a vector space. In other words, as it was already stated, the displacement and

rotation fields cannot be added, and hence, are not extensive since their domains depend

on the defect line locations. It will be seen in the next sections that the dislocation and

disclination densities are defined from the displacement and rotation jumps around the

defect lines. Nevertheless, it will also be seen that these jumps can be directly evaluated

from the Burgers and Frank tensors and this will resolve the multi-valuedness issue.

3.2 Frank and Burgers vectors

Consider a regular parametric loop C (in case C is a planar loop, it is called a Jordan

curve) and the equivalence class #C of all regular loops homotopic to C in ΩL. Here,

the extremity points play no role anymore and two loops are equivalent iff they can be

continuously transformed into each other in ΩL. For a selected reference point x0, the

jumps of the rotation and Burgers vectors ω�
k and b�k along #C depend on #C only and

are calculated as

[ω�
k ] =

∫
C

∂mω
�
k (ξ) dξm, (3.4)

[b�k] = [u�k](x) − εklm[ω�
l ](xm − x0m) =

∫
C

∂lb
�
k(ξ) dξl . (3.5)

Let us now focus on the case of a given isolated defect line L(i), i ∈ I. The jump [ω�
k ]

of the rotation vector ω�
k around L(i) is defined as the jump of ω�

k along #C with C a loop

enclosing once the defect line L(i) and no other defect line. It turns out that this jump is

the same for any curve homotopic to C . Similarly, the jump [b�k] of the vector b�k around

L(i) is defined as the jump of b�k along #C and is also the same for any curve homotopic

to C , given x0. These observations are summarised in the following well-known result [8].

Theorem 3.1 (Weingarten’s theorem) The rotation vector ω�
k is an index-1 multi-function

on ΩL whose jump Ω�
k := [ω�

k ] around the isolated defect line L(i), i ∈ I, is an invariant of

this line. Moreover, for a given x0, the vector b�k is a multi-function of index-1 on ΩL whose

jump B�
k := [b�k] around L(i) is an invariant of this line.

From this result, the Frank and Burgers vectors are defined as invariants of L(i).
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Definition 3.2 (Frank and Burgers vectors) The Frank vector of an isolated defect line

L(i), i ∈ I, is the invariant

FRANK VECTOR: Ω�
k := [ω�

k ], (3.6)

while for a given reference point x0 its Burgers vector is the invariant

BURGERS VECTOR: B�
k := [b�k] = [u�k](x) − εklmΩ

�
l (xm − x0m). (3.7)

It should be emphasised from equations (3.4) and (3.5) that the Frank and Burgers

vectors are accessible from the single-valued Frank and Burgers tensors ∂̄mω
�
k and ∂̄lbk ,

without requiring use of the multiple-valued displacement and rotation fields. A defect

line with non-vanishing Frank vector is called a disclination while a defect line with

non-vanishing Burgers vector is called a dislocation. Clearly, a disclination can always be

considered as a dislocation by appropriate choice of the common reference point x0 while

the reverse statement is false since Ω�
k might vanish and [u�k] not. In fact, two distinct

reference points x0 and x′
0 define two Burgers vectors obeying the relation B�

k − B′�
k =

εklm(x0m−x′
0m)Ω�

l (noting that B�
kΩ

�
k is an invariant independent of the choice of x0). There-

fore, for a non-zero Frank vector, the vanishing of the Burgers vector depends on the choice

of x0.

This is why in the present paper, the word “dislocation” means in the general sense

a dislocation and/or a disclination. A pure dislocation is a dislocation with vanishing

Frank vector.

3.3 Defect densities

Having the Burgers and Frank tensors in hand and considering a set of isolated defect

lines according to Assumption 2.3, let us now introduce the dislocation and disclination

density tensors (Λ�
ij and Θ�

ij) as the basic physical tools to model defect density at the

mesoscale [7, 9].

Definition 3.3 (Defect densities)

DISCLINATION DENSITY: Θ�
ij :=

∑
k∈I⊂�

Ω
�(k)
j τ

(k)
i δL(k) (i, j = 1 · · · 3), (3.8)

DISLOCATION DENSITY: Λ�
ij :=

∑
k∈I⊂�

B
�(k)
j τ

(k)
i δL(k) (i, j = 1 · · · 3), (3.9)

where δL(k) is used to represent the 1D measure density (also called Hausdorff measure

[11]) uniformly concentrated on the arc L(k) whose unit tangent vector is τ
(k)
i , while Ω

�(k)
j

and B
�(k)
j denote the Frank and Burgers vectors of L(k), respectively.

From Definition 3.3 it appears that the dislocation and disclination densities are

concentrated Radon measures inside the defect lines. These additive/extensive tensor

fields contain the entire information provided by the Burgers and Frank vectors (viz. the
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invariant jumps of the displacement and rotation fields around the defect lines) together

with the orientation of these defect lines.

Also, the above discussion shows that the dislocation and disclination densities can be

fully integrated from the Burgers and Frank tensors. Therefore, besides the strain field

which is the seminal ingredient of the present theory, the Burgers and Frank tensors

appear as fundamental second-grade fields able to characterise the amount of defects

on each single line or in the whole dislocated crystal. Together with the geometry of

the defect set, these tensors provide the key defect measures called the dislocation and

disclination density tensors, which now belong to a vector space and are easily shown to

be divergence-free distributions and so are conservative fields [10]

∂iΘ
�
ij = 0, (3.10)

∂iΛ
�
ij = 0. (3.11)

3.4 Additional remarks

Considering the possibly index-1 multi-valued rotation vector ω�
k , it should be observed

from Definition 2.1 that ∂mω
�
k = ∂mω

�
k on ΩL as a consequence of the classical relationship

between infinitesimal rotation and deformation derivatives. However, ∂mω
�
k is defined by

(2.2) as a distribution and, therefore, concentrated effects on L and its infinitesimal

vicinity have to be added to ∂mω
�
k , justifying the use of the symbol ∂mω

�
k instead of ∂mω

�
k

without giving to ∂m the meaning of an effective derivation operator.

In particular, in the vicinity of a defect line ∂mω
�
k is the finite part of an integral

when acting against test-functions. Indeed, since ∂pE�
qm might be non L1

loc(Ω)-integrable,

from equation (2.3) the integral < εkpq∂pE�
qm, ϕ > must be calculated on Ω as the

limit

lim
ε→0+

(∫
Ω\�ε

εkpq∂pE�
qmϕ dV +

∫
∂�ε∩Ω

εkpqE�
qmϕ dSp

)
, (3.12)

where symbol �ε stands for a core of diameter 2ε enclosing the region L while dSp = np dS

with np the outer unit normal from the core (so, �ε is the intersection with Ω of the union

of all closed spheres of radius ε centred on L and, if L consists of an single line L, �ε

is a tube of radius ε enclosing L).

The second term in (3.12) is precisely added to achieve convergence. One read-

ily sees after integration by parts that (3.12) is equal to the right-hand side of

(2.3) provided limε→0 Ω \ �ε = ΩL (this hypothesis holds true for the lines satisfying

Assumption 2.3).

Also, the vanishing of ∂mω
�
k on ΩL does not imply that the distribution ∂mω

�
k vanishes

as well. In fact from (3.12), it can be shown in that case that

< ∂mω
�
k , ϕ >= lim

ε→0

∫
∂�ε∩Ω

εkpqE�
qmϕ dSp = −

∫
Ω

εkpqE�
qm∂pϕ dV , (3.13)
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which is generally non-vanishing. Finally, as soon as the definition of the tensor distribu-

tion ∂mω
�
k is given, so are the distributional derivatives of ∂mω

�
k

< ∂l∂mω
�
k , ϕ >= − < ∂mω

�
k , ∂lϕ >=

∫
Ω

εkpnE�
mn∂p∂lϕ dV . (3.14)

4 Distributional analysis of incompatibility for isolated rectilinear dislocations

4.1 The 2D model for rectilinear dislocations

The present paper addresses the 2D problem only, this meaning that the strain E�
ij only

depends on the coordinates xα (α = 1, 2) and is independent of the “vertical” coordinate

z. However, this assumption introduces no restriction on the dependence of the multiple-

valued displacement and rotation fields upon z. In general, in 2D elasticity, the strain is

decomposed into three tensors:

E�
ij = δαiδβjE�

αβ︸ ︷︷ ︸
planar strain

+
(
δizδjγE�

γz + δjzδiγE�
γz

)︸ ︷︷ ︸
3D shear

+δizδjzE�
zz.︸ ︷︷ ︸

pure vertical compression/dilation

, (4.1)

Then, at the mesoscale, a 2D set L of dislocations and/or disclinations consists of a

set of isolated parallel lines L(i), i ∈ I, on which the linear elastic strain is singular. These

lines are assumed as parallel to the z-axis and the countable union of points located at

the intersection between L and the z = z0-plane is denoted by l0, while Ωz0
stands for the

intersection of the domain Ω and the z = z0-plane. In addition, the vectors η�k ,Θ
�
k and

Λ�
k stand for the tensor components η�zk,Θ

�
zk and Λ�

zk . Greek indices are used to denote

the values 1, 2 (instead of the Latin indices used in 3D to denote the values 1, 2 or 3).

Moreover, εαβ denotes the permutation symbol εzαβ .

For 2D problems the incompatibility vector contains all the information provided by

the general incompatibility tensor. Equation (2.4) becomes

η�k := εαβ∂α∂βω
�
k . (4.2)

In general, from equation (4.2) the incompatibility vector η�k expresses on the one hand

the non-commutative action of the defect lines over the second derivatives of the rotation

vector and on the other hand is related to concentrated effects of the Frank and Burgers

vectors along the defect lines.

In 2D elasticity, it is easy to show that the strain is compatible in a connected domain

iff there are real numbers K, aα and b such that⎧⎨
⎩
εαγεβδ∂α∂βE�

γδ = 0,

εαβ∂αE�
βz = K,

E�
zz = aαxα + b.

(4.3)

Also, in the 2D case the planar Frank vector Ω�
α vanishes. Indeed, since

∂βb
�
τ = E�

βτ + ετγ(xγ − x0γ)∂βω
�
z − ετγ(z − z0)∂βω

�
γ ,
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the planar Burgers vector simply writes as

B�
τ =

∫
C

(E�
βτ + ετγ(xγ − x0γ)∂βω

�
z ) dxβ − ετγ(z − z0)Ω

�
γ ,

where C is any planar loop. By Weingarten’s theorems the Burgers vector is a constant

while the integrand is independent of z, from which the result follows.

4.2 Classical examples of rectilinear line defects

This section is devoted to present the three classical examples of 2D line-defects for which

the medium is assumed to be steady, isothermal and body force free outside the defect line

L, which is assumed to be located along the z-axis (cf. [7, 16, 17]). The planar and polar

coordinates are denoted by (x, y) or xα and (r, θ), respectively. Symbols (ex, ey, ez) or (eα, ez)

stand for the Cartesian base vectors, while (er, eθ, ez) denote the local cylindrical base vec-

tors. Detail of the distributional calculation of the Frank tensors is given in Appendix A.

• Pure screw dislocation. The displacement and rotation vectors write as

u�i ei =
B�
z θ

2π
ez and ω�

i ei =
1

2
∇ × (u�i ei) =

B�
z

4πr
er, (4.4)

in such a way that the jump [ω�
i ] vanishes while the Cartesian components of the strain

tensor are given by

[E�
ij] =

B�
z

4πr

⎡
⎣ 0 0 sin θ

0 0 − cos θ

sin θ − cos θ 0

⎤
⎦. (4.5)

After some calculations, the Frank tensor writes as

[∂mω
�
k ] =

−B�
z

4πr2

⎡
⎣cos 2θ sin 2θ 0

sin 2θ − cos 2θ 0

0 0 0

⎤
⎦ +

B�
z

4

⎡
⎣−δL 0 0

0 −δL 0

0 0 2δL

⎤
⎦, (4.6)

where the first term does not belong to L1
loc(Ω). The Burgers tensor can be calculated

from the Frank tensor by means of equation (2.5). The Frank and Burgers vectors are

integrated from the Frank and Burgers tensors by use of equations (3.4)–(3.7) showing

that Ω�
k = 0 and B�

k = B�
z δkz as expected.

It should be observed that the Frank tensor clearly consists of a diffuse part, which is

exactly the rotation gradient outside of the dislocation, and a concentrated part directly

related to the strain incompatibility as will be shown in the next sections.

• Combined edge dislocation and concentrated force. The displacement vector is

u�i ei =
B�
y

2π

(
−

(
log

r

R
+ 1

)
ex + θey

)
, (4.7)
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with R a translation normalisation constant while the rotation ω�
i vanishes together

with its jump. The Cartesian components of the strain write as

[E�
ij] =

−B�
y

2πr

⎡
⎣cos θ sin θ 0

sin θ − cos θ 0

0 0 0

⎤
⎦. (4.8)

while the Frank tensor shows to be

[∂mω
�
k ] =

B�
y

4

⎡
⎣0 0 0

0 0 δL
0 0 0

⎤
⎦, (4.9)

and so this tensor only consists of a concentrated part. Integrating the Frank and

Burgers tensors around the defect line yields Ω�
k = 0 and B�

k = B�
yδky .

It should be noticed that the above solution is the sum of the classical Volterra edge

dislocation [7] and a concentrated force per unit line whose density reads

f�i ei = GB�
yδLex, (4.10)

with G, the shear modulus. This force is exerted on the dislocation perpendicularly to

the Burgers vector as is easily shown by integrating the associated thermoelastic stress

vector around the dislocation. To remove this concentrated force from the solution, it

suffices to add the following single-valued contribution to the displacement field

û�i ei =
B�
y

8π

[(
(3 − ν∗) log

( r

R

)2

− (1 + ν∗) cos 2θ

)
ex + (1 + ν∗) sin 2θey

]
, (4.11)

(with ν∗ := ν
1−ν

standing for the 2D Poisson coefficient) and the corresponding terms to

the strain and rotation fields. This additional solution has vanishing Frank and Burgers

vectors and the appropriate compensating force along the singular line L.

In general it should be mentioned that, corresponding to the three classical line

defects (the screw and edge dislocations and the wedge disclination) there are exactly

three dual stress concentrated line effects (the axial and planar forces per unit line

and the axial moment per unit line) which may be exerted on the singular line L. All

these effects can be separated from each other and from the line defect, and hence, the

associated solutions have vanishing Frank and Burgers vectors. However, whereas these

singular solutions have a compatible strain, and hence, single-valued displacement and

rotation fields, their Airy function then becomes multiple-valued thence requiring the

use of similar distributional techniques as developed in the present paper to treat the

induced stress concentrated effects.

• Wedge disclination. The multiple-valued planar displacement field is given by

u�i ei =
Ω�

z

8π

[(
2(1 − ν∗)x log

r

R
− (1 + ν∗)x − 4yθ

)
ex

+

(
2(1 − ν∗)y log

r

R
− (1 + ν∗)y + 4xθ

)
ey

]
, (4.12)
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while the rotation vector is

ω�
i ei =

Ω�
z θ

2π
ez, (4.13)

and the Cartesian strain components write as

[E�
ij] =

Ω�
z (1 − ν∗)

4π

⎡
⎣ log r

R
+ 1 0 0

0 log r
R

+ 1 0

0 0 0

⎤
⎦

−Ω�
z (1 + ν∗)

8π

⎡
⎣cos 2θ sin 2θ 0

sin 2θ − cos 2θ 0

0 0 0

⎤
⎦. (4.14)

Therefore, the L1(Ω) Frank tensor is purely diffuse and writes as

[∂mω
�
k ] = − Ω�

z

2πr

⎡
⎣0 0 sin θ

0 0 − cos θ

0 0 0

⎤
⎦. (4.15)

Integrating the Frank and Burgers tensors around the defect line yields Ω�
k = Ω�

z δkz and

B�
k = 0.

4.3 Mesoscopic incompatibility for a single defect line

In this and the following section, the theory of Kröner [10] is investigated at the mesoscopic

scale. We begin by considering a single defect line L located along the z-axis as in

Section 4.2. The radius r is the distance from a point x inside Ω to L, while the 1D

measure density uniformly concentrated on L is denoted by δL.

Then, to establish the proof of our main theorem, an additional hypothesis is required.

This hypothesis consists in assuming that the strain radial dependence in the vicinity of

L is less singular than a critical threshold. This is verified, for instance, by the wedge

disclination whose strain radial behaviour is O(ln r) and by the screw and edge dislocations

whose strains are O(r−1). For a straight defect line L, according to these examples, the

hypotheses on the strain and Frank tensors read as follows.

Assumption 4.1 (2D strain for line defects) The strain tensor E�
ij is independent of the co-

ordinate z, compatible on ΩL = Ω \L in the sense that conditions (4.3) hold, smooth on ΩL

and L1
loc-integrable on Ω.

Assumption 4.2 (Local behaviour of the strain and Frank tensors) The strain tensor E�
ij is

o(r−2) (r → 0+) while the Frank tensor is o(r−3)(r → 0+).

The disclination and dislocation density tensors Θ�
k and Λ�

k are then shown to be related

by a fundamental distributional relation to the strain incompatibility.
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Theorem 4.1 (Main result for a single defect line) Under Assumptions 4.1 and 4.2, for a

dislocation located along the z-axis, incompatibility as defined by equation (4.2) is the vec-

torial first order distribution

η�k = δkzη
�
z + δkκη

�
κ, (4.16)

with

η�z =Ω�
z δL + εαγ

(
B�
γ − εβγx0βΩ

�
z

)
∂αδL, (4.17)

η�κ =
1

2
εκαB

�
z ∂αδL. (4.18)

The detailed proof of this theorem is given in Appendix B.

4.4 Mesoscopic incompatibility for a set of isolated defect lines

To establish the theory of Kröner at the mesoscopic scale, the next step consists in

rewriting Theorem 4.1 for a set of isolated defect lines.

Theorem 4.2 (Main result for a set of isolated defect lines) Let in the 2D case L(i), i ∈
I ⊂ � stand for a set of isolated parallel dislocations and/or disclinations passing by

(x̂(i)
β , z) and Ω�(i)

z , B
�(i)
k and δL(i) denote the associated Frank and Burgers vectors, and the

concentrated 1D measure density on L(i). Then under Assumptions 4.1 and 4.2 in the vicinity

of each defect line, incompatibility develops as the distribution

η�k = δkzη
�
z + δkκη

�
κ, (4.19)

with

η�z =
∑
i∈I

(
Ω�(i)

z δL(i) + εαγ
(
B�(i)
γ + εβγ(x̂

(i)
β − x0β)Ω

�(i)
z

)
∂αδL(i)

)
, (4.20)

η�κ =
1

2
εκα

∑
i∈I

B�(i)
z ∂αδL(i) . (4.21)

The incompatibility decomposition is then rewritten in terms of the contortion tensor

(a particular form of the dislocation density introduced by Nye, Kondo and Kröner

[9, 10, 14]) and the disclination density, thereby providing a mesoscopic proof of Kröner’s

theory [10].

Theorem 4.3 (Incompatibility decomposition for 2D isolated defect lines) The mesoscopic

strain incompatibility for a set of isolated parallel rectilinear dislocations L writes as

η�k = Θ�
k + εαβ∂ακ

�
kβ, (4.22)
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where κ�kβ denotes the contortion tensor

κ�kβ = δkzα
�
β − 1

2
α�zδkβ, (4.23)

with α�k standing for an auxiliary defect density vector

α�k := Λ�
k − δkαεαβΘ

�
z (xβ − x0β), (4.24)

and where x0 is the selected reference point in Ω.

The latter fundamental result appears in Kröner’s work [10] under assumptions which

are not compatible with our approach. In fact, in his work this result follows in a

straightforward manner from an “elastic-plastic” displacement gradient (or distortion)

decomposition postulate, which itself requires the selection of a particular reference

configuration and neither properly handle the intrinsic multi-valuedness of the mesoscopic

problem nor the concentrated (and hence distributional) nature of the incompatibility field.

Moreover, in our result the link between the defect densities and the Frank and Burgers

vectors and tensors is clearly made, and precise assumptions on the strain field and the

admissible defect structures are provided in order to validate the result.

4.5 Applications of the main result

In this section, the main result of Section 4.3 is applied to determine the Cartesian incom-

patibility components of the three rectilinear defect lines of Section 4.2. A distributional

verification of these statements is provided in Appendix C.

• Screw dislocation. Since B�
γ = Ω�

z = 0, equations (4.17) and (4.18) yield

[η�k ] =
B�
z

2

⎡
⎣ ∂yδL

−∂xδL
0

⎤
⎦. (4.25)

• Edge dislocation. Whereas ∂mω
�
k identically vanishes on ΩL, it is easily seen that (4.17)

and (4.18) with B�
z = Ω�

z = 0 yield

[η�k ] = B�
y

⎡
⎣ 0

0

∂xδL

⎤
⎦. (4.26)

• Wedge disclination. Incompatibility reads

[η�k ] = Ω�
z

⎡
⎣ 0

0

δL

⎤
⎦. (4.27)

The beautiful formulas (4.25)–(4.27) illustrate the completely concentrated nature of

the incompatibility concept.
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5 Concluding remarks

In this paper a general theory revisiting the work of Kröner [10] has been developed

to model line defects in single crystals at the mesoscopic scale. A rigorous definition

of the dislocation and disclination density tensors as concentrated effects on the defect

lines has been provided in the framework of the distribution theory. The main diffi-

culty resulting from the multi-valuedness of the displacement and rotation vector fields

in defective crystals has been addressed by defining the single-valued and second-grade

Burgers and Frank tensors from the distributional strain gradient. Whereas, outside the

defective lines both tensors are regular functions directly related to the displacement

and rotation gradients, in addition they exhibit concentrated properties within the de-

fect lines which may be linked to the displacement and rotation jumps around these

lines.

Moreover, defining the incompatibility tensor as the distributional curl of the Frank

tensor, the principal result of our work has been to express in the 2D case incom-

patibility as a function of the dislocation and disclination density tensors and their

distributional gradients, and to prove this so-called Kröner’s formula under precise strain

growth assumptions in the vicinity of the assumed isolated defect line. Any violation

of these conditions, nonetheless, appears as an exceptional effect in the framework of

linear elasticity since, in that case, the infinitesimal strain is linearly related to the stress

tensor, which itself obeys the momentum equations. Therefore, such violation would ne-

cessitate the abnormal presence of singular body forces or inertia terms in the vicinity

of the defect line. Further work will deal with the general three-dimensional dynamic

theory.

The ultimate objective of this work is to define extensive mesoscopic fields that can

be homogenised from meso- to macro-scale in order to provide internal variables able

to model the macroscopic behaviour of the dislocated medium. In the present paper this

issue was addressed by introducing the Burgers and Frank tensors, the incompatibility

tensor, and the dislocation and disclination densities. Since the same linear relationships

connect these mesoscopic tensors and their homogenised counterparts, the Burgers and

Frank tensors appear as fundamental quantities to model the elastic–plastic behaviour

of the continuous medium. The macroscopic theory will be investigated in subsequent

publications.

Appendix A Calculation of the Frank tensor for 2D rectilinear defect lines

In 2D the non-vanishing Cartesian components of the Frank tensor are from equation (2.2)

∂̄αω
�
β = εβγ∂γE�

zα, (A 1)

∂̄αω
�
z = εβγ∂βE�

γα, (A 2)

∂̄zω
�
z = εαβ∂αE�

βz = −∂̄αω
�
α , (A 3)

the third equation showing that only ∂̄αω
�
β and ∂̄αω

�
z have to be calculated. From equa-

tion (3.12) the effect of these distributions on a smooth 2D test-function ϕ with compact
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support in Ωz0
writes as

< ∂̄αω
�
β, ϕ >= lim

ε→0+

(∫
Ωε,z0

εβγ∂γE�
zαϕ dS +

∫
∂Ωε,z0

∩Ωz0

εβγE�
zαϕnγ ds

)
, (A 4)

< ∂̄αω
�
z , ϕ >= lim

ε→0+

(∫
Ωε,z0

εβγ∂βE�
γαϕ dS +

∫
∂Ωε,z0

∩Ωz0

εβγE�
γαϕnβ ds

)
, (A 5)

with Ωε,z0
denoting the slice of Ω \ �ε at z = z0 and nγ standing for the unit outer normal

vector from the core �ε.

The first right-hand side terms of (A 4) and (A 5) immediately show that the diffuse

part of ∂̄αω
�
β or ∂̄αω

�
z is the simple derivative εβγ∂γE�

zα or εβγ∂βE�
γα outside of the defect

line L. However, when acting against a test-function, the integrals have to be taken in

Cauchy principal value. Then, some calculations easily provide the diffuse part of the

Frank tensors as given by equations (4.6), (4.9) and (4.15).

In a second step, a particular ϕ is selected whose value is everywhere 1 in the core �ε.

Then, the second right-hand side terms of (A 4) and (A 5) rewrite as follows:

lim
ε→0+

(
εβγ

∫ 2π

0

E�
zαnγε dθ

)
, (A 6)

lim
ε→0+

(
εβγ

∫ 2π

0

E�
γαnβε dθ

)
, (A 7)

with (n1, n2) = (cos θ, sin θ). Passing to the limit directly provides from equations (4.5),

(4.8) and (4.14) the concentrated part as of equations (4.6), (4.9) and (4.15).

Appendix B Proof of theorem 4.1

In this appendix, the notations of Section 4 are used. Moreover, the projection of the

current point x on the defect line L is denoted by x̂ and (να, 0) stands for the unit vector

from x̂ to x, and, for a planar curve C , the notation dCα(x) = εαβdxβ is used for an

infinitesimal vector normal to the curve.

Lemma Let Cε(x̂), ε > 0, denote a family of 2D closed rectifiable curves. Then, the Frank

tensor and the strain verify the relation

lim
Cε(x̂)→x̂

∫
Cε(x̂)

(xα∂βω
�
κdxβ + εκβE�

βz)dxα = 0,

provided the length of Cε is uniformly bounded and as long as the convergence Cε(x̂) → x̂

is understood in the Hausdorff sense, i.e. in such a way that

max{‖x − x̂‖, x ∈ Cε(x̂)} → 0.

Proof The second compatibility condition (4.3) is equivalent to

∂γE�
βz − ∂βE�

γz = Kεγβ,
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from which, in the 2D case

∂βω
�
κ := εκγ∂γE�

βz = εκγ∂βE�
γz − Kδκβ,

and

(xα∂βω
�
κ + δαβεκγE�

γz) = ∂β(xαεκγE�
γz) − xαKδκβ.

Since, under the assumptions of this lemma

lim
Cε(x̂)→x̂

∫
Cε(x̂)

xα dxκ = 0,

while the strain is a single-valued tensor, the proof is achieved. �

Proof of Theorem 4.1 For some small enough ε > 0, a tube �ε can be constructed around

L and inside Ω. Assuming that the smooth 3D test-function ϕ has its compact support

containing a part of L, Ωε,z denotes the slice of the open Ω \ �ε obtained for a given

x̂ ∈ L, i.e.

Ωε,z := {x ∈ Ωz such that ||xα|| > ε},
while the boundary circle of Ωε,z is designated by Cε,z .

� Let us firstly treat the left-hand side of equation (4.16). From Definition 2.1 and

equations (2.2), (2.3) and (4.2), it follows that

< η�k , ϕ >=

∫
L

dz lim
ε→0+

Πk(z, ϕ, ε), (B 1)

where

Πk(z, ϕ, ε) := −
∫
Ωε,z

εαβ∂βω
�
k∂αϕ dS −

∫
Cε,z

εαβεkγnE�
βn∂αϕ dCγ, (B 2)

and with dCα(x) = εαβdxβ standing for an infinitesimal vector normal to the curve. Then,

the boundedness of |∂τ∂δϕ| on ΩL provides the following Taylor expansions of ϕ and ∂αϕ

around x̂:

ϕ(x) =ϕ(x̂) + rνα∂αϕ(x̂) +
r2

2
ντνδ∂τ∂δϕ (x̂ + γ1(x − x̂)), (B 3)

∂αϕ(x) = ∂αϕ(x̂) + rντ∂τ∂αϕ (x̂ + γ2(x − x̂)), (B 4)

with 0 < γ1(x − x̂), γ2(x − x̂) � 1.

� Consider the first term of the right-hand side of (B 2), noted Π̂k . From the strain

compatibility on ΩL and Gauss-Green’s theorem, this term writes as

Π̂k(z, ϕ, ε) := −
∫
Ωε,z

∂γ(εγβ∂βω
�
kϕ)dS =

∫
Cε

εγβ∂βω
�
kϕdCγ.

Since rνα := xα − x̂α = xα, equation (B 3) and Assumption 4.2 show that, for ε → 0+,

Π̂k =

∫
Cε,z

εγβ∂βω
�
k (ϕ(x̂) + xα∂αϕ(x̂))dCγ + o(1).
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� Consider the second term of the right-hand side of (B 2), noted Π�
k . On account of

Assumption 4.2 and from expansion (B 4), this term may be rewritten as

Π�
k (z, ϕ, ε) := −

∫
Cε,z

εαβεkγnE�
βn∂αϕdCγ

= −∂αϕ(x̂)

∫
Cε,z

εαβεkγnE�
βndCγ + o(1).

� From Weingarten’s theorem and recalling that dCγ = εγτdxτ, the expression Πk =

Π̂k + Π�
k then writes as

Πk = ∂αϕ(x̂)

∫
Cε,z

(
xα∂τω

�
k − εαβεkγnεγτE�

βn

)
dxτ + Ω�

kϕ(x̂) + o(1). (B 5)

� Consider the first term of the right-hand side of (B 5), noted Π ′
k , and take ξ = γ in the

identity

εkξnεγτ = δkz(δγξδnτ − δnγδτξ) − δnz(δγξδkτ − δkγδτξ), (B 6)

in such a way that

Π ′
k = ∂αϕ(x̂)

∫
Cε,z

(xα∂τω
�
k − δkzεαβE�

βτ + δkτεαβE�
βz) dxτ. (B 7)

� The cases k = z and k = κ are now treated separately.

• When k = z, Definition 2.2 shows that

∂βb
�
τ := E�

βτ + ετγ(xγ − x0γ)∂βω
�
z − ετγ(z − z0)∂βω

�
γ

which, after multiplication by ετα and using (B 6) with τ, α and z substituted for k, ξ and

n, is inserted into (B 7), thence yielding

Π ′
z = ∂αϕ(x̂)

∫
Cε,z

(ετα∂βb
�
τ + x0α∂βω

�
z + (z − z0)∂βω

�
α) dxβ, (B 8)

and consequently, from the definitions of the Frank and Burgers vectors,

lim
ε→0+

Π ′
z = � {εατB�

τ − (z − z0)Ω
�
α − x0αΩ

�
z }∂αδ0, ϕz 
, (B 9)

where δ0 is the 2D Dirac measure located at 0 and ϕz(xα) := ϕ(xα, z), while symbol

� ·, · 
 denotes the 2D distribution by test-function product.

• When k = κ, Definition 2.2 shows that

∂βb
�
z := E�

βz + εγτ(xγ − x0γ)∂βω
�
τ ,

from which, after multiplication by εκα, it results that

xα∂τω
�
κ = −εκα∂τb

�
z + εκαE�

τz + x0α∂τω
�
κ + (xκ − x0κ)∂τω

�
α .
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Then, by the Lemma with a permutation of κ and α, (B 7) also writes as

Π ′
κ = ∂αϕ(x̂)

∫
Cε,z

(−εκα∂βb
�
z + εκαE�

βz + x0α∂βω
�
κ − x0κ∂βω

�
α )dxβ + o(1).

On the other hand, from (B 7) and the Lemma (i.e. from strain compatibility) it follows

that:

Π ′
κ = ∂αϕ(x̂)

∫
Cε,z

(−εκβE�
βzdxα + εαβE�

βzdxκ) + o(1)

= ∂αϕ(x̂)

∫
Cε,z

εακE�
βzdxβ + o(1). (B 10)

By summing this latter expression of Π ′
κ with (B 10), from the definitions of the Frank

and Burgers vector it follows that:

Π ′
κ =

1

2
∂αϕ(x̂)εακ(B

�
z − εγβΩ

�
γ x0β) + o(1). (B 11)

Hence, in the limit ε → 0+ (B 11) writes as

lim
ε→0+

Π ′
κ =�

{
1

2
εκαB

�
z − 1

2
εκαεγβΩ

�
γ x0β

}
∂αδ0, ϕz 
 . (B 12)

� Therefore, the result is proved on Ω0
z , since

lim
ε→0+

Πk(z, ϕ, ε) = lim
ε→0+

Π ′
k(z, ϕ, ε)+ � Ω�

kδ0, ϕz 
 . (B 13)

As suggested by (B 1), to obtain the result for the entire domain Ω it suffices to integrate

(B 8) and (B 11) and the expression Ω�
k ϕ(x̂) over L, in order to replace δ0 by the line

measure δL in (B 9), (B 12) and (B 13). By (B 1) the proof is then achieved. �

Appendix C Verification of the main result for 2D rectilinear defect lines

• Screw dislocation. The result is easily verified with use of equation (3.14). One needs to

compute < η�k , ϕ >=
∫
Ω
εkpnεαβE�

βn∂p∂αϕ dV , that is to calculate the integral of

B�
z

4π

⎡
⎢⎣

∂y∂xϕ
cos θ
r

+ ∂2
yϕ

sin θ
r

−∂2
xϕ

cos θ
r

− ∂x∂yϕ
sin θ
r

0

⎤
⎥⎦.

By integration by parts, using Gauss–Green’s theorem on Ω, and recalling that

test-functions have compact supports and that ∂m log r = xm
r2

, this integral becomes

−B�
z

4π

∫
Ω

⎡
⎢⎣

∂yϕ
(
∂x

cos θ
r

+ ∂y
sin θ
r

)
−∂xϕ

(
∂x

cos θ
r

+ ∂y
sin θ
r

)
0

⎤
⎥⎦ dV =

B�
z

4π

∫
Ω

⎡
⎢⎣

−∂yϕ∂2
m log r

∂xϕ∂2
m log r

0

⎤
⎥⎦ dV .
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Hence, from the relation ∆ (log r) = 2πδL, the first statement is verified.

• Edge dislocation. We must compute < η�k , ϕ >=
∫
Ω
εkpnεαβE�

βn∂p∂αϕ dV . For n� 3, the

strain components do not identically vanish and, for k = 1 and k = 2, we must have

p = 3 and hence the only non-vanishing component of the expression εαβE�
βn∂p∂αϕ are

E�
yx∂z∂yϕ − E�

yy∂z∂xϕ and E�
xy∂z∂xϕ − E�

xx∂z∂yϕ. By integration by parts, recalling that

the strain does not depend on z, the related integrals vanish. For k = 3, the integrand is

εpnzεαβE�
βn∂p∂αϕ = (∂yE�

xx − ∂xE�
xy)∂yϕ + (∂yE�

xy − ∂xE�
yy)∂xϕ.

By inserting the expression of the strain tensor into the right-hand side of this equation,

integration by parts provides the expression
∫
Ω

−By

2π
∂xϕ∆(log r) dV , achieving the second

verification.

• Wedge disclination. We must calculate < η�k , ϕ >=
∫
Ω
εkpnεαβE�

βn∂p∂αϕ dV . For k = 1

and k = 2, we must have n� 3 and p = 3, but then the integrand vanishes. For k = 3,

we compute

εpnεlmE�
mn∂p∂lϕ=

Ω�
z (1 − ν�)

4π
ϕ∆

(
log

r

R

)
+

Ω�
z (1 + ν�)

4π
ϕ∆

(
log

r

R

)
= 2

Ω�
z

4π
ϕ(2πδL),

achieving the third verification.
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[10] Kröner, E. (1981) Continuum theory of defects. In: R. Balian et al. (editors), Physiques

des défauts, North-Holland, Amsterdam, Les Houches, France, Session XXXV, Course 3,

pp. 217–315.

[11] Mattila, P. (1995) Geometry of Sets and Measures in Euclidean Spaces-Fractals and Rectifiab-

ility. Cambridge studies in advanced mathematics, Cambridge University Press, Cambridge,

England.

[12] Maugin, G. (2003) Geometry and thermomechanics of structural rearrangements: Ekkehart
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