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Abstract. We introduce a weak notion of 2 × 2-minors of gradients for a suitable subclass of
BV functions. In the case of maps in BV (R2;R2) such a notion extends the standard definition
of Jacobian determinant to non-Sobolev maps.

We use this distributional Jacobian to prove a compactness and Γ-convergence result for a
new model describing the emergence of topological singularities in two dimensions, in the spirit
of Ginzburg-Landau and core-radius approaches. Within our framework, the order parameter
is an SBV map u taking values in the unit sphere in R2 and the energy is given by the sum of
the squared L2 norm of the approximate gradient ∇u and of the length of (the closure of) the

jump set of u multiplied by 1

ε
. Here, ε is a length-scale parameter. We show that, in the | log ε|

regime, the distributional Jacobians converge, as ε → 0+ , to a finite sum µ of Dirac deltas with
weights multiple of π, and that the corresponding effective energy is given by the total variation
of µ .
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Introduction

Topological singularities are ubiquitous in Physics and Materials Science: Vortices in super-
conductivity and superfluidity and (screw end edge) dislocations in single crystal plasticity are
two paradigmatic examples [10, 33, 35, 40, 41, 42]. Loosely speaking, dislocations (resp., vortices)
are identified as points around which the deformation gradient (resp., the order parameter) has
non trivial circulation. In view of their central role in the theory of phase transitions, topological
singularities have been the object of an extensive and intensive study in the last decades (see e.g.
[12, 49]). Such an analysis focused basically on two main models: The core-radius approach (CR)
and the Ginzburg-Landau model (GL). In the former, a finite distribution of topological singu-
larities is identified by a sum of Dirac deltas (with integer weights) and the energy is assumed to
be purely elastic “far enough” from such singularities. Hence, the core parameter ε is introduced,
and the energy takes the form

(0.1) ECR
ε (µ, u) :=

1

2

∫

Ωε(µ)

|∇u|2 dx+ |µ|(Ω) .

1
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In (0.1), µ represents the distribution of singularities, Ω ⊂ R

2 is the reference domain, and
Ωε(µ) := Ω \

⋃
ξ∈suppµBε(ξ) is the domain deprived of the cores; moreover, u ∈ H1(Ωε(µ);S

1)
represents the order parameter that should be “compatible” with the measure µ , namely, it should
satisfy deg(u, ∂A) = µ(A) for every smooth domain A ⊂ Ω with ∂A ⊂ Ωε(µ) . Here and below, S1

denotes the set of unit vectors in R2 . (CR) is mainly used to describe dislocations in semi-discrete
models, i.e., models in which “far from the singularities” (in Ωε(µ)) the material is assumed to
be continuous and elastic, whereas “close to the singularities” (in

⋃
ξ∈suppµBε(ξ)) the material

resembles its “discrete” nature and the energy behaves like the cardinality of the atoms in the
core. Here, (up to a scaling) ε represents an integer multiple of the lattice spacing.

For screw dislocations in antiplane elasticity it is well known that the displacement is a multiple
of the purely axial Burgers vector times a phase (see, e.g. [53]). Let us denote by w a suitable
normalization of this vertical displacement and introduce the order parameter u := e2πıw. Then,
the first addendum in the right-hand side of (0.1) is nothing but a suitable normalization of the
stored elastic energy outside the cores. As for the “plastic term” |µ|(Ω) , it does not play any role
in the asymptotic analysis as ε → 0+ and serves only to guarantee compactness; indeed, without
such a term a distribution µ with Ωε(µ) = ? would pay zero energy.

We notice that the scalar field w cannot belong to H1(Ωε(µ)) , since its deformation gradient
has a nontrivial circulation condition on a curve enclosing a singularity located at x0; from a
modeling point of view, the function w must be in SBV 2(Ω), hence showing a non zero jump on
some one-dimensional set Sw which has x0 as one of its endpoints . This jump set represents the
(section of) a slip plane, while its amplitude [w] corresponds to the circulation of the absolutely
continuous gradient∇w , which is quantized (i.e., it is integer valued), and represents the mismatch
between the atomic lattices above and below Sw .

The most celebrated model used to describe topological singularities is, of course, (GL). In
such a case, the energy depends only on the order parameter u ∈ H1(Ω;R2 ) which is “penalized”
(instead of “constrained”) to take values in S1 and which is defined on the whole Ω . The most
basic form of the energy is given by

(0.2) EGL
ε (u) :=

1

2

∫

Ω

|∇u|2 dx+
1

ε2

∫

Ω

(
1− |u|2

)2
dx ,

where the parameter ε is called in this case coherence length. Note that the role of the measure µ
in (CR) is actually played in the (GL) model by Ju = det∇u which is here a diffuse measure.

Let us focus on how the models (CR) and (GL) are able to detect the topological singularities.
Loosely speaking, a prototypical topological singularity of degree z ∈ Z \ {0} at a point x0 ∈ Ω
can be thought of as the point singularity of a vectorial order parameter ūε : Ω → R

2 which, in a

ball Bδ(x
0) with ε ≪ δ ≪ 1 , winds around the center as

(
x−x0

|x−x0|

)z
. The energy of ūε diverges

at order | log ε| as ε → 0+ . As a consequence, to detect the effective energy cost of finitely many
vortex singularities, one needs to study the (CR) and (GL) energy functionals at a logarithmic
scaling. It has been proved (see e.g. [1, 38] and references therin) that a sequence {uε}ε, along
which these energy functionals are equi-bounded, has Jacobians Juε that, up to a subsequence,

converge in the flat sense (see Section 1) to an atomic measure πµ = π
∑I

i=1 z
iδxi (here the xi

represent the positions of the limiting vortices and zi ∈ Z \ {0} are their multiplicities). The Γ-

limit of
EGL
ε

| log ε| with respect to this convergence is then given by π|µ| . The same analysis has been

developed within the (CR) approach in [47]; moreover, in [5] it is proven that the two models are
asymptotically equivalent (in terms of Γ-convergence) at energy regime | log ε|p with p ≥ 1 . Vari-
ants of the models (CR) and (GL) have been intensively studied; we recall, for instance, discrete
linear models for screw dislocations and vortices [3, 47, 6, 23] (see also [2, 4] for the case of periodic
inhomogeneous materials) and semidiscrete and discrete models for edge dislocations [46, 29, 24, 7].

In this paper, we are interested in a generalization of the models (CR) and (GL) from a different
perspective; specifically, we aim at providing a meaningful energy functional which depends on
order parameter u defined on the whole domain Ω, taking values in S

1 and whose approximate
gradient is square-integrable in Ω . From the point of view of screw dislocations, this means
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that the jump [w] of the scalar displacement w cannot1 be an entire multiple of the Burgers
vector (i.e., equivalently, be integer-valued) on the whole jump set Sw , since this would lead to a
deformation gradient that is non square-integrable. Therefore, the jump [w] of the displacement
should exhibit a transition between integers in a “small” subset Σw of Sw , close to the singularity.
In our model this transition has a length of the order ε and as we let ε → 0+ the displacement
jump is increasingly “forced” to take integer values everywhere on Sw ; in other words the total
length of Σw vanishes asymptotically as ε→ 0+, giving rise to isolated atomic singularities. These
considerations lead us to consider the following energy

Ĝε(w) :=

∫

Ω

1

2
|∇w|2 dx+

1

ε

∫

Sw

W ([w]) dH1 ,(0.3)

where the first term is the standard antiplane elastic energy associated to the displacement w ,
whereas the second one is a multi-well potential which is null on Z and positive elsewhere. As for
instance, one can take the potential

W (t) := distα(t,Z) , for some parameter α ≥ 0 ,

and hence, passing to u := e2πıw , one arrives at

(0.4) W ([w]) := |[u]|α .

For fixed ε, minimizing (0.3) involves a competition between the stored-elastic energy (first term
in (0.3)) which might be large (if for instance boundary conditions for u are given on ∂Ω) and the
creation of a integer displacement mismatch within the otherwise regular crystal lattice (which
has an energetical cost given by the second term in (0.3)).

Notice that, although potentials as in (0.4) are largely used in the context of crack mechanics
[14], with the jump term meaning the energetic cost of crack creation or propagation, the role
of W in our case is a bit different. Indeed, here, W penalizes the “wrong” mismatch of atomic

lattices through the interface Sw . Therefore, passing to u := e2πıw , the functional Ĝε in (0.3)
takes the form

Gε(u) :=

∫

Ω

1

2
|∇u|2 dx+

1

ε

∫

Su

|[u]|α dH1 .(0.5)

Clearly, in order to describe the presence of topological singularities, the functional Gε cannot be
restricted to Sobolev functions, but should be defined on the set of S1-valued SBV 2 maps .

In this paper we focus on the case α = 0 and define

(0.6) Fε(u) :=

∫

Ω

1

2
|∇u|2 dx+

1

ε
H1(Su) .

We point out that, at least under some geometric assumptions on Ω and prescribing the set Su

accordingly2, one can relate the elastic energy to the H
1
2 -norm of the jump of u, whence leading

to 1d models which have been already investigated (see [28]; related models for different lattice
mismatches can be found in [26, 27] and references therein). Related to this setting is [31, 19]
where a similar analysis is done in 2d.

Therefore we aim at studying the asymptotic behavior of Fε

| log ε| as ε → 0 . To this purpose,

we first need to introduce a suitable notion of Jacobian for S1-valued SBV 2 maps. This task is
accomplished in Section 2, where we provide an extension of the Jacobian determinant for maps
in BV (Ω;R2 ) ∩ L∞(Ω;R2 ) (see [17, 18, 13] and the references therein for fine properties of the
Jacobian determinant in Sobolev spaces). For a map u : Ω → R

2 , the distributional Jacobian
determinant Det(∇u), introduced in [43], is defined as the distribution

〈Det(∇u), ϕ〉Ω :=

∫

Ω

∇ϕ · λu dx,(0.7)

1if it would, in presence of an isolated singularity, the gradient of u would only be in Lp with 1 ≤ p < 2 .
2e.g. when Ω is a square, Su the horizontal axis of Ω, and prescribing periodic boundary conditions of u.
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where

λu :=
1

2

(
− u1

∂u2

∂x2
+ u2

∂u1

∂x2
, u1

∂u2

∂x1
− u2

∂u1

∂x1

)
;(0.8)

it is well-defined under suitable summability assumptions on u ensuring that λu ∈ L1(Ω;R2 ).
Moreover, denoting by j(u) the current associated to u , i.e., j(u) := 1

2 (u
1∇u2 − u2∇u1) , one has

j(u)⊥ = λu and it is easy to check that

Det(∇u) = −Divλu = curlj(u) =
1

2
curl(∇w),

holds in the sense of distributions, where ∇w is the approximate gradient of w. In general Det(∇u)
does not coincide with the pointwise Jacobian determinant det(∇u), but they coincide under
suitable assumptions on u (see [45]). When u ∈ BV (Ω;R2 ) it is possible to extend definition
(0.7) if one shows that λu is a Radon measure uniquely determined by u . Such a fact is trivial for
smooth maps. Hence, arguing by approximation, it is possible to show that if {vk}k∈N is a sequence
of smooth functions approaching u w.r.t. the strict topology of BV , then the distribution λu is
uniquely determined as the limit of the distributions λvk . This is done in Section 2, and follows
as a consequence of the results by Jerrard and Jung who showed the existence and uniqueness of
a so-called minimal lifting of Du, for all u ∈ BV (Ω;R2 ) (see Theorem 1.1 and [37] for details).

We emphasize that in this planar case with maps with values in R2 , using the aforementioned
result of Jerrard and Jung, an extension of distributional determinant for maps of bounded vari-
ation has been recently obtained in [44], under the additional assumption that a map u has finite
relaxed graph area (where relaxation is done w.r.t. the strict topology of BV ). This means that
u is approximable strictly in BV by smooth maps vk with uniformly bounded graphs area (see
[11, 44] for the relaxed area functional). This implies that the Cartesian current in Ω×R2 obtained
as the limit of the graphs of the approximating vk is uniquely determined, which guarantees, in
turn, that the Jacobian of u is always a Radon measure with finite total variation (see [44] for
details).

However, requiring only that u ∈ BV (Ω;R2 ) ∩ L∞(Ω;R2 ) , the weak Jacobian determinant Ju
of u (defined in (2.35)) is, in general, not a measure, but a mere distribution whose flat norm is
controlled by the total variation of λu. Moreover, although we will employ the notion of weak
Jacobian only for S1-valued maps defined on a planar domain, we point out that the definition
of weak Jacobian can be extended to more general (possibly unbounded) functions with bounded
variation u : U ⊂ R

n → R

m , also in dimension and codimension greater than two, allowing to give
a notion of weak 2× 2-minors of Du . This is stated and proved in Theorem 2.5, which also shows
that the notion of weak Jacobian extends the distributional determinant in the case of unbounded
Sobolev maps.

Once introduced our weak notion of Jacobian determinant, our main result is Theorem 3.1,
where we state compactness and Γ-convergence for the functionals Fε

| log ε| . As in the classical (CR)

and (GL) models, the compactness property shows that, if {uε}ε ⊂ SBV 2(Ω;S1) with

(0.9) sup
ε>0

Fε(uε)

| log ε|
< +∞ ,

then, up to a subsequence, the weak Jacobians Juε converge in the flat sense to a measure

πµ := π
∑N

n=1 z
nδxn with zn ∈ Z \ {0} . The starting point of the compactness analysis is that

H1(Suε
) ≤ Cε| log ε| , which guarantees that Suε

can be covered by a finite (for fixed ε) family
of balls such that the sum of its radii vanishes as ε → 0 . Starting from this family one can use
the ball construction technique introduced in [48, 36] in order to provide lower bounds for the
(CR) and (GL) models. However, such a tool is not enough in order to guarantee compactness in
our case. Indeed, in (GL) the corresponding bound as in (0.9), implies that |Juε|(Ω) ≤ C| log ε| ,
which in turn allows the authors of [8] to prove that the flat distance between the diffuse Jacobian
of uε and the atomic measure provided by the ball construction tends to zero. In order to bypass
the control on the total variation of the Jacobians (which in our case are not even measures), we
adopt the following strategy. In order to avoid to estimate the flat distance of the singularities
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accumulating at the boundary, in our main Theorem 3.1 we assume that the jump sets of the maps
uε are all contained in a fixed set Ω′ ⊂⊂ Ω . In Theorem 3.5 we use this setting to provide the
same result with an applied displacement boundary condition on ∂Ω but this time with possibly
Su ∩ ∂Ω 6= ? . Moreover, in order to deal with zero degree clusters contained in Ω , we provide
an iterative machinery that allows to modify the balls provided by the ball construction in order
to get a “good bound” of |Duε| on the boundary of small regions containing these clusters. From
a physical standpoint these zero degree clusters are related to the so-called statistically-stored
dislocations in single crystals, as opposed to the (geometrically necessary) dislocations required to
accommodate the incompatible deformations.

Some comments on our approach are in order. A natural question is whether in (0.6) one can
drop the closure on Su , replacing H1(Su) with H1(Su) . This creates some problems in the proof
of compactness since, in such a case, the jump set, whose H1 measure vanishes as ε→ 0+ , can be
dense in Ω . In terms of our proof, this means that Suε

can be covered by a family of countably
many, not necessarily finitely many, balls whose sum of the radii vanishes as ε → 0+ . Since
the ball construction [48, 36] requires that the number of initial balls is finite, the problem above
requires an extension of the ball construction procedure to the case of countably many initial balls.

Another issue concerns the case α > 0 in (0.5). Also such a problem cannot be studied in full
analogy with the one considered here, in view of the lack of a-priori control of the H1-measure
of the jump set in that case. Furthermore, we do believe that our approach could be extended
to higher energy regimes as well as to the vectorial case of edge dislocations. This last issue is
much more delicate, since it requires the extension of our approach to maps with vectorial lifting.
Finally, an extension of our approach to the 3d setting [21] deserves future investigations; in such
a case, techniques coming from the theory of integral and Cartesian currents could be exploited,
as successfully done in [34, 20, 50, 51, 52, 30].

Plan of the paper. The paper is organized as follows: In Section 1 we introduce the notation
and preliminary notions used in the sequel. In Section 2 we extend the notion of distributional
Jacobian determinant to some classes of maps of bounded variation (see Theorems 2.2 and 2.5).
In Section 3 we finally pass to the Γ-convergence analysis of the functional (0.6) and prove our
main result Theorem 3.1.

Acknowledgements: We thank Marcello Ponsiglione for stimulating discussions on the sub-
ject of the paper. LDL and RS are members of the Gruppo Nazionale per l’Analisi Matematica,
la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matemat-
ica (INdAM). RS also acknowledges the partial financial support of the F-CUR project number
2262-2022-SR-CONRICMIUR PC-FCUR202 002 of the University of Siena.

1. Preliminary results

In this section we collect some preliminary notions on the flat norm of measures and currents,
as well as some properties of BV functions that will be used throughout the paper.

Multi-indices. Let m,n ≥ 2 be two fixed integers. Let I ⊂ {1, . . . , n} and J ⊂ {1, . . . ,m}

be multi-indices (in particular, they have a specific order). We denote by Î the ordered set

{1, . . . , n} \ I and Ĵ = {1, . . . ,m} \ J . We also denote by σ(I, Î) and σ(J, Ĵ) the signs of the

permutations (I, Î) ∈ S(n) and (J, Ĵ) ∈ S(m), where (I, Î) and (J, Ĵ) are seen as the sets {1, . . . , n}
and {1, . . . ,m} with a precise order. We will usually deal with the case in which I = {i, i′} and
J = {j, j′} are multi-indices consisting of exactly to distinct elements.

Flat norm of Radon measures. Let n ≥ 1 be an integer and let U ⊂ R

n be a bounded and
open set. We denote by Mb(U) the space of Radon measures on U with finite total variation. If
µ ∈ Mb(U), we denote by |µ|(U) the total variation of µ . We recall that a sequence µk ∈ Mb(U)
converges tightly to µ ∈ Mb(U) if µk converges to µ weakly* as measure, and |µk|(U) → |µ|(U).



6 L. DE LUCA, R. SCALA, AND N. VAN GOETHEM

We also introduce the concept of flat norm of a measure µ, denoted by ‖µ‖flat , as

‖µ‖flat := sup
ϕ∈C0,1

c (U)
‖ϕ‖C0,1(U)≤1

∫

U

ϕ dµ .(1.1)

Here and below, the Lipschitz norm ‖ϕ‖C0,1(U) is defined by

‖ϕ‖C0,1(U) := ‖ϕ‖L∞(U) + sup
x,y∈U
x 6=y

|ϕ(x)− ϕ(y)|

|x− y|
.

By a density argument we easily see that the supremum in (1.1) can be equivalently computed
among smooth and compactly supported (in U) functions ϕ with ‖ϕ‖C0,1(U) ≤ 1 .

Flat norm of k-currents. Let n ≥ 2 be an integer and let U ⊂ R

n be an open set. For
every k ∈ N with 0 ≤ k ≤ n , we denote by Dk(U) the topological vector space of smooth and
compactly supported k-forms on U , and by Dk(U) its dual, i.e., the space of k-currents on U . The
canonical basis of 1-vectors in Rn is denoted by {e1, . . . , en}, and its dual basis of 1-covectors by
{dx1, . . . , dxn} .

The mass |T | of a current T ∈ Dk(U) is defined as

|T | = sup{〈T, ω〉 : ω ∈ Dk(U), ‖ω‖L∞ ≤ 1} .

As done in (1.1) for measures, we define the flat norm of a current T ∈ Dk(U) in U by

(1.2) ‖T ‖flat,U := sup
ω∈Dk(U)
‖ω‖F,U≤1

〈T, ω〉,

where

‖ω‖F,U := ‖ω‖L∞(U) + ‖dω‖L∞(U) .

In the special case that T is a 0-current and has finite mass, then it can be standardly identified
with a measure, and the flat norm of T coincides with the flat norm of the measure T defined in
(1.1).

Jacobian for S1-valued Sobolev maps in R

2 . Let U ⊂ R

2 be a bounded and open set. Given
a map u ∈W 1,1(U ;R2 )∩L∞(U ;R2 ) we recall that Ju = Det(∇u) is defined by (0.7). Notice that

Det(∇u) is well-defined also if u ∈ W 1, 43 (U ;R2 ), since by Sobolev embedding theorem we have
λu ∈ L1(U ;R2 ) (see (0.8)).

In the sequel we will use the fact that a function u ∈ H1(U ;S1) satisfies Det(∇u) = 0 in the
sense of distributions. Moreover, if u ∈ H1(U \ B;S1), where B ⊂ U is a ball, then, integrating
by parts,

∫

U\B

λu · ∇ϕ dx =

∫

∂B

λu · νϕ dH1 =

∫

∂B

j(u) · τϕ dH1, ∀ϕ ∈ C∞
c (U),

where ν is the inner normal vector to ∂B, τ = −ν
⊥ is the counter-clockwise tangent normal

vector to ∂B, and j(u) = 1
2 (u

1∇u2 − u2∇u1) = −λ⊥u . Notice that j(u) · τ = 1
2 (u

1 ∂u2

∂�
− u2 ∂u1

∂�
) on

∂B.
We recall that deg(u, ∂B) ∈ Z is defined as

deg(u, ∂B) :=
1

π

∫

∂B

j(u) · τ dH1 =
1

π

∫

∂B

λu · ν dH1 ,(1.3)

whenever u ∈ H
1
2 (∂B;S1).
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Vector-valued BV functions. Here we recall some basic facts on vector-valued BV -functions
that will be used throughout the paper. We refer to the monograph [9] for a complete analysis of
BV -functions.

Let m,n ≥ 2 be two integers and let Ω ⊂ R

n be an open set. Let moreover u ∈ BV (Ω;Rm ).
Then, there is an Hn−1-rectifiable set Su ⊂ Ω such that Hn−1-a.e. x ∈ Ω \ Su is a Lebesgue point
for u . For every such x ∈ Ω \ Su , we denote by u(x) , the Lebesgue value of u at x , so that u
turns out to be well-defined Hn−1-a.e. on Ω \ Su . The set Su has the following property: For
Hn−1-a.e. x ∈ Su there exists a unit vector ν(x) ∈ R

n , which is orthogonal to the approximate
tangent space to Su at x, and there exist u+(x), u−(x) ∈ R

m such that the maps ν, u+, u− are
Hn−1-measurable on Su, and

u+(x) = aplimy→x, (y−x)·�(x)>0u(y), u−(x) = aplimy→x, (y−x)·�(x)<0u(y) ,

for Hn−1-a.e. x ∈ Su.
The distributional gradient Du of u reads as Du = DDu+DSu, where DSu is the jump part of

the gradient provided by

DSu = [u]⊗ ν dHn−1 ,

with [u] := u+ − u− (u± being the traces of u on the two sides of Su), and DDu = Du (Ω \ Su)
is the diffuse part of the gradient, which satisfies DDu(A) = 0 if Hn−1(A) < ∞. In turn, DDu =
Dau + Dcu splits into two mutually singular measures, Dau which is absolutely continuous with
respect to the Lebesgue measure Ln, and the Cantor part Dcu .

Eventually, we extend the definition of u, which has been defined so far only Hn−1-a.e. on
Ω \ Su, by setting

(1.4) u(x) =
1

2
(u+(x) + u−(x)), x ∈ Su .

In this way, u is well-defined Hn−1-a.e. on Su and, in general, u is well-defined |Du|-a.e. in Ω.
Furthermore, for every θ ∈ [0, 1] and Hn−1-a.e. x ∈ Su we define the function uθ as

(1.5) uθ(x) := θu+(x) + (1− θ)u−(x) ,

so that u ≡ u
1
2 . Finally, we say that a sequence {uk}k∈N ⊂ BV (Ω;Rm ) strictly converges to u

in BV (Ω;Rm ) (as k → +∞), and we write uk
strict
⇀ u (as k → +∞), if uk → u (strongly) in

L1(Ω;Rm ) and |Duk|(Ω) → |Du|(Ω) (as k → +∞) .

Minimal lifting. Here we deal with maps v : Ω → R

m , where Ω ⊂ R

n is a bounded and open set.
We denote by x = (x1; . . . ;xn) ∈ R

n the coordinates in R

n , and y = (y1; . . . ; ym) those in R

m .
Given v = (v1; . . . ; vm) ∈ C1(Ω;Rm ) ∩W 1,1(Ω;Rm ) , for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} ,
we define (µv)

i
j ∈ Mb(Ω× R

m ) as the only measure satisfying
∫

Ω×Rm

φ(x, y) d(µv)
i
j =

∫

Ω

φ(x, v(x))
∂vi

∂xj
dx , for every φ ∈ Cc(Ω× R

m ) .(1.6)

In [37] the following result is proved.

Theorem 1.1. Let u ∈ BV (Ω;Rm ) . Then, for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} , there
exists a measure (µu)

i
j ∈ Mb(Ω × R

m ) such that the following holds: If {vk}k∈N ⊂ C1(Ω;Rm ) ∩

W 1,1(Ω;Rm ) satisfies vk
strict
⇀ v (as k → +∞) , then (µvk)

i
j

∗
⇀ (µu)

i
j in Mb(Ω×R

m) and the Rm×n -

valued measure µvk :=
(
(µvk)

i
j

)
i=1,...,m
j=1,...,n

converges tightly to µu :=
(
(µu)

i
j

)
i=1,...,m
j=1,...,n

(as k → +∞).

Furthermore, for every i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} , it holds
∫

Ω×Rm

φ(x, y) d(µu)
i
j =

∫

Ω\Su

φ(x, u(x)) d(DD
j u

i)(x)

+

∫

Su

∫ 1

0

φ(x, uθ(x)) dθ d(DS
j u

i)(x) ,(1.7)

for every φ ∈ Cc(Ω× R

m ) .
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As a consequence of Theorem 1.1, it turns out that the Rm×n -valued measure µu is uniquely
determined by u ∈ BV (Ω;Rm ) and is called minimal lifting of Du. Moreover, it easily follows that

if {uk}k∈N ⊂ BV (Ω;Rm ) satisfies uk
strict
⇀ u in BV (Ω;Rm ) (as k → +∞) , then µuk

→ µu tightly.

2. Weak 2× 2-minors of gradients and jacobian determinants of BV functions

We now see how the notion of minimal lifting provided by Theorem 1.1 allows to define, in a
weak sense, the 2× 2-minors of gradient of suitable BV -maps.

Let m ≥ 2 and n ≥ 2 be two integers and let Ω ⊂ R

n be a bounded and open set. Given
v ∈ C1(Ω;Rm ) ∩ W 1,1(Ω;Rm ), testing (1.6) with φ(x, y) = ϕ(x)ψ(y) , where ϕ ∈ Cc(Ω) and
ψ ∈ Cc(R

m ) , we have
∫

Ω×Rm

ϕ(x)ψ(y) d(µv)
i
j =

∫

Ω

ϕ(x)ψ(v(x))
∂vi

∂xj
dx .

It follows that, if also v ∈ L∞(Ω;Rm ) , for every h = 1, . . . ,m , we can take ψ := ψh with
ψh ∈ Cc(R

m ) such that ψh(y) = yh in B‖v‖L∞(Ω;Rm)
(0) ⊂ R

m , thus obtaining
∫

Ω×Rm

ϕ(x)ψh(y) d(µv)
i
j =

∫

Ω

ϕ(x)vh(x)
∂vi

∂xj
dx .(2.1)

Now, let u ∈ BV (Ω;Rm ) ∩ L∞(Ω;Rm ) and {vk}k∈N ⊂ C1(Ω;Rm )∩W 1,1(Ω;Rm ) ∩ L∞(Ω;Rm ) be

such that vk
strict
⇀ u as k → +∞, and ‖vk‖L∞(Ω;Rm) ≤ C for all k ≥ 1 . Then, it is easy to see that

for every i, h = 1, . . . ,m and for every j = 1, . . . , n, it holds

(2.2) vhk (x)
∂vik
∂xj

dx
∗
⇀ (νu)

i,h
j in Mb(Ω) as k → +∞ ,

where the measure (νu)
i,h
j is defined by the formula

∫

Ω

ϕ(x) d(νu)
i,h
j =

∫

Ω×Rm

ϕ(x)yh d(µu)
i
j ∀ϕ ∈ Cc(Ω) ,(2.3)

for all i, h ∈ {1, . . . ,m}, j ∈ {1, . . . , n} . More precisely, we have the following result.

Corollary 2.1. Let u ∈ BV (Ω;Rm ) ∩ L∞(Ω;Rm ), then there exists a unique measure νu ∈
Mb(Ω;R

m×n×m ) such that, whenever {vk}k∈N ⊂ C1(Ω;Rm )∩W 1,1(Ω;Rm )∩L∞(Ω;Rm ) satisfies

‖vk‖L∞(Ω;Rm) ≤ C < +∞ for all k ≥ 1 and vk
strict
⇀ u in BV (Ω;Rm ) , then vk ⊗ ∇vk → νu ,

where (νu)
i,h
j is defined by (2.3) for every i, h ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . Finally, if

{uk}k∈N ⊂ BV (Ω;Rm ) ∩ L∞(Ω;Rm ) with

(2.4) ‖uk‖L∞(Ω;Rm) ≤ C,

for some constant C > 0, and uk
strict
⇀ u in BV (Ω;Rm ) , then

(2.5) νuk

∗
⇀ νu in Mb(Ω;R

m×n×m) .

Proof. The first part of the statement follows straightforwardly from the discussion above (see

formulas (2.1), (2.2), (2.3)). Let us comment on the last claim, and assume uk
strict
⇀ u with

{uk}k∈N ⊂ BV (Ω;Rm ) ∩ L∞(Ω;Rm ). Let ϕ ∈ Cc(Ω) , i, h ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . Let
moreover ψh ∈ Cc(R

m ) be such that ψh = yh inside BC(0) ⊂ R

m , where C is the constant in
(2.4). By Theorem 1.1, we get

(2.6) lim
k→+∞

∫

Ω×Rm

ϕ(x)ψh(y) d(µuk
)ij =

∫

Ω×Rm

ϕ(x)ψh(y) d(µu)
i
j .

On the other hand, in view of (2.4), by (2.3), we have that
∫

Ω×Rm

ϕ(x)ψh(y) d(µuk
)ij =

∫

Ω

ϕ(x) d(νuk
)i,hj

∫

Ω×Rm

ϕ(x)ψh(y) d(µu)
i
j =

∫

Ω

ϕ(x) d(νu)
i,h
j ,
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which, together with (2.6), implies that
∫

Ω

ϕ(x) d(νuk
)i,hj

k→+∞
−→

∫

Ω

ϕ(x) d(νu)
i,h
j .

By the arbitrariness of ϕ we get (2.5). �

In view of Corollary 2.1, for every u ∈ BV (Ω;Rm ) ∩ L∞(Ω;Rm ) , we are allowed to adopt the
following notation

[uhDju
i] := (νu)

i,h
j , i, h ∈ {1, . . . ,m}, j ∈ {1, . . . , n} ,

and

[u⊗Du] := νu :=
(
(νu)

i,h
j

)
i,h∈{1,...,m}
j∈{1,...,n}

.

Let u ∈ BV (Ω;Rm )∩L∞(Ω;Rm ) and let us fix four indices i, i′ ∈ {1, . . . ,m} and j, j′ ∈ {1, . . . , n} .
We set I := {i, i′}, J := {j, j′}, and consider the measures λIj , λ

I
j′ ∈ Mb(Ω) given by

(2.7)
λIj :=

1

2

(
[uiDju

i′ ]− [ui
′

Dju
i]
)
=

1

2
((νu)

i′,i
j − (νu)

i,i′

j ) ,

λIj′ :=
1

2

(
[uiDj′u

i′ ]− [ui
′

Dj′u
i]
)
=

1

2
((νu)

i′,i
j′ − (νu)

i,i′

j′ ) .

We define the current (Tu)I,J ∈ D1(Ω) as

(Tu)I,J :=σI
J(λ

I
jej′ − λIj′ej)

=
σI
J

2

(
[uiDju

i′ ]− [ui
′

Dju
i]
)
ej′ −

σI
J

2

(
[uiDj′u

i′ ]− [ui
′

Dj′u
i]
)
ej ,(2.8)

where σI
J := σ(I, Î)σ(J, Ĵ) ∈ {−1, 1} . The 1-current (Tu)I,J acts on 1-forms ω ∈ D1(Ω) with

ω =
∑

h ωh dxh, ωh ∈ C∞
c (Ω× R

m ), as

(Tu)I,J(ω) = σI
J

(∫

Ω

ωj′ dλ
I
j −

∫

Ω

ωj dλ
I
j′

)

=
σI
J

2

∫

Ω

ωj′ d([u
iDju

i′ ]− [ui
′

Dju
i])−

σI
J

2

∫

Ω

ωj d([u
iDj′u

i′ ]− [ui
′

Dj′u
i]).(2.9)

A consequence of Corollary 2.1 is that (Tu)I,J is well-defined (for all u ∈ BV (Ω;Rm )∩L∞(Ω;Rm )),
it is a Radon measure in Mb(Ω;R

m ), and is weakly* continuous with respect to strict convergence
of uk to u in BV (Ω;Rm ), provided that uk are uniformly bounded in L∞(Ω;Rm ). Therefore we
arrive at the following result.

Theorem 2.2. For all u ∈ BV (Ω;Rm ) ∩ L∞(Ω;Rm ) and for all I = {i, i′} ⊂ {1, . . . , n}, J =
{j, j′} ⊂ {1, . . . ,m}, let ∂(Tu)I,J ∈ D0(Ω) denote the boundary of the current (Tu)I,J given by
(2.9). Then,

(2.10) ‖∂(Tu)I,J‖flat,Ω ≤ C‖u‖L∞(Ω;Rm)|Du|(Ω) ,

for some universal constant C > 0 (independent of u) .

Proof. Let ϕ ∈ C∞
c (Ω) and consider the 0-form ω = ϕ , whose differential is dω =

∑
h

∂ϕ
∂xh

dxh.
Hence, by definition of boundary of a current

∂(Tu)I,J(ω) = (Tu)I,J (dω) =

∫

Ω

∂ϕ

∂xj′
dλIj −

∫

Ω

∂ϕ

∂xj
dλIj′

=
σI
J

2

∫

Ω

∂ϕ

∂xj′
d([uiDju

i′ ]− [ui
′

Dju
i])−

σI
J

2

∫

Ω

∂ϕ

∂xj
d([uiDj′u

i′ ]− [ui
′

Dj′u
i]) ,(2.11)

from which (2.10) follows by definition of flat norm. �

We can then introduce the definition of weak 2 × 2-minors of Du . In what follows, for every
open and bounded set U ⊂ R

k (for some k ∈ N) we denote by D(U) the family of test functions
defined in U and by D′(U) its dual, i.e., the family of distributions.
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Definition 2.3. Let u ∈ BV (Ω;Rm ) ∩ L∞(Ω;Rm ) and let I = {i, i′} ⊂ {1, . . . , n}, J = {j, j′} ⊂
{1, . . . ,m}. Then we define MJ

I (Du) ∈ D′(Ω) the 2× 2-minor of Du with rows in I and columns
in J as the distribution

〈MJ
I (Du), ϕ〉Ω : =

∫

Ω

∂ϕ

∂xj′
dλIj −

∫

Ω

∂ϕ

∂xj
dλIj′

=
σI
J

2

∫

Ω

∂ϕ

∂xj′
d([uiDju

i′ ]− [ui
′

Dju
i])−

σI
J

2

∫

Ω

∂ϕ

∂xj
d([uiDj′u

i′ ]− [ui
′

Dj′u
i]) ,(2.12)

for all ϕ ∈ D(Ω) , where λIj and λIj′ are defined in (2.7).

Notice that, if v ∈ C2(Ω;Rm )∩W 1,1(Ω;Rm )∩L∞(Ω;Rm ) , by (2.11), (2.12), and (2.1), we get

MJ
I (∇v) =

σI
J

2

∫

Ω

∂ϕ

∂xj′

(
vi
∂vi

′

∂xj
− vi′

∂vi

∂xj

)
dx−

σI
J

2

∫

Ω

∂ϕ

∂xj

(
vi
∂vi

′

∂xj′
− vi

′ ∂vi

∂xj′

)
dx

= σI
J

∫

Ω

ϕ(x)
( ∂vi
∂xj

(x)
∂vi

′

∂xj′
(x) −

∂vi

∂xj′
(x)

∂vi
′

∂xj
(x)

)
dx ,

namely, the distributionMJ
I (∇v) coincides with the (2×2)-subdeterminant of the matrix ∇v with

rows in I and columns in J .

2.1. An extension of the 2×2-minors for more general BV maps. In this section we refine
the result in Theorem 2.2 weakening the hypothesis that u ∈ L∞(Ω;Rm ) . To this purpose, we
preliminarily notice that, if u ∈ BV (Ω;Rm )∩L∞(Ω;Rm ) , we can take φ(x, y) = ϕ(x)yh in (1.7) ,
with ϕ ∈ Cc(Ω) and h ∈ {1, . . . ,m} . From this expression, using (2.3), we obtain

∫

Ω

ϕ(x) d(νu)
i,h
j =

∫

Ω×Rm

ϕ(x)yh d(µu)
i
j

=

∫

Ω\Su

ϕ(x)uh(x) d(DD
j u

i) +

∫

Su

ϕ(x)

∫ 1

0

(uθ)h(x) dθ d(DS
j u

i)

=

∫

Ω\Su

ϕ(x)uh(x) d(Dju
i) +

∫

Su

ϕ(x)uh(x) d(Dju
i) ,(2.13)

where uθ = ((uθ)1; . . . ; (uθ)m) is defined in (1.5). Let now u ∈ BV (Ω;Rm ) and assume that

(P)

For some i, i′ ∈ {1, . . . ,m} with i 6= i′ and j, j′ ∈ {1, . . . , n} with j 6= j′ , it holds

yi ∈ L1(Ω× R

m , (µu)
i′

j ) ∩ L
1(Ω× R

m , (µu)
i′

j′ ) ,

yi
′

∈ L1(Ω× R

m , (µu)
i
j) ∩ L

1(Ω× R

m , (µu)
i
j′) ,

where L1(Ω× R

m , µ) denotes the space of L1 functions with respect to the measure µ .

We emphasize that if u ∈ BV (Ω;Rm ) ∩ L∞(Ω;Rm ) then property (P) is readily satisfied, since
suppµu is bounded in Ω× R

m . In Theorem 2.5 below, we will show that property (P) is enough
to ensure the well-posedness of the definition of the current (2.8) as well as to guarantee that it
and its boundary have controlled flat norm. To this purpose, we preliminarily notice that, in view
of (P), by (1.7), for every φ ∈ Cc(Ω× R

m ) of the form φ(x, y) = ϕ(x)ψ(y)|yh| with h ∈ {i, i′} , it
holds

(2.14)

∫

Ω×Rm

ϕ(x)ψ(y)|yh| d(µu)
i
j

=

∫

Ω\Su

ϕ(x)ψ(u(x))|uh(x)| d(Dju
i) +

∫

Su

ϕ(x)

∫ 1

0

ψ(uθ(x))|(uh)θ(x)| dθ d(Dju
i)

≤‖ψ‖L∞(Rm)

∫

Ω\Su

|uh(x)| d|Dju
i|+ ‖ψ‖L∞(Rm)

∫

Su

∫ 1

0

|(uθ)h(x)| dθ d|Dju
i|.
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Therefore, we can take the supremum of the left-hand side among all ϕ ∈ Cc(Ω; [−1, 1]) and
ψ ∈ Cc(R

m ; [−1, 1]) , and by standard density arguments we get
∫

Ω×Rm

|yh| d|(µu)
i
j | ≤

∫

Ω\Su

|uh(x)| d|Dju
i|+

∫

Su

∫ 1

0

|(uθ)h(x)| dθ d|Dju
i|.(2.15)

In particular, if u ∈ BV (Ω;Rm ) satisfies (P), then the measure yh · (µu)
i
j (for h ∈ {i, i′}) has finite

total variation which is bounded by the right-hand side of (2.15). Now we show that (2.15) holds
actually with equality.

Lemma 2.4. Let u ∈ BV (Ω;Rm ) and let i, i′ ∈ {1, . . . ,m} with i 6= i′ and j, j′ ∈ {1, . . . , n} with
j 6= j′ be such that (P) holds. Then for h ∈ {i, i′} it holds

∫

Ω×Rm

|yh| d|(µu)
i
j | =

∫

Ω\Su

|uh(x)| d|Dju
i|+

∫

Su

∫ 1

0

|(uθ)h(x)| dθ d|Dju
i|.(2.16)

In particular it follows

uh ∈ L1(Ω \ Su, |D
D
j u

i|), uh ∈ L1(Su, |D
S
j u

i|) ,(2.17)

where the function u is defined on Su by (1.4).

Proof. Fix h, i, j and ε > 0, and choose a compact set Sε
u ⊂ Su such that

(2.18) |Dju
i|(Su \ Sε

u) = |DS
j u

i|(Su \ Sε
u) <

ε

2
.

Thanks to the compactness of Sε
u, for all δ > 0 small enough, we can choose an open neighborhood

Uε
δ of Sε

u such that

(2.19) |DD
j u

i|(Uε
δ ) <

ε

2
,

and Uε
δ ց Sε

u as δ → 0 . Notice that, by (2.18), for all δ > 0 small enough we have

(2.20) |DS
j u

i|(Su \ Uε
δ ) ≤ |DS

j u
i|(Su \ Sε

u) <
ε

2
,

whereas, by (2.19), we get

(2.21) |Dju
i|(Uε

δ \ Su) = |DD
j u

i|(Uε
δ \ Su) <

ε

2
.

Let ϕUε
δ
∈ Cc(U

ε
δ ; [−1, 1]) and ϕc

Uε
δ
∈ Cc(Ω \ U

ε

δ; [−1, 1]) and set ϕ := ϕUε
δ
+ ϕc

Uε
δ
. Moreover, let

ψ ∈ Cc(R
m ; [−1, 1]) . By the equality in (2.14), using that sup{|y| : y ∈ suppψ} =: Ĉ(ψ) < +∞,

we obtain ∫

Ω×Rm

|yh| d|(µu)
i
j | ≥

∫

Ω×Rm

ϕ(x)ψ(y)|yh| d(µu)
i
j(2.22)

=

∫

Uε
δ
\Su

ϕUε
δ
(x)ψ(u(x))|uh(x)| d(Dju

i) +

∫

Ω\(Uε
δ
∪Su)

ϕc
Uε

δ
(x)ψ(u(x))|uh(x)| d(Dju

i)

+

∫

Uε
δ
∩Su

ϕUε
δ
(x)

∫ 1

0

ψ(uθ(x))|(uθ)h(x)| dθ d(Dju
i)

+

∫

(Ω\Uε
δ
)∩Su

ϕc
Uε

δ
(x)

∫ 1

0

ψ(uθ(x))|(uθ)h(x)| dθ d(Dju
i)

≥− |Dju
i|(Uε

δ \ Su) Ĉ(ψ) +

∫

Ω\(Uε
δ
∪Su)

ϕc
Uε

δ
(x)ψ(u(x))|uh(x)| d(Dju

i)

− |DS
j u

i|(Su \ Sε
u) Ĉ(ψ) +

∫

Uε
δ
∩Sε

u

ϕUε
δ
(x)

∫ 1

0

ψ(uθ(x))|(uθ)h(x)| dθ d(Dju
i)

− |DS
j u

i|(Su ∩ (Ω \ Uε
δ )) Ĉ(ψ) .
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Therefore, taking in the right hand side of (2.22) the supremum over ϕUε
δ

∈ Cc(U
ε
δ ; [−1, 1]) ,

ϕc
Uε

δ
∈ Cc(Ω \ U

ε

δ; [−1, 1]) , and assuming ψ ≥ 0, by (2.18)-(2.21), we deduce

(2.23)

∫

Ω×Rm

|yh| d|(µu)
i
j | ≥ − 2ε Ĉ(ψ) +

∫

Ω\(Uε
δ
∪Su)

|ψ(u(x))uh(x)| d|Dju
i|

+

∫

Uε
δ
∩Sε

u

∫ 1

0

|ψ(uθ(x))(uθ)h(x)| dθ d|Dju
i| ,

for all ψ ∈ Cc(R
m ; [0, 1]) . Letting δ → 0 in (2.23), for every ψ ∈ Cc(R

m ; [0, 1]) we get
∫

Ω×Rm

|yh| d|(µu)
i
j | ≥ − 2ε Ĉ(ψ) +

∫

Ω\Su

|ψ(u(x))uh(x)| d|Dju
i|

+

∫

Sε
u

∫ 1

0

|ψ(uθ(x))(uθ)h(x)| dθ d|Dju
i|

and, by the arbitrariness of ε > 0 , we conclude

(2.24)

∫

Ω×Rm

|yh| d|(µu)
i
j | ≥

∫

Ω\Su

|ψ(u(x))uh(x)| d|Dju
i|

+

∫

Su

∫ 1

0

|ψ(uθ(x))(uθ)h(x)| dθ d|Dju
i| ,

for every ψ ∈ Cc(R
m ; [0, 1]) . Let us choose a non-increasing compactly supported continuous

function Ψ : [0,∞) → [0, 1] such that Ψ(0) = 1, and, for every M > 0 we set ψM (·) = Ψ( ·
M
) .

Taking ψ(y) := ψM (|yh|) in (2.24), and letting M → +∞, by Fatou Lemma we get
∫

Ω×Rm

|yh| d|(µu)
i
j | ≥

∫

Ω\Su

|uh(x)| d|Dju
i|+

∫

Su

∫ 1

0

|(uθ)h(x)| dθ d|Dju
i| ,

which, together with (2.15), proves (2.16). Finally, the first formula in (2.17) is straightforward,

whereas the latter follows from the inquality
∫ 1

0 |(uθ)h| dθ ≥ |uh|. �

We will make use of property (2.17) in order to prove the following theorem.

Theorem 2.5. Let u ∈ BV (Ω;Rm ), let I = {i, i′} ⊂ {1, . . . ,m}, and J = {j, j′} ⊂ {1, . . . , n} with
i 6= i′ and j 6= j′ . Assume that u satisfies hypothesis (P) for i, i′, and j, j′. Then for all i, h ∈ I,

j ∈ J there exists a unique measure (νu)
i,h
j enjoying (2.13) and having finite total variation. As a

consequence, the current (Tu)I,J ∈ D1(Ω) given by (2.8) is well-defined, has finite mass, and

‖∂(Tu)I,J‖flat,Ω ≤ |(λu)
I
j |(Ω) + |(λu)

I
j′ |(Ω) ,

where the measures (λu)
I
j and (λu)

I
j′ are defined in (2.7). Moreover, if {uk}k∈N ⊂ BV (Ω;Rm ) is

a sequence of maps satisfying (P) and converging strictly to u in BV (Ω;Rm ) with

(2.25) sup
k∈N

{ ∑

h=j,j′

(
|yi(µuk

)i
′

h |(Ω× R

m ) + |yi
′

(µuk
)ih|(Ω× R

m )
)}

< C ,

for some C > 0 , then, as k → +∞ , (νuk
)i,hj

∗
⇀ (νu)

i,h
j in Mb(Ω) for all i, h ∈ I, j ∈ J , and

(Tuk
)I,J converges to (Tu)I,J in D1(Ω).

Proof. Fix i ∈ I, h = i′, and j ∈ J . We start by showing that the measures (νu)
i,h
j and (νu)

i,h
j′

provided by (2.13) are well-defined and have finite total variation in Ω× R

m .

Step 1: For everyN > 0 let ηN : R → [−N,N ] be the function defined by ηN (t) := (−N)∨t∧N .
We introduce the standard truncation of u at level N as uN := (ηN (uh))h=1,...,m . For all N > 0 ,

since uhN ∈ L∞(Ω) and in view of (2.13), the measure (νi,i
′

j )N defined by

(νi,i
′

j )N := (νuN
)i,i

′

j = [ui
′

NDju
i
N ] ,
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is well-defined as a Radon measure in Mb(Ω) . By (2.3) and (2.13), for all ϕ ∈ Cc(Ω) , we can
write

(2.26)

∫

Ω

ϕ(x) d(νi,i
′

j )N =

∫

Ω\Su

ϕ(x)ui
′

N (x) d(Dju
i
N) +

∫

Su

ϕ(x)ui
′

N (x) d(Dju
i
N )

By [32, Theorem 7, pag. 486] ηN is differentiable at ui(x) for Dju
i-a.e. x ∈ Ω \ Su, and

Dju
i
N =

{
DjηN (ui)Dju

i in Ω \ Su ,(
(uiN )+ − (uiN)−

)
ν
j · Hn−1 in Su ,

where

DjηN (ui) =

{
1 in ΩN := {x ∈ Ω \ Su : |ui(x)| < N}

0 in RN := {x ∈ Ω \ Su : |ui(x)| ≥ N} ,

with

(2.27) ΩN ր (Ω \ Su) as N → +∞ up to a |Dju
i|-negligible set.

Hence, we can write

Dju
i
N =

{
Dju

i on ΩN

0 on RN .

Step 2: We claim that, as N → +∞ , (νi,i
′

j )N
∗
⇀ ν

i,i′

j in Mb(Ω) where νi,i
′

j is uniquely
determined by the formula

(2.28)

∫

Ω

ϕ(x) dνi,i
′

j =

∫

Ω×Rm

ϕ(x)yi
′

d(µu)
i
j

=

∫

Ω\Su

ϕ(x)ui
′

(x) d(Dju
i) +

∫

Su

ϕ(x)ui
′

(x) d(Dju
i) ,

for all ϕ ∈ Cc(Ω) . To prove this, we start by observing that for every N > 0 , (2.26) implies

(2.29)

|(νi,i
′

j )N |(Ω) ≤

∫

Ω\Su

|ui
′

N | d|Dju
i
N |+

∫

Su

1

2
|(ui

′

N)+ + (ui
′

N )−| d|Dju
i
N |

≤

∫

Ω\Su

|ui
′

| d|Dju
i|+

∫

Su

1

2
|(ui

′

)+ + (ui
′

)−| d|Dju
i| <∞ ,

where the last inequality is a consequence of property (P) (see (2.17)) and the last but one
inequality follows from

(2.30) |uhN | ≤ |uh| , |(ui
′

N )+ + (ui
′

N )−| ≤ |(ui
′

)+ + (ui
′

)−| for all N > 0 , h ∈ {i, i′} .

By (2.29), up to subsequences,

(2.31) (νi,i
′

j )N
∗
⇀ ν

i,i′

j , in Mb(Ω) as N → +∞ ,

for some νi,i
′

j ∈ Mb(Ω) . Let ϕ ∈ Cc(Ω) be fixed; by (2.26), for every N > 0 it holds

(2.32)

∫

Ω

ϕ(x) d(νi,i
′

j )N =

∫

ΩN

ϕ(x)ui
′

N (x) d(Dju
i)

+

∫

Su

ϕ(x)
1

2
((ui

′

N )+ + (ui
′

N )−)((uiN )+ − (uiN )−)νj dHn−1 ;

therefore, using once again (2.17), (2.30), (2.27) and the fact that

|(uiN )+ − (uiN )−| ≤ |(ui)+ − (ui)−| H1-a.e. on Su, for every N > 0 ,

by the Dominated Convergence Theorem, we conclude that the right hand side of (2.32) tends to
(as N → +∞)

∫

Ω\Su

ϕ(x)ui
′

(x) d(Dju
i) +

∫

Su

ϕ(x)
1

2
((ui

′

)+ + (ui
′

)−) d(Dju
i) .
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This fact, together with (2.31) and (2.32), implies that∫

Ω

ϕ(x) dνi,i
′

j =

∫

Ω\Su

ϕ(x)ui
′

(x) d(Dju
i) +

∫

Su

ϕ(x)ui
′

(x) d(Dju
i) ,

for all ϕ ∈ Cc(Ω) . To conclude the claim it remains to show that also the first equality in (2.28)
is satisfied. By (2.3), for every N > 0 , we have∫

Ω

ϕ(x) d(νi,i
′

j )N =

∫

Ω×Rm

ϕ(x)yi
′

d(µuN
)ij ∀ϕ ∈ Cc(Ω) ,(2.33)

and, by Theorem 1.1 , (µuN
)ij

∗
⇀ (µu)

i
j in Mb(Ω × R

m ) . It follows that yi
′

(µuN
)ij ⇀ yi

′

(µu)
i
j

as distributions in D(Ω × R

m ) . Moreover, by (2.29) and (2.33), we deduce that the sequence

{|yi
′

(µuN
)ij |(Ω)}N is uniformly bounded, and hence, up to subsequences, yi

′

(µuN
)ij

∗
⇀ τ in Mb(Ω×

R

m ) for some τ ∈ Mb(Ω × R

m ) . Therefore, τ = yi
′

(µu)
i
j , the whole sequence {yi

′

(µuN
)ij}N

converges to yi
′

(µu)
i
j (by the Urysohn property) , and
∫

Ω

ϕ(x) dνi,i
′

j =

∫

Ω×Rm

ϕ(x)yi
′

d(µu)
i
j ∀ϕ ∈ Cc(Ω) ,

thus concluding the proof of (2.28) .

Step 3: It remains to show the last claim in the statement. By (2.25), up to a subsequence,

yi
′

(µuk
)ij

∗
⇀ τ for some τ ∈ Mb(Ω×Rm) . Arguing as in Step 2, we get that τ = yi

′

(µu)
i
j and that

the whole sequence yi
′

(µuk
)ij converges to τ . As a consequence, we deduce that (νuk

)i,i
′

j

∗
⇀ (νu)

i,i′

j ,
explicitly given by∫

Ω×Rm

ϕ(x)yi
′

d(µu)
i
j =

∫

Ω\Su

ϕ(x)ui
′

(x) d(Dju
i) +

∫

Su

ϕ(x)ui
′

(x) d(Dju
i) =

∫

Ω

ϕ(x) d(νu)
i,i′

j ,

for all ϕ ∈ Cc(Ω) . By the very definitions of λIj and λIj′ in (2.7) and of Tu in (2.8), the claim
easily follows. �

We can then give the following definition, which extends Definition 2.3.

Definition 2.6. Let I = {i, i′} ⊂ {1, . . . , n}, J = {j, j′} ⊂ {1, . . . ,m} with i 6= i′ and j 6= j′,
and let u ∈ BV (Ω;Rm ) be such that (P) holds for the indeces in I and J . Then we define
MJ

I (Du) ∈ D′(Ω) the 2 × 2-minor of Du with rows in I and columns in J as the distribution in
(2.12).

Remark 2.7. As a byproduct of the proof of Theorem 2.5, we deduce that, if u ∈ BV (Ω;Rm )

satisfies hypothesis (P), then the measures yi(µu)
i′

j and (νu)
i′,i
j take the form

∫

Ω×Rm

φ(x, y)yi d(µu)
i′

j =

∫

Ω\Su

φ(x, u(x))ui(x) d(Dju
i′)

+

∫

Su

∫ 1

0

φ(x, uθ)(uθ)i(x) dθ d(Dju
i′),

for all φ ∈ Cc(Ω× R

m ), and∫

Ω×Rm

ϕ(x)yi d(µu)
i′

j =

∫

Ω\Su

ϕ(x)ui(x) d(Dju
i′) +

∫

Su

ϕ(x)ui(x) d(Dju
i′),

for all ϕ ∈ Cc(Ω). If u ∈ Lp(Ω;Rm ) ∩W 1,q(Ω;Rm ), with 1
p
+ 1

q
= 1 (including the case p = ∞,

q = 1), property (P) is readily satisfied, and then the previous formulas read
∫

Ω×Rm

φ(x, y)yi d(µu)
i′

j =

∫

Ω

φ(x, u(x))ui(x)
∂ui

′

∂xj
(x) dx,

for all φ ∈ Cc(Ω× R

m ), and
∫

Ω

ϕ(x) d(νu)
i′,i
j =

∫

Ω×Rm

ϕ(x)yi d(µu)
i′

j =

∫

Ω

ϕ(x)ui(x)
∂ui

′

∂xj
(x) dx,
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for all ϕ ∈ Cc(Ω) . In particular, the measure (νu)
i′,i
j belongs to L1(Ω) and coincides almost

everywhere with the function ui ∂u
i′

∂xj
.

2.2. The 2 × 2 dimensional case. Let us now restrict ourselves to the two dimensional case
n = 2, namely Ω ⊂ R

2 and let also m = 2. In this case the only possible choice for I and J is
I = J = {1, 2}, so assume u ∈ BV (Ω;R2 ) satisfies property (P) for I = J = {1, 2}. The current
(Tu)I,J will be simply denoted by Tu and we denote the distribution MJ

I (Du) by Ju. We also set

(λu)
1,2
1 =: λ1, and (λu)

1,2
2 =: λ2. Explicitly,

(Tu)(ω) =

∫

Ω

ω2 dλ1 −

∫

Ω

ω1 dλ2

=
1

2

∫

Ω

ω2 d([u1D1u
2]− [u2D1u

1])−
1

2

∫

Ω

ω1 d([u1D2u
2]− [u2D2u

1]) ,(2.34)

for all ω = ω1 dx1 + ω2 dx2 ∈ D1(Ω), and for all ϕ ∈ D0(Ω),

∂(Tu)(ϕ) = 〈Ju, ϕ〉Ω

=
1

2

∫

Ω

∂ϕ

∂x2
d([u1D1u

2]− [u2D1u
1])−

1

2

∫

Ω

∂ϕ

∂x1
d([u1D2u

2]− [u2D2u
1]) .(2.35)

Assume now that u ∈ Lp(Ω;Rm ) ∩W 1,q(Ω;Rm ), with 1
p
+ 1

q
= 1; in view of Remark 2.7, the last

expression reads

〈Ju, ϕ〉Ω =
1

2

∫

Ω

∂ϕ

∂x2

(
u1
∂u2

∂x1
− u2

∂u1

∂x1

)
dx−

1

2

∫

Ω

∂ϕ

∂x1

(
u1
∂u2

∂x2
− u2

∂u1

∂x2

)
dx,(2.36)

which coincides with the definition of the distributional determinant of ∇u. In particular, the
distribution Ju extends the definition of distributional Jacobian.

Remark 2.8. In [44] the existence and well-posedness of Ju = ∂(Tu) is obtained under the
additional condition that the function u be approximated (strictly in BV ) by a sequence of maps
vk ∈ C1(Ω;R2 ) satisfying the following condition: There exists a constant C > 0, independent of
k, such that ∫

Ω

|Jvk| dx ≤ C ∀k ∈ N.

This is equivalent to require that the Jacobian total variation functional relaxed w.r.t. the strict
topology of BV is finite. In turn, this is equivalent to require that the relaxed area functional of
vk is finite, and then that the mass of the Cartesian currents Gvk with underlying maps vk have
equibounded masses.

Under this assumption, it turns out that also Ju = ∂(Tu) is a Radon measure with finite total
variation. In particular, whenever a sequence {uk}k∈N ⊂ BV (Ω;R2 ) ∩ L∞(Ω;R2 ) satisfies

uk → u strictly in BV (Ω;R2 ),

|Juk|(Ω) ≤ C ∀k ∈ N,(2.37)

for some constant C > 0 independent of k, then

Juk → Ju weakly star as measures.(2.38)

We will make use of (2.38) in the proof of the upper bound of Theorem 3.1 using the following
observation.

Remark 2.9. Assume that the sequence {uk}k∈N ∈ BV (Ω;R2 ) ∩ L∞(Ω;R2 ) satisfies the two
conditions in (2.37) and in addition supp(Juk) ⊂ K ⊂ Ω for some compact set K, then (2.38)
ensures that

Juk → Ju in the flat topology.(2.39)
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3. A new approach to topological singularities

Let Ω be a bounded and open subset of R2 with Lipschitz continuous boundary and let Ω′ ⊂⊂ Ω
be an open set. We introduce

(3.1) AD(Ω,Ω′) := {u ∈ SBV 2(Ω;S1) : Su ⊂ Ω′},

where Su denotes the jump set of u . Here and below, for every bounded and open set A ⊂ R

2

with Lipschitz continuous boundary, SBV 2(A;S1) denotes the set of the functions u ∈ BV (A;R2 )
such that |u| = 1 a.e. in A , Dcu ≡ 0 , and ∇u ∈ L2(A;R2×2 ), where ∇u is the density of Dau ,
i.e., Dau := ∇uL2 . For every ε > 0 , let Fε : SBV

2(Ω;S1) → [0,∞] be the functional defined by

(3.2) Fε(u) :=





∫

Ω

1

2
|∇u|2 dx+

1

ε
H1(Su) if u ∈ AD(Ω,Ω′)

+∞ elsewhere in SBV 2(Ω;S1) .

In what follows, we will adopt also localized versions of the functional Fε ; more precisely, for any
u ∈ AD(Ω,Ω′) and for any open set Ω′ ⊂⊂ A ⊂⊂ Ω , we will denote by Fε(u;A) the functional in
(3.2) with Ω replaced by A .

Denoting by Mb(Ω) the class of Radon measures with finite total variation in Ω , we set

X(Ω) :=
{
µ =

I∑

i=1

ziδxi ∈ Mb(Ω) : I ∈ N , zi ∈ Z , xi ∈ Ω
}
.

For every u ∈ AD(Ω,Ω′) we consider the current Tu ∈ D1(Ω) introduced in (2.8) and in (2.34) for
the 2-dimensional case, and we denote by Ju := ∂Tu its boundary (whose expression is given in
(2.35)), namely the Jacobian determinant of u . We recall that in general Ju is not a measure, but

a mere distribution with finite flat norm (see Theorem 2.2). However, since u ∈ H1(Ω \Ω
′
;S1), it

follows that

supp Ju ⊆ Ω
′

for every u ∈ AD(Ω,Ω′).(3.3)

Indeed, let ϕ ∈ C∞
c (Ω \ Ω

′
), and write

〈Ju, ϕ〉Ω =
1

2

∫

Ω

∂ϕ

∂x2
d([u1D1u

2]− [u2D1u
1])−

1

2

∫

Ω

∂ϕ

∂x1
d([u1D2u

2]− [u2D2u
1])

=
1

2

∫

Ω\Ω
′

∂ϕ

∂x2

(
u1
∂u2

∂x1
− u2

∂u1

∂x1

)
dx−

1

2

∫

Ω\Ω
′

∂ϕ

∂x1

(
u1
∂u2

∂x2
− u2

∂u1

∂x2

)
dx

= 〈Ju, ϕ〉Ω\Ω
′ = 0,

where the last equality follows since u ∈ H1(Ω\Ω
′
;S1) has null distributional Jacobian determinant

in Ω \ Ω
′
.

Our main result is the following.

Theorem 3.1. The following Γ-convergence result holds true.

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

(3.4) sup
ε>0

Fε(uε)

| log ε|
≤ C,

for some C > 0 . Then there exists µ ∈ X(Ω) with suppµ ⊆ Ω
′
such that, up to a

subsequence, ‖Juε − πµ‖flat,Ω → 0 (as ε→ 0).

(ii) (Γ-liminf inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
and for every {uε}ε ⊂

SBV 2(Ω;S1) such that ‖Juε − πµ‖flat,Ω → 0 (as ε→ 0) , it holds

(3.5) π|µ|(Ω) ≤ lim inf
ε→0

Fε(uε)

| log ε|
.
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(iii) (Γ-limsup inequality) For every µ ∈ X(Ω) with suppµ ⊆ Ω
′
, there exists {uε}ε ⊂

SBV 2(Ω;S1) with ‖Juε − πµ‖flat,Ω → 0 (as ε→ 0) , such that

(3.6) π|µ|(Ω) ≥ lim sup
ε→0

Fε(uε)

| log ε|
.

In order to prove Theorem 3.1, we will make use of Theorem 3.4 below which is proven in [8,
Theorem 3.2]) (see also [25, Theorem 2.4]). To this purpose, we introduce some notation.

Let V ⊂ R

2 be a bounded and open set with Lipschitz continuous boundary. For every finite
family of pairwise (essentially3) disjoint open balls B := {Bn}n=1,...,N (with N ∈ N) we set

V (B) := V \
⋃N

n=1 B
n
and we denote by Rad(B) the sum of the radii of the balls Bn, namely

Rad(B) :=
N∑

n=1

r(Bn) ,

where r(B) denotes the radius of the ball B . Moreover, for every µ ∈ X(V ) with µ 6= 0 of the
form

µ :=

N∑

n=1

znδx(Bn) with zn ∈ Z\ {0} ,(3.7)

we set

A (B, µ, V ) := {u ∈ H1(V (B);S1) : deg(u, ∂Bn) = zn for every n = 1, . . . , N} .

Here and below, x(B) denotes the center of the ball B . For every B and µ as above, we set

(3.8) F (B, µ, V ) := min
u∈A (B,µ,V )

∫

V (B)

|∇u|2 dx .

Definition 3.2 (Merging procedure). Given a finite family B = {Bri(x
i)}i=1,...,I (I ∈ N) of balls

in R

2 , we define a new family B̂ as follows. If the closures of two balls in B are not disjoint,
then we replace the two balls with a unique ball which contains both of them and with radius
less or equal to the sum of the radii of the original balls. After this, we repeat this replacement
recursively, until as all the balls in the family are mutually essentially disjoint. The final family is

B̂. The procedure of passing from B to B̂ is called merging procedure applied to B. Notice that
a merging procedure does not increase the sum of all the radii of the balls in the family.

The following result is proven in [25, Proposition 2.2].

Proposition 3.3. Let B be a finite family of pairwise essentially disjoint balls in R

2 , and let
µ ∈ X(V ) be of the form (3.7). Then, there exists a one-parameter family of open balls B(t) with
t ≥ 0 such that, setting U(t) :=

⋃
B∈B(t)B, the following properties hold true:

(1) B(0) = B ;
(2) U(t1) ⊂ U(t2) for any 0 ≤ t1 < t2 ;
(3) the balls in B(t) are pairwise (essentially) disjoint for every t > 0;
(4) for any 0 ≤ t1 < t2 and for any open set U ⊆ R

2 ,

F (B, µ, U ∩ (U(t2) \ U(t1))) ≥ π
∑

B∈B(t2)
B⊆U

|µ(B)| log
1 + t2

1 + t1
;

(5) for every t > 0:
∑

B∈B(t)

r(B) ≤ (1 + t)
∑

B∈B

r(B), where r(B) denotes the radius of B .

For every B and µ as above, we set C (1) := {B ∈ B(1) : B ⊂ V } and we define

(3.9) µ̃ :=
∑

B∈C (1)

µ(B)δx(B) .

We can now state the crucial result which will be the starting point of the proof of Theorem 3.1.

3That is, whose closures are mutually disjoint.
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Theorem 3.4. Let V be a bounded open set with Lipschitz boundary. For every ε > 0 let Bε :=
{Bn

ε }n=1,...,Nε
(with Nε ∈ N) be a (finite) family of pairwise (essentially) disjoint open balls with

Rad(Bε) → 0 as ε → 0 and let µε :=
∑Nε

n=1 z
n
ε δx(Bn

ε ) with znε ∈ Z for every n = 1, . . . , Nε .
Assume that

sup
ε>0

F (Bε, µε, V )

| logRad(Bε)|
≤ C ,

for some constant C > 0 independent of ε . Then, the following facts hold true.

(i) If µ̃ε are the measures defined in (3.9) starting from the family Cε(1) = {B ∈ Bε(1) :

B ⊂ V }, then |µ̃ε|(V ) ≤ C| log ε| for all ε > 0, and, up to a subsequence, µ̃ε V
flat
→ µ (as

ε→ 0) for some µ ∈ X(V ) .

(ii) π|µ|(V ) ≤ lim infε→0
F (Bε,µε,V )

| logRad(Bε)|
.

Proof. See [8, Theorem 3.2]. �

We are now in a position to prove Theorem 3.1. The more involved part is the compactness
property. For this reason we have splitted the argument in seven steps.

Proof of Theorem 3.1. Proof of (i). We start by covering with balls the jump set of uε and define
the measure µ̃ε in Step 1. In Steps 2 and 3 we suitably modify these balls in order to show - in
Steps 4, 5, 6 and 7 - that the obtained measures πµ̃ε are close to Juε with respect to the flat
distance. Throughout the proof, the symbol C denotes an absolute positive constant independent
of the parameters, which might change from line to line.

Step 1: Construction of the starting family of balls. By the energy bound (3.4), we
have that

(3.10) H1(Suε
) ≤ Cε| log ε| ,

for all ε > 0. By the very definition of Hausdorff measure, since Suε
is compact, there exists a

finite family of open balls Bε (in R2 ) such that Suε
⊂

⋃
B∈Bε

B and

(3.11) Rad(Bε) ≤ Cε| log ε| ,

for some C > 0 . The number of balls in Bε depends on ε. Moreover we notice that

(3.12) uε ∈ H1(Ω(Bε);S
1) ,

where we recall Ω(Bε) := Ω\(∪B∈Bε
B). By (3.11) and recalling that Sε ⊂ Ω′, we can assume, for

ε small enough, that all the balls in Bε are contained in Ω . Up to applying a merging procedure
(as in Definition 3.2) for the balls in Bε, we can assume without loss of generality that these balls
are mutually (essentially) disjoint, and still satisfy (3.11). For every ε > 0 we set

µε :=
∑

B∈Bε

deg(uε, ∂B)δx(B) .

By (3.12), (3.11) and (3.4), for ε small enough it holds

(3.13) F (Bε, µε,Ω) ≤ Fε(uε) ≤ C| log ε| ≤ C| logRad(Bε)| ,

where F is defined in (3.8). Using Proposition 3.3, we set

(3.14) Cε(1) := {B ∈ Bε(1) : B ⊂ Ω}

and, according to (3.9), we define

(3.15) µ̃ε :=
∑

B∈Cε(1)

deg(uε, ∂B)δx(B) .

Notice that, by definition of AD(Ω,Ω′) , actually Cε(1) ≡ Bε(1) for ε small enough (i.e., all the
closures of the balls in Bε(1) are contained in Ω). Therefore, by (3.13), we can apply Theorem
3.4(i) with V = Ω, deducing that

(3.16) |µ̃ε|(Ω) ≤ C| log ε|,
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and, up to a subsequence, µ̃ε
flat
→ µ (as ε→ 0) for some µ ∈ X(Ω) . In order to conclude the proof

of Theorem 3.1(i) it is enough to show that

(3.17) ‖Juε − πµ̃ε‖flat,Ω → 0 as ε→ 0 .

Indeed, on the one hand this shows that Juǫ
flat
→ πµ (as ε→ 0); on the other hand, since supp Juǫ ⊆

Ω
′
by (3.3), we can also conclude that suppµ ⊆ Ω

′
.

Step 2: Fattening of the non-zero degree clusters. Let Cε(1) be the family of balls in
(3.14). Since {uε}ε ⊂ AD(Ω,Ω′) and in view of (3.11) , for some open set Ω′′ with Ω′ ⊂⊂ Ω′′ ⊂⊂
Ω , we have that, for ε small enough, B ⊂ Ω′′ for every B ∈ Cε(1) . We set

C
6=0
ε (1) := {B ∈ Cε(1) : deg(uε, ∂B) 6= 0} ,

and

C
0
ε (1) := {B ∈ Cε(1) : deg(uε, ∂B) = 0} .

For every B ∈ C 6=0
ε (1) we replace the ball B by Bmod := Bε∨r(B)(x(B)) (hence increasing the

radius up to ε if it is smaller). Again, since the balls in C̃ε := C 0
ε (1)∪ {Bmod : B ∈ C 6=0

ε } are not
necessarily mutually disjoint, we pass to a merging procedure described in Definition 3.2 in order
to obtain the new family Cε of pairwise (essentially) disjoint balls.

By (3.11) and (3.16), we still have

Rad(Cε) ≤ Cε| log ε| .(3.18)

Setting

C
6=0
ε := {B ∈ Cε : deg(uε, ∂B) 6= 0} ,

by construction and by (3.16), we have that

♯C 6=0
ε ≤ ♯C 6=0

ε (1) ≤ C| log ε| .

Once again, due to (3.18) and the fact that the original balls in Cε(1) have centers in Ω′, we can
assume that the balls in Cε are all contained in Ω′′.

Step 3: Construction of suitable clusters. In this step we construct a family Iε of
pairwise disjoint balls with

(3.19)
∑

B∈Iε

r(B) ≤ 5Rad(Cε) ≤ Cε| log ε|,

(with C > 0 a fixed constant) and

(3.20)
⋃

B∈Cε

B ⊂
⋃

B∈Iε

B ,

such that for any B ∈ Iε at least one of the following conditions is satisfied

(3.21) (i) r(B) ≥
ε

2
(ii)

∫

∂B

|∇uε| dH
1 ≤ C| log ε|

1
2 ,

for some universal constant C > 0 (independent of ε).

We start by classifying the balls in Cε by setting

C
<
ε :=

{
B ∈ Cε : r(B) <

ε

2

}
and C

>
ε :=

{
B ∈ Cε : r(B) ≥

ε

2

}
.

Notice that, if C<
ε = ? , then, we can set Iε := Cε and, by (3.18), the claim immediately follows.

If this is not the case, then we adopt the iterative procedure described below. For every
k = 0, 1, . . ., we will construct a pair of family of balls (Cε(k);Iε(k)) such that the balls in

Sε(k) := Cε(k) ∪ Iε(k)

are (essentially) pairwise disjoint. We classify the balls in Cε(k) into two subclasses

C
<
ε (k) :=

{
B ∈ Cε(k) : r(B) <

ε

2

}
and C

>
ε (k) :=

{
B ∈ Cε(k) : r(B) ≥

ε

2

}
,
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and the balls in Iε(k) into two further subclasses

I
<
ε (k) :=

{
B ∈ Iε(k) : r(B) <

ε

2

}
and I

>
ε (k) :=

{
B ∈ Iε(k) : r(B) ≥

ε

2

}
.

We initialize such families by setting Cε(0) := Cε , C<
ε (0) := C<

ε , C >
ε (0) := C >

ε , and Iε(0) =
I <

ε (0) = I >
ε (0) = ? . We now define recursively (Cε(k);Iε(k)) so that for a finite number

Kε ∈ N we set

Iε := Iε(Kε).

We remark that (3.20) now reads
⋃

B∈Cε(0)

B ⊂
⋃

B∈Iε(Kε)

B .

At the end of the procedure we will also have

Cε(Kε) = ?.

The pair (Cε(k);Iε(k)) will be such that Cε(k) ⊃ Cε(k + 1) for every k = 0, 1, . . . ,Kε − 1 ;
moreover, for all k = 0, 1, . . . ,Kε,

(3.22) Cε(k) ∪ Iε(k) is made by pairwise (essentially) disjoint balls,

(3.23) Cε(k) ⊂ Cε(0) ,

(3.24) Rad(Sε(k)) ≤ Rad(Cε(0)) + 4
∑

eB∈Iε(k)

∑

B∈Cε(0)

B⊆ eB

r(B) ,

and for any B ∈ Iε(k)

(3.25) either r(B) ≥
ε

2
or

∫

∂B

|∇uε| dH
1 ≤ C| log ε|

1
2 .

Eventually, we observe that (3.25) is equivalent to require
∫

∂B

|∇uε| dH
1 ≤ C| log ε|

1
2 for any B ∈ I

<
ε (k) .

The pair (Cε(0);Iε(0)) satisfies (3.22), (3.23), (3.24) and (3.25). Let k = 0, 1, . . . and assume
that (Cε(k);Iε(k)) satisfies (3.22), (3.23), (3.24) and (3.25).

If C <
ε (k) = ? , then setting k =: Kε we conclude the procedure according to formula (3.36)

below. Otherwise, we choose Br(x) ∈ C<
ε (k) . We set

Ĉ
<
ε (k) := C

<
ε (k) \ {Br(x)} ; Ĉ

>
ε (k) := C

>
ε (k) ;

Î
<
ε (k) := I

<
ε (k) ; Î

>
ε (k) := I

>
ε (k) ;

Ĉε(k) := Ĉ
<
ε (k) ∪ Ĉ

>
ε (k) ; Îε(k) := Î

<
ε (k) ∪ Î

>
ε (k) .

Finally, it is convenient to introduce

Ŝε(k) := Ĉε(k) ∪ Îε(k).

Trivially, (Ĉε(k) ∪ {Br(x)}; Îε(k)) ≡ (Cε(k);Iε(k)) . Furthermore, in view of the inductive as-
sumption,

(3.26) {Br(x)} ∪ Ĉε(k) ∪ Îε(k) is made by pairwise (essentially) disjoint balls,

(3.27) Ĉε(k) ⊂ Cε(0) ,

(3.28) Rad(Ŝε(k)) + r ≤ Rad(Cε(0)) + 4
∑

eB∈ bIε(k)∪{Br(x)}

∑

B∈Cε(0)

B⊆ eB

r(B) ,
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and for all B ∈ Îε(k) we have that

(3.29) either r(B) ≥
ε

2
or

∫

∂B

|∇uε| dH
1 ≤ C| log ε|

1
2 .

Notice that (3.24) implies (3.28). Moreover, we observe that (3.28) is equivalent to saying that

Rad(Ŝε(k)) + r ≤ Rad(Cε(0)) + 4
∑

eB∈ bIε(k)

∑

B∈Cε(0)

B⊂ eB

r(B) + 4r ,

in the special case that Br(x) ∈ Cε(0) (that is the case, for instance, if k = 0).
We now define

(3.30) T (r, x) := inf
{
t ≥ 2r : H1(ABr(x)(t)) ≥

t− r

2

}
,

where

ABr(x)(t) := {s ∈ [r, t] : ∂Bs(x) ∩B = ?, ∀B ∈ Ŝε(k)} ,

for all t ≥ 2r . Notice that, being the map t 7→ H1(ABr(x)(t)) continuous, the infimum in (3.30)
is actually a minimum. Moreover, it is easy to see that the circumference ∂BT (r,x)(x) does not

intersect any ball in Ŝε(k). We set

d(x) := dist
(
x,

⋃

B∈ bIε(k)

B
)
,

with the standard convention that d(x) = +∞ if Îε(k) = ? .

Case 1: T (r, x) ≤ d(x) . In such a case BT (r,x)(x) does not intersect any ball in Îε(k) . We
distinguish two subcases.

Subcase 1a: T (r, x) < ε
2 . In such a case, the ball BT (r,x)(x) does not intersect any ball in

Ĉ>
ε (k) , since balls in Ĉ >

ε (k) have radius at least ε
2 . On the other hand, it might contain some

balls in Ĉ<
ε (k) and it contains for sure Br(x) .

We choose a number R = R(r, x) ∈ ABr(x)(T (r, x)) such that

∫

∂BR(r,x)(x)

|∇uε| dH
1 ≤

1

H1(ABr(x)(T (r, x)))

∫

ABr(x)(T (r,x))

∫

∂Bs(x)

|∇uε| dH
1 ds.(3.31)

Denoting by A ⊂ BT (r,x)(x) the set (in polar coordinates centered at x)

A := {(ρ, θ) : ρ ∈ ABr(x)(T (r, x))}

and using that H1(ABr(x)(T (r, x))) =
T (r,x)−r

2 , by (3.31), we estimate

∫

∂BR(r,x)(x)

|∇uε| dH
1 ≤

2

T (r, x)− r

∫

A

|∇uε| dx ≤
2|A|

1
2

T (r, x)− r

(∫

A

|∇uε|
2 dx

) 1
2

≤ C
( ∫

A

|∇uε|
2 dx

) 1
2

≤ C| log ε|
1
2 ,(3.32)

where C is an absolute constant. Since R(r, x) < T (r, x), by the very definition of T (r, x), we have

2
∑

B∈ bCε(k)
B⊆BR(r,x)(x)

r(B) ≥ H1
(
[r, R(r, x)] \ABr(x)(R(r, x))

)
>
R(r, x)− r

2
.(3.33)
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Then, we set

C
<
ε (k + 1) :=Ĉ

<
ε (k) \ {B ∈ Ĉ

<
ε (k) : B⊆BR(r,x)(x)} ,

C
>
ε (k + 1) :=Ĉ

>
ε (k) ,

I
<
ε (k + 1) :=Î

<
ε (k) ∪ {BR(r,x)(x)} ,

I
>
ε (k + 1) :=Î

>
ε (k) ,

Cε(k + 1) :=C
<
ε (k + 1) ∪ C

>
ε (k + 1) ,

Iε(k + 1) :=I
<
ε (k + 1) ∪ I

>
ε (k + 1) ,

Sε(k + 1) :=Cε(k + 1) ∪ Iε(k + 1) .

Notice that the pair (Cε(k+1);Iε(k+1)) satisfies (3.22), by construction, (3.23), by the inductive
assumption, and (3.25), by (3.32). Finally, by (3.26), (3.27), (3.28), and (3.33), using the very

definition of I <
ε (k + 1) and of Ĉε(k), we have that

Rad(Sε(k + 1)) =Rad(Ŝε(k)) + r +R(r, x) − r −
∑

B∈ bCε(k)
B⊆BR(r,x)(x)

r(B)

≤Rad(Cε(0)) + 4
∑

eB∈ bIε(k)∪{Br(x)}

∑

B∈Cε(0)

B⊆ eB

r(B) + 4
∑

B∈ bCε(k)
B⊆BR(r,x)(x)

r(B)

=Rad(Cε(0)) + 4
∑

eB∈ bIε(k)

∑

B∈Cε(0)

B⊆ eB

r(B) + 4
∑

B∈Cε(0)
B⊆Br(x)

r(B) + 4
∑

B∈ bCε(k)
B⊆BR(r,x)(x)

r(B)

≤Rad(Cε(0)) + 4
∑

eB∈ bIε(k)

∑

B∈Cε(0)

B⊆ eB

r(B) + 4
∑

B∈Cε(0)
B⊆BR(r,x)(x)

r(B)

≤Rad(Cε(0)) + 4
∑

eB∈Iε(k+1)

∑

B∈Cε(0)

B⊆ eB

r(B) ,

which implies (3.24).

Subcase 1b: T (r, x) ≥ ε
2 . In this case, we define R(r, x) := T (r, x) and we set

C
<
ε (k + 1) :=C

<
ε (k) \ {B ∈ C

<
ε (k) : B ⊂ BR(r,x)(x)} ,

C
>
ε (k + 1) :=C

>
ε (k) \ {B ∈ C

>
ε (k) : B ⊂ BR(r,x)(x)} ,

I
<
ε (k + 1) :=I

<
ε (k) ,

I
>
ε (k + 1) :=I

>
ε (k) ∪ {BR(r,x)(x)} ,

Cε(k + 1) :=C
<
ε (k + 1) ∪ C

>
ε (k + 1) ,

Iε(k + 1) :=I
<
ε (k + 1) ∪ I

>
ε (k + 1) .

By arguing as in Subcase 1a also in this case we obtain that the pair (Cε(k+1);Iε(k+1)) satisfies
(3.22), (3.23), (3.24) and (3.25).

Case 2: T (r, x) > d(x) . In this case, we set

R(r, x) := sup{t ≤ d(x) : ∂Bt(x) ∩B = ? for all B ∈ Ŝε(k)}

and introduce

S̃ε(k) := C̃
<
ε (k) ∪ C̃

>
ε (k) ∪ Ĩ

<
ε (k) ∪ Ĩ

>
ε (k) ,
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where

(3.34)

C̃
<
ε (k) :=Ĉ

<
ε (k) \ {B ∈ Ĉ

<
ε (k) : B ⊂ BR(r,x)(x)} ,

C̃
>
ε (k) :=Ĉ

>
ε (k) \ {B ∈ Ĉ

>
ε (k) : B ⊂ BR(r,x)(x)} ,

Ĩ
<
ε (k) :=Î

<
ε (k) ,

Ĩ
>
ε (k) :=Î

>
ε (k) .

Notice that ∂BR(r,x)(x) does not intersect other balls in S̃ε(k), but BR(r,x)(x) might contain balls

in Ĉε(k) and it can be tangent to some ball in Ĩε(k) (e.g., if R(r, x) = d(x)). Furthermore, we

notice that, by the very definition of R(r, x), BR(r,x)(x) is surely tangent to some ball in Ŝε(k) .
Then, we pass through a merging procedure (Definition 3.2), including in a unique ball BR′(x′)

all the balls in S̃ε(k) whose closures intersect ∂BR(r,x)(x) (and possibly others). We emphasize
that, by definition of R(r, x), after the merging procedure BR′(x′) may contain some other balls

in Ĩε(k). Then, we redefine the sets in (3.34) by setting

C̃
<
ε (k) :=Ĉ

<
ε (k) \ {B ∈ Ĉ

<
ε (k) : B⊆BR′(x′)} ,

C̃
>
ε (k) :=Ĉ

>
ε (k) \ {B ∈ Ĉ

>
ε (k) : B⊆BR′(x′)} ,

Ĩ
<
ε (k) :=Î

<
ε (k) \ {B ∈ Î

<
ε (k) : B⊆BR′(x′)} ,

Ĩ
>
ε (k) :=Î

>
ε (k) \ {B ∈ Î

>
ε (k) : B⊆BR′(x′)} ;

moreover, we set

C̃ε(k) := C̃
<
ε (k) ∪ C̃

>
ε (k) , Ĩε(k) := Ĩ

<
ε (k) ∪ Ĩ

>
ε (k) , S̃ε(k) := C̃ε(k) ∪ Ĩε(k) .

By the very definition of T (r, x) , since R(r, x) < T (r, x) , and using that BR(r,x)(x) contains only

balls in Ĉε(k) , we deduce that (3.33) still holds true; hence, we have

R(r, x) − r < 4
∑

B∈ bCε(k)
B⊂BR(r,x)(x)

r(B) ;
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therefore, by the very definition of merging, we deduce

(3.35)

Rad(S̃ε(k)) +R′ ≤Rad(S̃ε(k)) +
∑

B∈ 
Sε(k)
B⊂(BR′ (x′)\BR(r,x)(x))

r(B) +R(r, x)

≤Rad(S̃ε(k)) +
∑

B∈ 
Sε(k)
B⊂(BR′ (x′)\BR(r,x)(x))

r(B) + 4
∑

B∈ bCε(k)
B⊆BR(r,x)(x)

r(B) + r

≤Rad(Ŝε(k))+r + 4
∑

B∈ bCε(k)
B⊆BR(r,x)(x)

r(B)

≤Rad(Cε(0)) + 4
∑

eB∈ bIε(k)∪{Br(x)}

∑

B∈Cε(0)

B⊆ eB

r(B) + 4
∑

B∈ bCε(k)
B⊆BR(r,x)(x)

r(B)

≤Rad(Cε(0)) + 4
∑

eB∈fIε(k)

∑

B∈Cε(0)

B⊆ eB

r(B) + 4
∑

B∈Cε(0)
B⊆Br(x)

r(B)

+ 4
∑

eB∈
Iε(k)
eB⊂BR′(x′)

∑

B∈Cε(0)

B⊆ eB

r(B) + 4
∑

B∈ bCε(k)
B⊆BR(r,x)(x)

r(B)

≤Rad(Cε(0)) + 4
∑

eB∈fIε(k)∪{BR′ (x′)}

∑

B∈Cε(0)

B⊆ eB

r(B) ,

where we have used also (3.28) and (3.26). Now, if R′ ≥ ε
2 , we set

C
<
ε (k + 1) := C̃

<
ε (k),

C
>
ε (k + 1) := C̃

>
ε (k),

I
<
ε (k + 1) := Ĩ

<
ε (k),

I
>
ε (k + 1) := Ĩ

>
ε (k) ∪ {BR′(x′)},

Cε(k + 1) := C
<
ε (k + 1) ∪ C

>
ε (k + 1),

Iε(k + 1) := I
<
ε (k + 1) ∪ I

>
ε (k + 1),

and we conclude the iterative step. Notice that the family

Sε(k + 1) = Cε(k + 1) ∪ Iε(k + 1)

is made of pairwise disjoint balls, and by (3.35) it satisfies (3.26), (3.27), (3.28), (3.29).
Otherwise, if R′ < ε

2 , we redefine Br(x) by setting Br(x) := BR′(x′) , and relabel

Ĉ
<
ε (k) := C̃

<
ε (k), Ĉ

>
ε (k) := C̃

>
ε (k)

Î
<
ε (k) := Ĩ

<
ε (k) , Î

>
ε (k) := Ĩ

>
ε (k) ,

Ĉε(k) := Ĉ
<
ε (k) ∪ Ĉ

>
ε (k), Îε(k) := Î

<
ε (k) ∪ Î

>
ε (k) ,

and Ŝε(k) := Ĉε(k)∪ Îε(k) ; we check that (the new ball) Br(x) and Ŝε(k) satisfy (3.26), (3.27),
(3.28), (3.29), and we restart the whole process by defining T (r, x) as in (3.30) starting from the
new (just built) ball Br(x) .

If we fall again in Case 2 and the new radius R′ < ε
2 , we iterate again the procedure. Notice

that every time we fall in this situation, the number of balls in Ĉε(k) ∪ Îε(k) decreases (due to
the merging procedure), and hence after a finite number Nk > 0 of iterations we will end up in
some other case. In other words, after a finite number of steps (depending on k and ε), such an
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iteration does not happen anymore and hence we necessarily fall either in case R′ ≥ ε
2 or in Case

1, thus defining Ŝε(k + 1) accordingly.

(Conclusion of the procedure) We iterate the process described above inductively. Every time
we perform this iteration the number of balls in C<

ε decreases, and after a finite number Kε of
processes we end up with C<

ε (Kε) = ? . Finally, we set

(3.36) I
<
ε := I

<
ε (Kε) I

>
ε := I

>
ε (Kε) ∪ C

>
ε (Kε) , Iε := I

<
ε ∪ I

>
ε .

By construction (see (3.22)-(3.25)), the balls in Iε are pairwise disjoint and satisfy (3.19)-(3.21).
Furthermore, we observe that

(3.37)

∫

∂B

|∇uε| dH
1 ≤ C| log ε|

1
2 for every B ∈ I

<
ε ,

and, in view of (3.19),

(3.38) ♯I >
ε ≤ C| log ε| .

Step 4: Estimate of ‖∇uε‖L1 on the boundary of the balls in I >
ε . For every B =

Br(x) ∈ I
>
ε , we set

(3.39) R(r, ε) := 16C | log ε| r ,

where C is the constant appearing in (3.19). Notice that, by (3.19), again

(3.40)
∑

Br(x)∈I
>
ε

R(r, ε) ≤ 16C| log ε|Rad(Iε) ≤ Cε| log ε|2 ,

and hence, for ε small enough, we can assume that all the balls BR(r,ε)(x) are contained in Ω. Let

D̃1, . . . , D̃Mε denote the connected components of the set
⋃

Br(x)∈I
>
ε
BR(r,ε)(x) . By (3.38) we get

Mε ≤ C| log ε| .

For everym = 1, . . . ,Mε , let {Brm,k(xm,k)}k=1,...,Km ⊆ I >
ε be such that D̃m :=

⋃Km

k=1 BR
m,k
ε

(xm,k) ,

where Rm,k
ε := R(rm,k, ε) is defined by (3.39) . Moreover, for every m = 1, . . . ,Mε , we set

D̂m :=
⋃Km

k=1 Brm,k(xm,k) and we define the function fm : D̃m → [0, 1] as

fm(x) := inf
k=1,...,Km

{ 1

(16C | log ε| − 1)rm,k
dist(x,Brm,k(xm,k))

}
;

we notice that fm is Lipschitz continuous, fm = 0 on D̂m, fm = 1 on ∂D̃m, and

(3.41) |∇fm| ≤
1

(16C | log ε| − 1) ε2
on D̃m \ D̂m.

Finally, for every m = 1, . . . ,Mε , let us define the sets

Tm
1 :=

{
t ∈ [0, 1] : {fm = t} ∩

⋃

B∈I
<
ε

B 6= ?

}
,

Tm
2 :=

{
t ∈ [0, 1] : {fm = t} ∩

⋃

B∈I
<
ε

B = ?

}
,

and we show that

(3.42) H1(Tm
2 ) ≥

1

2
.

Indeed, in view of (3.41)) for every B ∈ I <
ε , by oscB(f

m) = supx∈B f
m(x)− infx∈B f

m(x),

H1
(
{t ∈ [0, 1] : {fm = t} ∩B 6= ?}

)
≤oscB(f

m) ≤ 2r(B)‖∇fm‖L∞(B;R2)

≤2r(B)
1

(16C | log ε| − 1) ε2
≤

r(B)

2Cε| log ε|
,
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which, together with (3.19), implies

H1(Tm
1 ) ≤

∑

B∈I
<
ε

H1
(
{t ∈ [0, 1] : {fm = t} ∩B 6= ?}

)
≤

Rad(I <
ε )

2Cε| log ε|
≤

1

2
,

whence (3.42) follows. For every k = 1, . . . ,Km we set

Em
rm,k :=

{
x ∈ D̃m : |∇fm(x)| =

1

(16C | log ε| − 1)rm,k

}
;

it is easy to check that

(3.43) Em
rm,k ⊂ B16C | log ε| rm,k(x

m,k) \Brm,k(xm,k) ⊂ D̃m \ D̂m .

Since fm is Lipschitz continuous, by the mean value theorem, the coarea formula and (3.42),
there exists tm ∈ Tm

2 such that

(3.44)

∫

{fm(x)=tm}

|∇uε| dH
1 ≤

1

H1(Tm
2 )

∫

Tm
2

dt

∫

{fm(x)=t}

|∇uε| dH
1

≤2

∫

( eDm\ bDm)\(
S

B∈I
<
ε

B)

|∇uε||∇f
m| dx≤ 2

Km∑

k=1

1

(16C | log ε| − 1)rm,k

∫

Em

rm,k

|∇uε| dx

≤ 2Km‖∇uε‖L2(Ω;R2×2) ≤ C| log ε|
3
2 ,

where the third inequality is a consequence of the fact that (D̃m\D̂m)\(
⋃

B∈I
<
ε
B) ⊆

⋃Km

k=1 E
m
rm,k ,

the last but one inequality follows by Hölder inequality and (3.43), and in last passage we have
used (3.38) and (3.4) . For every m = 1, . . . ,Mε , we set

Dm := {x ∈ D̃m : fm(x) ≤ tm} ,

so that D̂m ⊂ Dm; by (3.44) we have that

(3.45)

∫

∂Dm

|∇uε| dH
1 ≤ C| log ε|

3
2 .

Moreover, we notice that, in view of (3.40) ,

(3.46)

Mε∑

m=1

diam(Dm) ≤ Cε| log ε|2 .

We remark that

(3.47) Dm :=

Km⋃

k=1

Bαm,krm,k(xm,k) , for some αm,k ∈ (1, 16C| log ε|) (for all k = 1, . . . ,Km) ;

by (3.40),

(3.48)

Km∑

k=1

αm,krm,k ≤ Cε| log ε|2 .

Eventually, observe that, thanks to the choice of tm ∈ Tm
2 , the boundary ∂Dm does not intersect

other balls in Iε . However, D
m might contain some other balls in I <

ε .

Step 5: Definition of µ̂ε . For every ε > 0 , we define µ̂ε as

µ̂ε :=

Mε∑

m=1

deg(uε, ∂D
m)δ

bxm ,

where, for every m = 1, . . . ,Mε , x̂
m is the center of an arbitrarily chosen ball among the balls

{Brm,k(xm,k)}k=1,...,Km contained in Dm . Notice that deg(uε, ∂D
m) =

∑
B∈Cε

B⊂Dm

deg(uε, ∂B) . As

a consequence, by the very definition of µ̃ε in (3.15), it easily follows that

|µ̂ε|(Ω) ≤ |µ̃ε|(Ω) ≤ C| log ε| .(3.49)
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By (3.46) and Theorem 3.4(i), by setting ϕm := 1
|Dm|

∫
Dm ϕdx, we get

‖µ̃ε − µ̂ε‖flat ≤ sup
‖ϕ‖

C
0,1
c (Ω)

≤1

Mε∑

m=1

∣∣∣
∫

Dm

ϕ d(µ̃ε − µ̂ε)
∣∣∣ = sup

‖ϕ‖
C

0,1
c (Ω)

≤1

Mε∑

m=1

∣∣∣
∫

Dm

ϕ− ϕm d(µ̃ε − µ̂ε)
∣∣∣

≤ 2 sup
‖ϕ‖

C
0,1
c (Ω)

≤1

Mε∑

m=1

|µ̃ε|(D
m)oscDm(ϕ) ≤ C| log ε|

Mε∑

m=1

diam(Dm) ≤ Cε| log ε|3 ,

and hence ‖µ̃ε − µ̂ε‖flat → 0 as ε→ 0 . Thus, in order to get (3.17), we are left to prove that

(3.50) ‖Juε − πµ̂ε‖flat,Ω → 0 as ε→ 0 .

Step 6: Definition of λε and λ̂ε . In order to prove (3.50) we introduce the measures λε and

λ̂ε such that the following identities

(3.51) −Div λε = Juε and −Div λ̂ε = πµ̂ε ,

hold in the sense of distributions in D′(Ω). We set

λ1ε :=
1

2
([u1εD1u

2
ε]− [u2εD1u

1
ε]) , λ2ε :=

1

2
([u1εD2u

2
ε]− [u2εD2u

1
ε]) , λε := (−λ2ε, λ

1
ε) .

By definition of weak Jacobian determinant (see Definition 2.3, and (2.35)), λε satisfies the first
equation in (3.51). Moreover, by (3.37) and (3.45),

(3.52)

∫

∂B

|λε| dH
1 ≤ C| log ε|

1
2 for every B ∈ I

<
ε

∫

∂Dm

|λε| dH
1 ≤ C| log ε|

3
2 for every m = 1, . . . ,Mε .

Furthermore, by Hölder inequality, (3.4), and (3.10) (for the estimate of |Dsuε|), we get

(3.53)

|λε|

( ⋃

B∈I
<
ε

B ∪

Mε⋃

m=1

Dm

)
≤|Duε|

( ⋃

B∈I
<
ε

B ∪

Mε⋃

m=1

Dm
)

≤‖∇uε‖L2(Ω;R2×2)

( ∑

B∈I
<
ε

|B|+

Mε∑

m=1

|Dm|

) 1
2

+ Cε| log ε|

≤Cε| log ε|
5
2 ,

where we have used also (3.19) and (3.46) to deduce that

(3.54)
∑

B∈I
<
ε

|B| ≤ Cε2| log ε|2 and

Mε∑

m=1

|Dm| ≤ Cε2| log ε|4 .

Now, for every m = 1, . . . ,Mε, we define vmε ∈ W 1,1(Ω;S1) as

vmε (x) := eı deg(uε,∂D
m)ϑ(x−bxm),

where R2 is identified with C and ϑ is the angular polar coordinate defined by

(3.55) ϑ(x) :=





arctan x2

x1
if x1 > 0

π
2 if x1 = 0 and x2 > 0
π + arctan x2

x1
if x1 < 0

3
2π if x1 = 0 and x2 < 0 .

We set

vε(·) := ΠMε

m=1v
m
ε (·) ≡ eı

PMε
m=1 deg(uε,∂D

m)ϑ(·−bxm)

and we define

λ̂1ε :=
1

2
(v1ε∇1v

2
ε − v2ε∇1v

1
ε) , λ̂2ε :=

1

2
(v1ε∇2v

2
ε − v2ε∇2v

1
ε ) , λ̂ε := (−λ̂2ε, λ̂

1
ε) .
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We notice that vε ∈W 1,p(Ω;S1) for any 1 ≤ p < 2 . It is well-known that, for everym = 1, . . . ,Mε ,
the distributional determinant of vmε coincides with π deg(uε, ∂D

m)δ
bxm = πµ̂ε Dm , so that also

the second equation in (3.51) holds true. Finally, we show that λ̂ε satisfies estimates similar to
(3.52) and (3.53).

Letm = 1, . . . ,Mε . Recalling (3.47), we can assume without loss of generality that x̂m = xm,1 .
Then, by (3.47), (3.48), (3.46) and (3.49), we have

∫

∂Dm

|λ̂ε| dH
1 ≤

∫

∂Dm

|∇vε| dH
1 ≤

Mε∑

j=1

| deg(uε, ∂D
j)|

∫

∂Dm

|∇ϑ(· − x̂j)| dH1

≤| deg(uε, ∂D
m)|

∫

∂Dm

|∇ϑ(· − x̂m)| dH1

+

Mε∑

j=1
j 6=m

| deg(uε, ∂D
j)|

∫

∂Dm

|∇ϑ(· − x̂j)| dH1

≤| deg(uε, ∂D
m)|

∫

∂Bαm,1rm,1 (xm,1)

|∇ϑ(· − xm,1)| dH1

+ | deg(uε, ∂D
m)|

Km∑

k=2

∫

∂B
αm,krm,k (xm,k)\Bαm,1rm,1 (xm,1)

|∇ϑ(· − xm,1)| dH1

+

Mε∑

j=1
j 6=m

| deg(uε, ∂D
j)|

H1(∂Dm)

ε

≤2π| deg(uε, ∂D
m)|+ 2π| deg(uε, ∂D

m)|

Km∑

k=1

αm,krm,k

ε

+ C

Mε∑

j=1
j 6=m

| deg(uε, ∂D
j)|

diam(Dm)

ε

≤C|µ̂ε|(Ω) + C|µ̂ε|(Ω)| log ε|
2 ≤ C| log ε|3 .(3.56)

Analogously, recalling that the balls in Iε are pairwise disjoint and that the balls in I >
ε have

radius larger than ε
2 , for every B ∈ I <

ε we have

(3.57)

∫

∂B

|λ̂ε| dH
1 ≤

∫

∂B

|∇vε| dH
1 ≤

Mε∑

j=1

| deg(uε, ∂D
j)|

∫

∂B

|∇ϑ(· − x̂j)| dH1

≤2

Mε∑

j=1

| deg(uε, ∂D
j)|

H1(∂B)

ε
≤ C| log ε| ,

where the last inequality follows by (3.19) and (3.49).
Finally, we prove that

(3.58) |λ̂ε|

( ⋃

B∈I
<
ε

B ∪

Mε⋃

m=1

Dm

)
≤ Cε

2
3 | log ε|

7
3 .

By definition of vε we easily get, for some fixed p ∈ (1, 2) , and thanks to (3.49),

‖∇vε‖Lp(Ω;R2×2) =
∥∥∥

Mε∑

m=1

deg(uε, ∂D
m)∇ϑ(· − x̂m)

∥∥∥
Lp(Ω;R2)

≤C(p)

Mε∑

m=1

| deg(uε, ∂D
m)| = C(p)|µ̂ε|(Ω) ≤ C(p)| log ε| .
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Hence, by Hölder inequality and (3.54), we deduce

|λ̂ε|

( ⋃

B∈I
<
ε

B ∪

Mε⋃

m=1

Dm

)
≤

∫
S

B∈I
<
ε

B∪
SMε

m=1 Dm

|∇vε| dx

≤‖∇vε‖Lp(Ω;R2×2)

( ∑

B∈I
<
ε

|B|+

Mε∑

m=1

|Dm|

) p−1
p

≤Cε
2p−2

p | log ε|
5p−4

p ,

whence (3.58) follows by taking p = 3
2 .

Step 7: Final estimate. Let ϕ ∈ C1
c (Ω) with ‖ϕ‖C0,1(Ω) ≤ 1 . By definition of Juε = ∂Tuε

we have

(3.59)

〈Juε, ϕ〉Ω =

∫

Ω

∇ϕ · dλε

=
∑

B∈I
<
ε

∫

B

∇ϕ · dλε +

Mε∑

m=1

∫

Dm\
S

B∈I
<
ε

B

∇ϕ · dλε

+

∫

Ω\(
SMε

m=1 Dm∪
S

B∈I
<
ε

B)

∇ϕ · dλε

and, analogously, by integrating by parts

(3.60)

〈πµ̂ε, ϕ〉Ω =

∫

Ω

∇ϕ · dλ̂ε

=
∑

B∈I
<
ε

∫

B

∇ϕ · dλ̂ε +

Mε∑

m=1

∫

Dm\
S

B∈I
<
ε

B

∇ϕ · dλ̂ε

+

∫

Ω\(
SMε

m=1 Dm∪
S

B∈I
<
ε

B)

∇ϕ · dλ̂ε .

Using that uε, vε ∈ H1(Ω \ (
⋃Mε

m=1D
m ∪

⋃
B∈I

<
ε
B);S1) , and hence Juε = Jvε = 0 in Ω \

(
⋃Mε

m=1D
m ∪

⋃
B∈I

<
ε
B) , we can integrate by parts the last integrals in (3.59) and (3.60), thus

obtaining

(3.61)

∣∣∣〈Juε − πµ̂ε, ϕ〉Ω

∣∣∣ ≤|λε|
( ⋃

B∈I
<
ε

B ∪

Mε⋃

m=1

Dm
)
+ |λ̂ε|

( ⋃

B∈I
<
ε

B ∪

Mε⋃

m=1

Dm
)

+
∣∣∣

Mε∑

m=1

∫

∂Dm

ϕ (λε − λ̂ε) · ν dH1
∣∣∣

+

∣∣∣∣∣
∑

B∈I
<
ε

B∩
SMε

m=1 Dm=?

∫

∂B

ϕ (λε − λ̂ε) · ν dH1

∣∣∣∣∣

≤Cε| log ε|
5
2 + Cε

2
3 | log ε|

7
3

+
∣∣∣

Mε∑

m=1

∫

∂Dm

ϕ (λε − λ̂ε) · ν dH1
∣∣∣

+

∣∣∣∣∣
∑

B∈I
<
ε

B∩
SMε

m=1 Dm=?

∫

∂B

ϕ (λε − λ̂ε) · ν dH1

∣∣∣∣∣ ,

where in the last inequality we have used (3.53) and (3.58).
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We now estimate the remaining integrals on the right hand side of (3.61). By (3.52) and (3.56),
using that deg(uε, ∂D

m) = deg(vε, ∂D
m), for every m = 1, . . . ,Mε, we have that

∣∣∣
∫

∂Dm

ϕ(λε − λ̂ε) · ν dH1
∣∣∣ ≤oscDm(ϕ)

( ∫

∂Dm

|λε| dH
1 +

∫

∂Dm

|λ̂ε| dH
1
)

≤diam(Dm)C| log ε|3 ,

which, summing over m , and using (3.46), yields

(3.62)

Mε∑

m=1

∣∣∣
∫

∂Dm

ϕ(λε − λ̂ε) · ν dH1
∣∣∣ ≤ Cε| log ε|5 .

Analogously, using (3.52) and (3.57) together with (3.19), we obtain

(3.63)
∑

B∈I
<
ε

∣∣∣
∫

∂B

ϕ(λε − λ̂ε) · ν dH1
∣∣∣ ≤ Cε| log ε|3 .

Therefore, by (3.61), (3.62), and (3.63), for ε small enough, we get
∣∣∣〈Juε − πµ̂ε, ϕ〉Ω

∣∣∣ ≤ Cε| log ε|5 ,

for some constant C independent of ϕ . Taking the supremum on ϕ ∈ C1
c (Ω) such that ‖ϕ‖C0,1 ≤ 1

we infer that ‖Juε − πµ̂ε‖flat,Ω ≤ Cε| log ε|5 , whence (3.50) follows. This concludes the proof of
(i).

Proof of (ii). We can assume without loss of generality that {uε}ε satisfies (3.4) for some C > 0 .
By (3.13) and (3.11), using (3.17) and applying Theorem 3.4(ii) , we get that

lim inf
ε→0

Fε(uε)

| log ε|
≥ lim inf

ε→0

F (Bε, µε,Ω)

| logRad(Bε)|
≥ π|µ|(Ω) ,

i.e., the claim.

Proof of (iii). We divide the proof into three steps. In the first one we construct the sequence
{uε}ε and we show that it satisfies (3.6); whereas the second and third steps are devoted to show
that ‖Juε − πµ‖flat,Ω → 0 (as ε→ 0).

Step 1 (Definition of uε and energy estimates): Let µ =
∑I

i=1 z
iδxi with zi ∈ Z \ {0}

and xi ∈ Ω
′
for every i = 1, . . . , I . By standard approximation arguments in Γ-convergence, we

can assume that xi ∈ Ω′, and that |zi| = 1, for every i = 1, . . . , I .
Let R > 0 be such that the balls B2R(x

i) are (essentially) pairwise disjoint and contained

in Ω′ . For every ρ > 0 we set Ωρ(µ) := Ω \
⋃I

i=1Bρ(x
i) and we define Θ : ΩR(µ) → R as

Θ(·) :=
∑I

i=1 z
iϑ(· − xi) , where ϑ is the function defined in (3.55).

For every 0 < ρ1 < ρ2 and for every x ∈ R

2 we set Aρ1,ρ2(x) := Bρ2(x) \ Bρ1(x) . Let
moreover σR ∈ C∞(AR,2R(0); [0, 1]) be such that σR ≡ 1 in A 7

4R,2R(0) and σR ≡ 0 in AR, 54R
(0) .

Analogously, for every ε > 0 , let σε ∈ C∞(Bε(0); [0, 1]) be such that σε ≡ 0 in B ε
4
(0) and σε ≡ 1

in A 3
4 ε,ε

(0) . We can also assume that

(3.64) |∇σε(x)| ≤
C

ε
for every x ∈ Bε(0) , |∇σR(x)| ≤

C

R
for every x ∈ AR, 54R

(0) ,

for some constant C > 0 independent of ε (and of x) .
For ε < R we define the function ϑε : Ω → R as

ϑε(x) :=





σε(x − xi)ziϑ(x− xi) if x ∈ Bε(x
i) \ {xi} for some i

ziϑ(x − xi) if x ∈ Aε,R(x
i) for some i

(1 − σR(x− xi))ziϑ(x − xi) + σR(x − xi)Θ(x) if x ∈ AR,2R(x
i) for some i

Θ(x) if x ∈ Ω2R(µ)

and we define uε : Ω → S

1 as

(3.65) uε(·) := eıϑε(·) .



JACOBIAN FOR BV MAPS 31

Then, Suε
=

⋃I
i=1 S

i
ε where

(3.66) Si
ε :=

{
(xi1;x2) : xi2 −

3

4
ε < x2 < xi2 −

ε

4

}
for every i = 1, . . . , I ,

and hence

(3.67) H1(Suε
) = I

ε

2
= |µ|(Ω)

ε

2
.

In particular, the energy term

(3.68)
H1(Suε

)

ε| log ε|
→ 0 as ε→ 0+ .

Let us analyse the stored elastic energy. It is easy to see that

(3.69)
1

2

∫

Ω2R(µ)

|∇uε|
2 dx≤

1

2

∫

Ω2R(µ)

|∇Θ|2 dx ≤ C(I) log
diam(Ω)

2R
,

where C(I) > 0 is a constant depending only on I . Similarly, by the second estimate in (3.64),
we deduce

(3.70)

1

2

∫

AR,2R(xi)

|∇uε|
2 dx ≤

∫

AR,2R(xi)

|∇ϑ(x − xi)|2 dx

+

∫

AR,2R(xi)

∣∣∣∣∇
(
σR(x− xi)

(∑

j 6=i

zjϑ(x− xj)
))∣∣∣∣

2

dx

≤C(I, R) ,

where we have estimated
∫

AR,2R(xi)

∣∣∣∣∇
(
σR(x − xi)

(∑

j 6=i

zjϑ(x − xj)
))∣∣∣∣

2

dx

≤ C(I) +

∫

AR,2R(xi)

∣∣∑

j 6=i

zj∇ϑ(x − xj)
∣∣2 dx ≤ C(I, R).

Furthermore, by the first estimate in (3.64), for every i = 1, . . . , I, and for every x ∈ BR(x
i) it

holds

|∇uε(x)| = |∇ϑε(x)| ≤ 2π
∣∣∣∇σε(x− xi)χBε(xi)(x)

∣∣∣ +
∣∣∣∇ϑ(x− xi)χA ε

4
,R(xi)(x)

∣∣∣

≤
C

ε
χBε(xi)(x) +

1

|x− xi|
χA ε

4
,R(xi)(x) ,(3.71)

for some constant C independent of ε (and of x). Here, for any measurable set E , χE denotes
the characteristic function of the set E . It follows that, for every i = 1, . . . , I,

1

2

∫

Bε(xi)

|∇uε|
2 dx ≤ C ,(3.72)

1

2

∫

Aε,R(xi)

|∇uε|
2 dx ≤ π log

R

ε
,

which, together with (3.69) and (3.70), implies that

lim sup
ε→0

1

2| log ε|

∫

Ω

|∇uε|
2 dx ≤ πI = π|µ|(Ω) .

This, together with (3.68), yields (3.6).
Now, in order to conclude the proof of (iii) of Theorem 3.1, it remains to prove that

‖Juε − πµ‖flat,Ω → 0 as ε→ 0.(3.73)

To this purpose in view of Remark 2.9, it is enough to prove the following two facts: There exists
a constant C > 0 (independent of ε) such that

(3.74) |Juε|(Ω) ≤ C ,
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and

uε
strict
⇀ ū in BV (Ω;R2 ) ,(3.75)

for some ū ∈W 1,1(Ω;S1) with Det(∇ū) = πµ.

Step 2: Proof of (3.74). In order to show (3.74), thanks to Remark 2.8, it is sufficient to show
that for all ε small enough there exists a sequence of maps {vε,k}k∈N ⊂ C1(Ω;R2 ) ∩ BV (Ω;R2 )
such that

(3.76) sup
k∈N

|Jvε,k|(Ω) ≤ C ,

for some C > 0 independent of k and ε , and

(3.77) vε,k
strict
⇀ uε in BV (Ω;R2 ) (as k → +∞) .

Furthermore, by standard density arguments, it is enough to construct {vε,k}k ⊂ W 1,∞(Ω;R2 ) .
Let 0 < ε≪ R be fixed. For every i = 1, . . . , I , k ∈ N , t1 < t2 we set Si

ε,k,t1,t2
:= [xi1−

ε
k
, xi1+

ε
k
]×

[xi2+t1, x
i
2+t2] . We will modify uε in the set Si

ε,k,−ε− ε
k
, ε
k
, that is a neighborhood of the jump set Si

ε

in (3.66). Precisely, for every i = 1, . . . , I, and for every k ∈ N, let uiε,k,int ∈ C∞(Si
ε,k,−ε− ε

k
, ε
k
;R2 )

be defined as

uiε,k,int(x) :=
(1
2
−

k

2ε
(x1 − xi1)

)
uε

(
xi1 −

ε

k
;x2

)

+
(1
2
+

k

2ε
(x1 − xi1)

)
uε

(
xi1 +

ε

k
;x2

)
.

Moreover, for every i = 1, . . . , I, and for every k ∈ N we denote by uiε,k,bottom ∈ C∞(Si
ε,k,−ε− ε

k
,−ε;R

2 )

and uiε,k,up(S
i
ε,k,0, ε

k
;R2 ) the functions

uiε,k,bottom(x) :=
k

ε
(xi2 − ε− x2)uε(x) +

(
1−

k

ε
(xi2 − ε− x2)

)
uiε,k,int(x) ,

uiε,k,up(x) :=
k

ε
(x2 − xi2)uε(x) +

(
1−

k

ε
(x2 − xi2)

)
uiε,k,int(x) .

Finally we define vε,k : Ω → R

2 as

vε,k(x) :=





uiε,k,int(x) if x ∈ Si
ε,k,−ε,0 for some i

uiε,k,up(x) if x ∈ Si
ε,k,0, ε

k
for some i

uiε,k,bottom(x) if x ∈ Si
ε,k,−ε− ε

k
,−ε for some i

uε(x) elsewhere in Ω .

An easy check shows that the function vε,k : Ω → R

2 is Lipschitz continuous in Ω. Indeed, the
function uε is C

1 out of the jump set, uiε,k,int is Lipschitz continuous in S
i
ε,k,0, ε

k
(and smooth in its

interior), and uiε,k,bottom and uiε,k,up are Lipschitz as well in Si
ε,k,−ε− ε

k
,−ε and S

i
ε,k,0, ε

k
(respectively).

We now check that {vε,k}k∈N satisfies (3.77). To this purpose it is enough to show that

lim
k→+∞

∫

Si
ε,k,−ε− ε

k
, ε
k

|∇vε,k| dx =

∫

Si
ε

|[uε]| dH
1,

for all i = 1, . . . , I. Furthermore, since vε,k → uε pointwise a.e. in Ω (as k → +∞), it is sufficient
to prove that

lim sup
k→+∞

∫

Si
ε,k,−ε− ε

k
, ε
k

|∇vε,k| dx ≤

∫

Si
ε

|[uε]| dH
1 ,(3.78)

for all i = 1, . . . , I. We notice that

∂uiε,k,int

∂x1
(x) =

k

2ε
uε

(
xi1 −

ε

k
;x2

)
−

k

2ε
uε

(
xi1 +

ε

k
;x2

)
,

∂uiε,k,int

∂x2
(x) =

(1
2
−

k

2ε
(x1 − xi1)

)∂uε
∂x2

(
xi1 −

ε

k
;x2

)
+
(1
2
+

k

2ε
(x1 − xi1)

)∂uε
∂x2

(
xi1 +

ε

k
;x2

)
,
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whence, using that

(3.79) |x1 − xi1| ≤
ε

k
in Si

ε,k,−ε− ε
k
, ε
k
,

we deduce

(3.80)

∫

Si
ε,k,−ε,0

|∇vε,k| dx =

∫

Si
ε,k,−ε,0

|∇uiε,k,int| dx

≤

∫

Si
ε,k,−ε,0

∣∣∣
∂uiε,k,int

∂x1

∣∣∣ dx+

∫

Si
ε,k,−ε,0

∣∣∣
∂uiε,k,int

∂x2

∣∣∣ dx

≤

∫ 0

−ε

∣∣∣uε
(
xi1 +

ε

k
;x2

)
− uε

(
xi1 −

ε

k
;x2

)∣∣∣ dx2

+

∫ 0

−ε

∫ ε
k

− ε
k

∣∣∣∂uε
∂x2

(
xi1 −

ε

k
;x2

)∣∣∣+
∣∣∣∂uε
∂x2

(
xi1 +

ε

k
;x2

)∣∣∣ dx1 dx2

=

∫

Si
ε

|[uε]| dH
1 + ok(1) ,

where ok(1) tends to 0 as k → +∞ . Furthermore,

∂uiε,k,bottom

∂x1
(x) =

k

ε
(xi2 − ε− x2)

∂uε

∂x1
(x) +

(
1−

k

ε
(xi2 − ε− x2)

)∂uiε,k,int
∂x1

(x) ,

∂uiε,k,bottom

∂x2
(x) = −

k

ε
uε(x) +

k

ε
uiε,k,int(x) +

k

ε
(xi2 − ε− x2)

∂uε

∂x2
(x)

+
(
1−

k

ε
(xi2 − ε− x2)

)∂uiε,k,int
∂x2

(x) ,

∂uiε,k,up

∂x1
(x) =

k

ε
(x2 − xi2)

∂uε

∂x1
(x) +

(
1−

k

ε
(x2 − xi2)

)∂uiε,k,int
∂x1

(x) ,

∂uiε,k,up

∂x2
(x) =

k

ε
uε(x) −

k

ε
uiε,k,int(x) +

k

ε
(x2 − xi2)

∂uε

∂x2
(x) +

(
1−

k

ε
(x2 − xi2)

)∂uiε,k,int
∂x2

(x) ;

hence, using that |uε|, |u
i
ε,k,int| ≤ 1 , (3.79) and the fact that

|ε+ x2 − xi2| ≤
ε

k
in Si

ε,k,−ε− ε
k
,−ε , |x2 − xi2| ≤

ε

k
in Si

ε,k,0, ε
k
,

we can estimate

(3.81)

∣∣∣
∂uiε,k,int

∂x1
(x)

∣∣∣ ≤ k

ε
,

∣∣∣
∂uiε,k,int

∂x2
(x)

∣∣∣ ≤
∣∣∣∇uε

(
xi1 −

ε

k
;x2

)∣∣∣+
∣∣∣∇uε

(
xi1 +

ε

k
;x2

)∣∣∣ ,
∣∣∣
∂uiε,k,bottom

∂x1
(x)

∣∣∣ ≤ |∇uε(x)|+
k

ε
,

∣∣∣
∂uiε,k,bottom

∂x2
(x)

∣∣∣ ≤ 2
k

ε
+ |∇uε(x)| +

∣∣∣∇uε
(
xi1 −

ε

k
;x2

)∣∣∣ +
∣∣∣∇uε

(
xi1 +

ε

k
;x2

)∣∣∣ ,
∣∣∣
∂uiε,k,up

∂x1
(x)

∣∣∣ ≤ |∇uε(x)|+
k

ε
,

∣∣∣
∂uiε,k,up

∂x2
(x)

∣∣∣ ≤ 2
k

ε
+ |∇uε(x)|+

∣∣∣∇uε
(
xi1 −

ε

k
;x2

)∣∣∣+
∣∣∣∇uε

(
xi1 +

ε

k
;x2

)∣∣∣ .

By (3.81) and (3.72) it follows, in particular, that the integrals of |∇vε,k| on Si
ε,k,−ε,−ε− ε

k
and

Si
ε,k,0, ε

k
are both negligible as k → ∞ . This fact, together with (3.80), implies (3.78) and, in turn,

(3.77).
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In order to prove (3.76), we notice that, in view of (3.81) and of (3.71), it holds

(3.82)

∫

Si
ε,k,−ε,0

|Jvε,k| dx =

∫

Si
ε,k,−ε,0

|Juiε,k,int| dx

≤

∫

Si
ε,k,−ε,0

∣∣∣
∂uiε,k,int

∂x1
(x)

∣∣∣
∣∣∣
∂uiε,k,int

∂x2
(x)

∣∣∣ dx

≤2

∫ 0

−ε

∣∣∣∇uε
(
xi1 −

ε

k
;x2

)∣∣∣ +
∣∣∣∇uε

(
xi1 +

ε

k
;x2

)∣∣∣ dx2

≤C ,

for some constant C independent of ε and k .
Analogously, using again (3.81) and (3.72), one can prove that there exists a universal constant

C > 0 such that

(3.83)

∫

Si
ε,k,−ε− ε

k
,−ε

|Jvε,k| dx =

∫

Si
ε,k,−ε− ε

k
,−ε

|Juiε,k,bottom| dx ≤ C ,

∫

Si
ε,k,0, ε

k

|Jvε,k| dx =

∫

Si
ε,k,0, ε

k

|Juiε,k,up| dx ≤ C .

By (3.82) and (3.83), the estimate in (3.76) follows.

Step 3: Proof of (3.75). It is easy to see that the functions ϑε tend pointwise (as ε → 0) to
ϑ̄ defined as

ϑ̄(x) :=





ziϑ(x− xi) if x ∈ BR(x
i) for some i

(1 − σR(x − xi))ziϑ(x − xi) + σR(x− xi)Θ(x) if x ∈ AR,2R(x
i) for some i

Θ(x) if x ∈ Ω2R(µ).

By definition, the function ū defined by ū(x) := eıϑ̄(x) belongs to W 1,1(Ω;S1) and satisfies

Det(∇ū) = πµ . Notice moreover that, since ϑ̄−ϑε 6= 0 only on
⋃I

i=1Bε(x
i) and ū ∈W 1,1(Ω;S1),

we can prove that uε
strict
⇀ ū in BV (Ω;R2 ) if we show that

(3.84) |Duε|(∪
I
i=1Bε(x

i)) → 0 as ε→ 0 .

But, by (3.72) and by Hölder inequality
∫

Bε(xi)

|∇uε| dx ≤ Cε
(∫

Bε(xi)

|∇uε|
2
) 1

2

dx ≤ Cε ∀i = 1, . . . , I ,

which together with (3.67) implies (3.84). This concludes the proof of (3.75), and in turn of (3.73)
and of the whole Theorem 3.1. �

Dirichlet boundary conditions. We conclude this section dealing with prescribed boundary

conditions on ∂Ω . To this purpose, let Ω̃, Ω̂ ⊂ R

2 be bounded and open sets with Ω̃ ⊂⊂ Ω ⊂⊂ Ω̂ ,

and let w ∈ H1(Ω̂ \ Ω̃;S1) . Admissible functions for the problem with boundary conditions will
be given by

ADw(Ω) := {u ∈ SBV 2(Ω̂;S1) : u = w on Ω̂ \ Ω}.

For every ε > 0 , let Fw
ε : SBV 2(Ω;S1) → [0,∞] be the functional defined by

Fw
ε (u) :=





1

2

∫

Ω

|∇u|2 dx+
1

ε
H1(Su) if u ∈ ADw(Ω)

+∞ elsewhere in SBV 2(Ω;S1) .

Notice that we can have Su ∩ ∂Ω 6= ?, and that we take the closure Su of Su in Ω̂ (in particular,
the functional Fε penalizes jumps of u also on ∂Ω).

We show that, up to slight modifications in the proof of Theorem 3.1, we can obtain a com-
pactness and Γ-convergence result for the functional Fw

ε . Specifically, we will prove the following
statement.
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Theorem 3.5. The following Γ-convergence result holds true.

(i) (Compactness) Let {uε}ε ⊂ SBV 2(Ω;S1) be such that

(3.85) sup
ε>0

Fw
ε (uε)

| log ε|
≤ C,

for some C > 0 . Then there exists µ ∈ X(Ω) , such that , up to a subsequence, ‖Juε −

πµ‖flat,U → 0 (as ε→ 0) , for any open set U with Ω ⊂⊂ U ⊂⊂ Ω̂. Moreover, it holds

(3.86) µ(U) = deg(w, ∂Ω) ,

for any open set U with Ω ⊂⊂ U ⊂⊂ Ω̂.
(ii) (Γ-liminf inequality) For every µ ∈ X(Ω) and for every {uε}ε ⊂ SBV 2(Ω;S1) such that

‖Juε − πµ‖flat,U → 0 (as ε→ 0) for any open set U with Ω ⊂⊂ U ⊂⊂ Ω̂, it holds

π|µ|(Ω) ≤ lim inf
ε→0

Fw
ε (uε)

| log ε|
.

(iii) (Γ-limsup inequality) For every µ ∈ X(Ω) satisfying (3.86), there exists {uε}ε ⊂ SBV 2(Ω;S1)

with ‖Juε − πµ‖flat,U → 0 (as ε→ 0) for any open set U with Ω ⊂⊂ U ⊂⊂ Ω̂, such that

π|µ|(Ω) ≥ lim sup
ε→0

Fw
ε (uε)

| log ε|
.

Proof. We divide the proof into three steps corresponding to each of the items in the statement.

Step 1: Proof of (i). Notice that, by (3.85), we can assume without loss of generality that

uε ∈ AD(Ω̂,Ω) for all ε > 0 (see (3.1)). Moreover, recalling the definition of Fε in (3.2), by (3.85)
we have

(3.87) Fε(uε; Ω̂) ≤ Fw
ε (uε) + ‖w‖2

H1(bΩ\Ω;R2)
≤ C| log ε| .

Hence, we can apply Theorem 3.1(i) to deduce that, up to a subsequence, ‖Juε−πµ̂‖flat,bΩ → 0 for

some µ̂ ∈ X(Ω̂) . Therefore, since, by construction, supp Juε ⊂ Ω , then supp µ̂ ⊂ Ω, and therefore

‖Juε − πµ‖flat,U → 0 , for every open set U with Ω ⊂⊂ U ⊂⊂ Ω̂ . Finally, if U is an open set with

Ω ⊂⊂ U ⊂⊂ Ω̂ , we choose a function ϕ ∈ C∞
c (Ω̂) which equals 1 on U , and write

πµ(U) = 〈πµ, ϕ〉
bΩ = lim

ε→0
〈Juε, ϕ〉

bΩ = lim
ε→0

∫

bΩ

∇ϕ · dλuε
= lim

ε→0

∫

bΩ\U

∇ϕ · dλuε

= lim
ε→0

∫

∂U

λuε
· ν dH1 = lim

ε→0
π deg(uε, ∂U) = π deg(w, ∂U) ,

where we have used (1.3) and the fact that uε ∈ ADw(Ω̂,Ω).

Step 2: Proof of (ii). We can assume without loss of generality that {uε}ε satisfies (3.85).
By (3.87) and by Theorem 3.1(ii), we obtain

lim inf
ε→0

Fw
ε (uε)

| log ε|
≥ lim inf

ε→0

Fε(uε; Ω̂)

| log ε|
≥ π|µ|(Ω) ,

i.e., the claim.

Step 3: Proof of (iii). Since every µ ∈ X(Ω) can be approximated by measures in X(Ω)
with respect to the flat distance, by standard density arguments in Γ-convergence, it is enough to
construct the recovery sequence only for measures µ ∈ X(Ω).

Let Ω̃ ⊂⊂ Ω′ ⊂⊂ Ω be an open set such that suppµ ⊂ Ω′ . Let moreover η ∈ C∞(Ω \ Ω′)
be a cut-off function with η ≡ 0 in a neighborhood of ∂Ω′ and η ≡ 1 in a neighborhood of ∂Ω .

Let furthermore {ũε}ε = {eı
eϑε}ε indicate the sequence provided by (3.65) . Then there exists a

function ϑw ∈ SBV 2(Ω̂ \ Ω̃) such that w = eıϑ
w

on Ω̂ \ Ω̃ , Sϑw = S
eϑε

in Ω \ Ω′ , and [ϑw] = [ϑ̃ε]

in Ω \ Ω′ . The last property can be achieved thanks to the fact that µ satisfies condition (3.86).
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For every ε > 0 we define the function uε : Ω̂ → S

1 as uε(·) := eıϑε(·) , where the lifting ϑε is
defined by

ϑε(x) :=





ϑ̃ε(x) if x ∈ Ω′

(1 − η(x))ϑ̃ε(x) + η(x)ϑw(x) if x ∈ Ω \ Ω′

ϑw(x) if x ∈ Ω̂ \ Ω .

It is easy to check that the sequence {uε}ε satisfies the desired properties. �
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