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Abstract

The topological derivative is defined as the first term of the asymptotic expansion of a given shape func-
tional with respect to a small parameter that measures the size of a singular domain perturbation. It has
applications in many different fields such as shape and topology optimization, inverse problems, image
processing and mechanical modeling including synthesis and/or optimal design of microstructures, fracture
mechanics sensitivity analysis and damage evolution modeling. The topological derivative has been fully
developed for a wide range of second order differential operators. In this paper we deal with the topolog-
ical asymptotic expansion of a class of shape functionals associated with elliptic differential operators of
order 2m, m � 1. The general structure of the polarization tensor is derived and the concept of degener-
ate polarization tensor is introduced. We provide full mathematical justifications for the derived formulas,
including precise estimates of remainders.
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1. Introduction

The topological derivative measures the sensitivity of a given shape functional with respect
to infinitesimal singular domain perturbations, such as the insertion of holes, inclusions, source-
terms or even cracks [12,14,16,25]. Specifically, if the shape functional is denoted by J (Ω) and
the domain obtained after a perturbation of size ε localized around a point z is denoted by Ωε , it
is defined by

DT J (Ω) = lim
ε→0

J (Ωε) −J (Ω)

ϕ(ε)
,

for some appropriate scaling function ϕ(ε). This notion has proved to be a powerful tool for
the treatment of different problems such as topology optimization, inverse analysis and image
processing (see e.g. [7,11,17–19]), and has become a subject of intensive research. There are
also some applications in the multi-scale constitutive modeling context [8], fracture mechanics
sensitivity analysis [28] and damage evolution modeling [2]. All these problems share in common
to be governed by partial differential equations (PDE’s), and the type of PDE obviously impacts
drastically on the mathematical analysis involved. Concerning the theoretical developments of
the topological asymptotic analysis, the reader may refer to the papers [4,13,22], among others.

According to the literature, the topological derivative concept has been fully developed for a
wide range of second order equations, while a forth order equation is addressed in [6]. In this
paper, the topological asymptotic expansion of a class of shape functionals associated with an
elliptic differential operator of order 2m, with m � 1, is derived. The topologically perturbed
domain is obtained when an arbitrarily shaped hole is introduced inside the initial domain. Then,
the resulting void is filled with a phase whose material properties present a contrast with the
original ones. The main ingredient arising in the asymptotic formula is the so-called Pólya–Szegő
polarization tensor [24] (see also [3]), of which we derive the general structure for the operators
under consideration. We also introduce the concept of degenerate polarization tensor, in the sense
that it is independent of the shape of the topological perturbation and, at the same time, its
entries do not remain bounded when the contrast on the material properties goes to zero. In
this particular case it is remarkable that the polarization tensor can be easily obtained in its
closed form. We show that this phenomenon of degeneracy occurs when the operator satisfies a
particular algebraic property which is easy to check, a typical example being the bi-Laplacian.
Let us mention in this respect that the degeneracy of the bi-Laplacian occurs in the context
of dislocation modeling [26,27]. It basically means that dislocated regions can be created or
annihilated (in the sense of nucleation) with an energetical cost independent of their shapes.
The bi-Laplacian also appears in some plate models and thus our results have implications in
the optimal design of such thin structures, considering the compliance as objective function,
for instance. Specific examples of shape functionals and degenerated operators will be given in
Section 4.2.

The paper is organized as follows. Some notation and preliminary statements are introduced
in Section 2. Basic properties of the boundary value problems under consideration are collected
in Section 3. The topological asymptotic expansion for a class of shape functionals is derived in
its general form in Section 4, and the concept of degenerate polarization tensor is introduced in
Section 5. Some particular cases of differential operators, including degenerate cases, are pre-
sented in Section 6 together with a set of examples with analytical solution. The appropriate
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estimates of remainders are provided in Section 7, with full mathematical justifications. The ex-
tension of the obtained results to elliptic systems is discussed in Section 8. Some concluding
remarks and perspectives are given in Section 9. Appendix A is devoted to the proof of a classi-
cal coercivity result, however the uniformity with respect to the parameter ε is here highlighted.
In Appendix B, the notion of collectively compact operators used throughout the analysis is
recalled. Finally, the weighted and quotient Sobolev spaces needed for the formulation of appro-
priate exterior problems, appearing in particular in the construction of the polarization tensor, are
described in Appendix C.

2. Preliminaries and notation

Let Ω be an open and bounded subset of Rn (n ∈ N
∗) and x̂ ∈ Ω be fixed. Given an open,

bounded and smooth subset ω of Rn containing the origin, we define for every ε > 0 the set

ωε(x̂) = x̂ + εω.

Let ρ0 ∈ L∞(Ω) be a given function which takes a constant value ρ̂0 in a neighborhood of x̂ and
such that essinfΩ ρ0 > 0. Moreover, given a constant ρ̂1 > 0, we set for all ε � 0

ρε(x) =
{

ρ0(x) if x ∈ Ω \ ωε,

ρ̂1 if x ∈ Ω ∩ ωε.
(2.1)

For all multi-indices α = (α1, . . . , αn) ∈N
n and any ξ = (ξ1, . . . , ξn) ∈ R

n, we denote by

|α| =
n∑

i=1

αi, |ξ | =
(

n∑
i=1

ξ2
i

)1/2

, ξα =
n∏

i=1

ξ
αi

i

the length of α, the norm of ξ and the α-power of ξ , respectively. To avoid any ambiguity, all
multi-indices will be denoted by the letters α,β or γ . The derivative of order α of a distribution
u is defined by

Dαu = ∂
α1
1 · · · ∂αn

n u.

Let m ∈ N
∗. We consider a family of real constant coefficients (aαβ)|α|=|β|=m satisfying the

following properties.

• Symmetry: it holds for every α,β

aαβ = aβα. (2.2)

• Positivity: for any family of real numbers (yα)|α|=m it holds

∑
|α|=|β|=m

aαβyαyβ � 0. (2.3)
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• Uniform ellipticity: there exists κ > 0 such that∑
|α|=|β|=m

aαβξα+β � κ|ξ |2m ∀ξ ∈ R
n. (2.4)

We define the homogeneous operator Aε : Hm
0 (Ω) → H−m(Ω) by

〈Aεu, v〉H−m(Ω),Hm
0 (Ω) =

∑
|α|=|β|=m

∫
Ω

ρεaαβDαuDβv dx ∀u,v ∈ Hm
0 (Ω). (2.5)

We recall that the space Hm
0 (Ω) is defined as the closure in Hm(Ω) of the set of functions of

class C∞ in Ω with compact support, and that it is also the set of functions of Hm(Ω) with
vanishing trace on ∂Ω up to the order m− 1, see e.g. [1]. We will later argue that Aε is invertible
(see Corollary 3.2).

We further consider coefficients (bαβ,ε) defined for all ε � 0 and α,β such that |α| � m and
|β| � m − 1. We assume that, for ε small enough,

bαβ,ε − bαβ,0 = qαβχωε

for some coefficients qαβ , and with χωε the characteristic function of ωε . We define the operator
Bε : Hm

0 (Ω) → H−m(Ω) by

〈Bεu, v〉H−m(Ω),Hm
0 (Ω) =

∑
|α|�m

|β|�m−1

∫
Ω

bαβ,εD
αuDβv dx ∀u,v ∈ Hm

0 (Ω).

We assume that, for all ε sufficiently small, the operator Aε + Bε and its adjoint Aε + B∗
ε are

injective. We will infer (see Proposition 3.3) that Aε + Bε is invertible, as well as its adjoint (the
proof is the same). Henceforth ε will always be implicitly assumed to be small enough.

Given a source f ∈ H−m(Ω) we denote for every ε � 0 by uε ∈ Hm
0 (Ω) the unique solution

of

(Aε + Bε)uε = f. (2.6)

The goal of this paper is to analyze the asymptotic behavior of a shape functional of the form
j (ε) = Jε(uε) when ε → 0.

3. Well-posedness

The space Hm(Ω) is endowed with the standard norm ‖.‖Hm(Ω) and the associated seminorm
|.|Hm(Ω) defined by

‖u‖2
Hm(Ω) =

∑
|α|�m

∥∥Dαu
∥∥2

L2(Ω)
, |u|2Hm(Ω) =

∑
|α|=m

∥∥Dαu
∥∥2

L2(Ω)
.

The expression (2.5) obviously defines a symmetric and continuous bilinear form on Hm
0 (Ω).

The coercivity is based on the lemma below, whose proof can be found in Appendix A.
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Lemma 3.1. There exists c > 0 independent of ε such that

〈Aεu,u〉H−m(Ω),Hm
0 (Ω) � c|u|2Hm(Ω) ∀u ∈ Hm

0 (Ω).

By the Lax–Milgram theorem and the Poincaré inequality in Hm
0 (Ω) (see [1]) we infer the

following result.

Corollary 3.2. For all f ∈ H−m(Ω) and all ε � 0 there exists a unique u ∈ Hm
0 (Ω) such that

〈Aεu,η〉H−m(Ω),Hm
0 (Ω) = 〈f,η〉 ∀η ∈ Hm

0 (Ω).

Moreover, there exists a constant c independent of ε such that ‖u‖Hm(Ω) � c‖f ‖Hm(Ω).

Proposition 3.3. For all f ∈ H−m(Ω) and all ε � 0 there exists a unique u ∈ Hm
0 (Ω) such that〈

(Aε + Bε)u,η
〉
H−m(Ω),Hm

0 (Ω)
= 〈f,η〉 ∀η ∈ Hm

0 (Ω).

Moreover, there exists a constant c independent of ε such that ‖u‖Hm(Ω) � c‖f ‖Hm(Ω).

Proof. Since Aε is invertible, we have

(Aε + Bε)u = f ⇔ (
I + BεA

−1
ε

)
Aεu = f,

where I stands for the identity operator of H−m(Ω). By Corollary 3.2, A−1
ε : H−m(Ω) →

Hm
0 (Ω) is uniformly bounded. Next, the operator Bε can be decomposed as Bε = J B̃ε , with J

the canonical embedding of H 1−m(Ω) into H−m(Ω) and B̃ε the operator defined algebraically
like Bε , but acting from Hm(Ω) into H 1−m(Ω). By construction, B̃ε is uniformly bounded and,
by the combination of the Rellich and Schauder theorems, J is compact. It follows that the family
of operators {BεA

−1
ε :H−m(Ω) → H−m(Ω), ε � 0} is collectively compact (see Appendix B).

In order to apply Theorem B.1, let us prove that it is also pointwise sequentially compact.
Let (εk) be a bounded sequence of nonnegative numbers. By the Bolzano–Weierstrass theorem
there exists ε∞ � 0 such that, for a non-relabeled subsequence, εk → ε∞. Let now ϕ ∈ H−m(Ω)

be arbitrary and define ψk = A−1
εk

ϕ ∈ Hm
0 (Ω). Then we have ρεk

→ ρε∞ almost everywhere,
which implies by a standard argument (see e.g. Theorem 16.4.1 of [10]) that ψk ⇀ ψ∞ := A−1

ε∞ϕ

weakly in Hm
0 (Ω). We now write for any η ∈ Hm

0 (Ω):〈
Bεk

A−1
εk

ϕ, η
〉
H−m(Ω),Hm

0 (Ω)
= 〈

B∗
εk

η,A−1
εk

ϕ
〉
H−m(Ω),Hm

0 (Ω)
.

Lebesgue’s dominated convergence theorem yields that B∗
εk

η → B∗
ε∞η strongly in H−m(Ω). As

a product of weakly and strongly convergent sequences we infer:〈
Bεk

A−1
εk

ϕ, η
〉
H−m(Ω),Hm

0 (Ω)
→ 〈

B∗
ε∞η,A−1

ε∞ϕ
〉
H−m(Ω),Hm

0 (Ω)
= 〈

Bε∞A−1
ε∞ϕ,η

〉
H−m(Ω),Hm

0 (Ω)
.

This means that Bεk
A−1

εk
ϕ ⇀ Bε∞A−1

ε∞ϕ weakly in H−m(Ω), but the convergence is actually
strong by compactness of the sequence. We have thus proved that Bε A−1

ε → Bε∞A−1
ε pointwise.
k k ∞
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By the Fredholm alternative, the operator I + BεA
−1
ε is invertible for each ε � 0, since it

is injective by assumption. Therefore, by virtue of Theorem B.1, the operators (I + BεA
−1
ε )−1

are uniformly bounded. Writing that u = A−1
ε (I + BεA

−1
ε )−1f and using again Corollary 3.2

provides the desired uniform bound. �
We will later need the following variant of Lemma 3.1. The proof, which is very similar, is

left to the reader.

Lemma 3.4. Let ρ be a positive constant. There exists c > 0 such that, whenever ρ̂ ∈ L∞(Rn) is

essentially bounded from below by ρ and Dαu ∈ L2(Rn) for every α with |α| = m, we have

∑
|α|=|β|=m

∫
Rn

ρ̂εaαβDαuDβudx � c|u|2Hm(Rn).

As opposed to the previous case where the domain Ω was bounded, in Lemma 3.4 the semi-
norm |u|2

Hm(Rn)
is not a norm and the Poincaré inequality does not hold. Hence, in order to

prove the existence and uniqueness of a solution in R
n, the Lax–Milgram theorem cannot be

applied directly. To address this issue, we introduce in Appendix C a weighted space Wm(Rn)

(cf. Eq. (C.1)) and its quotient space Wm(Rn)/Pm−1 where Pm−1 is the space of polynomials of
degree not greater than m − 1. We have the following extension of the Poincaré inequality (cf.
Corollary C.5).

Lemma 3.5. There exists c > 0 such that, for all u ∈ Wm(Rn),

‖u‖Wm(Rn)/Pm−1 � c|u|Hm(Rn).

The combination of Lemmas 3.4 and 3.5 will lead to useful existence and uniqueness results
for problems defined in R

n. We recall that the approach with quotient spaces is due to Deny
and Lions as reported by Ciarlet in [23] (see e.g. Theorem 14.1 as applied to the Finite Element
Methods).

4. Derivation of the general formula

4.1. A preliminary abstract theorem: asymptotic expansion of a cost function

The following theorem provides a general framework for the sensitivity analysis of a cost
function associated with a constraint in variational form. It has been introduced in [4], however
we give here a short proof for completeness.

Theorem 4.1. Let V be a vector space and I be a real interval containing 0. For all ε ∈ I

consider a vector uε ∈ V such that:

aε(uε, η) = 〈fε, η〉 ∀η ∈ V, (4.1)

where aε and fε are a bilinear form on V × V and a linear functional on V , respectively. Con-
sider also a functional Jε : V → R and a linear functional gε ∈ V ′. Suppose that the following
hypotheses hold:
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(1) For all ε ∈ I , there exists vε ∈ V such that

aε(η, vε) = −〈gε, η〉 ∀η ∈ V . (4.2)

(2) There exist real numbers δa, δf and a function ε 
→ ϕ(ε) ∈ R such that, when ε → 0,

(aε − a0)(u0, vε) = ϕ(ε)δa + o
(
ϕ(ε)

)
, (4.3)

〈fε − f0, vε〉 = ϕ(ε)δf + o
(
ϕ(ε)

)
. (4.4)

(3) There exist real numbers δJ1, δJ2 such that

Jε(uε) = Jε(u0) + 〈gε,uε − u0〉 + ϕ(ε)δJ1 + o
(
ϕ(ε)

)
, (4.5)

Jε(u0) = J0(u0) + ϕ(ε)δJ2 + o
(
ϕ(ε)

)
. (4.6)

Then we have

Jε(uε) − J0(u0) = ϕ(ε)(δa − δf + δJ1 + δJ2) + o
(
ϕ(ε)

)
. (4.7)

Proof. From (4.5) and (4.6), we obtain

Jε(uε) − J0(u0) = 〈gε,uε − u0〉 + ϕ(ε)(δJ1 + δJ2) + o
(
ϕ(ε)

)
.

Taking into account (4.2) and the fact that uε − u0 ∈ V , we get

Jε(uε) − J0(u0) = −aε(uε − u0, vε) + ϕ(ε)(δJ1 + δJ2) + o
(
ϕ(ε)

)
= −aε(uε, vε) + (aε − a0)(u0, vε) + a0(u0, vε) + ϕ(ε)(δJ1 + δJ2) + o

(
ϕ(ε)

)
.

Then (4.1) yields

Jε(uε) − J0(u0) = (aε − a0)(u0, vε) + 〈fε − f0, vε〉 + ϕ(ε)(δJ1 + δJ2) + o
(
ϕ(ε)

)
.

Finally, using the hypotheses (4.3) and (4.4), we arrive at

Jε(uε) − J0(u0) = ϕ(ε)(δa + δf ) + ϕ(ε)(δJ1 + δJ2) + o
(
ϕ(ε)

)
, (4.8)

which leads to the result. �
4.2. A particular class of cost functions

For the sake of simplicity, we focus here on a particular class of cost functions. It should be
noted however that the theory developed here can be readily extended to other cost functions, on
possibly some additional estimates, similarly to [4,6].
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Theorem 4.2. Suppose that the cost function is of form Jε(u) = J (u) with J : Hm
0 (Ω) → R

satisfying

J (u + h) − J (u) = 〈g,h〉H−m(Ω),Hm(Ω) + O
(‖h‖2) (4.9)

for all u,h ∈ Hm(Ω), where either ‖h‖ = ‖h‖Hm(Ω\N ), with N an arbitrary neighborhood of x̂,
or ‖h‖ = ‖h‖Hm−1(Ω). Then (4.5) and (4.6) hold true for ϕ(ε) = εn and δJ1 = δJ2 = 0.

Proof. We already have (4.6) with δJ2 = 0, since Jε is independent of ε. Then (4.9) yields

Jε(uε) − Jε(u0) − 〈g,uε − u0〉 = O
(‖uε − u0‖2). (4.10)

It will be proved in Lemma 7.1 that ‖vε − v0‖ = o(εn/2), with a similar estimate holding for the
direct state, i.e., ‖uε − u0‖ = o(εn/2). Together with (4.10), this implies (4.5) with δJ1 = 0. �

For example purposes, two common cost functionals for which the above theorem applies
are given below, namely the least-square-type and compliance functionals. We still call N an
arbitrary neighborhood of x̂.

• Tracking-type functional

Jε(u) =
∫
D

|u − ud |2 dx, (4.11)

with ud ∈ L2(D) and D ⊂ Ω \N .
• Compliance functional

Jε(u) =
∫
Ω

f udx, (4.12)

with fε = f independent of ε (see the example in Section 6.2.2).

4.3. Strategy of the proof

We consider in the general setting a family of functionals Jε : Hm
0 (Ω) → R satisfying (4.5)

and (4.6) for some gε = g ∈ H−m(Ω), independent of ε, and ϕ(ε) = εn. As announced in Sec-
tion 2, we also assume for simplicity that fε = f ∈ H−m(Ω) is independent of ε, from which
Eq. (4.4) is straightforwardly satisfied with δf = 0.

According to Theorem 4.1, in order to obtain the general expression (4.7) of the topologi-
cal asymptotic expansion of Jε(uε), the main step will be the evaluation of (4.3). This will be
achieved in Lemmas 4.3 and 4.4 of Section 4.5. An important part of the analysis, which con-
sists of the estimation of the remainders providing the o(ϕ(ε))-term in (4.3), will be deferred to
Section 7.

Let us now start the evaluation of Eq. (4.3). Recall first that in the present context the function
spaces are V = Hm(Ω) and V ′ = H−m(Ω), and the bilinear form aε is defined by
0
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aε(u, v) = 〈
(Aε + Bε)u, v

〉
H−m(Ω),Hm

0 (Ω)
.

Moreover, the background state u0 ∈ Hm
0 (Ω) and the background adjoint state v0 ∈ Hm

0 (Ω) are
respectively defined as the solutions of

(A0 + B0)u0 = f and
(
A0 + B∗

0

)
v0 = −g, (4.13)

with B∗
0 the adjoint operator of B0. Moreover, Eq. (4.2) can be rewritten as

(
Aε + B∗

ε

)
vε = −g.

4.4. Preliminary definitions

We introduce the variation

ṽε := vε − v0, (4.14)

and, in order to prove Eq. (4.3), we define the quantity

Va(ε) := (aε − a0)(u0, vε). (4.15)

To proceed with the analysis of the asymptotic behavior of Va(ε) we shall use the spaces Wm(Rn)

and Wm(Rn)/Pm−1 defined in Appendix C. In the course of the analysis we will need some
auxiliary functions. They are defined thereafter.

First, we define hε ∈ Wm(Rn)/Pm−1 as the solution of

∑
|α|=|β|=m

∫
Rn

ρ̂εaαβDαhεD
βη dx = −(ρ̂1 − ρ̂0)

∑
|α|=|β|=m

∫
ωε

aαβDαv0D
βηdx (4.16)

for all η ∈ Wm(Rn)/Pm−1, with

ρ̂ε(x) =
{

ρ̂0 if x ∈ R
n \ ωε,

ρ̂1 if x ∈ ωε.
(4.17)

We next set

Hε(y) = ε−mhε(x̂ + εy). (4.18)

Then, we define for each γ with |γ | = m the function Ψγ ∈ Wm(Rn)/Pm−1 as the solution of

∑
|α|=|β|=m

∫
Rn

ρ̂aαβDαΨγ (y)DβΦ(y)dy = −(ρ̂1 − ρ̂0)
∑

|β|=m

∫
ω

aγβDβΦ(y)dy (4.19)

for all Φ ∈ Wm(Rn)/Pm−1, with
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ρ̂(y) =
{

ρ̂0 if y ∈ R
n \ ω,

ρ̂1 if y ∈ ω.
(4.20)

Note that the existence and uniqueness of the solutions of (4.16) and (4.19) is a consequence of
Lemma 3.4 and Lemma 3.5. We set

H =
∑

|γ |=m

Dγ v0(x̂)Ψγ . (4.21)

Finally we define the polarization tensor (pαβ) by its entries

pαβ = |ω|(r − 1)aαβ + kαβ, (4.22)

with

r = ρ̂1

ρ̂0
(4.23)

the contrast and

kαγ = (r − 1)
∑

|β|=m

aαβ

∫
ω

DβΨγ (y) dy. (4.24)

4.5. Asymptotic expansion of the bilinear form

Lemma 4.3. For ε sufficiently small, the following expression of (4.15) holds true:

Va(ε) = εnρ̂0

∑
|α|=|β|=m

pαβDαu0(x̂)Dβv0(x̂)

+ εn|ω|
∑

|α|�m
|β|�m−1

qαβDαu0(x̂)Dβv0(x̂) +
5∑

i=1

Ei (ε), (4.25)

with the remainders

E1(ε) = (ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫
ωε

aαβ

(
Dαu0D

βv0 − Dαu0(x̂)Dβv0(x̂)
)
dx

+
∑

|α|�m
|β|�m−1

∫
ωε

qαβ

(
Dαu0D

βv0 − Dαu0(x̂)Dβv0(x̂)
)
dx,

E2(ε) = (ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫
ωε

aαβ

(
Dαu0 − Dαu0(x̂)

)
Dβṽε dx,

E3(ε) =
∑

|α|�m

∫
ωε

qαβDαu0D
βṽε dx,
|β|�m−1
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E4(ε) = (ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫
ωε

aαβDαu0(x̂)Dβ(ṽε − hε)(y) dy,

E5(ε) = εn(ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫
ω

aαβDαu0(x̂)Dβ(Hε − H)(y)dy.

Proof. We have by definition

Va(ε) =
∑

|α|=|β|=m

∫
Ω

(ρε − ρ0)aαβDαu0D
βvε dx +

∑
|α|�m

|β|�m−1

∫
Ω

(aαβ,ε − aαβ,0)D
αu0D

βvε dx,

hence, for ε small enough,

Va(ε) =
∑

|α|=|β|=m

∫
ωε

(ρ̂1 − ρ̂0)aαβDαu0D
βvε dx +

∑
|α|�m

|β|�m−1

∫
ωε

qαβDαu0D
βvε dx.

We make the splitting Va(ε) = V 1
a (ε) + V 2

a (ε) with

V 1
a (ε) = (ρ̂1 − ρ̂0)

∑
|α|=|β|=m

∫
ωε

aαβDαu0D
βv0 dx +

∑
|α|�m

|β|�m−1

∫
ωε

qαβDαu0D
βv0 dx,

V 2
a (ε) = (ρ̂1 − ρ̂0)

∑
|α|=|β|=m

∫
ωε

aαβDαu0D
βṽε dx +

∑
|α|�m

|β|�m−1

∫
ωε

qαβDαu0D
βṽε dx.

• First approximation. With the help of the splitting Dαu0D
βv0 = Dαu0(x̂)Dβv0(x̂) +

[Dαu0D
βv0 − Dαu0(x̂)Dβv0(x̂)] we obviously get

V 1
a (ε) = |ωε|(ρ̂1 − ρ̂0)

∑
|α|=|β|=m

aαβDαu0(x̂)Dβv0(x̂)

+ |ωε|
∑

|α|�m
|β|�m−1

qαβDαu0(x̂)Dβv0(x̂) + E1(ε). (4.26)

• Second and third approximations. Similarly we have

V 2
a (ε) =

∑
|α|=|β|=m

∫
ωε

(ρ̂1 − ρ̂0)aαβDαu0(x̂)Dβṽε dx + E2(ε) + E3(ε). (4.27)

• Fourth approximation. We now approximate ṽε . We have for any η ∈ Hm
0 (Ω):

aε(η, ṽε) = aε(η, vε) − aε(η, v0) = −〈g,η〉 − (aε − a0)(η, v0) − a0(η, v0)

= −(aε − a0)(η, v0). (4.28)
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For ε small enough, we therefore have

∑
|α|=|β|=m

∫
Ω

ρεaαβDαηDβṽε dx +
∑

|α|�m
|β|�m−1

∫
Ω

bαβ,εD
αηDβṽε dx

= −(ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫
ωε

aαβDαηDβv0 dx −
∑

|α|�m
|β|�m−1

∫
ωε

qαβDαηDβv0 dx, (4.29)

which suggests to approximate ṽε in (4.27) by hε , solution of (4.16). We arrive at

V 2
a (ε) = (ρ̂1 − ρ̂0)

∑
|α|=|β|=m

∫
ωε

aαβDαu0(x̂)Dβhε dx + E2(ε) + E3(ε) + E4(ε).

By the change of variable x = x̂ + εy this can be rewritten ass

V 2
a (ε) = εn(ρ̂1 − ρ̂0)

∑
|α|=|β|=m

∫
ω

aαβDαu0(x̂)DβHε(y) dy

+ E2(ε) + E3(ε) + E4(ε). (4.30)

• Fifth approximation. On one hand, plugging hε(x) = εmHε(ε
−1(x − x̂)) and η(x) =

εmφε(ε
−1(x − x̂)) in (4.16) yields after the change of variable x = x̂ + εy in both integrals

of (4.16)

∑
|α|=|β|=m

∫
Rn

ρ̂(y)aαβDαHε(y)Dβφε(y) dy

= −(ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫
ω

aαβDαv0(x̂ + εy)Dβφε(y) dy (4.31)

for every φε ∈ Wm(Rn)/Pm−1, with ρ̂ defined by (4.20). On the other hand, combining (4.19)
and (4.21) results in

∑
|α|=|β|=m

∫
Rn

ρ̂(y)aαβDαH(y)DβΦ(y)dy

= −(ρ̂1 − ρ̂0)
∑

|α|=|β|=m

∫
ω

aαβDαv0(x̂)DβΦ(y)dy (4.32)

for every Φ ∈ Wm(Rn)/Pm−1. On replacing Hε by H + (Hε − H) in (4.30) we obtain

V 2
a (ε) = εn(ρ̂1 − ρ̂0)

∑
|α|=|β|=m

∫
aαβDαu0(x̂)DβH(y)dy +

5∑
i=2

Ei (ε). (4.33)
ω
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Plugging (4.21) into the above yields

V 2
a (ε) = εn(ρ̂1 − ρ̂0)

∑
|α|=|β|=|γ |=m

∫
ω

aαβDαu0(x̂)Dγ v0(x̂)DβΨγ (y) dy +
5∑

i=2

Ei (ε).

After rearrangement we obtain

V 2
a (ε) = εnρ̂0

∑
|α|=|γ |=m

kαγ Dαu0(x̂)Dγ v0(x̂) +
5∑

i=2

Ei (ε), (4.34)

with kαβ defined by (4.24). Altogether we arrive at

Va(ε) = εn
∑

|α|=|β|=m

(|ω|(ρ̂1 − ρ̂0)aαβ + ρ̂0kαβ

)
Dαu0(x̂)Dβv0(x̂) +

5∑
i=1

Ei (ε).

The expression (4.22) of the polarization tensor leads to (4.25). �
The following lemma provides the appropriate estimates for the remainders Ei (ε). This is the

core of the analysis. The proof is given in Section 7.

Lemma 4.4. Suppose that f and g are of regularity Hs in a neighborhood of x̂ with s >

max(0, n
2 + 1 − m). Then the remainders Ei (ε) in Lemma 4.3 satisfy |Ei (ε)| = o(εn) for each

i = 1,2,3,4,5.

4.6. Topological sensitivity analysis of the cost function

We are now in a position to provide the asymptotic expansion of the cost function.

Theorem 4.5. For every ε sufficiently small let uε be the solution of (2.6). Suppose that the cost
function Jε is such that (4.5) and (4.6) hold true for ϕ(ε) = εn and gε = g independent of ε, and
that f,g are of regularity Hs in a neighborhood of x̂ with s > max(0, n

2 + 1 −m). Then we have

Jε(uε) − J0(u0) = εn

[
ρ̂0

∑
|α|=|β|=m

pαβDαu0(x̂)Dβv0(x̂)

+ |ω|
∑

|α|�m
|β|�m−1

qαβDαu0(x̂)Dβv0(x̂) + δJ1 + δJ2

]
+ o

(
εn

)
, (4.35)

with the entries of the polarization tensor (pαβ)|α|=|β|=m given by (4.22), and u0, v0 solutions
of (4.13).
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Proof. By Lemmas 4.3 and 4.4 and Definition 5.3, Eq. (4.3) is satisfied with ϕ(ε) = εn and

δa := ρ̂0

∑
|α|=|β|=m

pαβDαu0(x̂)Dβv0(x̂) + |ω|
∑

|α|�m
|β|�m−1

qαβDαu0(x̂)Dβv0(x̂).

The claim follows from Theorem 4.1. �
Remark 4.6. If the source term f = fε depends on ε, then (4.35) is simply modified by the addi-
tion of the extra term εnδf , which stems from (4.4). If now the function gε which satisfies (4.5)
depends on ε, then (4.28) changes, which results in the additional term 〈gε − g0, η〉 at the right
hand side of (4.29). If ‖gε − g0‖H−m(Ω) = o(εn/2), then we still have |ṽε − hε|Hm(Ω) = o(εn/2)

in Lemma 7.1, therefore formula (4.35) remains unchanged. But if ‖gε − g0‖H−m(Ω) is of or-
der εn/2, then an extra term appears in (4.35). For an example we refer to [6] where such a term
has been computed for the Kirchhoff plate problem. Note that the regularity conditions f,g ∈ Hs

apply to f0 and g0.

Remark 4.7. Although the condition ρ̂1 > 0 has been used in several places, the topological
asymptotic expansion for Neumann holes can be rigorously obtained by taking the value ρ̂1 = 0
in the computation of the polarization tensor, provided that (4.19) still admits a solution (neces-
sarily non-unique) for this value. The proof of this claim is rather technical, and has been done
for the Laplace operator and the Kirchhoff plate problem in [4] and [6], respectively. The same
idea applies here, therefore we do not reproduce the proof.

5. A class of degenerate problems

5.1. Degenerate expression of the polarization tensor

Definition 5.1 (Degenerate polarization tensor). We say that the polarization tensor (4.22) is
degenerate when its entries do not remain bounded when the contrast r tends to zero.

In particular, when the polarization tensor is degenerate, the topological sensitivity for Neu-
mann holes is not defined, see Remark 4.7. This situation occurs when the cost functional is
discontinuous with respect to the nucleation of a Neumann hole, and it is observed for instance
in dimension n = 1 for the Laplacian (see Section 6.2). We will see that it can also occur in
higher dimension, but for higher order operators.

The goal of this section is to give a sufficient condition of degeneracy, as well as to provide
an explicit expression of the polarization tensor in this case. To this aim we introduce the family
of piecewise constant functions ζαγ : Rn →R defined by

ζαγ (x) =
{

− ρ̂1−ρ̂0
ρ̂1

δαγ if x ∈ ω,

0 if x ∈ R
n \ ω,

(5.1)

with δαγ = 1 if α = γ , δαγ = 0 otherwise. We have for all Φ ∈ Wm(Rn)/Pm−1:

∑
|α|=|β|=m

∫
n

ρ̂aαβζαγ DβΦ(y)dy = −(ρ̂1 − ρ̂0)
∑

|β|=m

∫
aγβDβΦ(y)dy. (5.2)
R ω
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In the definition of the polarization tensor, (4.19) appeared as a critical step. Accordingly the
following assumption is made.

Assumption 5.2. For any multi-indices γ with |γ | = m, there exists a function Ψγ ∈
Wm(Rn)/Pm−1 satisfying

∑
|α|=m

aαβDαΨγ =
∑

|α|=m

aαβζαγ ∀β, |β| = m. (5.3)

It immediately stems from Assumption 5.2, using (5.2), that Ψγ solves (4.19). Hence (4.24)
results in:

kαγ =
(

ρ̂1

ρ̂0
− 1

)∫
ω

∑
|β|=m

aαβDβΨγ (y) dy =
(

ρ̂1

ρ̂0
− 1

)∫
ω

∑
|β|=m

aαβζβγ

= −
(

ρ̂1

ρ̂0
− 1

) ∑
|β|=m

aαβ

ρ̂1 − ρ̂0

ρ̂1
|ω|δβγ = −aαγ

(ρ̂1 − ρ̂0)
2

ρ̂1ρ̂0
|ω|, (5.4)

with |ω| the n-dimensional Lebesgue measure of ω. Moreover, plugging (5.4) into (4.22) pro-
vides the following closed formula for the polarization tensor.

Proposition 5.3 (Degenerate polarization tensor). If Assumption 5.2 is fulfilled, then we have

pαγ = |ω|
(

1 − 1

r

)
aαγ . (5.5)

We also note that, in addition to be degenerate in the sense of Definition 5.1, the polarization
tensor (5.5) is independent of the shape of ω.

5.2. Characterization of a degenerate problem

We shall now give sufficient conditions for Assumption 5.2 to be satisfied. To do so, set
q = �{α ∈N

n, |α| = m} and define the linear map

Λ :Rq →R
q

(Uα)|α|=m 
→ (Vβ)|β|=m

such that

Vβ =
∑

|α|=m

aαβUα.

We recall the following general result from [20, Theorem 7.1.20].
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Theorem 5.4. If P is a homogeneous elliptic (i.e. P(ξ) = 0 ⇒ ξ = 0) polynomial of degree p

in R
n, then the differential operator P(D) has a fundamental solution of the form

E = E0 − Q(x) log |x|, (5.6)

where E0 is homogeneous of degree p − n, C∞ and analytic in R
n \ {0} and Q is a polynomial

which is identically 0 when n > p and is homogeneous of order p − n when n � p. (Cf. [20] for
its explicit expression.)

Corollary 5.5. Let E be the fundamental solution introduced in Theorem 5.4 and α ∈ N
n be such

that |α| = k. For all R > 1 there exists c > 0 such that, for all x ∈R
n with |x| > R,

if n > p,
∣∣DαE(x)

∣∣ � c|x|p−n−k,

if n � p,
∣∣DαE(x)

∣∣ � c|x|p−n−k log |x|.

Proof. We first concentrate on the term E0 of the decomposition (5.6). For all (r, υ) ∈ R+ ×R
n

we have

E0(rυ) = rp−nE0(υ).

Differentiating k times with respect to υ in the direction (δυ1, . . . , δυk) gives

dkE0(rυ)(rδυ1, . . . , rδυk) = rp−ndkE0(υ)(δυ1, . . . , δυk),

whereby ∥∥dkE0(rυ)
∥∥ = rp−n−k

∥∥dkE0(υ)
∥∥.

Choosing now x = rυ , with |υ| = 1 yields∥∥dkE0(x)
∥∥ = |x|p−n−k

∥∥dkE0(υ)
∥∥ � c|x|p−n−k,

which in turn implies ∣∣DαE0(x)
∣∣ � c|x|p−n−k ∀|α| = k.

This provides the result for n > p. We now assume that n � p. Similarly to the previous calcu-
lation we obtain ∣∣DαQ(x)

∣∣ � c|x|p−n−k ∀|α| = k. (5.7)

Denoting by Ẽ(x) = Q(x) log |x|, we have, for some coefficients cαβ � 0,

Dγ Ẽ(x) = Dγ Q(x) log |x| +
∑

|α|+|β|=|γ |
cαβDαQ(x)Dβ

(
log |x|).
|β|�1



S. Amstutz et al. / J. Differential Equations 256 (2014) 1735–1770 1751
Using (5.7) we get whenever |γ | = k and |x| > R:∣∣Dγ Ẽ(x)
∣∣ � c|x|p−n−k log |x| + c

∑
|α|+|β|=k

|β|�1

|x|p−n−|α||x|−|β| � c|x|p−n−k log |x|.

Thus we get the results. �
We now state and prove one of the main results of our work, which allows to easily determine

whether the polarization tensor associated to an elliptic problem of order 2m is degenerate in the
sense of Definition 5.1.

Theorem 5.6. Suppose that rank(Λ) = 1. Then Assumption 5.2 is fulfilled. In consequence the
polarization tensor admits the expression (5.5), hence it is degenerate.

Proof. Let V = (Vβ)|β|=m ∈ im(Λ) be such that Vβ̄ �= 0 for some β̄ . Since dim(imΛ) = 1 we
have imΛ = span(V ) and

Λ
((

DαΨ
)
|α|=m

) = V ⇔
∑

|α|=m

aαβ̄DαΨ = Vβ̄ . (5.8)

For V defined by Vβ = ∑
|α|=m aαβζαγ , γ fixed, a solution to the rightmost equality of (5.8) is

given by

Ψγ = E ∗ Vβ̄,

where E is the fundamental solution of the operator
∑

|α|=m aαβ̄Dα . Let us show that the
polynomial P(ξ) = ∑

|α|=m aαβ̄ξα associated to this operator is elliptic. Thus, assume that
P(ξ) = 0. For |α| = m we set Uα = ξα , and we define U = (Uα)|α|=m. We have [Λ(U)]β̄ =
P(ξ) = 0, and since Λ(U) ∈ span(V ) (i.e., Λ(U) = λV for some λ) with Vβ̄ �= 0, we in-

fer Λ(U) = 0. Therefore,
∑

|α|=m aαβξα = 0 for every β with |β| = m. Multiplying by ξβ

and summing over |β| = m, this implies
∑

|α|=|β|=m aαβξα+β = 0. By the uniform elliptic-
ity assumption (2.4) we derive ξ = 0. Therefore, the fundamental solution of the operator
P(D) = ∑

|α|=m aαβ̄Dα satisfies Theorem 5.4. Using Corollary 5.5 with p = m, it is easily
checked that E ∈ Wm(Rn) (defined in Appendix C). Hence Ψγ ∈ Wm(Rn) as well, and the proof
is achieved. �
6. Selected applications

6.1. Examples of operators

In this section we review some classical elliptic operators. As the polarization tensor only
depends on the principal symbol, we restrict our presentation to homogeneous operators, i.e., we
assume that bαβ,ε ≡ 0. In order to check the uniform ellipticity condition, we set

P(ξ) =
∑

|α|=|β|=m

aαβξα+β.
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6.1.1. In dimension n = 1
We have |α| = m ⇒ α = (m), hence q = 1 and rank(Λ) = 1 for every m � 1. This case is

always degenerate and the topological asymptotic expansion for ω being the interval (−1,1) is
given by

Jε(uε) − J0(u0) = ε

[
2ρ̂0

(
1 − 1

r

)
dmu0

dxm
(x̂)

dmv0

dxm
(x̂) + δJ1 + δJ2

]
+ o(ε).

6.1.2. Laplacian in dimension n � 2
We have m = 1, hence q = n. Let (ei)i=1,...,n be the canonical basis of Rn. The bilinear form

is

aε(u, v) =
∫
Ω

ρε∇u.∇v dx =
n∑

i=1

∫
Ω

ρεD
ei uDei v dx,

hence P(ξ) = |ξ |2. In the basis formed by the vectors (ei)i=1,...,n the matrix of Λ is the identity
matrix of order n, hence rank(Λ) = n. This case is not degenerate. The polarization tensor is
explicitly known for ellipses and ellipsoids, see e.g. [3,4].

6.1.3. Bi-Laplacian
For this operator we have m = 2 and the bilinear form is

aε(u, v) =
∫
Ω

ρε�u�v dx.

This yields P(ξ) = |ξ |4. Let us first focus for simplicity on the dimension n = 2. Ordering the
family (α ∈N

2, |α| = 2) as ((2,0), (0,2), (1,1)) the matrix of Λ in the canonical basis of R3 is

A =
(1 1 0

1 1 0
0 0 0

)
.

It is immediately checked that A � 0 and rank(Λ) = rank(A) = 1. This case is thus degenerate.
The same thing occurs in any dimension n, with, using a similar ordering, a matrix having as
only nonzero coefficients an n × n upper left block of ones. Therefore we have in any dimension
the topological asymptotic expansion:

Jε(uε) − J0(u0) = εn

[
ρ̂0|ω|

(
1 − 1

r

)
�u0(x̂)�v0(x̂) + δJ1 + δJ2

]
+ o

(
εn

)
.

6.1.4. Kirchhoff plate model
For this fourth order operator (m = 2) in dimension n = 2, the bilinear form is

aε(u, v) = k

∫
ρε(λ�u�v + 2μ∇∇u : ∇∇v)dx,
Ω
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where k = τ 3/12, τ > 0 is the thickness of the plate, λ,μ � 0 are the Lamé coefficients. This
entails P(ξ) = k(λ + 2μ)|ξ |4, which is uniformly elliptic provided that either λ > 0 or μ > 0. In
the same basis as in the previous case, the matrix of Λ is

A = k

(
λ + 2μ λ 0

λ λ + 2μ 0
0 0 4μ

)
� 0.

We find detA = 16k3μ2(λ + μ), hence rank(A) = 3 provided that μ > 0. The problem is thus
non-degenerate. The polarization tensor for a circular inclusion has been obtained in [6].

6.2. Numerical illustrations

6.2.1. One-dimensional problem
We consider the compliance functional associated to a second order one-dimensional equa-

tion, where, for 0 < a < 1/2, the source term f has the form:

f (x) =
{

2, 0 < x < a,

0, a � x < 1.

The cost functional associated to the unperturbed problem reads

J0(u0) =
1∫

0

f u0 = 2

a∫
0

u0,

with u0 solution to

⎧⎨⎩
−u′′

0(x) = 2, 0 < x < a,

−u′′
0(x) = 0, a � x < 1,

u0(0) = u0(1) = 0.

The expression of u0 can be easily shown to be

u0(x) =
{−x2 − a2x + 2ax, 0 < x < a,

−a2(x − 1), a � x < 1.

The compliance associated to the perturbed problem reads

Jε(uε) =
1∫
f uε = 2

a∫
uε,
0 0
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Fig. 1. One-dimensional case: Solutions u0(x) and uε(x) for a = 1/4.

with uε solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u′′
ε (x) = 2, 0 < x < a,

−u′′
ε (x) = 0, a � x <

1

2
− ε,

−u′′
ε (x) = 0,

1

2
+ ε < x < 1,

u′
ε

(
1

2
− ε

)
= u′

ε

(
1

2
+ ε

)
= 0,

uε(0) = uε(1) = 0.

This means that the domain is topologically perturbed by the introduction of a hole of size 2ε,
with homogeneous Neumann boundary condition. The explicit solution is given by

uε(x) =

⎧⎪⎨⎪⎩
−x2 + 2ax, 0 < x < a,

a2, a � x < 1
2 − ε,

0, 1
2 + ε < x < 1.

The solutions u0 and uε are represented in Fig. 1 for a = 1/4. As we have already mentioned,
this is a degenerate case. In fact, in this simple example the difference between Jε(uε) and J0(u0)

is explicitly given by a jump independent of ε, namely

Jε(uε) − J0(u0) = a4.

This means that the cost functional Jε(uε) is not continuous with respect ε. Hence, the topologi-
cal derivative for a Neumann hole is not defined.

6.2.2. Bi-Laplacian operator
Let us consider three balls B1,Ba,Bε ∈ R

2 with centers at the origin and radii 1, a and
ε, respectively, such that ε < a < 1. We consider the compliance functional associated to the
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bi-Laplacian operator with source term

f (x) =
{

8 if x ∈ B1 \ Ba,

0 if x ∈ Ba.

The cost functional associated to the unperturbed problem reads

J0(u0) =
∫
B1

f u0 = 8
∫

B1\Ba

u0,

with u0 solution to ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�2u0 = 8 in B1 \ Ba,

�2u0 = 0 in Ba,

u0 = 0

∂nu0 = 0

}
on ∂B1.

For the perturbed problem with a homogeneous Neumann condition on the boundary of a hole
Bε the cost functional is

Jε(uε) =
∫
B1

f uε = 8
∫

B1\Ba

uε,

with uε solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�2uε = 8 in B1 \ Ba,

�2uε = 0 in Ba \ Bε,

uε = 0

∂nuε = 0

}
on ∂B1,

�uε = 0

∂n�uε = 0

}
on ∂Bε.

Using a polar coordinate system (r, θ), we find analytical expressions for both u0 and uε by
separation of variables, as plotted in Fig. 2. Due to the axis-symmetry of the problems, their
solutions can be written in terms of r only, as shown in Fig. 3. In this example the difference
between Jε(uε) and J0(u0) is again given by a jump independent of ε, namely

Jε(uε) − J0(u0) = π
(
a4 − 4a2 loga − 1

)2
.

The cost functional Jε(uε) is not continuous with respect to ε at ε = 0, which confirms that this
case is degenerate.
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Fig. 2. Bi-Laplacian case: solutions u0 and uε � 0.3 for a = 1/2.

Fig. 3. Bi-Laplacian case: profile of the solutions u0(r) and uε(r � 0.1) for a = 1/2.

7. Estimation of the remainders

This section is devoted to the proof of Lemma 4.4. We will use the letter c to denote a generic
positive constant independent of ε.

7.1. Preliminary estimates

Recall that we have defined

ṽε = vε − v0 ∈ Hm
0 (Ω).

We introduce the difference

eε = ṽε − hε ∈ Hm(Ω)/Pm−1,

where hε ∈ Wm(Rn)/Pm−1 solves (4.16). Moreover, we set

ρ̃ε(x) =
{

ρε(x) if x ∈ Ω,

ρ̂0 if x ∈R
n \ Ω.

Lemma 7.1. Let a > 0 be such that the open ball of center x̂ and radius a, denoted by Ba , is
contained in Ω , and choose an arbitrary δ′ ∈ (0,1/2). For ε small enough we have that
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|hε|Hm(Rn\Ba) � cεn−δ′
, |eε|Hm(Ω) � cεn/2+δ′′

, (7.1)

‖ṽε‖Hm(Ω) � cεn/2, ‖ṽε‖Hm(Ω\Ba) � cεn/2+δ′′
, ‖ṽε‖Hm−1(Ω) � cεn/2+δ′′

(7.2)

for some δ′′ > 0.

Proof. The proof is divided into five steps.
• First step: estimation of |hε|Hm(Rn). By elliptic regularity applied to (4.31) (see Lemmas 3.4

and 3.5) we get ‖Hε‖Wm(Rn)/Pm−1 � c, hence in particular

|Hε|Hm(Rn) � c. (7.3)

A change of variable results in

|hε|Hm(Rn) � cεn/2. (7.4)

• Second step: estimation of |hε|Hm(Rn\Ba). We derive from (4.31) that, for all φε ∈
Wm(Rn)/Pm−1,

∑
|α|=|β|=m

∫
Rn

ρ̂0aαβDαHε(y)Dβφε(y) dy (7.5)

=
∑

|α|=|β|=m

∫
Rn

ρ̂aαβDαHε(y)Dβφε(y) dy +
∑

|α|=|β|=m

∫
ω

(ρ̂0 − ρ̂1)aαβDαHε(y)Dβφε(y) dy

= (ρ̂0 − ρ̂1)
∑

|α|=|β|=m

∫
ω

aαβDαv0(x̂ + εy)Dβφε(y) dy

+ (ρ̂0 − ρ̂1)
∑

|α|=|β|=m

∫
ω

aαβDαHε(y)Dβφε(y) dy

= (ρ̂0 − ρ̂1)
∑

|α|=|β|=m

∫
ω

aαβ

(
Dαv0(x̂ + εy) + DαHε(y)

)
Dβφε(y) dy. (7.6)

We define the distribution Tε ∈D′(Rn) by

〈Tε, η〉 = (ρ̂0 − ρ̂1)
∑

|α|=|β|=m

∫
ω

aαβ

(
Dαv0(x̂ + εy) + DαHε(y)

)
Dβη(y)dy.

We therefore have, in the sense of distributions,

(−1)m
∑

|α|=|β|=m

ρ̂0aαβDα+βHε = Tε. (7.7)

We call E the fundamental solution of the differential operator (−1)m
∑

|α|=|β|=m ρ̂0aαβDα+β ,
whereby a solution of (7.7) is given by H •

ε = Tε ∗ E. By elliptic regularity, since clearly
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Tε ∈ H−m(Rn), we have H •
ε ∈ Hm

loc(R
n). In addition, if dist(x,ω) > 0 we have the expres-

sions

H •
ε (x) = (ρ̂0 − ρ̂1)

∑
|α|=|β|=m

∫
ω

aαβ

(
Dαv0(x̂ + εy) + DαHε(y)

)
DβE(x − y)dy

and

Dγ H •
ε (x) = (ρ̂0 − ρ̂1)

∑
|α|=|β|=m

∫
ω

aαβ

(
Dαv0(x̂ + εy) + DαHε(y)

)
Dγ+βE(x − y)dy. (7.8)

The Cauchy–Schwarz inequality applied to (7.8) implies

∣∣Dγ H •
ε (x)

∣∣ � c
∑

|β|=m

(∫
ω

∣∣Dγ+βE(x − y)
∣∣2

dy

)1/2

.

By Corollary 5.5 with p = 2m we infer that, for any R > 2, δ′ ∈ (0,1/2) and |γ | = m − k such
that ω ⊂ B(0,R/2), ∣∣Dγ H •

ε (x)
∣∣ � c|x|k−n+δ′ ∀|x| > R. (7.9)

This implies in particular that H •
ε ∈ Wm(Rn), and by uniqueness that H •

ε is a representa-
tive for Hε . Recalling that hε(x) = εmHε(ε

−1(x − x̂)), we select the representative h•
ε(x) =

εmH •
ε (ε−1(x − x̂)), hence

Dγ h•
ε(x) = εkDγ H •

ε

(
ε−1(x − x̂)

)
, |γ | = m − k. (7.10)

From (7.9) we derive∣∣Dγ hε(x)
∣∣ � cεk

∣∣ε−1(x − x̂)
∣∣k−n+δ′

= cεn−δ′ |x − x̂|k−n+δ′ ∀|x| > εR, |γ | = m − k. (7.11)

Therefore, choosing an arbitrary a > 0, we obtain∥∥h•
ε

∥∥
Wm(Rn\Ba)

� cεn−δ′
(7.12)

for any ε small enough. In particular this yields |hε|Hm(Rn\Ba) � cεn−δ′
.

• Third step: estimation of ‖hε‖Hm−1(Ω). From (7.9) we obtain, for |γ | = m − k,

∥∥Dγ H •
ε

∥∥
L2(C(R,ε−1R0))

� cε
n
2 −k−δ′ + c (7.13)

and ∥∥Dγ H •∥∥
2 � c,
ε L (C(R,2R))
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where C(a, b) stands for the ring of radii a and b. The above inequality together with (7.3) yields,
thanks to the Poincaré inequality, that ∥∥H •

ε

∥∥
Hm(BR)

� c. (7.14)

Combining (7.13) and (7.14) we arrive at∥∥Dγ H •
ε

∥∥
L2(B

ε−1R0
)
� c + cε

n
2 −k−δ′

.

A change of variables provides∥∥Dγ h•
ε

∥∥
L2(Ω)

� cεk+ n
2 + cεn−δ′

.

For k � 1, as δ′ ∈ (0, n/2), the right hand side of the above inequality is of order O(ε
n
2 +δ′′

) for
some δ′′ > 0. It follows that ∥∥h•

ε

∥∥
Hm−1(Ω)

� cε
n
2 +δ′′

. (7.15)

• Fourth step: estimation of |eε|Hm(Ω). We set

〈Âεu, v〉H−m(Ω),Hm
0 (Ω) =

∑
|α|=|β|=m

∫
Ω

ρ̂εaαβDαuDβv dx

so that, in view of (4.16) applied to the selected representative h•
ε and for a test function η ∈

Hm
0 (Ω) extended by 0, we have

Âεh
•
ε = −(Âε − Â0)v0.

Recalling that (
Aε + B∗

ε

)
vε = (

A0 + B∗
0

)
v0 = −g,

we find (
Aε + B∗

ε

)
ṽε = −(

Aε − A0 + B∗
ε − B∗

0

)
v0.

This entails, for e•
ε = ṽε − h•

ε ,(
Aε + B∗

ε

)
e•
ε = Sε := −(Aε − Âε)h

•
ε − B∗

ε h•
ε − (

Aε − A0 − Âε + Â0 + B∗
ε − B∗

0

)
v0. (7.16)

In addition it holds e•
ε = −h•

ε on ∂Ω . By Proposition 3.3 and classical arguments of elliptic
regularity and trace theory we infer that∥∥e•

ε

∥∥
Hm(Ω)

� c
(‖Sε‖H−m(Ω) + ∥∥h•

ε

∥∥
Wm(Rn\Ba)

)
.

Yet for every η ∈ Hm(Ω) we have
0
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〈Sε, η〉H−m(Ω),Hm
0 (Ω)

= −
∑

|α|=|β|=m

∫
Ω

(ρε − ρ̂ε)aαβDαh•
εD

βη dx −
∑

|α|�m
|β|�m−1

∫
Ω

bαβ,εD
αηDβh•

ε dx

−
∑

|α|=|β|=m

∫
Ω

(ρε − ρ0 − ρ̂ε + ρ̂0)aαβDαv0D
βηdx −

∑
|α|�m

|β|�m−1

∫
ωε

qαβDαηDβh•
ε dx.

Using (7.12), (7.15), and the fact that ρε − ρ0 = ρ̂ε − ρ̂0 for every ε small enough, we get

〈Sε, η〉H−m(Ω),Hm
0 (Ω) � cε

n
2 +δ′′‖η‖Hm(Ω).

Using once more (7.12) we arrive at

∥∥e•
ε

∥∥
Hm(Ω)

� cε
n
2 +δ′′

. (7.17)

• Fifth step: estimates on ṽε . From (7.1) and ṽε = h•
ε + e•

ε we derive |ṽε|Hm(Ω\Ba) � cε
n
2 +δ′′

.
The Poincaré inequality entails ‖ṽε‖Hm(Ω\Ba) � cε

n
2 +δ′′

. Likewise, (7.4) yields ‖ṽε‖Hm(Ω) �
cε

n
2 . We also derive from (7.15) and (7.17)

‖ṽε‖Hm−1(Ω) � cε
n
2 +δ′′

. (7.18)

All the estimates are now proven. �
We are now in a position to estimate the remainders Ei (ε), i = 1,2,3,4,5 of Lemma 4.3.

7.2. First remainder

Due to the assumed regularity of f and g, it follows that Dαu0 and Dαv0 are C1 in a neigh-
borhood of x̂. By the mean value inequality we arrive at

∣∣E1(ε)
∣∣ � cεn+1.

7.3. Second remainder

The Cauchy–Schwarz inequality entails

E2(ε) � cε
√|ωε||ṽε|Hm(Ω).

Using Lemma 7.1 we straightforwardly get

∣∣E2(ε)
∣∣ � cεn+1.
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7.4. Third remainder

The Cauchy–Schwarz inequality yields

∣∣E3(ε)
∣∣ � c‖1‖L2(ωε)

|ṽε|Hm−1(Ω).

From Lemma 7.1 we infer

∣∣E3(ε)
∣∣ � cεn+δ′′

.

7.5. Fourth remainder

The Cauchy–Schwarz inequality yields

∣∣E4(ε)
∣∣ � c‖1‖L2(ωε)

|eε|Hm(Ω).

Then Lemma 7.1 entails

∣∣E4(ε)
∣∣ � cεn+δ′′

.

7.6. Fifth remainder

We begin by observing that, subtracting (4.32) from (4.31), one gets for any φ ∈ Wm(Rn)

∑
|α|=|β|=m

∫
Rn

ρ̂(y)aαβDα(Hε − H)(y)Dβφ dy

= −
∑

|α|=|β|=m

∫
ω

(ρ̂1 − ρ̂0)aαβ

(
Dαv0(x̂ + εy) − Dαv0(x̂)

)
Dβφ(y)dy.

Applying the Cauchy–Schwarz inequality to the right hand side and using the C1 regularity of v0
we get ∣∣∣∣ ∑

|α|=|β|=m

∫
Rn

ρ̂(y)aαβDα(Hε − H)(y)Dβφ dy

∣∣∣∣ � cε|φ|Hm(Rn).

By elliptic regularity (see Lemma 3.4) we infer that

|Hε − H |Hm(Rn) � cε.

This implies by the Cauchy–Schwarz inequality that

∣∣E5(ε)
∣∣ � cεn+1.
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8. Generalization to elliptic systems

We explain here how the previous results can be generalized to the differential systems. We
restrict ourselves to homogeneous differential operators merely for notational simplicity. We
concentrate on the main changes, that is, the expression of the polarization tensor.

8.1. General case

We consider now a vector field uε = (u1
ε, . . . , u

N
ε ) ∈ Hm

0 (Ω)N solution of

∑
ij

∑
α,β

∫
Ω

ρεa
ij
αβDαui

εD
βηj dx =

∑
i

〈
f i, ηi

〉 ∀η ∈ Hm
0 (Ω)N .

By convention Latin indices, written as superscripts, range over the set {1, . . . ,N}, whereas
Greek multi-indices are of length n. The system coefficients (a

ij
αβ) are supposed to satisfy the

following properties.

• Symmetry: it holds for every α,β, i, j

a
ij
αβ = a

ji
βα. (8.1)

• Positivity: for any family of real numbers (yi
α) it holds∑

ij

∑
αβ

a
ij
αβyi

αy
j
β � 0. (8.2)

• Uniform ellipticity: there exists κ > 0 such that∑
ij

∑
αβ

a
ij
αβξα+βzi z̄j � κ|ξ |2m

∑
i

|zi |2 ∀(ξ, z) ∈ R
n ×C

N. (8.3)

Based on these assumptions the asymptotic analysis can be easily generalized, which is left to
the reader. This leads to define the function H = (H 1, . . . ,HN), instead of (4.32), as the solution
of ∑

ij

∑
αβ

∫
Rn

ρ̂(y)a
ij
αβDαHi(y)DβΦj (y) dy

= −(ρ̂1 − ρ̂0)
∑
ij

∑
αβ

∫
ω

a
ij
αβDαvi

0(x̂)DβΦj (y) dy (8.4)

for every family of functions Φ1, . . . ,ΦN ∈ Wm(Rn)/Pm−1. By linearity, we have

Hi =
∑∑

Dγ vl
0(x̂)Ψ il

γ , (8.5)

l γ
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with Ψ il
γ ∈ Wm(Rn)/Pm−1 solving, for each γ, l,

∑
ij

∑
αβ

∫
Rn

ρ̂(y)a
ij
αβDαΨ il

γ (y)DβΦj (y) dy = −(ρ̂1 − ρ̂0)
∑
j

∑
β

∫
ω

a
lj
γβDβΦj (y) dy (8.6)

for all Φ1, . . . ,ΦN ∈ Wm(Rn)/Pm−1. The polarization tensor (p
ij
αβ) is defined by

p
ij
αβ = |ω|(r − 1)a

ij
αβ + k

ij
αβ, (8.7)

with

kil
αγ = (r − 1)

∑
j

∑
β

a
ij
αβ

∫
ω

DβΨ jl
γ (y) dy. (8.8)

Theorem 8.1. Suppose that the cost function Jε is such that (4.5) and (4.6) hold true for
ϕ(ε) = εn and gε = g independent of ε, and that f , g are of regularity Hs in a neighborhood
of x̂, s > max(0, n

2 + 1 − m). Then we have

Jε(uε) − J0(u0) = εn

[
ρ̂0

∑
ij

∑
αβ

p
ij
αβDαui

0(x̂)Dβv
j

0 (x̂) + δJ1 + δJ2

]
+ o

(
εn

)
.

8.2. Degenerate case

We introduce the family of piecewise constant functions ζ il
αγ :Rn → R defined by

ζ il
αγ (x) =

{
− ρ̂1−ρ̂0

ρ̂1
δil
αγ if x ∈ ω,

0 if x ∈ R
n \ ω,

(8.9)

with δil
αγ = 1 if α = γ and i = l, δil

αγ = 0 otherwise. Assumption 5.2 is modified as follows.

Assumption 8.2. For any γ, l, there exist functions Ψ il
γ ∈ Wm(Rn)/Pm−1 satisfying

∑
i

∑
α

a
ij
αβDαΨ il

γ =
∑

i

∑
α

a
ij
αβζ il

αγ ∀β, j. (8.10)

We arrive at the following expression of the polarization tensor.

Proposition 8.3 (Degenerate polarization tensor). If Assumption 8.2 is fulfilled, then we have

pil
αγ = |ω|

(
1 − 1

r

)
ail
αγ . (8.11)
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9. Conclusion

In this work we have derived the general form of the topological asymptotic expansion for a
wide range of linear elliptic operators of order 2m. We have also identified a class of degenerate
problems, for which the closed formulation of the polarization tensor has been obtained. We have
given a simple algebraic criterion to recognize the degenerate cases, and we have shown that a
typical example of degenerate operator is the bi-Laplacian. As a consequence, the physical mod-
els whose state equations obey a PDE involving the bi-Laplacian will exhibit peculiar nucleation
properties. By nucleation it is here meant changes of the physical properties of the body by re-
moving and adding infinitesimal quantities of different materials with a view to the minimization
of a cost function, usually taken as the energy of the model. As an example, heterogeneities in
an elastic continuum can be modeled as small strain gradient perturbations, which in the scalar
setting would mean an energy comprising a term of the form ε|�u|2, with u standing for the
displacement and ε a small parameter, and a state equation thereby involving �2 (see [15] where
such a problem is treated in the framework of homogenization). Another example is provided
by time-dependent phase-change models involving Cahn–Hilliard type equations; a recent appli-
cation in geology which could also fit our setting has been numerically studied in [21]. Finally
we mention that the dislocation problem [26] which involves the bi-Laplacian (as a simplified
model for the incompatibility operator appearing in elasticity of dislocated elastic bodies) will
be further analyzed with a view to the results developed in the present paper.
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Appendix A. Proof of Lemma 3.1

We use the standard notation û for the Fourier–Plancherel transform of u ∈ L2(Rn), z for the
complex conjugate of z and |z| for the modulus of z.

By density, we can assume that u belongs to D(Ω), the set of compactly supported and
infinitely differentiable functions defined in Ω . Next we extend u by zero outside Ω . Due
to the positivity assumption, the function

∑
|α|=|β|=m aαβDαuDβu is nonnegative. Thus, with

ρ = min(essinfΩ ρ0, ρ̂1), we have

〈Aεu,u〉H−m(Ω),Hm
0 (Ω) � ρ

∑
|α|=|β|=m

aαβ

∫
Ω

DαuDβudx.

Passing to the Fourier transform, we have by the Parseval equality

〈Aεu,u〉H−m(Ω),Hm
0 (Ω) � ρ

∑
|α|=|β|=m

aαβ

∫
n

D̂αuD̂βudξ = ρ
∑

|α|=|β|=m

aαβ

∫
n

ξα+β |̂u|2 dξ.
R R
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The uniform ellipticity assumption yields

〈Aεu,u〉H−m(Ω),Hm
0 (Ω) � ρκ

∫
Rn

|ξ |2m |̂u|2 dξ.

The expansion of |ξ |2m = (
∑n

i=1 ξ2
i )m results in an expression of the form

|ξ |2m =
∑

|α|=m

cαξ2α

for some coefficients cα � c > 0. This entails

〈Aεu,u〉H−m(Ω),Hm
0 (Ω) � ρκ

∑
|α|=m

cα

∫
Rn

∣∣ξαû
∣∣2

dξ � ρκc
∑

|α|=m

∫
Rn

∣∣ξαû
∣∣2

dξ.

Using again the Parseval equality leads to

〈Aεu,u〉H−m(Ω),Hm
0 (Ω) � ρκc

∑
|α|=m

∫
Ω

∣∣Dαu
∣∣2

dx = ρκc|u|2Hm(Ω).

Appendix B. Collectively compact operators

Let X be a Banach space and K be a subset of L(X), where L(X) is the set of bounded
linear operators from X into itself. We say that K is collectively compact if the set {Kx, x ∈ X,

‖x‖ � 1, K ∈K} is relatively compact. The following result is a corollary of Theorem 1.6 of [9].
A proof can be found in [5].

Theorem B.1. Let K be a collectively compact set of bounded linear operators of X. Assume
further that K is pointwise sequentially compact, i.e., for every sequence (Kn) of K there exists
a subsequence (Knp) and K ∈ K such that Knpx → Kx for all x ∈ X. If I − K is invertible for
all K ∈K, then

sup
K∈K

∥∥(I − K)−1
∥∥ < ∞. (B.1)

Appendix C. Weighted and quotient Sobolev spaces

In this appendix we define the functional spaces which provide existence theorems in R
n. The

main result is found in Corollary C.5 which is the restatement of Lemma 3.5. Before arriving at
this result several preliminary lemmas must be proved.

Let Ba be the open ball centered at the origin and of radius a. We will denote by r = |x| the
radial coordinate.

Lemma C.1. Let a > 0, B ′
a = R

n \ Ba and q ∈ (−∞,1]. If 2q + n �= 0, then it holds for all
u ∈D(B ′

a) ∥∥rqu
∥∥

L2(B ′
a)

� 2

|2q + n|
∥∥rq+1∇u

∥∥
L2(B ′

a)
.
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Proof. Let υ ∈ Sn, the unit sphere of Rn. Integrating by parts yields

∞∫
a

r2q+n−1u(rυ)2 dr = − 2

2q + n

∞∫
a

r2q+nu(rυ)∇u(rυ).υ dr

� 2

2q + n

∞∫
a

r2q+n
∣∣u(rυ)

∣∣∣∣∇u(rυ)
∣∣dr.

We obtain by the Cauchy–Schwarz inequality

∞∫
a

r2q+n−1u(rυ)2 dr � 2

2q + n

( ∞∫
a

r2q+n−1
∣∣u(rυ)

∣∣2
dr

)1/2( ∞∫
a

r2q+n+1
∣∣∇u(rυ)

∣∣2
dr

)1/2

.

This implies

∞∫
a

r2q+n−1u(rυ)2 dr �
(

2

2q + n

)2 ∞∫
a

r2q+n+1
∣∣∇u(rυ)

∣∣2
dr.

Next, we have

∥∥rqu
∥∥2

L2(B ′
a)

=
∫
Sn

∞∫
a

r2q+n−1u(rυ)2 dr dυ

�
(

2

2q + n

)2 ∫
Sn

∞∫
a

r2q+n+1
∣∣∇u(rυ)

∣∣2
dr dυ

=
(

2

2q + n

)2∥∥rq+1∇u
∥∥2

L2(B ′
a)

,

which leads to the desired result. �
Let δ ∈ (0,1/2) be fixed. For every k ∈N we introduce the weight functions as follows:

wk(x) = (
1 + |x|2) pk

2 (C.1)

with

pk =

⎧⎪⎨⎪⎩
0 if k = 0,

−k − δ if k � 1 and n = 1,

1 − n
2 − k − δ if k � 1 and n � 2.
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Lemma C.2. Let a > 0, B ′
a = R

n \ Ba , m ∈ N. For all k = 0, . . . ,m and every u ∈ D(B ′
a), we

have

sup
|α|=m−k

∥∥wkD
αu

∥∥
L2(B ′

a)
� ck sup

|α|=m

∥∥Dαu
∥∥

L2(B ′
a)

,

where ck is a positive constant.

Proof. The result is obvious for k = 0, thus we assume that k � 1. We treat first the case n � 2.
By induction from Lemma C.1, we infer for |β| = m − k,∥∥r1− n

2 −k−δDβu
∥∥

L2(B ′
a)

� c sup
|α|=m

∥∥r1− n
2 −δDαu

∥∥
L2(B ′

a)
� ca1− n

2 −δ sup
|α|=m

∥∥Dαu
∥∥

L2(B ′
a)

.

The desired estimate follows straightforwardly. Suppose now that n = 1. Again by induction
from Lemma C.1, we obtain for |β| = m − k∥∥r−k−δDβu

∥∥
L2(B ′

a)
� c sup

|α|=m

∥∥r−δDαu
∥∥

L2(B ′
a)

� ca−δ sup
|α|=m

∥∥Dαu
∥∥

L2(B ′
a)

,

leading to the result. �
For any open subset A of Rn we define the space

Wm(A) = {
u ∈D′(A)

∣∣ ∀k = 0, . . . ,m, |α| = m − k ⇒ wkD
αu ∈ L2(A)

}
, (C.2)

where the weights are given by (C.1). It is endowed with the norm

‖u‖Wm(A) =
[

m∑
k=0

∑
|α|=m−k

∥∥wkD
αu

∥∥2
L2(A)

]1/2

.

This norm is associated with an inner product 〈., .〉Wm(A), for which it is easily shown that Wm(A)

is a Hilbert space.
We define Wm

0 (A) as the closure of D(A) in Wm(A). Let u ∈ Wm(B ′
a) and η be a smooth

function such that η = 1 in B2a and η = 0 in B ′
3a . Then ηu ∈ Hm(B ′

a) and (1 − η)u ∈ Wm(Rn).

This allows us to define the normal trace of u on ∂Ba of order j , j � m − 1, denoted by ∂
j
nu.

Also, one may prove by standard arguments (see e.g. [1]) that D(Rn) is dense in Wm(Rn). This
implies the following result.

Lemma C.3. We have

Wm
0

(
B ′

a

) = {
u ∈ Wm

(
B ′

a

) ∣∣ ∂
j
nu = 0 ∀j = 0, . . . ,m − 1

}
.

Proposition C.4. Let H be a closed subspace of Wm(Rn) and ‖.‖H be a norm on H such that,
for some constants c1, c2 >, it holds

c1|u|Hm(Rn) � ‖u‖H � c2‖u‖Wm(Rn) ∀u ∈H.

Then, on the space H, the norms ‖.‖H and ‖.‖Wm(Rn) are equivalent.
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Proof. We must show that there exists a constant c3 such that

‖u‖Wm(Rn) � c3‖u‖H.

By contradiction, we assume that there exists a sequence (up) ∈H such that, for every p,

‖up‖Wm(Rn) = 1, ‖up‖H <
1

p
. (C.3)

Let η be defined as above. The Leibniz formula provides, for all v ∈ Wm(B ′
a),

|ηv|Hm(B3a) � c|v|Hm(B3a) + c‖v‖Hm−1(B3a), (C.4)∣∣(1 − η)v
∣∣
Hm(B ′

2a)
� c|v|Hm(B ′

2a) + c‖v‖Hm−1(B3a). (C.5)

The embedding of Hm(B3a) into Hm−1(B3a) is compact and the sequence (up) is bounded
in Hm(B3a). We still denote by (up) a subsequence such that up → w in Hm−1(B3a). Using
Lemma C.2, (C.5) and the assumptions we get

∥∥(1 − η)(up − uq)
∥∥

Wm(B ′
2a)

� c‖up − uq‖H + c‖up − uq‖Hm−1(B3a).

Moreover, the Poincaré inequality in Hm
0 (B3a) together with (C.4) and the assumptions yield

∥∥η(up − uq)
∥∥

Hm(B3a)
� c‖up − uq‖H + c‖up − uq‖Hm−1(B3a).

Therefore, (ηup) and ((1 − η)up) are Cauchy sequences in Hm(B3a) and Wm(B ′
2a), respec-

tively. Thus, there exist (v1, v2) ∈ Hm(B3a) × Wm(B ′
2a) such that ηup → v1 in Hm(B3a) and

(1 − η)up → v2 in Wm(B ′
2a). After summation, we infer up → v := v1 + v2 in Wm(Rn). By

assumption, this limit holds also in H. From (C.3) we obtain a contradiction. �
Let Pm−1 be the space of polynomials of degree not greater than m − 1. It is easily checked

that Pm−1 is a subspace of Wm(Rn). The quotient space Wm(Rn)/Pm−1 is endowed with the
norm

u 
→ ‖u‖Wm(Rn)/Pm−1 = inf
p∈Pm−1

‖u + p‖Wm(Rn), (C.6)

where u is an arbitrary representative of its class. Proposition C.4 implies that the seminorm
|u|Hm(Rn) is an equivalent norm to ‖u‖Wm(Rn) on Wm(Rn)/Pm−1. This will be made clear in the
following corollary, which is a restatement of Lemma 3.5, and whose proof is now given.

Corollary C.5. There exists c > 0 such that, for all u ∈ Wm(Rn),

‖u‖Wm(Rn)/Pm−1 � c|u|Hm(Rn).
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Proof. By standard arguments of the calculus of variations the infimum in (C.6) is attained at a
unique point. The Euler–Lagrange equation applied to the problem with squared norm reads for
the minimizer v := u + p

〈v, p̃〉Wm(Rn) = 0 ∀p̃ ∈Pm−1,

which is equivalent to 〈
v, xα

〉
Wm(Rn)

= 0 ∀|α| � m − 1. (C.7)

Therefore, Wm(Rn)/Pm−1 can be identified with the subspace of the functions v ∈ Wm(Rn)

satisfying (C.7). In addition, the seminorm |.|Hm(Rn) is a norm on this space. We then apply
Proposition C.4 with H = Wm(Rn)/Pm−1 and ‖u‖H := |u|Hm(Rn). �
Remark C.6. It appears from inspection of the proof that Corollary C.5 remains true if Rn is
replaced by any connected open set containing the origin.
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