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Crack nucleation sensitivity analysis
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A simple analytical expression for crack nucleation sensitivity analysis is proposed relying on the concept of topological
derivative and applied within a two-dimensional linear elastic fracture mechanics theory (LEFM). In particular, the
topological asymptotic expansion of the total potential energy together with a Griffith-type energy of an elastic cracked
body is calculated. As a main result, we derive a crack nucleation criterion based on the topological derivative and a
criterion for determining the direction of crack growth based on the topological gradient. The proposed methodology
leads to an axiomatic approach of crack nucleation sensitivity analysis. Copyright © 2010 John Wiley & Sons, Ltd.

Keywords: topological asymptotic analysis; topological derivative; crack nucleation; brittle fracture; variational methods

1. Introduction

The theory of brittle fracture takes its origin in the work of Griffith [1], later pursued by the key theoretical contributions by
Cherepanov [2], Erdogan [3], Irwin [4] and Rice [5]—among others. In the 80s several contributions (cf., e.g. [6--8]) paved the way
for the numerical simulation of crack evolution (cf., e.g. [9--12]). Most of these approaches have been proved a long time ago
their physical validation and shown useful engineering applications. However, only a few of them have been fully mathematically
justified.

About 15 years ago Francfort and Marigo [13] introduced a mathematical approach to brittle fracture called ‘variational brittle
fracture’, which remains nowadays a subject of intensive research [14, 15]. One of their main contribution was to avoid the specifica-
tion of a known crack path for crack growth predictions, while focussing on solutions obtained by a global minimization approach
in a quasi-static setting. However, according to Miehe et al. [16], one drawback of global solutions is to predict underestimated
crack initiation times. Today, their original approach is also being extended to dynamic crack growth [17], while local approaches
are also addressed from a numerical viewpoint [18]. Discussions on the question of time-continuity of crack paths as related to
kinking criteria can also be found in the recent literature [19].

In general, analysis of crack propagation considers an already cracked body. However, criteria for crack growth are still discussed
in the Mechanical community. The first laboratory experiments of bar extensions appealed to the so-called maximal stress criterion,
but this criterion failed to predict general cracked bodies where the loads are not aligned with the crack. In order to generalize
this observation, the concept of stress intensity factors (SIF) [20] as a measure of stress in the crack process zones appeared useful
and soon reached consensus. Later, instead of relying on a simple critical SIF criterion, a local criterion based on the so-called
strain-energy density functions was suggested [21], while other works [4, 5] proposed local crack growth principles based on the
notion of maximal dissipation at the crack tip. On the other hand, relying on symmetry arguments, Barenblatt and Cherepanov [22]
proposed yet another local criterion based on the principle that the crack grows with vanishing (shearing) mode II, also known as
the principle of local symmetry (see also [23]). However, all these local methods are not easily tractable in the applications since
relying on the permanent re-evaluation of the SIF for every new cracked body configuration. Moreover, as shown by Amestoy and
Leblond [7], these various coexisting criteria are not equivalent from a physical viewpoint, and therefore the continued interest in
mathematical approaches is justified [24].
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Concerning crack nucleation criteria, even less consensus is reached. It is sometimes read that crack initiation is not the concern
of fracture modeling, limited to the growth of existing pre-cracks, while other authors believe that crack evolution and nucleation
criteria should be intimately related. Then, the above-mentioned growth criteria are usually postulated for crack of finite length as
well as for infinitesimal cracks, i.e. for nucleation. From a mathematical viewpoint, Chambolle et al. [15] have derived several results
relating crack initiation to a local measure of singularity, that is, to the presence, or not, of defects in the elastic body. In particular,
they have proved that in the absence of defects, brittle fracture can only occur brutally, that is, with a critical minimal crack length.

In this paper, we propose a general exact analytical expression for crack nucleation sensitivity analysis. Here, the sensitivity is a
scalar field which measures how the elastic energy (or, in general, an appropriate shape functional) changes when a small crack
is introduced at an arbitrary point of the domain. Its analytical formula is derived by making use of the concept of topological
asymptotic expansion. In particular, we propose a tool for crack nucleation and crack growth analysis in linear elastic bodies, based
on the notions of topological derivative and topological gradient.

In general, the mathematical notion of topological derivative [25, 26] provides the closed-form exact calculation of the sensitivity
of a given shape functional with respect to infinitesimal domain perturbations such as the insertion of voids, inclusions, source
term or, in our case, a crack. The concept of topological derivative is an extension of the classical notion of derivative. It has
been rigorously introduced by Sokołowski and Żochowski [26] in the context of shape optimization for two-dimensional heat
conduction and elasticity problems. In their pioneering paper, these authors have considered domains topologically perturbed by
the introduction of a hole subjected to homogeneous Neumann boundary condition. Since then, the notion of topological derivative
has been proved extremely useful in the treatment of a wide range of problems and has become a subject of intensive research. Its
use in the context of topology optimization of load bearing structures [18, 27--33], inverse problems [34--37] and image processing
[38--42] is among the main powerful applications of this analytical tool. Concerning the theoretical development on the asymptotic
analysis of PDE solutions and topological derivation of shape functionals, the reader may refer for instance to the books [43] and
papers [44--46], respectively.

As main results of this paper, we propose the following:

1. A crack nucleation criterion based on the topological derivative.
2. A criterion for determining the direction of crack growth based on the topological gradient.
3. A nucleation result linking maximal dissipation, vanishing mode II and maximal stress criteria (which do not classically coincide).
4. An alternative proof of the brutal crack nucleation in Griffith’s setting.

Let us emphasize that all these results cannot be claimed new. Nevertheless, to our knowledge the original contribution of this
paper is to establish an axiomatic approach to address crack nucleation, where a precise mathematical notion of nucleation is given.
Moreover, the criteria provided by this approach show how the principles of maximal dissipation, vanishing mode II and maximal
stress are understood with respect to crack nucleation.

Moreover, with a view to practical application, let us remark that the intrinsic local notion of the topological derivative as a
nucleation criterion is a tool which can eventually be used to perform numerical simulation of crack nucleation and growth. We
refer to [18] for a method which could easily be coupled with the concepts as presented in this paper.

The paper is organized as follows. The mechanical model associated with plane stress and plane strain linear elasticity is described
in Section 2. In Section 3 we introduce an overview of the topological asymptotic analysis and state a method for calculating the
topological derivative. The adopted approach is cast within the shape sensitivity analysis setting as described in [47]. In Section 3.1
we extend our theory for cracked bodies. Following the original ideas presented in [48], the shape sensitivity analysis is performed
in Section 3.2. The calculation of the topological derivative associated with the total potential energy of the cracked body is
then presented in Section 4, where we derive closed formulas for the crack nucleation sensitivity analysis. Section 5 is dedicated
to the interpretation of the obtained topological derivative and gradient in terms of optimization results. In Section 6, another
energy criterion, including surface contributions, is analyzed within our method. Finally, some concluding remarks are made in
Section 7.

2. The mechanical model

Let us consider an open bounded domain �⊂R2 with smooth boundary ��=�N ∪�D (�N ∩�D =�), submitted to volume forces
b, surface loads q on �N and prescribed displacement h on �D. In our model, the volume forces b will eventually be neglected.
Let us also consider a topologically perturbed domain �� containing a small straight crack �� with endpoints x̂ and x∗, where the
parameter � is a small positive scalar defining the size of the topological perturbation. Symbol n will designate the outward unit
normal vector to ���. In order to formulate the equilibrium in plane stress and strain linear elasticity as related to the original and
perturbed problems, the constitutive relations for linear elastic isotropic materials will be considered. Strain and stress are defined by

∇s� := 1
2 (∇�+∇�T ) and �(�)=C∇s�, (1)

respectively, where � represents an admissible displacement field, (∇�)ij =�j�i , (∇�T )ij =�i�j . In addition, C is the (symmetric)
isotropic elasticity tensor given by

C=2�I+�(I⊗ I), (2)

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1978–1994
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Figure 1. Elastic uncracked body represented by the domain �.

where � and � are the Lamé coefficients, that is

�= E

2(1+�)
, �= �E

(1+�)(1−2�)
and �=�∗ = �E

1−�2
, (3)

with E denoting Young’s modulus, � Poisson’s ratio and �∗ the particular case for plane stress, while I and I denote the second-
and fourth-order identity tensors, respectively.

2.1. Unperturbed problem

Let us consider an elastic body represented by � (see Figure 1), which is in equilibrium if the following variational problem holds:
find the displacement field u∈U, such that ∫

�
�(u) ·∇s	=

∫
�

b ·	+
∫

�N

q ·	 ∀	∈V, (4)

where �(u)=C∇su, U is the set of admissible displacements and V the space of admissible variations, which are, respectively,
defined, for b∈L2(�) and h, q∈L2(��), as

U:={u∈H1(�) : u|�D =h} and V:={	∈H1(�) :	|�D =0}. (5)

The above variational problem has a unique solution and corresponds to the weak formulation of the momentum conservation law
with appropriate boundary conditions: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−div(�(u))=b in �

�(u)=C∇su

u=h on �D

�(u)n=q on �N

, (6)

where n is the outward unit normal vector to the boundary ��.

2.2. Perturbed problem

Let us now consider an elastic cracked body represented by �� =�\��, where �� ⊂� represents a straight crack of length �. Two
distinct situations will be analyzed (cf. Figure 2). In the first case, the crack nucleates at an interior point x̂ ∈� and grows symmetrically
in the direction e. Thus we will consider cracks which are segments �� = [x∗

A; x∗
B ]⊂�, where x∗

A and x∗
B are the crack tips. In this case,

since the size � of the crack is a small parameter, which tends to zero, the stress distribution around the crack extremities x∗
A and

x∗
B is assumed to coincide. This assumption amounts to a symmetry condition with respect to the plane orthogonal to the crack

at its mid-point. Alternatively, the crack initializes at a boundary point x̂ ∈�� and grows in the direction e oriented by an angle 

defined with respect to the direction of n on ��. In general, we will consider cracks that are segments �� = [x̂; x∗]⊂�, where x∗ is
the crack tip.

If the cracked body is in equilibrium, then the following variational problem must be satisfied: find the displacement field u� ∈U�,
such that ∫

��

�(u�) ·∇s	=
∫

��

b ·	+
∫

�N

q ·	 ∀	∈V�, (7)

where �(u�)=C∇su�, U� is the set of admissible displacements and V� the space of admissible variations, which are, respectively,
defined, for b∈L2(��) and h, q∈L2(��), as

U�:={u� ∈H1(��) : u�|�D =h} and V�:={	∈H1(��) :	|�D =0}. (8)
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Figure 2. Elastic cracked body represented by the domain �� .

The above variational problem is known to have a unique solution, and is precisely the weak formulation of the momentum
conservation law with appropriate boundary conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(�(u�))=b in ��

�(u�)=C∇su�

u� =h on �D

�(u�)n=q on �N

�(u�)n=0 on ��

. (9)

Let us remark that, since the perturbed domain is non-Lipschitz, the solution of (9), as opposed to that of (6) does not belong to
H2(��). In particular, the stress is singular at the crack tip and the displacement jumps across ��. Let us remark that the tip singularity
is due to the inadequacy of the linear elastic model near the crack extremities. Moreover, the last condition in (9) amounts to neglect
the dynamic effect of cohesive forces between the crack lips, but their inter-penetration (i.e. negative normal jump component of
the displacement at the crack) is not prohibited in the above model. This latter classical drawback of linear fracture mechanics will
not be discussed any further in the sequel.

The solution to (9) is known to minimize

J��
(v)= 1

2

∫
��

�(v) ·∇sv−
∫

��

b ·v−
∫

�N

q ·v, (10)

whose minimal value J��
(u�) is recognized as the total potential energy of the cracked body.

The above minimal property of J��
, namely Equation (10) is a simple energetical criterion for determining the displacement

field in the cracked body. Of course it is by far insufficient from a mechanical viewpoint, since it does not consider any energetical
contribution of the (infinitesimal) crack. Let us observe that for any crack, J��

(u�)�J��
(u)=J�(u), where the solution to the

unperturbed problem u is a candidate with vanishing jump for the minimum problem (10). Therefore, physically, there should be
at least a competition between the above decrease of total potential energy due to the presence of a crack, and an increase of a
surface energy to take into account crack growth. Accordingly, the so-called Griffith’s and Barenblatt’s-type variational models are
discussed in [14] with a view to determining crack initiation and path prediction.

In this paper, we show how the shape functional (10) can provide some relevant information for isolated crack initiation. In fact,
the energy (10) is the simplest case addressed by our method. Surface energies can be added, and in general any refinement of
(10) can be considered—provided it admits a topological derivative—within this sensitivity analysis setting. Two other ingredients
are required in order to apply the present method: (i) the knowledge of the asymptotic expansion of the solution around the crack
tip, and (ii) a shape derivative expression involving a divergence-free Eshelby-type tensor. One example of crack nucleation with
Griffith-like surface energy will be addressed in Section 6.

Let us remark that the case of cracks with a non-penetration condition on �∗ cannot be considered within this setting since the
tip expansion of the solution is not known [49].

3. Shape and topological derivatives

Let �(·) be a shape functional defined over a certain class of domains with sufficient regularity and assume that the following
expansion exists:

�(��)=�(�)+f (�)DT �+o(f (�)), (11)

where �(�) is the functional evaluated for the given original domain and �(��) is the same functional evaluated in the perturbed
domain obtained by introducing a topological perturbation of size �. In addition, f (�) is a so-called regularizing function that depends
on the asymptotic behavior of the problem under analysis, satisfying

lim
�→0+ f (�)=0, (12)

where o(f (�)) contains all terms of higher order in f (�).

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1978–1994
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(a) (b)

Figure 3. Shape change velocity field: (a) V ∈M1 and (b) V ∈M2.

Expression (11) is named the topological asymptotic expansion of �. The term DT � is defined as the topological derivative of � at
the unperturbed (original) domain �. The term f (�)DT � is a correction of first order in f (�) to the functional �(�) to obtain �(��).
Nevertheless, this definition of the topological derivative is extremely general. In general, expansion (11) cannot be obtained by
conventional means since �� and � do not share the same topology.

Among the methods for calculation of the topological derivative currently available in the literature, we here adopt the method-
ology described in [47], whereby the topological derivative is obtained as the limit

DT �= lim
�→0

(
1

f ′(�)

d

d�
�(��)

)
. (13)

The derivative of the shape functional �(��) with respect to the parameter � denotes precisely the sensitivity of �—in the classical
sense [50]—with respect to the size � of ��. This term is classically termed the shape derivative.

The advantage of definition (13) for the topological derivative is that the whole mathematical framework developed for the shape
sensitivity analysis can be used as an intermediate step to calculate the topological derivative. This feature was shown in [47] for
circular holes and it is now extended when the domain is perturbed by introducing a small crack.

In order to render this work as self-contained as possible, the remaining of this section is devoted to prove some classical results
concerning shape sensitivity.

3.1. Shape sensitivity of cracked bodies

It is assumed that the infinitesimal crack �� remains straight during the growth process (see Figure 3). Moreover, since the derivative of
the shape functional �(��) with respect to the parameter � means the sensitivity of � as the straight crack �� grows, an appropriated
shape change velocity field has to be defined. Thus, we consider an uncracked control volume �∗ with boundary �∗ such that
x∗ ∈�∗. Then, we can define its cracked counterpart as �∗

� =�∗ \��. Moreover let 	∗ denote a neighborhood of the crack tip x∗.
From these elements, the following kinematically admissible shape change velocity sets are introduced:

M := {V ∈C∞(��) : V =0 on ��, V ·n=0 in 	∗∩��} (14)

M1 := {V ∈C∞(��) : V =0 on ��, V =e in �∗
� } (15)

M2 := {V ∈C∞(��) : V =−e on ��, V =0 in �∗
� }, (16)

where e is a constant unit vector aligned with the crack. Therefore, a kinematically admissible velocity field V (i.e. belonging to M1
or M2) simulates a crack growth in the direction e.

3.2. Rice invariance property and shape derivative expressions

The concept of energy release rate [1] represents the rate of change, with respect to crack growth, of the total potential energy
available for fracture. As a matter of fact, this concept plays an important role in the mechanical modeling of cracked bodies in
linear elastic fracture mechanics (LEFM). In [48] a systematic methodology was presented in order to obtain the expression of energy
release rate in cracked bodies based on shape sensitivity analysis.

Let us restate the equivalence between the concept of energy release rate and the shape sensitivity analysis of the functional

�(��) :=J��
(u�)= 1

2

∫
��

�(u�) ·∇su�−
∫

��

b ·u�−
∫

�N

q ·u�, (17)

where the first term represents the energy stored in the linear elastic cracked body, while the second and third terms represent the
work done by the body and surface loads, respectively.

In order to compute the shape derivative of �(��), it is convenient to introduce an analogy to classical continuum mechanics
where the shape change velocity field V is identified with the classical velocity field of a deforming continuum and � is identified
as a time parameter (see e.g. the book [51] or, for analogies of this type in the context of shape sensitivity analysis, [50]).

The following notation is introduced:

J̇��
(u�) :=

〈
�

���
J��

(u�), V

〉
= d

d�
J��

(u�), (18)

according to the definition of the shape change velocity sets M1 (15) or M2 (16) to which the velocity field V belongs.

1
9

8
2

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1978–1994



N. VAN GOETHEM AND A. A. NOVOTNY

Proposition 1 (First form of the shape derivative)
Let J��

(u�) be the functional defined by (17). Then, its derivative with respect to the small parameter � can be written as

J̇��
=
∫

���

�(u�)n ·V, (19)

where V is any shape change velocity field belonging to M, while � is a generalization of the classical Eshelby momentum-energy
tensor [52, 53], given by

�(u�) := 1
2 (�(u�) ·∇su�−2b ·u�)I−∇uT

� �(u�). (20)

Proof
Let us calculate the shape derivative of the functional J��

(u�) using the following version for Reynolds’ Transport Theorem [51, 50],

J̇��
(u�) = 1

2

∫
��

(�(u�) ·∇su�)′+ 1

2

∫
���

(�(u�) ·∇su�)V ·n−
∫

��

b ·u′
�

−
∫

���

(b ·u�)V ·n−
∫

�N

q · u̇�−
∫

�N

q ·u� div��(V) , (21)

where div��(V)= (I−n⊗n) ·∇V is the superficial divergence of the velocity field V . In addition, the prime and the superimposed dot
are, respectively, used to denote the partial and the total derivatives with respect to �, i.e.

u′
� :=��u� and u̇� :=u′

�+∇u�V.

Let us observe that the last term on the RHS of (21) vanishes by the definition of the velocity field. Moreover, the cracked body
�� has a singular boundary and hence that usual regularity theorems do not hold at the crack extremities. However, it is known
[54] that the solution u� can be represented by a regular H2(��)-term plus a singular term writing as us

� =��(
)r1/2 where (r,
) is a
system of polar coordinates with pole at the crack tip. Therefore, it appears that the second term on the RHS of (21) is, because of
that singular term, not well-defined at the crack tip, unless V ·n vanishes, which is indeed assumed. Next, by using the concept of
material derivatives of spatial fields we find that the first term of the above RHS integral can be written as

(�(u�) ·∇su�)′ =2�(u�) ·∇su′
� =2�(u�) ·(∇su̇�−∇s(∇u�V)),

where the last term inside the parenthesis, as integrated over ��, is given a meaning by integration by parts and by the property
that �(u�)n vanishes along the crack. With the above result, the sensitivity of the functional J��

(u�) reads

J̇��
(u�) = 1

2

∫
���

(�(u�) ·∇su�−2b ·u�)V ·n−
∫

��

�(u�) ·∇s(∇u�V)

+
∫

��

b ·∇u�V +
∫

��

�(u�) ·∇su̇�−
∫

��

b · u̇�−
∫

�N

q · u̇�. (22)

Since u̇� ∈V�, the equilibrium equation (7) implies that the last three terms of (22) vanish, and hence

J̇��
(u�)= 1

2

∫
���

(�(u�) ·∇su�−2b ·u�)V ·n−
∫

��

�(u�) ·∇s(∇u�V)+
∫

��

b ·∇u�V. (23)

Eventually, using the tensor relation

div(�(u�)(∇u�V))=�(u�) ·∇s(∇u�V)+ div(�(u�)) ·∇u�V, (24)

and the divergence theorem, expression (23) can be written as

J̇��
(u�)=

∫
���

�(u�)n ·V +
∫

��

[ div(�(u�))+b] ·∇u�V, (25)

and since the stress field �(u�) is in equilibrium, the proof of (19) simply results from (9). �

The above shape derivative expression shows a surface integral. Without assuming a vanishing normal velocity field at the crack
tip, the following expression of the shape derivative as given by an integral over the cracked domain, instead of its boundary, is
obtained.

Proposition 2 (Second form of the shape derivative)
Let J��

(u�) be the functional defined by (17). Then, the derivative of the functional J��
with respect to the small parameter � is

given by

J̇��
=
∫

��

�(u�) ·∇V −
∫

��

∇bV ·u�, (26)

where V is any shape change velocity field belonging to M and � is given by (20).

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1978–1994
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Proof
Another version of Reynolds’ Transport Theorem [50, 51] provides the identity

J̇��
(u�) = 1

2

∫
��

[(�(u�) ·∇su�)·+(�(u�) ·∇su�) div(V)]−
∫

�N

q · u̇�

−
∫

��

[(b ·u�)·+(b ·u�) div(V)]−
∫

�N

q ·u� div��(V), (27)

Once again, the last term on the RHS of (27) vanishes by the definition of the velocity field. Next, by using the concept of material
derivative of a spatial field [50, 51], we find that the first term of the above RHS integral can be written as

(�(u�) ·∇su�)· =2�(u�) ·∇su̇�−2∇uT
� �(u�) ·∇V, (28)

which, substituted in (27) gives

J̇��
(u�)=

∫
��

�(u�) ·∇V +
∫

��

�(u�) ·∇su̇�−
∫

��

(b ·u�)·−
∫

�N

q · u̇�, (29)

Since u̇� ∈V�, and with the equilibrium equation (7), the last three terms of (29) reduce to −∫��
ḃ ·u�, thereby proving the

result. �

By taking into account Propositions 1 and 2, the divergence-free property of the Eshelby tensor can immediately be proved in
the following sense.

Corollary 3 (Conservation law)
Provided the body force b is constant, the Eshelby tensor �(u�) is a divergence-free tensor field away from the crack tip.

Proof
By applying the divergence theorem to the right-hand side of (26), we have

J̇��
=
∫

���

�(u�)n ·V −
∫

��

div(�(u�))·V. (30)

Since (19) and (26) hold for any velocity fields in M, it results that∫
��

div(�(u�))·V =0 ∀V ∈M⇒ div(�(u�))=0 a.e. in ��\�∗
� . (31)

�

Proposition 4 (Rice integral)
Provided the body force b is constant, for any control volume �∗ containing the crack tip x∗ with boundary �∗, the shape derivative
of the total potential energy for a variation in the direction e of a crack of length � reads

J̇��
=e·

∫
��

�(u�)n=e·
∫

�∗
�(u�)n, (32)

where � is given by (20).

Proof
Let us define �̂� =��∩(�\�∗). Since div(�(u�))=0 in ��\�∗

� it results that the shape derivative of the total potential energy given
by (26), after integrating by parts, becomes

J̇��
=
∫

��

�(u�) ·∇V =
∫

��\�∗
�

�(u�) ·∇V +
∫

�∗
�

�(u�) ·∇V

=
∫

��
�(u�)n ·V +

∫
�̂�

�(u�)n ·V −
∫

�∗
�(u�)n ·V +

∫
�∗

�

�(u�) ·∇V. (33)

Let us consider the velocity field V ∈M2 given by (16) in the above result (33), which implies

J̇��
=
∫

��
�(u�)n ·V +

∫
�̂�

�(u�)n ·V with V ∈M2 . (34)

Taking into account that n⊥V on �̂� and considering that �(u�)n=0 on �̂�, Equation (34) becomes

J̇��
=
∫

��
�(u�)n ·V =−e·

∫
��

�(u�)n with V ∈M2. (35)
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Figure 4. Polar coordinate system (r,
).

If, in turn, the velocity field V ∈M1 given by (15) is inserted in (33), it results, by using the same arguments as above, that

J̇��
=−

∫
�∗

�(u�)n ·V =−e·
∫

�∗
�(u�)n with V ∈M1. (36)

On the other hand, by considering (31) and since �(��\�∗
� )=��∪ �̂�∪�∗, it can be shown that (35) and (36) are equivalents:

0=e·
∫

��\�∗
�

div(�(u�)) = e·
(∫

��
�(u�)n+

∫
�̂�

�(u�)n−
∫

�∗
�(u�)n

)

= e·
∫

��
�(u�)n−e·

∫
�∗

�(u�)n, (37)

where the above result was obtained with the help of the divergence theorem for second-order tensor fields and taking into account
the fact that on �̂� we have n ·e=0 and �(u�)n=0, implying �(u�)n ·e=0 on �̂�. �

The shape derivative of the total potential energy, namely (35) or (36), might be interpreted as minus energy release rate G� due
to the crack growth. In addition, the above result shows that, for a smooth enough shape change velocity field V , the expression of
the energy release rate is independent of the value of V at the interior of the domain ��. In addition, since �∗ is an arbitrary curve
around the crack tip x∗, the energy release rate due to the crack growth can be written as

G� :=−�J̇��
=�e·

∫
��

�(u�)n=�e·
∫

�∗
�(u�)n=�e·

∫
�B∗

�

�(u�)n, (38)

where B∗
� is the ball of radius ��� centered at the crack tip x∗ (see Figure 4) and � is the number of crack extremities (�=1 for

x̂ ∈�� and �=2 for x̂ ∈�). Let us mention that the energy release rate classically coincides with Rices’s integral [5, 55].
It turns out that (38) also provides the definition of the configurational force [53] denoted by g∗

� as exerted at the crack tip x∗,
and hence (38) enlights the following relation between force, velocity and dissipation:

Proposition 5 (Shape derivative)
The shape derivative of J��

as given by (17) reads

J̇��
=− G�

�
=−g∗

� ·e where g∗
� = lim sup

�→0

∫
�B∗

�

�(u�)n, (39)

with � given by (20).

The limit property in (39) will show crucial in the computation of the topological derivative.

4. Topological sensitivity analysis

The aim of the following sections is to analyze the energetical effect of infinitesimal crack nucleation at x̂ in a prescribed direction
e. We will assume that there are no body forces.

In fact, we seek the optimal x̂ and e in view to decrease at most the potential energy of the elastic cracked body ��. This will be
achieved by calculating the so-called topological derivative of the total potential energy associated with a crack located at x̂ in the
direction e, as presented in the previous sections. From Equations (13) and (39) the topological derivative is introduced as:

TOPOLOGICAL DERIVATIVE DT �=− lim
�→0

�

f ′(�)
g∗

� ·e. (40)

This expression of the topological derivative for crack nucleation is interpreted as a directional derivative, thereby identifying the
associated topological gradient GT � as:

TOPOLOGICAL GRADIENT GT �=− lim
�→0

�

f ′(�)
g∗

� . (41)

Let us calculate the shape derivative in order to determine exact formulae for the topological derivative and gradient by using (40)
and (41) and by means of an asymptotic analysis of the displacement around the crack tip. This analysis will be performed in the
case of a bulk crack only.

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1978–1994
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4.1. Canonical problem

According to (6) and (9), let us define v� :=u�−u, solution to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div�(v�)=0 in ��

v� =0 on �D

�(v�)n=0 on �N

�(v�)e⊥ =−�(u)e⊥ on ��

. (42)

Moreover, let us introduce a microscopic variable y := (x−x∗) / � in order to re-scale the problem with a unit crack � in R2 as �→0.
Indeed, it suffices to analyze the canonical problem⎧⎨

⎩
−div(�(w))=0 in R2

�(w)e⊥ =−�(u)(x∗)e⊥ on �
. (43)

where w belongs to the following Hilbert space (so-called Deny-Lions or Beppo-Levi space):

W :={w ∈H1
loc(R2; R2) such that ∇sw ∈L2(R2; R2×2)}, (44)

The solution of (43) is known as the Westergaard solution and reads (see, e.g. [56]), as a function of the complex variable Z :=y1 + iy2:

2�w1(Z) = �−1

2
�{�I}+

�+1

2
�{�II}−y2�{�′

I +�′
II} (45)

2�w2(Z) = �+1

2
�{�I}+

�−1

2
�{�II}−y2�{�′

I +�′
II} (46)

with �=3−4� in plane strains and �= (3−�) / (1+�) in plane stresses, and

�′
I (Z)+ i�′

II(Z) = (KI(u, e)− iKII(u, e))

(
Z√

Z2 −a2
−1

)
(47)

�I(Z)+ i�II(Z) = (KI(u, e)− iKII(u, e))(
√

Z2 −a2 −Z)+C (48)

given in terms of a constant C and the (normalized) SIFs:

KI(u, e) :=�(u)(x∗)e⊥·e⊥ and KII(u, e) :=�(u)(x∗)e·e⊥. (49)

4.2. Asymptotic analysis at the crack tip

Let us first mention that the displacement (45)–(46) shown by an asymptotic analysis of (47) and (48) around the crack tip x∗ to be
of the form

w :=�∗w+w̃ (50)

where the cut-off function �∗ ∈C∞
c (R2) verifies �∗ ≡1 in a neighborhood of x∗ and

w(y) :=
√

R�(�) (51)

with y1 + iy2 =Rei� and (R,�) the polar coordinates centered at x∗. Moreover, from [54] it is known that w̃ ∈H2
loc(R2)∩W .

Let us now observe that the re-scaled function

w� :=�w

(
x−x∗

�

)
(52)

solves {−div(�(w�))=0 in ��

�(w�)e⊥ =−�(u)(x∗)e⊥ on ��

(53)

with non-homogeneous but ‘small’ boundary conditions on ��.
The function w� :=�w((x−x∗) / �) will be written in polar coordinates as

w� =wr
�(r,
)er +w


� (r,
)e
, (54)
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where {er, e
} denotes the polar base located at the crack tip x∗, with −��
<� and r =‖x−x∗‖. Moreover w� will be split into
mode I and mode II singular components wI

� and wII
� , and a regular part w̃� :=�w̃((x−x∗) / �)∈H2(�):

w� =
∗(wI
�+wII

� )+w̃�, (55)

where 
∗ ∈C∞
c (�) is such that 
∗ ≡1 in a neighborhood of x∗. Furthermore, the results will be given explicitly for plane stresses

and plane strains. As relying on (45)–(46) and (52), the following expressions of the singular parts wI
� and wII

� are found in [8].

4.2.1. Plane stress problem. For plane stress problem, we have the following asymptotic expansion for the solution w�, valid for r
‘small enough’ (in a ‘neighborhood’ of x∗):

• for the mode I

wIr
� (r,
) = KI(u, e)

E

√
r�

2
(3−�−(1+�) cos
) cos

(



2

)
, (56)

wI

� (r,
) = − KI(u, e)

E

√
r�

2
(3−�−(1+�) cos
) sin

(



2

)
, (57)

• for the mode II

wIIr
� (r,
) = KII(u, e)

E

√
r�

2
(3�−1+3(1+�) cos
) sin

(



2

)
, (58)

wII

� (r,
) = − KII(u, e)

E

√
r�

2
(5+�−3(1+�) cos
) cos

(



2

)
, (59)

where KI, KII are the normalized SIF given in terms of the background solution u (let us precise that a small mistake in [8] has been
corrected here).

4.2.2. Plane strain problem. For plane strain problem, we have the following asymptotic expansion for the solution w�, valid for r
‘small enough’:

• for the mode I

wIr
� (r,
) = KI(u, e)

E

√
r�

2
(1+�)(3−4�−cos
) cos

(



2

)
, (60)

wI

� (r,
) = − KI(u, e)

E

√
r�

2
(1+�)(3−4�−cos
) sin

(



2

)
, (61)

• for the mode II

wIIr
� (r,
) = KII(u, e)

E

√
r�

2
(1+�)(4�−1+3 cos
) sin

(



2

)
, (62)

wII

� (r,
) = KII(u, e)

E

√
r�

2
(1+�)(4�−5+3 cos
) cos(
 / 2), (63)

where KI, KII are the normalized SIF given in terms of the background solution u.

4.2.3. Crack tip expansion of the displacement. The function w� as given by (52) is the leading term of a so-called asymptotic
expansion for v� as stated by the following Lemma.

Lemma 6
For any cut-off function 
∗ ∈C∞

c (�) such that 
∗ ≡1 in a neighborhood of x∗, there exists a constant C>0 independent of � such
that

v� :=u�−u=
∗w�+�, (64)

with w� solution of (53) and

‖�‖H1(�)�C�. (65)

Remark 7
Another way of writing (64) in a neighborhood of x∗ is

u� =u+w�+OH1 (�), (66)

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1978–1994
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with w� given in a neighborhood of x∗ in plane strains by (56)–(59) and in plane stresses by (60)–(63), with u∈H2(�) the solution
of the background problem. In fact it is easily verified that

‖w̃�‖2
H1(�)�C

∫
�

|∇sw̃�|2 dx =C�2
∫

�/�
|∇sw̃|2dy�C�2.

Remark 8
The role of the cut-off function is twofold: (i) to disregard the boundary behavior of w�, and (ii) to localize the evaluation of the
displacement in a neighborhood of x∗ such that explicit expressions hold.

Proof
According to (42) and (53), � is the solution to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div�(�)= f� in ��

�=0 on �D

�(�)n=0 on �N

�(�)e⊥ =g� on ��

(67)

where

f� := −div[C(∇
∗⊗w�)s +�(w�)
∗] (68)

g� := �(u)(x∗)e⊥−�(u)e⊥. (69)

By multiplying (67) by � and integrating by parts it results that∫
�

�(�) ·∇s�=
∫

�
f� ·�+

∫
��

g� ·�. (70)

Let us remark that for some non-negative constant C,

‖g�‖∞�C� (71)

by the regularity of the background solution at x∗. Moreover, by developing f� and noting that 
∗ has a compact support in �, it
results that ∫

�
f� ·�=

∫
�

C(∇
∗⊗w�)s ·∇s�−
∫

�
(�(w�)∇
∗ ·�−�(w�) ·
∗∇s�). (72)

Let us also remark that

‖w�‖L2(�),‖∇w�‖L2(�),‖�(w�)‖L2(�)�C� (73)

since for a non-negative constant denoted by the generic symbol C, we have

‖w�‖2
L2(�)�C‖∇w�‖2

L2(�)�C‖∇sw�‖2
L2(�) =C

∫
�

|∇sw�|2dx =C�2
∫

�/�
|∇sw|2dy�C�2

where the three inequalities follow from Poincaré and Korn inequalities, and by (44), respectively. Hence by (72) and (73) and
observing that �∈H1(�)∩H1/2(��) verifies ‖�‖H1/2(��)

�C‖�‖H1(�), it results that

C‖∇s�‖2
L2(�)�(C′�+C′′�3/2)‖∇s�‖L2(�)

for some non-negative constants C′ and C′′, and hence that

‖∇s�‖L2(�)�C� (74)

for some non-negative constant C, achieving the proof. �

4.3. Estimation of the shape derivative

Let us recall that by Proposition 5 the shape derivative J̇��
can be computed on any loop around x∗. Therefore, consider a family

of balls {B�(x∗);�} such that 
∗({B�;�})=1 and that (56)–(63) hold in ∪�B�(x∗). Hence by (64), and by defining ũ :=u+w̃� we have

J̇��
(u�)=−e· lim sup

{B�(x∗);�}

∫
�B�(x∗)

�(w�+ ũ+�)n. (75)
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On the other hand, according to (20), �(v+w)=��(v)+��(w)+A(v, w) where

A(v, w) := 1
2 (�(v) ·∇sw+�(w) ·∇sv)I−∇vT �(w)−∇wT �(v) (76)

Since f� vanishes near x∗ it results from classical regularity that �∈C∞
loc(B�\��) and ∇�∈C(�B�). By (56)–(63) we have∫

�B�

�(w�)=O(�) (77)

where the left-hand side is independent of �. In addition, by the regularity of ũ, � on �B�,∫
�B�

�(�)=O(�),

∫
�B�

�(u+w̃�)=O(�),

∫
�B�

A(ũ,�)=O(�) (78)

Moreover, by expressions (56)–(63), ∫
�B�

A(ũ, w�)=O((��)1/2),

∫
�B�

A(w�,�)=O((��)1/2). (79)

By (75)–(79), for every admissible � (i.e. such that 
∗(B�)=1), we have

J̇��
(u�)+e·

∫
�B�

�(w�)n=O(�)+O((��)1/2), (80)

Since ���<1, we can take a particular sequence �=O(�2) satisfying 
∗(B�)=1, to obtain

J̇��
(u�)=−e·

∫
�B�∗

�(w�)n+o(�), (81)

for any �∗ satisfying 
∗(B�∗ )=1 (this choice is arbitrary since the first term on the right-hand side of the above equation is
independent of �).

4.4. Topological derivative expression

From the formulas (56)–(63), we can solve the integral (80), which results in

J̇��
(u�)=−2��

�

4E
(K2

I +K2
II )+o(�). (82)

where �=1 in plane stresses, �=1−�2 in plane strains. It results that from expression (40) providing the topological derivative from
the shape derivative, i.e. from Equation (82), we can identify function f ′(�)=2�� (f (�)=��2) and calculate the limit �→0 in (40), that
is

DT �(u, e)= lim
�→0

�

f ′(�)
J̇��

(u�)=−��

4E
(K2

I +K2
II ) (83)

while by (41), the topological gradient reads

GT �(u, e)=DT �(u, e)e. (84)

Finally, the topological asymptotic expansion of the energy shape functional reads

�(��)=�(�)−��2 ��

4E
(K2

I +K2
II )+o(�2). (85)

5. Minimal topological derivative as a crack nucleation criterion

The above analysis provides a new feature: for cracks of vanishing length, a precise notion of topological derivative—given by
(83)—has been introduced. As far as the total potential energy J��

(u�) is concerned, the explicit expression (83) shows that its
topological derivative is always negative, which means that the presence of a crack of any length anywhere in � provides a lower
total potential energy as compared with that of the uncracked body. This property is completely natural since nucleation means
extending the class of candidates for the minimization of (10) with those candidates allowed to jump across the crack lips. To that
extent, the topological derivation has not brought significant insight into the issue of crack nucleation.

However it results that from the notion of topological derivative, the principle of maximal dissipation or, equivalently, of minimal
topological derivative, provides a crack nucleation criterion. In fact, (83) provides an explicit criterion for the determination of the
weakest zones in � with respect to crack initiation, in the sense that optimal nucleation points x� and orientation e(��) may be
sought to satisfy:

NUCLEATION CRITERION DT �(x�, e(��))= min
x∈�,�∈[0;2�[

DT �(x, e(�)), (86)

where � is the angle between e and e1, with {e1, e2} a local base at x.

Copyright © 2010 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2010, 33 1978–1994
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The above criterion (86) is only apparently based on a double minimization. It will eventually result in a sole minimization in x,
since the optimal crack direction will be shown to obey a universal property of homogeneous linear elastic materials. In fact, the
nucleation criterion only amounts to the minimization of the scalar field DT �(x, e(��)) over x ∈� because there exist a law providing
optimal fracture direction (i.e. the angle ��).

It can be observed that the nucleation optimality criterion (86) is, by (13) and (82), equivalent to the maximization of G� / �, where
G� is Griffith’s energy release rate of a crack of length � (this is sometimes called Irwin’s criterion). However, while the latter criterion
appears as a postulate (and is often referred to as a principle) in the classical literature on brittle fracture [2, 4, 8, 57], it is here given
a precise mathematical meaning, and proven.

Let us remark that the introduction of a precise notion of derivation for crack nucleation is justified also by the fact that from
the sole Griffith’s critical relation:

G� =���
K2

I +K2
II

E
=Gcrit, (87)

where Gcrit is a material dependent crack growth threshold, one observes that the critical KI and KII would be of the order of 1 /
√

�,
and hence would be unbounded (i.e. unphysical) as �→0 (whereas they remain invariant in our approach).

Moreover, it should be precised that while the maximal dissipation principle is sometimes used to predict crack evolution, by
providing a method for finding the optimal direction e [8], it is not specifically dedicated for crack nucleation predictions. Let us
finally remark that such a criterion, possibly combined with other methods, may provide a useful tool for numerical simulation of
brittle crack quasi-static evolution [18].

In the following section, a geometric property for linear elastic cracked bodies will be proved.

5.1. Case 1: bulk crack initiation

Let us fix x̂ in �, and take �=2 in order to account for the crack symmetry property. According to the classical expressions of the
SIF as given by (49), it results that the topological derivative writes

DT �=− �

2E
[(�(u)e⊥·e⊥)2 +(�(u)e·e⊥)2], (88)

where �=1 in plane stresses, �=1−�2 in plane strains.
The crack will nucleate according to the above criterion (86) in a direction that minimizes the topological derivative. Hence, by

writing

e= (cos�, sin�) and e⊥ = (−sin�, cos�), (89)

where � denotes the angle between the crack direction e and the local basis {e1, e2} located at x (cf. Figure 4), it suffices to find ��

such that

�� :=arg{ max
0��<2�

[�2
11 +2�2

12 +�2
22 +(�2

22 −�2
11) cos(2�)−2�12(�11 +�22) sin(2�)]}, (90)

which results in

�� =±1

2
arccos

(
±
√

(�11 −�22)2

(�11 −�22)2 +4�2
12

)
(91)

where �ij are the components of the stress tensor �(u) in the local system {e1, e2} and �� denotes the angle that maximizes the
energy release rate.

Therefore, according to the above method of topological derivative minimization, the so-called ‘local symmetry principle’ (see the
pioneering works [3, 22, 23] and the recent discussion [19]), otherwise called ‘KII =0 nucleation criterion’, instead of being simply
postulated, can now be proved.

Proposition 9 (KII =0 nucleation criterion)
In homogeneous LEFM, the KII =0 crack nucleation criterion satisfies the property of minimal topological derivative, i.e. of maximal
decrease of the total potential energy (10).

Proof
If {e1, e2} are the principal direction at x, then the stress �(u) is diagonal,

�(u)=
2∑

i=1
�i(u)(ei ⊗ei),

where ei are the eigen-vectors associated with the eigen-values �i(u) (with �1>�2) of tensor �(u) evaluated at x, and Equation (91)
results in �� =0 or � / 2. Clearly, since e⊥

2 =e1, the lowest value of the topological derivative is attained for �� =� / 2. �

The local symmetry principle is sometimes called KII =0 criterion because locally the crack lips are in pure mode I, in the sense
that the principal tractions apply on their faces. Strictly speaking, the above law holds for infinitesimal cracks only, whereas for cracks

1
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of finite length, other physical mechanisms should be taken into account [14, 58]. Let us also mention that, unless the presence
of impurities, brittle crack initiation in the sense of Griffith always implies cracks of finite length, as discussed in [14] or [15], and
hence at nucleation points, no infinitesimal crack will ever appear. This latter property will also appear clear and be proven within
our setting in Section 6.

As a matter of fact, Proposition 9 also contributes to the debate between the validity of Irwin’s maximal dissipation criterion
versus the local symmetry principle. In fact, Proposition 9 states that relying on Irwin’s principle, a precise notion of nucleation is
introduced via the topological derivative, whose minimal value coincides with the KII =0 criterion and with the principle of maximal
traction.

5.2. Case 2: boundary crack initiation

In this case, x̂ ∈��, there is one crack extremity at the boundary while the other is located inside the body, i.e. �=1. Moreover,
since the domain boundary was assumed smooth, the canonical problem results in a semi-infinite crack with endpoint x∗ in a
semi-infinite plane. Let us consider (47) and (48) as developed in a neighborhood of x∗ as functions of the SIF [56]:

�′
I (Z)+ i�′

II(Z) = (K∗
I − iK∗

II )
exp (−i� / 2)√

2�
√

R
(92)

�I(Z)+ i�II(Z) = (K∗
I − iK∗

II )

√
2

�

√
R exp (i� / 2)+C. (93)

In the re-scaled domain where the boundary crack has length �, the displacement are given by (56)–(59) provided KI and KII are
replaced by K∗

I and K∗
II , respectively, with

(
K∗

I

K∗
II

)
=
⎛
⎝FS

I FT
I

FS
II FT

II

⎞
⎠ (
)

⎛
⎝�(u)(x∗)e⊥·e⊥

�(u)(x∗)e·e⊥

⎞
⎠ , (94)

where coefficients FS
I , FT

I and FS
II , FT

II depend on the angle 
 between the crack and the normal n to the boundary �� (approximate
analytical expressions of these coefficients are given in [59]). Let us remark that for the simple case 
=� / 2 the SIF have been given
in [20] as

K∗
I − iK∗

II =1.1215(�(u)(x∗)e⊥·e⊥− i�(u)(x∗)e·e⊥).

According to the above general expression of the SIF, the topological derivative at x̂ ∈�� reads

DT �(x̂)=− �

4E
[(FS

I �e⊥·e⊥+FT
I �e·e⊥)2 +(FS

II�e⊥·e⊥+FT
II �e·e⊥)2](u)(x̂),

where �=1 in plane stresses, �=1−�2 in plane strains.
Provided the approximate analytical expressions as found in [59], the calculation of the optimal angles �� can be done by

following exactly the same steps as presented in the previous case.

5.3. Case 3: kinking

The case of kinking can in principle be addressed by our method. Let us consider an elastic body with a pre-existing crack � with
tip x̂∗ and an extension �� of that crack at x̂∗ whose tip is denoted x∗∗ and which forms an angle � with the direction tangent to �
at x̂∗. It was shown in [6] that for small kinking angles the displacement are given by (56)–(59) provided KI and KII are replaced by
K∗∗

I and K∗∗
II , respectively, with

(
K∗∗

I

K∗∗
II

)
=G(�)

(
K∗

I

K∗
II

)
,

where K∗
I and K∗

II are the SIF of � at x̂∗. Several exact expressions of the matrix G are given in [7] for particular kink configurations.
However, it should be remarked that these formulae are based on the postulate that kinking occurs according to the principle of

local symmetry. Here we have proved that bulk crack nucleates according to that principle, but have not extended that property to
general crack growth. As a matter of fact, it should be verified that minimizing the topological derivative in the case of kinking is
equivalent to the local symmetry principle. Since arguments are found in [19] to believe in a negative answer to that latter assertion,
our method of minimal topological derivative as applied to kinking remains questionable.

6. Crack nucleation under a simple bulk and surface energy competition

It has been mentioned that physically an energy contribution consisting of a line integral over the crack should be added to
the elastic (bulk) energy of the cracked body. In order to show how our axiomatic approach can be applied to other types of
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energy-based shape functionals, let us consider Griffith surface energy of the form

�(��)=�(��)+C(��), (95)

with

C(��)=
∫

��

�(�), (96)

whose simplest expression is taken as

C(��)= �̃�, (97)

where �̃>0 is the specific (material dependent) surface energy. The solutions to the associated elastic problem, obtained by a global
minimization approach [14], here satisfy (9).

From (97) it follows that the derivative w.r.t. � of C(��) is given by

Ċ(��)= �̃>0. (98)

whereby from (85) and (98) it results that �(��) admits the following total derivative w.r.t. �:

�̇(��)= �̃+O(�), (99)

From this latter result we have f�(�)=� and the expression of the topological derivative of � reads

DT �= lim
�→0

(
1

f ′�(�)
�̇(��)

)
= �̃>0. (100)

Since the topological derivative of � is always non-negative, the surface energy contribution C(��)= �̃� will always prohibit nucleation.

Proposition 10
In homogeneous LEFM, according to the topological derivative criterion (86) as applied to (95) and (97), there will be no infinitesimal
crack nucleation.

The above property appears as another proof of a result found in [14, 15] and stating that in the Griffith setting nucleation at
defect-free points can only occur brutally, i.e. not infinitesimally.

In addition, considering only the case associated with bulk crack nucleation (�=2), the finite critical crack sizes �� can be explicitly
bounded from below. In fact, the topological asymptotic expansion of the shape functional (95) reads

�(��)=�(�)+��̃+��2DT �+o(�2) (101)

where DT � can be obtained from (85). Hence, as a result of the balance between potential and surface energy contributions, the
following threshold is found:

��>
2�̃E

��K2
I

, (102)

where �=1 in plane stresses, �=1−�2 in plane strains. In fact, it suffices to observe that according to Proposition 9 �� =� / 2 and
KII =0.

7. Conclusions

In this paper, we mainly provide a simple tool justified by a rigorous mathematical approach, aimed at analyzing variational brittle
crack nucleation within the class of linear elastic bodies. The proposed crack nucleation criterion is based on the notion of topological
asymptotic expansion as applied to a shape functional recognized as the total potential energy of an elastic cracked body. The case
of bulk and surface energy contributions of Griffith-type has also been addressed.

Most of the results of this paper were previously known by other approaches. However, the methodology introduced in this
paper is original and permits to prove results which were previously only referred to as postulates, or principles.

As main results we have mathematically formulated a crack nucleation criterion based on the notion of topological derivative
and a criterion for determining the direction of crack growth based on the topological gradient, and showed how these criteria
coincide with the principle of maximal dissipation. In particular, we have proved that in order to maximize dissipation at a bulk
point of the solid the crack will nucleate in pure mode II. Moreover, for Griffith’s model where a competition between a volume
and a surface energy is considered, crack nucleation is proven to occur brutally.

In addition, the proposed methodology leads to an axiomatic approach which can be used for further analysis of crack growth.
In addition, it has the advantage of (i) being rigorously defined, (ii) easily tractable, and (iii) not restricted to a given physical model
of brittle fracture. As a matter of fact, provided the solution to a modified primal perturbed problem (9) is given as an asymptotic

1
9

9
2
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expression in terms of the small crack length �, then the proposed framework can be applied, resulting in appropriate nucleation
criteria. Moreover, it is clear that other shape functional than the potential or Griffith energy can freely be chosen within our setting,
provided they admit a topological derivative.

As a consequence, our methodology provides a family of nucleation criteria—according to the chosen model of brittle fracture,
which can be further tested and compared by laboratory or numerical experiments.
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