
rspa.royalsocietypublishing.org

Research
Cite this article: Amstutz S, Van Goethem N.
2017 Incompatibility-governed
elasto-plasticity for continua with
dislocations. Proc. R. Soc. A 473: 20160734.
http://dx.doi.org/10.1098/rspa.2016.0734

Received: 27 September 2016
Accepted: 3 February 2017

Subject Areas:
mathematical modelling, mechanics,
thermodynamics

Keywords:
elasticity, plasticity, strain incompatibility,
dislocations, virtual work

Author for correspondence:
Nicolas Van Goethem
e-mail: vangoeth@fc.ul.pt

Electronic supplementary material is available
online at https://dx.doi.org/10.6084/m9.
figshare.c.3699061.

Incompatibility-governed
elasto-plasticity for continua
with dislocations
Samuel Amstutz1 and Nicolas Van Goethem2

1Université d’Avignon, Laboratoire de Mathématiques d’Avignon,
301 rue Baruch de Spinoza, 84916 Avignon, France
2Universidade de Lisboa, Faculdade de Ciências, Departamento de
Matemática, CMAF+CIO, Alameda da Universidade, C6, 1749-016
Lisboa, Portugal

NVG, 0000-0002-5356-8383

In this paper, a novel model for elasto-plastic continua
is presented and developed from the ground up. It
is based on the interdependence between plasticity,
dislocation motion and strain incompatibility. A
generalized form of the equilibrium equations is
provided, with as additional variables, the strain
incompatibility and an internal thermodynamic
variable called incompatibility modulus, which
drives the plastic behaviour of the continuum. The
traditional equations of elasticity are recovered as
this modulus tends to infinity, while perfect plasticity
corresponds to the vanishing limit. The overall
nonlinear scheme is determined by the solution of
these equations together with the computation of the
topological derivative of the dissipation, in order to
comply with the second principle of thermodynamics.

1. Introduction
In classical infinitesimal elasto-plasticity (see standard
textbooks, e.g. [1]) the total strain εtot is assumed to
satisfy the following two conditions:

— There exists an additive decomposition εtot =
εe + εp where the elastic strain satisfies εe =
A

−1σ with A the elasticity tensor and σ the
stress, and where the strain εp is called plastic.
Furthermore, the plastic strain is often chosen
trace-free.

— The total strain εtot is compatible, that is, there
exists a displacement field u such that εtot = ∇Su,
with ∇u the gradient of u and ∇Su its symmetric
part.
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On these bases, the equilibrium relation − div σ = f with appropriate boundary conditions for
u together with ‘flow rules’ for εp (themselves based on the assumption that plasticity takes place
at the boundary of a convex set—the so-called elasticity domain—and on postulated dissipation
potentials) are jointly solved to find the solution, say (u, εp). It is not discussed here the fact
that this approach has provided enough evidence that such solutions correspond to the observed
behaviours of elasto-plastic materials. In this paper, we would like to propose another approach,
based on completely different paradigms and mathematical methods. We summarize our point
as follows.

— Objectivity is a crucial condition. It is intended field objectivity, that is, the intrinsic
character of field measurements for distinct observers but also the independence of this
field from any kind of arbitrary prescription: for instance u, ∇u are not objective in the
classical sense, while ∇Su still depends on a reference configuration. However, the strain
rate d is an intrinsic, objective, unambiguous quantity. It is also intended objectivity of
tensor decompositions: is the aforementioned elasto-plastic partition well defined? Is
it a physical decomposition (based on experimental evidence) or a mathematical result
(based on proofs of existence)?

— Field decomposition must result from a mathematical statement, with clear conditions
for existence and uniqueness.

— Elasto-plastic materials are modelled with one governing system of equations (in place
of equilibrium + flow rules), of which classical infinitesimal elasticity is a particular case.

— Plastic behaviour is due to the motion of dislocations, which themselves create strain
incompatibility (i.e. the fact that εp is not a symmetric gradient) by the famous Kröner’s
relation inc εP = −Curl κ , where κ is the dislocation contortion, directly related to the
dislocation density. Therefore, the incompatibility operator inc , defined in such a way
that inc εtot = 0 represents the classical Saint-Venant compatibility conditions, is a key
ingredient of our approach.

— The second principle of thermodynamics must hold, and possibly be at the heart of the
model because plasticity is in essence a dissipative phenomenon.

Our model can be briefly described as follows. First, we derive the governing equations by
the classical method of virtual powers, together with the Beltrami decomposition of symmetric
tensors. We obtain a coupled system of equations which generalizes the classical system of
elasticity by involving the strain incompatibility through the fourth-order differential operator
inc inc . A crucial scalar appearing in these equations is the newly defined incompatibility
modulus �, whose link with classical Mindlin-like theories of higher-order elasticity is discussed.
Moreover, the role of � as an internal variable for plasticity is established. In a second step, we
define the associated dissipation of the system. In the last step we compute, in a simplified setting,
the topological derivative of the dissipation functional.1 The resulting quasi-static elasto-plastic
model is based on the second principle which allows us to nucleate plastic regions in the otherwise
perfectly elastic crystal. This nucleation is based on the creation/motion of dislocations which
increases the strain incompatibility while decreasing the modulus �. The incremental formulation
in which plastic effects take place in constantly updated regions results in an overall elasto-plastic
evolution model which is highly nonlinear (the governing equations are linear in each increment,
but the nucleation procedure by topological sensitivity is not).

2. Preliminary results

(a) Notations and conventions
Let Ω be a bounded domain of R

d, d = 2, 3, with smooth boundary ∂Ω . By smooth we
mean C∞, but this assumption could be considerably weakened. Let M

3 denote the space

1The detailed computations are published online in a specific document.
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of square 3-matrices, and S
3 of symmetric 3-matrices. The superscripts t and S are used

to denote the transpose and the symmetric part, respectively, of a matrix. Divergence, curl,
incompatibility and cross-product with second-rank tensors are defined componentwise as
follows with the summation convention on repeated indices: (div E)i := ∂jEij, (Curl T)ij := (∇ ×
T)ij = εjkm∂kTim, (inc E)ij := (Curl(Curl E)t)ij = εikmεjln∂k∂lEmn, (N × T)ij := −(T × N)ij = εjkmNkTim.
Here, E and T are second-rank tensors, N is a vector, and ε is the Levi-Civita third-rank tensor.

(b) Function spaces used and preliminary results
Define

H(Ω) := {E ∈ H2(Ω , S3), div E = 0}
and H0(Ω) := {E ∈H(Ω) : E = (∂NE × N)t × N = 0 on ∂Ω}

}
. (2.1)

These spaces are naturally endowed with the Hilbertian structure of H2(Ω , S3). Note that (∂NE ×
N)t × N = 0 exactly mean that the tangential components of ∂NE vanish. Furthermore, it is proved
in [2] (see also [3]) that the following holds on ∂Ω :

E = (∂NE × N)t × N = 0 ⇒ Curlt E × N = 0 ⇒ inc EN = 0. (2.2)

Tensor Curlt E is called the Frank tensor (see [4–6]).

(c) Some important theorems
Theorem 2.1 (Coercivity [2]). Let Ω be a bounded and connected domain with C1-boundary. There

exists a constant C > 0 s.t. for each E ∈H0(Ω), ‖E‖H2(Ω) ≤ C‖ inc E‖L2(Ω).

The following result is given for the sake of generality in Lp(Ω) with 1 < p < ∞ but should here
be considered for p = 2.

Theorem 2.2 (Beltrami decomposition [7]). Assume that Ω is simply connected. Let p ∈ (1, +∞) be
a real number and let d ∈ Lp(Ω , S3). Then, for any v0 ∈ W1/p,p(∂Ω), there exists a unique v ∈ W1,p(Ω , R3)
with v = v0 on ∂Ω and a unique F ∈ Lp(Ω , S3) with Curl F ∈ Lp(Ω , R3×3), inc F ∈ Lp(Ω , S3), div F = 0
and FN = 0 on ∂Ω such that

d = ∇Sv + inc F. (2.3)

We call ∇Sv the compatible part and inc F the (solenoidal) incompatible part of the Beltrami
decomposition. Of course, prescribing v on a portion of ∂Ω only is sufficient for the existence
of the decomposition. In fact, for our purpose, uniqueness will not be needed because the
decomposition will only serve as a convenient mathematical tool to project our model equations
onto orthogonal subspaces. The fields ∇Sv and inc F will be said non-objective. It is however
important to note that the relation inc d = 0 ⇒ d = ∇Sv for some v ∈ W1,p(Ω , R3) (see [7]).

Theorem 2.3 (Divergence-free lifting [2]). Let E ∈ H3/2(∂Ω , S3) with
∫

∂Ω EN dS(x) = 0, and G ∈
H1/2(∂Ω , S3). There exists E ∈H(Ω) such that

E = E on ∂Ω ,

(∂NE)T = GT on ∂Ω ,

in the sense of traces, where subscript T stands for the restriction to the tangential components.
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Lemma 2.4 (Green formula for the incompatibility [2]). Suppose that T ∈ C2(Ω̄ , S3) and η ∈
H2(Ω , S3). Then∫

Ω

T · inc η dx =
∫
Ω

inc T · η dx +
∫
∂Ω

T1(T) · η dS(x) +
∫
∂Ω

T0(T) · ∂Nη dS(x) (2.4)

with the trace operators defined as
T0(T) := (T × N)t × N (2.5)

and
T1(T) := (Curl(T × N)t)S + ((∂N + k)T × N)t × N + (Curlt T × N)S, (2.6)

where k is twice the mean curvature on ∂Ω .

Remark 2.5. Alternative expressions for T1(T) are given in [2]. In particular,

T1(T) = −
∑

R

kR(T × τR)t × τR + ((−∂N + k)T × N)t × N − 2

(∑
R

(∂RT × N)t × τR

)S

, (2.7)

where (τA, τB) form an orthonormal basis of the tangent plane to ∂Ω oriented along the principal
directions of curvature and ∂R stands for the derivative along τR.

Remark 2.6. It is not hard to see that every E ∈H0(Ω) satisfies div (Curl E)t = 0 in Ω and
∂NE = 0 on ∂Ω . Moreover,

∫
Ω inc E · F dx = ∫

Ω E · inc F dx, for every E, F ∈H0(Ω).

(d) Some identities in the local basis
Let us consider a local orthonormal basis (τA, τB, N) on ∂Ω (for details on such bases and their
extension in Ω , cf. [2]). For a general symmetric tensor T, one has in this basis

T =

⎛
⎜⎝TAA TAB TAN

TBA TBB TBN

TNA TNB TNN

⎞
⎟⎠ , T × N =

⎛
⎜⎝TAB −TAA 0

TBB −TBA 0
TNB −TNA 0

⎞
⎟⎠ ,

(T × τA)t × τA =

⎛
⎜⎝0 0 0

0 TNN −TBN

0 −TNB TBB

⎞
⎟⎠ , (T × τB)t × τB =

⎛
⎜⎝ TNN 0 −TAN

0 0 0
−TNA 0 TAA

⎞
⎟⎠ , (2.8)

and (T × N)t × τA =

⎛
⎜⎝0 TNB −TBB

0 −TNA TBA

0 0 0

⎞
⎟⎠ , (T × N)t × τB =

⎛
⎜⎝−TNB 0 TAB

TNA 0 −TAA

0 0 0

⎞
⎟⎠ . (2.9)

3. Construction of the model equations for a continuumwith dislocations

(a) À-la-d’Alembert method of virtual powers
In this work, the method of virtual power will be considered to produce balance equations
for continua with microstructure. In general, this method is used together with the principle
of objectivity, in order to select admissible virtual velocity fields. The great advantage of this
approach is that it implies no restriction to thermodynamical reversible processes. It is also not
specified a priori whether the matter is solid or liquid, nor if the solid is elastic or plastic. By
virtue of this procedure, which will be briefly recalled, a model is constructed for our purposes
in a rational manner, as soon as a set V = V0 × · · · × VN is chosen to represent certain virtual
rate fields, as for instance a velocity field, or an elementary displacement taking place during a
time interval δt. Let us emphasize that these virtual rate fields need not be a displacement or a
velocity, but in general it is the rate of some well-defined kinematical descriptor (not necessarily
objective, or frame-invariant, see below). This space of virtual fields is selected together with
a chosen number of linear and continuous functionals defined on the Hilbert spaces Vi. In the
following, we consider a family of virtual fields v = (v0, . . . , vN) ∈ V0 × · · · × VN.
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(i) Virtual external power

A first family of linear functionals represents the virtual power of external bulk and contact forces.
The virtual power of these external forces writes as (with summation convention on i),

P(e)(v, Ω) = 〈Φ i, vi〉,
where 〈·, ·〉 stands for the duality pairing in Vi. Hence, the given (data) field Φ i ∈ Vi may represent
any quantity which is work-conjugate to vi.

(ii) Virtual intrinsic power

Another family of linear and continuous maps are considered, defining the virtual intrinsic power,
that is the power exerted by matter on itself. It is written as

P(i)(v, Ω) = 〈Λi, vi〉.
The functional structure, i.e. the chosen scalar product, will determine whether vi alone, or
also some of its derivatives will be taken into account in the model equations. Depending on
the nature of the generalized velocity vi, its conjugate field Λi may represent either classical or
configurational forces [8], as at the present stage we do not distinguish between intrinsic efforts
resulting from smooth deformations and those due to microstructural changes.

(iii) General conservation law

D’Alembert principle in the absence of inertia is then stated as

P(i)(v, Ω) = P(e)(v, Ω), (3.1)

for all v ∈ V satisfying some kinematic assumptions. The latter ones amount to choosing a
subspace of V , thus they could have been directly incorporated in V . However, it is generally
useful to define the intrinsic power on a larger space, because it is associated with the matter
itself and not to a particular configuration, as explained thereafter. Upon incorporating in
V fields accounting for heat transfer, D’Alembert principle expresses the first principle of
thermodynamics.

(iv) Objectivity

The virtual intrinsic power determines the internal forces, that is, the forces exerted by the matter
on itself. The general velocities that work against these forces are said to be objective, i.e. they
are independent of the observer and the kinematic assumptions. Independence of the observer
means that these quantities obey the standard rules for the transformation of scalars, vectors,
tensors through a roto-translation of the frame with arbitrary speed. It is for example well known
that the field ‘velocity’ is not objective, nor is its gradient, whereas its symmetric part is at
least frame-independent [9]. However, our concern is that it is not always possible to define a
velocity field in an intrinsic manner. Indeed, the traditional approach of continuum mechanics
relies on the definition of a smooth bijective transformation between two configurations of the
same material, whereby the velocity is obtained through its time derivative when one of these
configurations is chosen as reference. But in the presence of crystal defects like dislocations such
a construction is no longer possible [10]. At the microscopic scale, one could think of using a
transformation to describe the motion of atoms, but this would be insufficient to describe changes
in the crystal arrangement, which nevertheless produce work. For instance, atomic bonds can
move while atoms remain fixed. For us the velocity field is only the name given to one element
of the Beltrami decomposition [7] of a symmetric tensors d, i.e. d = ∇Sv + inc F, which is a mere
mathematical decomposition of d whose uniqueness relies on the kinematical assumption v = v0
on ∂Ω . Of course a change of frame, which amounts to changing v0(x) into v0(x) + a + ω × x,
with (a, ω) the speeds of translation and rotation of the new frame with respect to the former
one, does not change either ∇Sv or inc F as only v(x) is changed into v(x) + a + ω × x. But a more
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general change of the boundary condition (like changing v0) would change the decomposition. We
emphasize that neither ∇Sv nor inc F alone are objective in our generalized sense, simply because
they follow from a decomposition which is non-unique. As already mentioned, uniqueness would
indeed require to fix boundary conditions for v and F in the Beltrami decomposition, which is by
definition dependent on external kinematical constraints.

(b) Model objective tensors: strain and strain rate
In our model, we consider the deformation rate d as the principal objective field. Recall it is a
symmetric tensor whose components at point x can be defined in the following manner. Identify
three fibres at x, denoted by a1, a2, a3, which at time t are oriented along the axes of a Cartesian
coordinate system and of unit lengths. The deformation rate at x is defined as ([11])

dij(t) = 1
2

(
∂

∂t
(ai · aj)

)
t
. (3.2)

It is easily checked that this definition corresponds to the classical interpretation of the strain rate
in linearized or finite elasticity: the diagonal components of d represent unit rates of extension
in the coordinate directions, whereas the off-diagonal terms of the rate of deformation tensor
represent shear rates, i.e. the rate of change of the right angle between line elements aligned
with the coordinate directions. In the presence of dislocations, the above definition can still be
used at the microscopic scale, and permits the definition of its macroscopic counterpart by local
averaging. We point out that choosing the strain rate as primary unknown is also the main idea of
the so-called intrinsic approach of elasticity. However, this approach still hinges on compatibility
relations [12].

Now, the Beltrami decomposition yields the vector v and the symmetric and solenoidal tensor
F such that

d(t) = ∇Sv(t) + inc F(t). (3.3)

For a compatible deformation one has inc d = inc F = 0 hence v is determined up to rigid motions
[7]. Thus, one recovers the classical picture: for any compatible deformation rate, there exists a
unique (up to rigid-body motions) velocity field such that d = ∇Sv, and this symmetric gradient is
objective in the classical sense. For smooth fields and fixing boundary conditions, this amounts to
the Mitchell–Cesaro path integral formulae [7]. However, in the incompatible case, as for instance
in the presence of dislocations, the incompatible strain rate inc F is non-vanishing due to the
volumic source inc d, and hence, the velocity field appears in conjunction with the symmetric
and solenoidal tensor F, which we call the incompatibility tensor field.

Having fixed an initial time t0 = 0, the time integral of the objective tensor d, called the strain
or deformation tensor reads

ε(t) =
∫ t

0
d(s) ds = ∇Su + inc E, (3.4)

where by Beltrami decomposition one has v = u̇ and F = Ė.

(c) Generalized rate fields for continua with dislocations
(i) The virtual intrinsic power

Following the approach recalled above, the first step in the description of internal efforts is the
definition of spaces of objective fields. Our point of view is that the prototype of such fields
is the strain rate d, which we henceforth denote by d̂ to emphasize that it is a virtual (or test)
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field. We choose V 0 := L2(Ω , S3) as single space of virtual objective fields. Therefore, by the Riesz
representation theorem, the intrinsic power generated by the virtual strain rate d̂ takes the form

P(i)(d̂, Ω) =
∫
Ω

Σ · d̂ dx,

with Σ ∈ L2(Ω , S3). In classical models, a constitutive law of form Σ = Aε is chosen; however, it
does not take into account the material distortion which we consider as crucial in the modelling
of continua with dislocations.

Here, we assume that there exists a partition of Ω as Ω = Ω1 
 · · · 
 Ωn with mutually disjoint
subsets Ωi, such that, in each Ωi, the material is homogeneous and linear in the sense that the
intrinsic power generated by the virtual strain d̂ ∈ C∞

0 (Ωi, S3) is the classical Mindlin model [13]

P(i)(d̂, Ωi) =
∫
Ωi

(Aiε · d̂ + Bi∇ε · ∇d̂) dx,

where Ai and Bi are constant second- and third-rank tensors, respectively. In the literature [10,13],
σi := Aiε and τi := Bi∇ε are referred to as the stress and the hyperstress tensors in Ωi, respectively.
Recall that all subsequent gradients of d̂ are also objective tensors. By the Green formula, one has

P(i)(d̂, Ωi) =
∫
Ωi

(σi − div τi) · d̂ dx.

Supposing that σi − div τi ∈ L2(Ω , M3), the above expression extends by continuity to any
d̂ ∈ L2(Ωi, S3). Hence, we have for an arbitrary strain d̂ ∈ L2(Ω , S3)

P(i)(d̂, Ω) =
n∑

i=1

P(i)(d̂, Ωi) =
n∑

i=1

∫
Ωi

(σi − div τi) · d̂ dx.

(ii) The virtual external power

By Beltrami decomposition, d̂ can be decomposed in a compatible part and an incompatible part,
and the general approach (see [9]) allows the use of these non-objective test fields to describe
external actions. However, we believe that exerting surface or volume efforts that work against
these fields independently is not very natural as the two fields are combined at every point.
Therefore, we suppose that the external power is a linear functional of d̂, that is,

P(e)(d̂, Ω) =
∫
Ω

K · d̂ dx,

for some given tensor field K ∈ L2(Ω , S3). We emphasize that K is given by mere functional duality
at this stage.

Observe that, considering the decomposition d̂ = ∇Sv̂ + inc F̂ and assuming sufficient
regularity, integrating by parts using lemma 2.4 yields

P(e)(d̂, Ω) =
∫
Ω

(−div K · v̂ + inc K · F̂) dx +
∫
∂Ω

(KN · v̂ + T0(K) · ∂NF̂ + T1(K) · F̂) dx.

Hence, f := −div K may be interpreted as a volume force (gravity for instance) and g := KN as
a surface load. The loads G := inc K, g0 := T0(K), g1 := T1(K) are generalized external forces that
work against the incompatible part of d̂. Although it is not straightforward to give a precise
physical meaning to these quantities, one should remark that it is not possible to prescribe these
loads independently. For instance, g and g1 share common components of K. In fact, the system

−div K = f , inc K = G in Ω

KN = g on ∂Ω

}

is well posed. This is easily seen with the decomposition K = ∇Sφ + inc H. The system for φ is a
Neumann elasticity system with unit elasticity tensor. The system for H ∈H0 was studied in [2]
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(note that H satisfies inc HN = 0 on ∂Ω). Thus, one can prescribe f , G and g, but then g0 and g1
must be consistent with this choice. More details will be provided in §5c.

(iii) Equilibrium equations

At this stage, the virtual power principle in weak form reads

n∑
i=1

∫
Ωi

(σi − div τi) · d̂ dx =
∫
Ω

K · d̂ dx, (3.5)

for all kinematically admissible d̂. This will be our gradient-elasticity model equation.

4. Constitutive laws

(a) General form
Let us concentrate on a set Ωi and drop the index i. Tensor A is recognized as Hooke’s tensor
of linear elasticity. Assuming material isotropy, it admits the classical expression A = 2μI4 + λI2.
Similarly, under the same assumption, it is shown in [13] that B derives from the quadratic form

1
2 B∇ε · ∇ε = c1(∂jεij)(∂kεik) + c2(∂kεii)(∂jεjk) + c3(∂kεii)(∂kεjj) + c4(∂kεij)(∂kεij) + c5(∂kεij)(∂iεjk)

where c1, . . . , c5 are real numbers. Componentwise, this reads

σij = λδijεkk + 2μεij (4.1)

and

τijk = c1(δki∂lεlj + δkj∂lεli) + c2

2
(δki∂jεll + δkj∂iεll + 2δij∂lεlk) + 2c3δij∂kεll

+ 2c4∂kεij + c5(∂iεjk + ∂jεik). (4.2)

(b) Consistency with classical linear elasticity
Let us again restrict ourselves to the domain Ωi. In order to be consistent with standard models,
i.e. with models for continua without dislocations, one imposes that the hyperstress τ does not
produce any virtual intrinsic power as soon as the strain d is compatible. This means

inc ε = 0 ⇒
∫
Ω

τ · ∇d̂ dx = 0, ∀ d̂ ∈ C∞
0 (Ω).

Integrating by parts yields inc ε = 0 ⇒ − div τ = 0 in Ω . One obtains from (4.2)

(div τ )ij = (c1 + c5)(∂ikεjk + ∂jkεik) + c2(∂ijεll + δij∂klεkl) + 2c3δij∂kkεll + 2c4∂kkεij. (4.3)

For ε = ∇Su, one finds

div τ = (c1 + c2 + c5)∇2 div u + (c1 + 2c4 + c5)∇S�u + (c2 + 2c3)� div uI2.

This vanishes for every u ∈ C∞
0 (Ω) if and only if c1 + c2 + c5 = 0, c1 + 2c4 + c5 = 0, c2 + 2c3 = 0.

The above system is equivalent to the existence of a scalar � such that c1 + c5 = −�, c2 = �,
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c3 = −�/2, c4 = �/2. Plugging this into (4.3) yields

(div τ )ij = −�(∂ikεjk + ∂jkεik) + �(∂ijεll + δij∂klεkl) − �δij∂kkεll + �∂kkεij.

This expression is identical to that found by Lazar & Maugin in [10] (with different arguments),
and rewrites as

− div τ = � inc ε. (4.4)

Remark that � has the dimension of a force. Moreover, � can take values in [0, +∞[. It will be
called the incompatibility modulus: it is a force that governs strain incompatibility, namely that
opposes to incompatibility: if � increases then resistance to incompatibility increases, and in the
limit � = +∞ classical compatible elasticity is recovered as inc ε = 0. On the contrary, decreasing
the value of � means that incompatibility can increase more freely, and the limit � = 0 corresponds
to perfect plasticity because there is no more limit for incompatibility. This interpretation will
become clear once the model equations are established.

We emphasize that so far � is taken constant. Indeed, taking � constant in space and time
means that we consider a high-order model of elasticity to account for incompatible deformations
(which Mindlin has modelled as taking place with specific displacements at a lower scale, but we
prefer to simply consider the Beltrami decomposition). We will show in the sequel that our elasto-
plasticity model is based on the possibility that � varies in space and time. As a matter of fact, the
chosen constitutive law for � will determine our plasticity model. Indeed, plasticity is modelled,
as varying � implies by the governing equations that the strain incompatibility varies accordingly,
the latter being related to the motion of dislocations, i.e. their mobility.

5. Incompatibility-governed linearized elasticity system

(a) Weak formulation of generalized elasticity
By the above constitutive laws, (3.5) rewrites as

n∑
i=1

∫
Ωi

(Aiε + �i inc ε) · d̂ dx =
∫
Ω

K · d̂ dx,

for all kinematically admissible d̂. Defining the functions

A =
n∑

i=1

AiχΩi , � =
n∑

i=1

�iχΩi ,

with χΩi the characteristic function of Ωi, we arrive at
∫
Ω

(Aε + � inc ε) · d̂ dx =
∫
Ω

K · d̂ dx, (5.1)

for all kinematically admissible d̂. It is a second-gradient model of elasticity, because the operator
inc involves two derivatives of the strain. Then, Beltrami’s decomposition of d̂ yields the coupled
system

∫
Ω

(Aε + � inc ε) · ∇Sv̂ dx =
∫
Ω

K · ∇Sv̂ dx ∀ v̂ (5.2)

∫
Ω

(Aε + � inc ε) · inc F̂ dx =
∫
Ω

K · inc F̂ dx ∀ F̂. (5.3)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Write the Beltrami decomposition of ε as ε = ∇Su + ε0, with ε0 = inc E and where E is called the
internal variable of incompatibility. A typical kinematical framework could be the following. Split
the boundary ∂Ω as the disjoint union of a Dirichlet boundary ∂ΩD and a Neumann boundary
∂ΩN. On ∂ΩD fix u = 0 and E = (∂NE × N)t × N = 0. Recall that this latter condition implies
ε0N = inc EN = 0. This means that the incompatible strain can only be tangential to the Dirichlet
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boundary. Said otherwise, incompatible (plastic) sliding tangent to the boundary can occur. This
is in contrast with the compatible (elastic) strain which has no purely tangential component on
the Dirichlet boundary. Let us emphasize that plastic slip is permitted on the Dirichlet part of
the boundary even if the deformation is in L2 and not in a measure space.2 Of course, the same
kinematic restrictions apply to the test fields v̂ and F̂. With the notations of §3c(ii) we arrive at∫

Ω

(Aε + � inc ε) · ∇Sv̂ dx =
∫
Ω

f · v̂ dx +
∫
∂ΩN

g · v̂ dx ∀ v̂ (5.4)

∫
Ω

(Aε + � inc ε) · inc F̂ dx =
∫
Ω

G · F̂ dx +
∫
∂ΩN

(g0 · ∂NF̂ + g1 · F̂) dx ∀ F̂. (5.5)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(b) Strong forms of generalized elasticity
The classical procedure consists in selecting various particular cases of admissible virtual fields
v̂ and F̂. By admissible it is intended from a physical as well as a mathematical standpoint.
In particular, appropriate boundary lifting results as well as Gauss–Green-type of formulae must
first been established (see [2]). A case study will now be done.

Taking v̂ arbitrary in Ω̄ , (5.4) classically yields

− div (Aε + � inc ε) = f a.e. in Ω

and (Aε + � inc ε)N = g a.e. on ∂ΩN.

}
(5.6)

By boundary lifting (i.e. theorem 2.3), one can select F̂, (∂NF̂)T arbitrary on ∂ΩN up to the condition
that

∫
∂ΩN

F̂N dS(x) = 0. Then, (5.5) yields the additional model equation

inc (Aε + � inc ε) = G a.e. in Ω ,

T0(Aε + � inc ε) = g0 a.e. on ∂ΩN

and T1(Aε + � inc ε) = g1 a.e. on ∂ΩN.

⎫⎪⎪⎬
⎪⎪⎭ (5.7)

We emphasize that in general equations (5.6) and (5.7) are coupled. In this paper, we do not study
existence of solutions for such a system. Furthermore, we observe that if � is constant in space
then (5.6) simplifies to the classical elasticity system with the extra boundary force −� inc εN.

(c) Coupling between external forces
We now investigate the precise relations between the boundary source terms g = KN, g0 = T0(K),
g1 = T1(K).

First, we observe that KN and T0(K) have uncoupled components, as this latter only involves
the tangential components of K. As for KN and T1(K), one should consider expression (2.7).
Let us write g in the local basis (τA, τB, N) as g = (gA, gB, gN). Then, the first curvature-dependent
term of (2.7) writes by (2.8) as

−
∑

R

κR(K × τR)t × τR = −κA

⎛
⎜⎝0 0 0

0 gN −gB

0 −gB KBB

⎞
⎟⎠− κB

⎛
⎜⎝ gN 0 −gA

0 0 0
−gA 0 KAA

⎞
⎟⎠ . (5.8)

The second curvature-dependent term of (2.7) is κT0(K) while two other terms are −T0(∂NK), and,
by (2.9),

− 2
∑

R

(∂RK × N)t × τR = −2

⎛
⎜⎝0 ∂AgB −∂AKBB

0 −∂AgA ∂AKBA

0 0 0

⎞
⎟⎠− 2

⎛
⎜⎝−∂BgB 0 ∂BKAB

∂BgA 0 −∂BKAA

0 0 0

⎞
⎟⎠ . (5.9)

From these relations we observe that for a flat boundary, the only coupling is due to the tangential
variations of g in (5.9). That is, spatial fluctuations of g (and in the extreme case, discontinuities)

2As found in other formulations if the displacement is taken of bounded deformation, see [14–16].
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can be considered as sources on incompatibility. For a curved boundary, all terms of g and of the
tangential variations of its tangential components will act as source terms for the incompatibility.
It is interesting to note that the magnitudes of these terms increase with the curvature. All
other source terms, i.e. the tangential components of K and their tangential derivatives, are not
explicitly coupled with the boundary load g. As an example, assume that gN is the only non-
vanishing component of g. Then, the incompatibility source terms vanish for a flat boundary, and
increase with the curvature. The limit case of a corner is a particular source of incompatibility.

(d) Interpretation of the incompatibility modulus in terms of dislocation mobility
and macroscopic plasticity

When � = 0, the incompatible part of ε is not controlled. On the contrary, when � → ∞, (5.3)
formally shows that inc ε → 0. This also holds locally. Now, by Kröner’s formula, inc ε = Curl κ
(see [17] for a proof) where κ is the dislocation contortion (or its density) defined by κ =
Λ − (I2/2) trΛ, with Λ the dislocation density (with the conservation property div Λ = 0). Take
a reference value �∞ large enough so that the incompatible part of the strain is negligible. If � is
decreased in some region ω � Ω , then inc ε is likely to increase in ω, meaning that κ varies in space
so as to increase its curl. This means that motion of dislocations has taken place at a microscopic
level, i.e. that plastic effects are observed at a macroscopic level.

(e) Selected examples
Let us recall that in Cartesian coordinates and components, the incompatibility of ε reads
in extenso as follows

Txx = ∂2
y εzz + ∂2

z εyy − 2∂yzεyz

Tyy = ∂2
x εzz + ∂2

z εxx − 2∂xzεxz

Tzz = ∂2
x εyy + ∂2

y εxx − 2∂xyεxy

Txy = ∂z(∂yεxz + ∂xεyz − ∂zεxy) − ∂xyεzz

Txz = ∂y(∂xεyz + ∂zεxy − ∂yεxz) − ∂xzεyy

and Tyz = ∂x(∂zεxy + ∂yεxz − ∂xεyz) − ∂yzεxx.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.10)

In this section, we will consider 2D elasticity, meaning that the strain ε only depends on the
coordinates (x, y) and is independent of the vertical coordinate z. Moreover, the stress and strain
tensors represented by 3 × 3 matrices. The geometry is that of a vertical cylinder. We consider
an homogeneous material, i.e. � is constant. In this case, (5.10) is rewritten as

Txx = ∂2
y εzz

Tyy = ∂2
x εzz + ∂2

z εxx − 2∂xzεxz

Tzz = ∂2
x εyy − 2∂xyεxy

Txy = −∂xyεzz

Txz = ∂y(∂xεyz − ∂yεxz)

and Tyz = ∂x(∂yεxz − ∂xεyz).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.11)

Furthermore, note that in 2D, T := inc ε vanishes if and only if componentwise εikmεjln∂k∂lεmn =
0, that is, if and only if there exists real numbers K, aα and b such that [4] εαγ εβδ∂α∂βεγ δ = 0,
εαβ∂αεβz = K, εzz = aαxα + b.
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(i) Planar strain and edge dislocations

Assume that the strain and stress tensors are of the form

ε =

⎛
⎜⎝εxx εxy 0

εxy εyy 0
0 0 0

⎞
⎟⎠ , σ =

⎛
⎜⎝σxx σxy 0

σxy σyy 0
0 0 σzz

⎞
⎟⎠ ,

with
σxx = (λ + 2μ)εxx + λεyy, σyy = (λ + 2μ)εyy + λεxx

and σxy = λεxy, σzz = λ(εxx + εyy).

}
(5.12)

We infer

T = inc ε =

⎛
⎜⎝0 0 0

0 0 0
0 0 Tzz

⎞
⎟⎠ , with Tzz = ∂xxεyy − 2∂xyεxy + ∂yyεxx.

We find

inc (σ + �T) =

⎛
⎜⎝ ∂yy(σzz + �Tzz) −∂xy(σzz + �Tzz) 0

−∂xy(σzz + �Tzz) ∂xx(σzz + �Tzz) 0
0 0 ∂xxσyy − 2∂xyσxy + ∂yyσxx

⎞
⎟⎠ ,

thus inc (σ + �T) = 0 is equivalent to σzz + �Tzz affine, and inc σplan := ∂xxσyy − 2∂xyσxy +
∂yyσxx = 0. Using (5.12), we get σzz = (1/2(λ + μ))(σxx + σyy), whereby we deduce Tzz.

If � → +∞ then Tzz → 0 and the standard solution is retrieved. Note also that by (5.12)
inc σplan = λ� trε + 2μ(inc ε)zz = λ tr inc ε + 2μ inc εzz = (λ + 2μ)Tzz = 0. If � → 0 then Tzz is not
controlled.

Following [4] and classical textbooks [18], the edge dislocation in 2D corresponds to a planar
strain. At the mesoscopic scale (dislocations are modelled as kinematical singularities), according
to [4], the strain associated with a straight line along the z-axis, with Burgers vector B = Byey reads
in Cartesian components and polar coordinates as

εedge = −By

2πr

⎛
⎜⎝cos θ sin θ 0

sin θ − cos θ 0
0 0 0

⎞
⎟⎠ .

(ii) Transverse strain (3D shear) and screw dislocation

Assume now that the strain and the Cauchy stress read

ε =

⎛
⎜⎝ 0 0 εxz

0 0 εyz

εxz εyz 0.

⎞
⎟⎠ , σ = 2με,

The incompatibility is purely transverse, namely,

T = inc ε =

⎛
⎜⎝ 0 0 ∂xyεyz − ∂yyεxz

0 0 ∂xyεxz − ∂xxεyz

∂xyεyz − ∂yyεxz ∂xyεxz − ∂xxεyz 0

⎞
⎟⎠ .

Following [4,18], the screw dislocation in 2D corresponds to a 3D shear. According to [4], the strain
associated with a straight line along the z-axis, with Burgers vector B = Bzez reads in Cartesian
components and polar coordinates as

εscrew = Bz

4πr

⎛
⎜⎝ 0 0 sin θ

0 0 − cos θ

sin θ − cos θ 0

⎞
⎟⎠ .
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Figure 1. The Beltrami decomposition (A→ A′ → B) versus the standard elastic/plastic decomposition (A′′ → A→ B).

(f) Link with classical elasto-plasticity models
Recall that classical elasto-plasticity models are based on the a priori decomposition εtot = εe + εp,
where the total strain εtot is compatible (inc εtot = 0), the elastic strain εe is derived from
the Cauchy stress by Hooke’s law and the plastic strain εp obeys so-called flow rules. We
now compare this decomposition with the Beltrami decomposition ε = ∇Su + ε0. As inc εtot =
inc ∇Su = 0, there exists a vector field w (see [7]) such that εtot = ∇Su − ∇Sw and we can write

εtot = ∇Su − ∇Sw = −(ε0 + ∇Sw) + (∇Su + ε0).

We then recognize ∇Su + ε0 as the strain ε.
The interpretation is the following (figure 1): for us, ε represents the deformation from a

reference state, say state A to a neighbour state B of the same material. It can be viewed as the
composition of the incompatible deformation ε0 from state A to an intermediate state A′, and
the compatible deformation ∇Su from A′ to B. In the classical approach, another configuration
A′′ serves as reference configuration. The total deformation εtot from A′′ to B is the sum of the
plastic deformation εp = −(ε0 + ∇Sw) from A′′ to A and the elastic deformation εe = ε from A to
B. Of course, choosing w = 0 (thus A′′ = A′) would be a choice of simplicity, but it would be too
restrictive because in that case εp would be identified with −ε0, hence it would not be trace-free
and it could not comply with the flow rules.

6. Energy dissipation by incompatibility

(a) Time-rate formulation
For the purpose of evaluating energy dissipation, it is crucial to involve time. Knowing that
(5.2) and (5.3) represent a linearized elasticity system (small strain with respect to a natural
configuration), their time-rate counterparts in the general case are

∫
Ω

(Aε̇ + � inc ε̇) · ∇Sv̂ dx =
∫
Ω

K̇ · ∇Sv̂ dx (6.1)

∫
Ω

(Aε̇ + � inc ε̇) · inc F̂ dx =
∫
Ω

K̇ · inc F̂ dx, (6.2)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

with ε̇ = ∇Su̇ + ε̇0, ε̇0 = inc Ė. In this formulation, A and � play the role of tangent moduli and only
the rates ε̇, u̇ and Ė are the unknowns of the model. We emphasize that at a given time the solution
of (6.1) and (6.2) are not the time derivatives of the solution of (5.2) and (5.3), because A and �
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may vary with time in this general formulation of the model (according to the material stress–
strain and hyperstress-incompatibility curves). Indeed, (6.1) and (6.2) should be understood as
the time-rate equations of state for a nonlinear model of gradient-elasticity.

(b) Mechanical dissipation
The work of the external load in the time interval [t1, t2] is

Wt1,t2 =
∫ t2

t1

dt
∫
Ω

(K · ∇Su̇ + K · inc Ė) dx.

Suppose first that � is constant in space and tends to infinity so as to enforce inc ε̇ = 0 in the interval
[t1, t2]. Hence, there is no motion of dislocations, that is, no dissipation. This transformation is thus
said to be isentropic or reversible. In this case, we have ε̇rev = ∇Su̇rev and (6.1) becomes

∫
Ω

Aε̇rev · ∇Sv̂ dx =
∫
Ω

K̇ · ∇Sv̂ dx. (6.3)

We assume that A is time invariant. A standard calculation leads to

Wrev
t1,t2

=
∫ t2

t1

dt
∫
Ω

K · ∇Su̇rev dx =
[∫

Ω

(
K · ∇Surev − 1

2
A∇Surev · ∇Surev

)
dx
]t2

t1

,

with [X]t2
t1

:= X(t2) − X(t1). This quantity corresponds to the increment of free energy Ψ in the time
interval [t1, t2]. The free energy rate is

Ψ̇ =
∫
Ω

K · ∇Su̇rev dx.

Let us now come back to a general transformation. The global dissipation rate is defined as
the difference between the power provided to the system by external loads and the rate of free
energy, i.e. D := Ẇ − Ψ̇ . The power of the external forces is

Ẇ =
∫
Ω

K · (∇Su̇ + ε̇0) dx.

Still assuming A time invariant, we obtain

D =
∫
Ω

K · (∇Su̇ + ε̇0 − ∇Su̇rev) dx. (6.4)

We emphasize that the reversible field u̇rev is independent of �, hence it will not play any role in
our subsequent sensitivity analysis.

The dissipation rate can be rewritten in a more classical manner (e.g. [1]) in the following
case: consider a time interval in which A and � are constant (as in an incremental formulation).
For simplicity (and without loss of generality), we assume that K vanishes at t = 0. We define
urev(t) := ∫t

0 u̇rev(s) ds and ε(t) := ∫t
0 ε̇(s) ds. Integrating in time, the relations (6.1) and (6.2) yield

D =
∫
Ω

(Aε + � inc ε) · (∇S(u̇ − u̇rev) + ε̇0) dx.

This expression shows the dissipation rate as the power of the flux ε̇ − ∇Su̇rev against the force
Aε + � inc ε. By definition, the dissipation rate vanishes when � → ∞. Some standard models of
plasticity can be written in the form of the principle of maximum dissipation, namely, plasticity
occurs so as to maximize the dissipation rate among a given set of internal variable rates [19].
At least, by the second principle of thermodynamics, the dissipation rate must be positive. Thus,
in order to model a time-dependent experiment, an evolution law for � has to be determined in
such a way that this principle is satisfied. In an incremental formulation, � is constant in each
time interval [ti, ti+1], but the values (they depend on space) need to be fixed. The analysis of the
behaviour of D with respect to the spatial distribution of � is the object of the next sections.
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7. Topological sensitivity analysis

(a) Framework
The coupled system (5.4)–(5.5) (or equivalently, (6.1)–(6.2)) seems highly involved from the
mathematical point of view. In fact, in this paper dedicated to the presentation of the new model,
we have not proven the existence of a solution. In the subsequent analysis, we will restrict
ourselves to a simplified model assuming that

(1) the principal part of (6.1)–(6.2) is predominant,
(2) full homogeneous Dirichlet conditions are prescribed.

These assumptions lead to the problem: find E ∈H0 such that

∫
Ω

� inc E · inc F dx =
∫
Ω

G · F dx, ∀ F ∈H0. (7.1)

According to [2], this problem is well posed as long as � ∈ L∞(Ω), infΩ � > 0, G ∈ L2(Ω), div G = 0.
Note that from this section on, in comparison with (6.1)–(6.2), E plays the role of ε̇0 and F that of
F̂. In [2], it is also shown that the problem: find E ∈H0 such that

∫
Ω

αM
� inc E · inc F dx =

∫
Ω

G · F dx, ∀ F ∈ H0, (7.2)

with M
� a fixed symmetric positive definite fourth-rank tensor, is well posed if α ∈ L∞(Ω),

infΩ α > 0. We will focus on (7.2), choosing

M
� := γ I4 + βI2 ⊗ I2.

Obviously, (7.1) is recovered from (7.2) by taking αM
� = �I4.

(b) Preliminaries
Let ω ⊂ R

d with smooth boundary ∂ω and outward unit normal N. For ωε := x̂ + εω ⊂⊂ Ω , ε > 0,
we define

αε =
{

α0 in Ω\ωε

α1 in ωε

,

with α0, α1 two positive constants. We consider a cost functional of form

J(E) =
∫
Ω

H · E dx,

for a given tensor field H ∈ L2(Ω), div H = 0. In particular, choosing H = K gives the contribution
of the incompatible strain to the dissipation (6.4). Furthermore, the transmission conditions are as
follows. If a solenoidal tensor field T satisfies inc (αT) = 0 weakly in a neighbourhood of ∂ω, then
it is shown in [2] that the following transmission conditions hold on ∂ωε

[[T0(αT)]] = 0, [[T1(αT)]] = 0, [[TN]] = 0. (7.3)

By convention, [[T]] = Text − Tint.
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(c) Formal derivation
The background solution E0 satisfies

a0(E0, F) = l(F) :=
∫
Ω

G · F dx, ∀ F ∈H0(Ω), (7.4)

with a0(E0, F) := ∫
Ω α0M

� inc E0 · inc F dx. Moreover, the perturbed solution Eε satisfies

aε(Eε , F) = l(F), ∀ F ∈H0(Ω), (7.5)

with aε(Eε , F) := ∫
Ω αεM

� inc Eε · inc F dx. The cost functional reads

j(ε) := J(Eε) =
∫
Ω

H · Eε dx, (7.6)

and the associated adjoint state Êε satisfies

aε(E, Êε) = −
∫
Ω

H · E dx, ∀ E ∈H0(Ω). (7.7)

These definitions entail

Σε := j(ε) − j(0) =
∫
Ω

H · (Eε − E0) = −aε(Eε − E0, Êε)

= −aε(Eε , Êε) + aε(E0, Êε).

Using that aε(Eε , Êε) = l(Êε) = a0(E0, Êε), we get

Σε = −a0(E0, Êε) + aε(E0, Êε) = (aε − a0)(E0, Êε)

=
∫
Ω

(αε − α0)M� inc E0 · inc Êε dx. (7.8)

Let us introduce the variation of the adjoint state

Ẽε := Êε − Ê0. (7.9)

By (7.3), one has

inc (αM
� inc Ẽε) = 0 in ω ∪ (Ω\ω̄)

[[αεTi(M
� inc Ẽε)]] = −(α0 − α1)Ti(inc Ê0) on ∂ω, (i = 0, 1)

and [[(M� inc Ẽε)N]] = β[[ tr(inc Ẽε)N]] on ∂ω.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.10)

Moreover, (7.8) yields

Σε =
∫
Ω

(αε − α0)M� inc E0 · inc Ê0 dx +
∫
Ω

(αε − α0)M� inc E0 · inc Ẽε dx. (7.11)

We now approximate inc E0 and inc Ê0 in ωε by the constant tensors inc E0(x̂) and inc Ê0(x̂),
respectively. This yields

Σε ∼ |ωε |(α1 − α0)M� inc E0(x̂) · inc E0(x̂) + (α1 − α0) inc E0(x̂) ·
∫
ωε

M
� inc Ẽε dx.

We further approximate Ẽε(x) by Ẽε(x) ∼ ε2H(x/ε), solution to the blown-up transmission problem

inc (M� inc H) = 0 in R
2\∂ω

[[αTi(M
� inc H)]] = −(α0 − α1)Ti(inc Ê0(x̂)) on ∂ω, (i = 0, 1)

and [[(M� inc H)N]] = β[[ tr(inc H)N]] on ∂ω.

⎫⎪⎪⎬
⎪⎪⎭ (7.12)

We write

Σε ∼ |ωε |(α1 − α0)M� inc E0(x̂) · inc E0(x̂) + (α1 − α0)ε2 inc E0(x̂) ·
∫
ω

M
� inc H dx. (7.13)



17

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160734

...................................................

(d) Topological sensitivity
We consider two space dimensions as in §5e. In the sequel, we will denote

S := inc E0(x̂), Ŝ := inc Ê0(x̂), (7.14)

and the main unknown of (7.12) by

T := M
� inc H, (7.15)

where H will be called the scattered field. Our aim is now to compute the contribution

Λ := (α1 − α0) inc E0(x̂) ·
∫
ω

M
� inc H dx = (α1 − α0)Ŝ ·

∫
ω

T dx.

Assuming that T = Tint is constant in the interior of the inclusion (this will be proved valid in
the sequel for a disc inclusion, see [20]), this rewrites as Λ = (α1 − α0)|ω|Ŝ · Tint. By the problem
linearity in Ŝ, there exists a fourth-rank tensor P

ω
α0,α1

such that Tint = P
ω
α0,α1

Ŝ. Hence, (7.13)
results in

j(ε) − j(0) = ε2δj + R(ε), (7.16)

with

δj := |ω|(α1 − α0)S · (M� + P
ω
α0,α1

) Ŝ (7.17)

and R(ε) the remainder. The fourth-rank tensor M
� + P

ω
α0,α1

is called the polarization tensor.
Following the lines of [21], it is proved that R(ε) = o(ε2), whereby δj is identified with the so-called
topological derivative of j.

Let the centre of the inclusion x̂ be the origin of the chosen coordinate system oriented in such
a way that Ŝ writes as Ŝ = Ŝ

plan + Ŝ
uni + Ŝ

trans, where in Cartesian coordinates,

Ŝ
plan =

⎛
⎜⎝ŝ1 0 0

0 ŝ2 0
0 0 0

⎞
⎟⎠ , Ŝ

uni =

⎛
⎜⎝0 0 0

0 0 0
0 0 ŝ3

⎞
⎟⎠ , Ŝ

trans =

⎛
⎜⎝ 0 0 ŝ4

0 0 ŝ5
ŝ4 ŝ5 0

⎞
⎟⎠ . (7.18)

In the same basis, we decompose S as S = S
plan + S

uni + S
trans with

S
plan =

⎛
⎜⎝ s1 s12 0

s12 s2 0
0 0 0

⎞
⎟⎠ , S

uni =

⎛
⎜⎝0 0 0

0 0 0
0 0 s3

⎞
⎟⎠ , S

trans =

⎛
⎜⎝ 0 0 s4

0 0 s5
s4 s5 0

⎞
⎟⎠ . (7.19)

Lengthy calculations, detailed in [20], lead for ω the unit disc

S · P
ω
α0,α1

Ŝ = S
plan · P

plan
α0,α1 Ŝ

plan + S
uni · P

uni
α0,α1

Ŝ
uni + S

trans · P
trans
α0,α1

Ŝ
trans,

where

P
plan
α0,α1 = BI4 + C

2
I2 ⊗ I2,

with B = γ (α0 − α1)
γα1 + (3 + 4β)α0

, C = 2α0(α0 − α1)(γ 2 + 5γβ + 4β2)
(γα0 + (γ + 2β)α1)(γα1 + (3γ + 4β)α0)

,

⎫⎪⎪⎬
⎪⎪⎭ (7.20)

P
uni
α0,α1

= −α1 − α0

α1
I4, P

trans
α0,α1

= −2
α1 − α0

α1 + α0
I4. (7.21)

It is immediately observed that P
uni
α0,α1

is degenerated in the sense of [21], i.e.

— it does not depend on the shape of ω,
— it does not remain bounded when α1 → 0.
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8. Discussion

(a) Interpretation of the topological derivative
On choosing M

� = I4, the analysis of the two previous sections deals with the situation where
the incompatibility modulus � = α varies from its background value α0 to its new value α1 inside
the inclusion.

However, our main goal is to evaluate the dissipation due to dislocation motion/creation,
which is by definition an energetic comparison between the elasto-plastic transformation and its
purely elastic counterpart. Therefore, we analyse here formula (7.16) when α0 → ∞, keeping the
tensor M

� for the sake of generality. Recall the direct and adjoint state equations
∫
Ω

α0M
� inc E0 · inc F =

∫
Ω

G · F, ∀ F ∈H0,

∫
Ω

α0M
� inc E · inc Ê0 = −

∫
Ω

H · E, ∀ E ∈H0.

Assume α0 is constant and set E�
0 = α0E0, Ê�

0 = α0Ê0. It holds by definition

α0S = T := inc E�
0(x̂), α0Ŝ = T̂ := inc Ê�

0(x̂),

while E�
0, Ê�

0 are obviously solutions of
∫
Ω

M
� inc E�

0 · inc F =
∫
Ω

G · F, ∀ F ∈H0,

∫
Ω

M
� inc E · inc Ê�

0 = −
∫
Ω

H · E, ∀ E ∈H0.

Note that the re-scaled fields E�
0 and Ê�

0 are independent of α0, hence T and T̂ are also independent
of α0. We rewrite (7.17) as

δj := |ω|
(

α1

α0
− 1

)
T ·

(
M

� + P
ω
α0,α1

α0

)
T̂. (8.1)

From (7.20)–(7.21), we obtain

lim
α0→∞

P
plan
α0,α1

α0
= 0, lim

α0→∞
P

uni
α0,α1

α0
= I4

α1
, lim

α0→∞
P

trans
α0,α1

α0
= 0.

We arrive at

lim
α0→∞ δj = −|ω|

α1
T

uni · T̂
uni. (8.2)

Upon choosing the dissipation rate as cost function, this limiting topological derivative can
be viewed as the power done by a thermodynamic force that works against variations of � to
dissipate energy (the thermodynamic force tending to zero as α0 → ∞ as to compensate the
divergence of α1 − α0). It appears that our model is able to represent the effect of plastic nucleation
when the strain incompatibility has a non-vanishing uniaxial component. This situation occurs
in the presence of edge dislocations. Observe that when α1 → 0 (perfectly plastic inclusion)
the topological derivative δj is likely to diverge, revealing an unbounded dissipation rate. We
emphasize that our sensitivity analysis has been restricted to a significantly simplified model.
In the full model, additional terms are expected to appear due to the coupling between the
incompatible and compatible parts of the strain and also due to the fact that the elasticity tensor A

may take a different value in the inclusion. By (8.2), we remark that in the present model the total
dissipation δj does not depend on the shape of the inclusion, but only on its volume. In particular,
this means that a plastic crack cannot dissipate energy.
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(b) A quasi-static elasto-plastic evolution scheme
The results of this paper allow us to consider a novel elasto-plastic scheme based on an
incremental formulation. Each increment might be computed as follows.

(i) Consider the current configuration as reference configuration and compute the almost
elastic deformation rate by solving the elasto-plasticity model � = �∞ as a background
large value.

(ii) Compute the topological derivative δj of the dissipation rate.
(iii) Identify the points where δj ≥ η, where η > 0 is a material-dependent threshold3 (η could

be a constant or depend on local material properties).
(iv) At these points, where plasticity occurs, choose a new (lower) value for the

incompatibility modulus �.
(v) With this new value, solve the elasto-plasticity model from the reference configuration

and update the full deformation.
(vi) Increment the (pseudo)-time and update the load.

This scheme is repeated while the external force K (whatever the exact meaning at this stage of
model development) is increased. The values successively chosen for the incompatibility modulus
� and the threshold η should rely on constitutive laws. For instance, some standard elasto-
plastic laws can be represented as constraints within the principle of maximum dissipation [19],
which in turn could give rise to specific choices of η (as a function of space) through Lagrange
multipliers [24]. Strain hardening occurs when the decrease of � in a given region is slower and
slower, while the load increases at a fixed speed. Perfect plasticity occurs when � goes to 0 in finite
time. Keeping � = �∞ permits to recover the (almost) purely elastic case, as in unloading.

(c) Final remark on equation decoupling
Let us finally comment on the coupling between the compatible and incompatible parts of the
strain. Recall the full equation

∫
Ω

(Aε̇ + � inc ε̇) · inc F̂ dx =
∫
Ω

K̇ · inc F̂ dx. (8.3)

In the case of planar strain (as in the typical case of edge dislocations), inc ε̇ is uniaxial. If λ = 0,
then Aε̇ and � inc ε̇ have uncoupled components. In particular, taking F̂ planar leads to

∫
Ω

� inc ε̇ · inc F̂ dx =
∫
Ω

K̇ · inc F̂ dx,

which is the equation we considered in the simplified model, applying to the incompatible part
of ε̇. Note also that choosing ∇Sv̂ planar in

∫
Ω

(Aε̇ + � inc ε̇) · ∇Sv̂ dx =
∫
Ω

K̇ · ∇Sv̂ dx (8.4)

yields ∫
Ω

Aε̇ · ∇Sv̂ dx =
∫
Ω

K̇ · ∇Sv̂ dx.

If μ is constant, it is the standard linear elasticity system applied to the compatible part of ε̇. On
the contrary, if ε̇ has transverse components, then ε̇ and inc ε̇ share common components. Then,
in (8.3) coupling occurs between the compatible and incompatible parts of ε̇ as soon as μ is not
constant. Eventually, the two equations are coupled. This will be further studied in future work.

3Quasi-static growth of damage and crack had already been envisaged with the topological derivative in [22,23].



20

rspa.royalsocietypublishing.org
Proc.R.Soc.A473:20160734

...................................................

(d) Concluding remarks
In this paper, we have presented and developed from the ground up a novel model for elasto-
plastic continua. It is based on the known fact that plasticity is related to dislocation motion,
which itself is a source of strain incompatibility. In traditional models, this interdependence is
not clear, because there is a superposition of the equilibrium equations (for the elastic strain) and
the flow rules (for the plastic strain), as deriving from other arguments. In our model, strain
incompatibility is incorporated already in the equilibrium equations, hence showing a more
general system than classically adopted. Plastic laws are introduced as soon as a constitutive law
for the newly introduced incompatibility modulus is provided. Of course, numerical simulations
are now required in order to assess our model. This task is left for future works.
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