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Abstract
The mathematical modelling in mechanics has a long-standing history as related

to geometry, and significant progresses have often been achieved by the invention of
new geometrical tools. Also, it happened that the elucidation of practical issues led to
the invention of new scientific concepts, and possibly new paradigms, with potential
impact far beyond. One such example is Riemann’s intrinsic view in geometry, that
offered a radically new insight in the Physics of the early 20th century. On the other
hand, the rather recent intrinsic approaches in elasticity and elasto-plasticity also
share this philosophical standpoint of looking from inside, i.e., from the "manifold"
point of view. Of course, this approach requires smoothness, and is thus incomplete
for an analyst. Nevertheless, its first aim is to highlight the concepts of metric,
curvature and torsion; these notions are addressed in the first part of this survey paper.
In a second part, they are given a precise functional meaning and their properties
are studied systematically. Further, a novel approach to elasto-plasticity constructed
upon a model of incompatible elasticity is designed, carrying this intrinsic spirit.
The main mathematical object in this theory is the incompatibility operator, i.e., a
linearized version of Riemann’s curvature tensor. So far, this route not only has led
the authors to a new model with a solid functional foundation and proof of existence
results, but also to a framework with a minimal amount of ad-hoc assumptions,
and complying with both the basic principles of thermodynamics and invariance
principles of Physics. The questions arising from this novel approach are complex
and intriguing, but we believe that the model is now sufficiently well posed to be
studied simultaneously as a problem of mathematics and of mechanics. Most of the
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research programme remains to be done, and this survey paper is written to present
our model, with a particular care to put this approach into a historical perspective.

1 On the origin of curvature in science and the birth of intrinsic
views

A first axiomatisation of geometry can be assigned to Euclid of Alexandria (circa
300 B.C.) with The elements gathering the knowledge of the time in planar and solid
geometry. A little later, a remarkable calculation of the perimeter of the Earth by
Eratosthenes of Cyrene provided a first indirect measure of the curvature of the Earth.
In the same third century B.C. Archimedes and Apollonius developed the first ideas
of plane curvature in the theory of conic sections. The problem of mapping the earth
on a planisphere raised the first projections by the geographers of the Antiquity, the
principal one being Ptolemy (150 B.C.). Euler, in his Recherches sur la courbure des
surfaces (1767) [22], laid the foundations of the differential geometry of surfaces.
Two centuries before, in the age of discoveries arose the problem of navigation
with planar representations of the Earth. A precursor in this field is the Portuguese
mathematician Pedro Nunes, who distinguished the great circles from the rhumb
lines, and in his Opera [55] of 1566 proposed the rectification of the rhumb line
in the sea charts. Three years later, the Belgian mathematician and cartographer
Gérard Mercator produced the first wall map of the world, that he called New and
more complete representation of the terrestrial globe properly adapted for its use
in navigation, with the conformal projection (i.e., angle-preserving) that now bears
his name. In a certain sense, this can be regarded as the dawn of the co-existence of
the intrinsic representation (as the map, with its intrinsic metric used by Mercator,
preserves the shapes but not the areas) with the embedding view (the map can be
embedded in the Euclidean space, yielding the terrestrial globe). The next crucial
achievement arose 250 years later with the Gauss’ Theorema Egregium [28], stating
that the scalar curvature is indeed an intrinsic property of a surface, in the sense that
it can be computed only by local measurements of distances independently of the
ambient space in which the surface is embedded.

The generalization to higher dimensions of Gauss’ work for surfaces was initiated
by one of his students, Bernhard Riemann in 1854 [57]. Riemann was the first to
introduce the notion of differentiable manifold and of a quadratic form (the so-called
Riemannian metric) in order to compute the length of a generalized notion of curve.
Moreover, the manifold curvature is represented by a complicated object generalizing
the Gauss curvature, which is called today the Riemann curvature tensor. In some
sense, Gauss’ point of view of a geometry of embeddings (he was also concerned
with the embedding in the Euclidean space of non-Euclidean – such as hyperbolic
– geometries) was somehow bypassed with Riemann’s new standpoint of forgetting
embeddings for a while, and thinking instead of surfaces intrinsically, with the notion
of manifold. It should also be stressed that Riemann’s intrinsic approach is the essence
of Einstein-Poincaré’s new paradigms of physics in the early 20th century.
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After Riemann (and Weyl [80]), Whitney was first in 1936 [69, 81] to provide
a complete formulation of the notion of manifold. His famous result is the follow-
ing: any m-dimensional differentiable manifold can be smoothly embedded in R2m.
By embedding it is intended an injective immersion (an immersion is a differen-
tiable function between manifolds where the derivative has everywhere full rank).
Later, the Nash-Kuiper embedding theorem of 1954/55 [42,53], in conjunction with
Whitney’s result, states that any m-dimensional Riemannian manifold (M,g) can be
C1-isometrically embedded in an Euclidean space of dimension 2m + 1 [13]. The
importance of this theorem in the history of Mathematics is unvaluable, since it in
particular reconciles (Gauss’) embeddings- with (Riemann’s) intrinsic views.

With this survey, we would like to emphasize the potential of intrinsic approaches
in the mathematical modeling of elasto-plastic solids. In particular we begin by
identifying the deformation of our body with a metric g and emphasize the role
of curvature and torsion in the presence of line-like defects, ultimately leading to
plastic effects at the macroscale. Precisely, the notion of incompatibility is at the
heart of a new paradigm to describe inelastic effects, since incompatibility is indeed
a linearized version of Riemannian curvature, as we will see. The starting point of
the theory is to accept that, in the spirit of Riemann, we should attack the modeling
problem of elasto-plasticity with an instrinsic approach, that is geometric in nature.
Indeed, incompatibility is a physical notion related to non-smooth, in a certain
sense singular deformations in the following acception: quoting Cartan [11]1, “the
Riemannian space is for us an ensemble of small pieces of Euclidean space, lying
however to a certain degree amorphously”, while about crystals where dislocation
form, Kondo [38] suggests that “the defective crystal is, by contrast [with respect to
the above by him given definition of perfect crystal], an aggregation of an immense
number of small pieces of perfect crystals (i.e. small pieces of the defective crystal
brought to their natural state in which the atoms are arranged on the regular positions
of the perfect crystal) that cannot be connected with one other so as to form a finite
lump of perfect crystals as an organic unity”. In the sequel, we develop these ideas,
and in particular we set up a precise mathematical understanding of these concepts.

2 Curvature in nonlinear elasticity

Consider now the manifold to be an open subset Ω of R3, and consider a symmetric
positive definite tensor gi j . The question raised is the following: under which condi-
tions is (Ω,g) flat, that is, there exists an immersion Θ : Ω → R3 such that g is the
metric tensor of the open set Ω̂ := Θ(Ω) ? (Note that manifold and embedding spaces
have here the same dimension, as opposed to Whitney-Nash theorems). To answer
this question, let us first assume that such an immersion exists. Then, by definition,
it exists a local frame {g

i
}1≤i≤3 with g

i
:= ∂iΘ such that gi j := g

i
· g

j
. Then the fol-

1 This was in essence Riemann’s definition of a manifold: each point is in a neigborhood ressembling
a distorted Euclidean space.
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lowing theorem holds: necessarily, the Riemann curvature tensor Riemg associated
to gi j vanishes inΩ. Of particular interest is the reciprocal statement: given an open,
connected and simply connected setΩ and an arbitrary metric C := gi j , if Riemg = 0,
then there existsΘ ∈ C3(Ω;R3) such that C = (∇Θ)T∇Θ, i.e., gi j = ∂iΘ · ∂jΘ. Proof
of these theorems and their variants can be found in [13].

In elasticity Ω is the reference body, Ω̂ is its deformation, F := DΘ = ∇Θ is the
associated deformation tensor, and C the right Cauchy-Green tensor. As a matter of
fact, a restatement of this theorem reads: given a reference body Ω and an intrinsic
measure C of its deformation (in elasticity C is known to account for local stretch
and rotations, [67]), when does it exist a tensor F such that C = FT F also satisfying
Curl F = 0? Indeed, it is well known (Helmholtz-Weyl-de Rahm decompositon-type
results, also known, in the sense of distributions, as Poincaré’s Lemma [13], [39])
that

Curl F = 0 ⇔ F = Dφ for some φ, (2.1)

with Curl and D intended in the sense of distributions. Therefore we can write that
given Ω open connected and simply connected, and provided a symmetric, positive
definite tensor C one has:

∃F : Curl F = 0,C = FT F ⇔ RiemC = 0. (2.2)

In the presence of line-like defects such as Volterra dislocations [34], we are
typically faced to the following issue: we have an elastic body Ω with a dislocation
loop L and we assume that we have the means for determining at any point of Ω \ L
the stretch and rotation, in other words we are given a metric tensor C. It turns out
that we are only able to construct such a deformation F as in (2.1) and (2.2) inΩ\ΠL
where ΠL is a surface containing L and dividing Ω into two subdomains Ω+ and
Ω− [59]. Let SL ⊂ ΠL be the surface enclosed by the loop, i.e. ∂SL = L. Therefore,
above and below ΠL there exists φ+ and φ−, respectively, such that C = FT F with
F = Dφ± in Ω±. However, it turns out that by the Volterra construction, there is
constant jump on SL that we denote by b, the Burgers vector of L. Specifically,
φ := Id + u exists globally in Ω by means of a function of bounded variation u, i.e.
whose distributional derivative satisfies Du = ∇u + b ⊗ νSL dH2

�SL where νSL is the
unit normal to SL . Therefore, in Ω \ L one may define the deformation tensor as
F = I + ∇u (= Dφ± in Ω \ SL) such that C = (I + ∇u)T (I + ∇u). However in L
this representation fails, and hence the aforementioned approach holds piecewise.
Nonetheless, something can be said at L, namely by use of Stokes theorem [59], one
finds

− Curl F = −Curl ∇u = ΛTL := b ⊗ τLdH1
�L, (2.3)

whereΛL is called the dislocation density. This reasoning can be generalized for L a
countable union of rectifiable dislocations. This leads us to the following conclusion:
the dislocations prevent the deformation to be Euclidean and indeed no global
embedding exists. We refer to [82] for a recent contribution to the topic.

The mathematical nature of the displacement field has been clarified in [60, 61]:
given the set of dislocations L, an integral current (i.e., the generalization of a
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closed Lipschitz loop) and a deformation tensor F satisfying (2.3), there exists
u ∈ W1,p(Ω,T3)∩ SBV(Ω,R3)∩ C∞(Ω \ L,T3) such that the following holds in the
sense of distributions:

Div ∇u = Δu = Div F and − Curl ∇u = b ⊗ τLdH1
�L = −Curl F . (2.4)

The crucial point to note is that the displacement field can be seen in various ways:
either as a multi-valued (i.e., in the three-dimensional distorted flat torus T3 for
a normalized Burgers vector, meaning that each component ui is identified with
ui + 2πZ) Sobolev vector field (note that (2.3) imposes that 1 ≤ p < 2), or as a
special function of bounded variation, whereby it exhibits a jump on a surface SL
which is not unique (it must be a Lipschitz surface with L as boundary). Moreover
away from L the displacement is smooth, however multivalued. We can write

Dislocation in nonlinear elastic bodies ⇒ Curl F � 0 and ∃u ∈ T3 s.t. F = ∇u.
(2.5)

3 Incompatibility in linearized elasticity and path integral
formulae

Linearized elasticity is obtained by neglecting the quadratic terms in C = (I +
∇u)T (I + ∇u), that is, we consider a metric g(u) defined as gi j = δi j + 2ei j(u)
where e(u) = ∇Su := 1

2 (∇Tu + ∇u). Let us consider Rieme the associated Riemann
curvature tensor. It was proved in [45, Proposition 3.11] that

(Rieme)i jkl = �i jm�kln( inc e)mn + h.o.t., (3.1)

where inc is the symbol standing for the incompatibility operator, writing in Carte-
sian coordinates as

inc e := Curl CurlT e. (3.2)

In the above, � is the Levi-Civita symbol, and the Curl of a tensor is calculated row-
wise, hence for a symmetric tensor inc takes the Curl column-wise then row-wise.
The equation inc e = 0 is equivalent to the Saint-Venant compatibility conditions
recalled and discussed thereafter. Pioneer contributions linking compatibility condi-
tions and the Riemann curvature tensor can be found in [26, 63]. We also define the
Frank tensor as

F (e) := CurlT e. (3.3)

Let us recall now the problem of reconstructing a displacement from a given
symmetric tensor2. In linearized elasticity, if all the functions involved are smooth

2 The history of this construction roots in the end of the 19th century. We have identified by
chronological order the following relevant contributions: Kirchhoff in 1876 [36], Beltrami in
1886 [8], Volterra in 1887 [76] (see also [77, 78]), Love in 1892 [44], Michell in 1899 [47],
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enough, the displacement field u turns out to be completely defined in terms of the
linearized strain tensor e by an explicit recursive integral formula. Let e ∈ C∞(Ω,M3)
be a symmetric tensor field in Ω. Let us fix x0, x ∈ Ω, and let γ ∈ C1([0,1],Ω) be a
curve in Ω such that γ(0) = x0 and γ(1) = x. We define the following quantities:

wi(x; γ) := wi(x0) +
�
γ
�ipn∂pemn(y)dym, (3.4)

ui(x; γ) := ui(x0) +
�
γ
(eil(y) − �ilkwk(y)) dyl . (3.5)

Note that Fim = �ipn∂pemn, thence the name Frank tensor, since its integral on a
closed curve γ making one loop around the dislocation L provides the jump of the
rotation vectorw, classically known as the Frank tensor. The quantitiesw(x) and u(x)
defined in (3.5) do a-priori depend on the choice of the path from x0 to x. In such
a case the quantities w and u define two C∞ functions on Ω that will be called the
multi-valued rotation and displacement vectors associated to the strain e, respectively
(see [74] for the exact meaning of multivaluedness in this context). However, if one
has inc e = 0 then u and w are single-valued fields, i.e., are unambiguously defined.

Thus, in particular in (3.5), one can use the notation
�
γ
=

� x

x0

to mean that the

integral is path independent. In order to prove this fact, we compute the jump of w
and u between two arbitrary curves with the same endpoints, namely γ and γ̃, and
observe that this quantity is zero if the incompatibility tensor vanishes. These are
exactly the well-known Saint-Venant compatibility relations [13]. The rotation and
displacement jumps at x are defined as

[[wi]] = wi(x; γ) − wi(x; γ̃), [[ui]] = ui(x; γ) − ui(x; γ̃), (3.6)

respectively, and hence depend on the chosen closed path γ − γ̃ at x. Let Ω ⊆ R3 be
a simply-connected domain, let x0 ∈ Ω be prescribed, and let w,u ∈ C∞(Ω,R3) be
the functions defined in (3.5). Then the following formulae hold:

[[wi]] =
�
S

(inc e(y))imdSm(y), [[ui]] =
�
S

(ym − xm)�imk(inc e(y))qkdSq(y),
(3.7)

for all x ∈ Ω, and where S is a surface enclosed by the the closed path γ − γ̃. In
particular,

inc e = 0 ⇒ [[wi]] = [[ui]] = 0 for every x and S .

Thus, given the tensors e and F (e) = CurlT e, and as a consequence of inc e = 0,
the vector fields w and u are univoquely defined in (3.5). We refer to [45, Proposition
2.2, Corollary 2.4] for a proof. Moreover, the following classical quantities can be

Cesàro in 1906 [12] and the Cosserat brothers in 1909 [15]. The first rigourous proof must be
assigned to Beltrami. According to Love, though, the bulk compatibility conditions should be
credited to Barré de Saint-Venant in 1864 [58].
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introduced: (i) ei j := 1
2
�
∂jui + ∂iu j

�
is the linearized strain tensor (i.e., the linear

part of Green St-Venant tensor Ci j = ei j + ∂iuk∂kui); (ii) ωi j := 1
2
�
∂jui − ∂iu j

�
is

said rotation tensor, with wi := 1
2 �i jkωk j the rotation vector.

Therefore, the linearized counterpart of (2.5) reads by (3.7),

inc e � 0 ⇒ ∃u,w multiple-valued fields, s.t. e = ∇Su. (3.8)

In particular, this happens if, given a dislocation loop L, γ − γ̃ is a curve making
one or more loops around L. The multiplicity is precisely the number of loops made,
while the jump of u is the Burgers vector b (and of w, the Frank tensor Ω).

4 The legacy of Ekkehart Kröner: the geometry of a crystal with
dislocations

Given the dislocation density ΛL we have seen that there exists a map ϕ ∈
W1,p(Ω,T3), 1 ≤ p < 2 such that −Curl ∇ϕ = ΛTL with Div ∇ϕ = 0 in Ω,
and (∇ϕ)N = 0 on ∂Ω. The first equality stems directly from the Stokes theorem
and from the property [[ϕ]] = b on any enclosing surface SL [60]. In the same
spirit [73], one can find a displacement field u ∈ W1,p(Ω,T3), 1 ≤ p < 2 satisfying
−Div (A∇Su) = f and −Curl ∇u = ΛTL in Ω, (A∇Su)N = g on ∂Ω and satisfying
[[u]] = b and [[A∇Su]] = 0 on Ω ∩ SL . Moreover, it is deduced in [73] that the
following expression holds in the sense of distributions:

inc e(u) = inc∇Su = Curl
�
ΛL − I

2
trΛL

�
in Ω. (4.1)

This establishes at the mesoscopic scale the famous macroscopic Kröner formula
relating elastic strain incompatibility and dislocation density.

4.1 The geometric approach at the macroscale

At the mesoscale we have seen that the dislocation density reads ΛL = τ ⊗ bdH1
�L

and represents the quantity of Burgers vector per unit area (as the density measure
dH1

�L has the dimension of an inverse area). Let S be a small surface in Ω with
unit normal n and define the cylinder V� = {x + tn, x ∈ S,−� ≤ t ≤ �}. Consider a
family L of N parallel mesoscopic dislocations with Burgers vector b and orientation
τ = n. One has

1
2�

�
V�

ΛTLndV = Nb.

This corresponds to the definition of dislocation density as used by practitioners and
lead Kröner [40] to define the macroscopic Burgers vector of a surface S ⊂ Ω as
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B(S) :=
�
S
ΛT dS, (4.2)

a macroscopic quantity related to the number of dislocation lines crossing S, with
dS the oriented area element, and where Λ is the assumed smooth macroscopic
dislocation density. Moreover, one defines the contortion tensor3 as κ = Λ − I

2 trΛ.
Recalling (3.1), there is a direct link between intrinsic curvature and dislocation
density, since the macroscopic expression of Kröner’s formula (see [40, 71]) reads

inc ε = Curl κ. (4.3)

Further, at the macroscale we are given a smooth linearized strain ε, and consider
the elastic metric

gi j := δi j + εi j . (4.4)

So far, we have introduced a metric and an intrinsic curvature related to the pres-
ence of dislocations. Yet an important notion is missing: that of connection. The
connection in geometry is a notion that permits a comparison between the local
geometry at one point and the local geometry at another point. It is thus related
to the differentiation of tensor fields and indeed it is well-known [18] that a "good
notion" of gradient on a manifold is induced by the choice of the connection Γ (also
known as the Christoffel symbols). Denoting this gradient by ∇Γ, one can introduce
the notion of parallel transport along a curve: it is said that a vector v is parallely
transported along γ(t) if �γ · ∇Γv = 0. It is said that a connection is compatible with
the metric if ∇Γg = 0: in this case two vector fields v,w parallely transported along a
curve have the property that their scalar product g(v,w) is constant. Further, in case
of compatible symmetric connections, and in this case only, the Christoffel symbols
write as (see [18, Theorem 29.3.2])

Γki j =
1
2
gkl(∂igl j + ∂jgil + ∂lgi j).

This connection is termed Riemannian or Levi-Civita after the name of the Italian
mathematician Tullio Levi-Civita (1873-1943). As a matter of fact, a manifold is
said Riemannian if it is endowed with both a Riemannian metric and a Riemannian
connection (see, e.g., [24]) and, for us, a non-Riemannian manifold means that the
connection need not be symmetric and compatible. Note that this latter expression of
Γki j is the unique symmetric connection compatible with the metric g := I + ε and is
that considered to obtain (3.1) from the Riemann curvature tensor Riemε associated
to it. In the sequel this metric connection will be denoted 4 by ΓB.

Now, for non-Riemannian connections, the crucial notion is that of connection’s
torsion, defined as the tensor T writing component-wise as

3 This object has a geometrical meaning in non-Riemannian manifolds, see e.g. [62], that we will
not detail here.
4 Subscript B stands for the Bravais crystal, cf. [70].
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Tk
i j = Γ

k
[i j] :=

1
2
(Γki j − Γkji). (4.5)

4.2 Parallel displacement and curvature

The role of parallel displacement in a perfect crystal is emphasized by Kröner as
he says [41]: “when a lattice vector is parallely displaced using ΓB along itself,
say 1000 times, then its start and goal are separated by 1000 atomic spacings, as
measured by g. Because the result of the measurement by parallel displacement and
by counting lattice steps is the same, we say that the space is metric with respect to
the connection [ΓB].” Let us translate Kröner’s words in formulae. Consider a closed
loop C = {γ(t) : t ∈ [0,1]}, with �γ(t) the unit tangent vector. Let us transport a lattice
vector e along C. In the absence of defects one has an Euclidean connection and
hence e is parallely transported along C, i.e. ∇;Ce = �γ∇e = �γk∂ke = 0. Assume now
the presence of dislocations along C. We know that the manifold has some curvature
and consider in a first step the Levi-Civita connection Γ = ΓB associated to g. To
transport the contravariant vector e we need to compute its covariant derivative along
C, namely (∇;Ce)i := �γk(∂kei + Γi

jk
e j) (cf. [18, §28.2., Eq. (23)]). Therefore the

instantaneous deviation of e due to dislocations is given by

(∇;Ce)i = Γijke j �γk . (4.6)

In linearized elasticity it is assumed gkl = δkl+2εkl and thus lowering and raising the
indices can be considered indifferently, to the first order. So, from Γk;ji := gklΓ

l
ji , the

deviation of ei in a time interval dt writes as Γi;jkejdxk+h.o.t., with dxk := �γkdt. Let
us compute the total amount of deviation on a closed loop C up to the first order, that
is, we calculate

∫
C
Γi;jkdxk that by Stokes theorem rewrites as

∫
SC
�mqk∂qΓi;jkdSm,

with SC a surface enclosed by C. The covariant derivative of Γi;jk reads (cf. [18, Eq.
(32)])

∇qΓi;jk = ∂qΓi;jk − (Γi;pkΓp;jq + Γi;pqΓp;jk) − Γi;jpΓp;kq . (4.7)

By the symmetry in q and k of the term inside the parenthesis and of the last term,
this yields in the absence of torsion

�mqk∂qΓi;jk = �mqk∇qΓi;jk . (4.8)

Now, let {ai} denote an orthonormal basis, and recall that Γi
jk
= (∇kaj)i (cf. [18, Eq.

(33)]). Thus, by a property of the Riemann curvature tensor (or a definition, see [18,
Theorem 30.1.1])), one has
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C

ΓBi;jkdxk =
�
SC

�mqk∇q(∇kaj)idSm + h.o.t.

=

�
SC

1
2
�mqk

�
RiemB

g

�
i;pkq

(aj)pdSm + h.o.t.

=

�
SC

1
2
�mqk

�
RiemB

g

�
i;jkq

dSm + h.o.t..

By virtue of (3.1)-(3.3) this yields

−2
�
C

ΓBi;jkdxk = �i jp

�
SC

( inc ε)pmdSm + h.o.t.

= �i jp

�
SC

�mql∂q (F (ε))pl dSm + h.o.t., (4.9)

that is, by (3.5),

−2
�
C

ΓBi;jkdxk = �i jp

�
C

(F (ε))pl dxl + h.o.t. = �i jp[[wp]](SC) + h.o.t..

Therefore we see that at the first order, the total deviation of ei around C depends on
the rotation jump on the surface, since�

C

∇keidxk =
1
2
�iklΩk(SC)el + h.o.t.,

where we have introduced the Frank tensor Ωk := [[wk]]. So far we have established
the following:

Point view of the external observer:

• g Riemannian metric, ΓB Riemannian connection
⇒ (Ω,g,ΓB) Riemannian manifold.

• Observation 1: ∇Λ � 0,T = TB = 0 ⇒ Riemg � 0 :
non-homogeneous dislocation density

⇒ crystal manifold with curvature but no torsion.
• Observation 2:

∫
C
∇e · dL = 1

2Ω(SC) × e + h.o.t. :
disclinations ⇒ crystal curvature.

In this case the anholonomy is given by the presence of disclinations, where the
term "holonomy"5 of a connection refers to the extent to which parallel transport
around closed loops achieves, or fails, to preserve the geometrical data being trans-
ported: for instance under a metric connection, the orthogonality of two parallely
transported vector fields is preserved.

In this first perspective, of the so-called external observer, the absence of isometric
embedding in R3 is translated into the nonvanishing Riemann curvature tensor

5 The holonomy group is defined as the set of linear transformations arising from parallel transport
along closed loops.
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associated with the Levi-Civita metric connection of g. Though, one can see that
something is missing in this formalism, since a homogeneous (constant) density
of dislocations yields a crystal manifold with vanishing curvature, that is, a flat
manifold. Moreover a pure dislocation (i.e, with vanishing jump of the rotation
tensor) would permit parallel transport of lattice vectors, in contradiction with the
nature of the dislocations which is responsible for atomic jumps, hence inducing a
geometry that is not Euclidean. Instead, we would like to find a geometry that is
specific for crystals with dislocations. This will be achieved by means of a new, non-
Riemannian connection, i.e. a connection with torsion. This new perspective requires
from the standpoint of physics the introduction of the so-called internal observer,
able to determine crystallographic defects. For a recent review on incompatible
deformation fields and the Riemann curvature field, we refer to [65].

4.3 The non-Riemannian crystal manifold

To emphasize the perspective of the internal observer we define the following geo-
metrical objects:

DISLOCATION TORSION: Ti;k j := �k jqΛqi (4.10)
CONNECTION CONTORTION: ΔΓk;i j := −Tj;ik − Ti;jk + Tk;ji (4.11)
NON SYMMETRIC CONNECTION: Γk;i j := ΓBk;i j + ΔΓk;i j . (4.12)

It is easily seen that Γ is a connection, since ΓB is a connection and ΔΓ is a
tensor (by the transformation property of a connection, cf. [18, Eq. (22)]). Moreover
the symmetric part of Γ namely Γk;(i j) is a connection and it can be proved [70,
Theorem 5.2] that Γk;[i j] = Tk;i j . Denoting the symmetric part of the connection by
Γ◦
k;i j = Γ

B
k;i j + ΔΓk;(i j) we have, by the above calculations, one has
�
C

Γ◦i;jkejdxk =
�
SC

1
2
�mqk (Riem◦(ε))i;jkq ejdSm + h.o.t.,

where Riem◦(ε) is the Riemann curvature tensor associated to Γ◦. Let us now
compute the remaining term, namely�

C

Γi;[jk]e jdxk =
�
C

Ti;jkejdxk =
�
C

ΛpidSp,

where we have introduced the surface element dSp = �pjkejdxk . The deviation of
the second term is just simply the integral on C of the macrosopic Burgers vector
Bi(dS), that is �

C

Γi;[jk]e jdxk =
�
C

(n · τ)Bi(dS),

with dSp = npdS.
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Thus we see that provided the metric and the connection of the internal observer,
the lattice vector is deviated: the first source of deviation is the Riemannian curvature,
whereas the second is the connection’s torsion. Note that this connection might also
be not metric, i.e., if ∇g � 0. The metric tensor is considered to model point defects
in crystals, but this is beyond the scope of this survey (cf [83]).

4.4 Internal and external observers

These are physical concepts related to fictitious thought experiments. The external
observer is only able to make experiments from the outside, namely it measures fiber
elongations and/or rotations and hence it measures a deformation ε that provides the
geometer with a metric g. For the external observer the utmost geometrical quantity
available is the Riemannian curvature as derived from the metric connection ΓB.
On the contrary, the internal observer acts at another scale. It is able to recognize
crystallographic direction and count atomic steps, hence can measure a density of
dislocations. Thus torsion is available to the internal observer, but not to the exter-
nal. It is only a combined view that provides a complete geometrical picture of the
dislocated crystal, thence described as a non-Riemannian manifold, summarized as
follows:

Combined views of the internal and external observers:

• g Riemannian metric, Γ non-Riemannian connection
⇒ (Ω,g,Γ) non-Riemannian manifold.
• Property:

�
Λ � 0 ⇒ T � 0

�
and

�∇Λ � 0 ⇒ RiemΓ � 0
�

:
non-homogeneous dislocation density ⇒ crystal manifold with curvature and
torsion;
homogeneous dislocation density ⇒ crystal manifold with torsion.
• Anholonomy by displacement and rotation jumps
(i.e., dislocations and disclinations):∫
C
∇keidxk =

∫
C
(n · τ)Bi(dS) + �iklΩk(SC)el + · · · .

We note that if one restricts to the first order then it holds true that
∫
C
∇keidxk =∫

SC

1
2 �mqk (RiemΓ(ε))i;jkq ejdSm with RiemΓ the Riemann curvature of the connec-

tion Γ defined as a sum with ΓB in such a way that RiemΓ = RiemB + · · · with the
remaining terms related to ΔΓ. Note also that it is solely RiemB that yields the term
Ω(SC) × e.

As we see, Kröner’s macroscopic framework allows us to come back to the
language of geometry, by stressing that the crystal geometry and the physical laws
governing defects are inseparable, as is the case in the Einstein’s general theory of
relativity. We entirely agree with Noll when he writes [54] that “the geometry [must
be] the natural outcome, not the first assumption, of the theory”6. Many geometrical

6 As in the Continuous Distribution of Dislocation (CDD) theory of Bilby et al. [9].
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tools and mathematical theory required for a rigorous description of the dislocated
crystal geometry can be found in the landmark papers by Noll [54] and Wang [79],
while also pointing out a recent book on continuum mechanics in this spirit [21].
We emphasize that ΔΓk;[ji] was also introduced by Noll [54] and called the crystal
inhomogeneity tensor.

4.5 Inelastic effects and notion of eigenstrain

The geometric description of a dislocated body has been made so far for static
dislocations, that is, at the macroscale for a constant in time dislocation density tensor.
We have seen that spatial variation ofΛ and hence of the contortion tensor κ induces a
non vanishing Curl κ thence a nonzero elastic strain incompatibility inc ε. A further
notion introduced by Kröner is the eigenstrain ε̄ satisfying inc ε̄ = − inc ε. Physically
it represents the additional strain to recover compatibility, since inc (ε̄ + ε) = 0
implies the existence of a vector field u such that e(u) = ε̄+ε as related to the so-called
Beltrami decomposition of symmetric tensor fields and Saint-Venant conditions [45].
Plasticity is the macroscopic behaviour of a body whose dislocation density tensor
varies in time, since dislocation motion is the physical cause of plasticity. The last
sections of this survey will be dedicated to the description of a novel model of
elasto-plastic bodies based on ε and inc ε, hence the model variables are (ε, κ), two
intrinsic and objective tensors, in an extended sense to be defined later. Before, we
intend to recall the intrinsic approach to linearized elasticity.

5 A geometric conception of linearized elasticity: the intrinsic
approach

5.1 Gauss vs. Riemann in linearized elasticity

In the conventional mathematical treatment of linearized elasticity, the basic model
variable is the displacement field u : Ω→ R3, with respect to which elastic problems
are stated and solved. Further, the linearized strain is introduced in a second step
as the symmetric gradient of the displacement field, ε = e(u) := ∇Su. However, in
many computations and experiments, the strain is most naturally the "observable"
field, thence becoming the main model variable. In this spirit, the stress might also
be considered as a root variable, in the sense that it is a field that is observable,
measurable and controllable: by a possibly fictitious thought experiment, the stress
is obviously measurable by extracting from the elastic body a small enough volume
element and then measuring the Newtonian forces exerted on its facets. Moreover,
given the stress tensor, the strain is well defined as soon as a constitutive law is
provided, here a linear homogeneous, isothermal and isotropic law: the strain-stress
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constitutive law reads ε = Cσ, with C the compliance tensor, i.e., fourth-rank
(inverse) tensor of elasticity.

However, today most elasticity problems are treated using the displacement as
basic model variable, from which the strain is defined by the kinematic relation
ε = ∇Su, thence the stress by a constitutive law. This approach presumably comes
from the study of elliptic boundary-value problems, where the elasticity system is
most often presented as a vector-valued extension of elliptic equations in divergence
form. Moreover, weak and variational formulations are most easily derived by means
of the displacement, and show a convenient and elegant way of solving problems in
elasticity.

There are nonetheless profound theoretical reasons to refrain from taking the
displacement as main model variable. For instance, its possible multi-valuedness,
which is not to avoid from a physical standpoint, since multi-valuedness may have
a meaning, but which must be addressed in an adequate manner in an appropriate
mathematical formalism (see above). Another example is the reference configuration,
from which the displacement is defined and which by definition is arbitrary: although
natural in finite elasticity, it becomes somehow artificial in linearized elasticity, since
Eulerian and Lagrangian representations coincide. Moreover, in elasto-plasticity or
for elastic bodies with defects, the stress and defect-free reference configurations
might not exist (simultaneously). Hence, to remedy this issue, it is often appealed to
"intermediate" reference configurations, from which plastic and elastic deformations
are defined, but whose physical as well as mathematical meaning are far from clear.
In fact, what is a plastic distortion (i.e., the "plastic" part of the displacement gradi-
ent) as long as no constitutive law exist for the rotations (i.e., the skew-symmetric
part of the gradient)? Not to mention some models which introduce plastic and elas-
tic displacements, whose physical and mathematical meanings are extremely vague.
Further, we should also mention the fact that any rigorous model should in principle
be proven independent of the choice the reference configuration. Lastly, in the pres-
ence of crystal defects like dislocations the very notion of displacement or velocity
is not clearly defined at any scale. For instance, at the atomic scale, bonds can move
while atoms remain fixed.

5.2 Ciarlet’s intrinsic approach to linearized elasticity

As we have seen, it may happen that because of defects or other incompatibilities,
the very notion of a displacement field does not make sense as a conventional single-
valued field. Instead, one would like to state the linear-elastic problem in terms
of the strain ε, which needs not a-priori be taken as a symmetric gradient. For
these reasons, the intrinsic approach in linearized elasticity by Ph. Ciarlet and C.
Mardare [14] constitutes a major breakthrough in mathematical elasticity, which was
able to reconcile in an elegant manner the two aforementioned approaches. In their
presentation, the strain is the main model variable in terms of which strong as well as
variational formulations are sought. The displacement only appears in a second step if
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the Riemannian curvature tensor associated to the elastic metric vanishes (see above).
In the approach of Ciarlet and Mardare, a differential geometry setting is chosen (see
above), where the boundary under analysis is defined by means of smooth enough
immersions, from which the curvilinear basis, the metric, the symmetric connection
and the curvature tensors are derived. It should be emphasized that such derived
curvilinear bases are indeed defined in the body itself as well as on its boundary,
but are not mutually orthogonal, and have no particular physical meaning. The main
difficulty is the treatment of the boundary conditions, since a condition such as
u |Γ0 = 0 for some Γ0 ⊂ ∂Ω is not easily translated to a boundary condition on the
deformation tensor.

Let ε be a compatible strain tensor, i.e., by Saint-Venant theorem (see below),
there exists a displacement field u such that ε = e(u) = ∇Su. Let εT be the tangential
strain (i.e. the projection of e perpendicularly to the normal to the boundary) ∂Ω.
Let γ� := εT |∂Ω be the linearized change-of-metric and ρ� the linearized change-
of-curvature tensors as introduced by Ciarlet-Mardare in [14]. Let Γ ⊂ ∂Ω be a
connected relatively open set, and let R(Γ) be the set of rigid motions (i.e., roto-
translations) on Γ. Their main theorem states the following:
Theorem 5.1 (Ciarlet-Mardare [14, Theorem 6.1]) Let u ∈ H1(Ω). Let either
(i) u |Γ = 0
(ii) γ̄�(e) = ρ̄�(e) = 0
(iii) u |Γ ∈ R(Γ).

One has (i) ⇒ (ii) ⇒ (iii), where γ̄� and ρ̄� are suitable extensions of γ� and ρ�.
To give a more physical understanding of the linearized change-of-curvature tensor,
we need to anticipate the specific trace operators T0 and T1 that have been introduced
in [3]. They have been obtained through a Green-like formula (see below Theorem
8.2 for details) where T and η are smooth enough symmetric tensors,�
Ω

T · inc ηdx =
�
Ω

incT · ηdx +
�
∂Ω

T1(T) · η dS(x) +
�
∂Ω

T0(T) · ∂Nη dS(x).

It has been proved in [2, Lemma 2.11] that that

(i) ⇒ (ii)� εT = T0(ε) = 0 and T1(ε) = 0 on Γ,

and that, for Γ = ∂Ω (see [2, Proposition 2.19]),

(ii)� ⇒ (iii).

Note that the rigid displacement is set to zero as soon as the normal components of
ε, i.e., ε − εT vanish. The link with the Frank tensor is the following:

ε = 0 on Γ⇒
�
CurlT ε × N = 0 ⇔ T1(ε) = 0 on Γ

�
,

with N the outer normal to ∂Ω. In this case either conditions inc ε = 0 inΩ together
with ε = CurlT ε × N = 0 or ε = T1(ε) = 0 on Γ implies that ε = ∇Sv with v = 0
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on Γ (since in this case ρ̄�(ε) = 0 [72]). Thus, the intrinsic elasticity system writes
in strong form as 



− div
�
C−1ε

�
= f in Ω

inc ε = 0 in Ω

T0(ε) = T1(ε) = 0 on Γ�
C−1ε

�
N = g on ∂Ω \ Γ

,

where the traces are intended in a weak sense, and with f and g the volume and
surface loads, respectively. The corresponding intrinsic variational formulation reads

inf
inc e=0

T0(e)=T1(e)=0 on Γ

�
Ω

�
1
2
C−1e − K

�
· edx,

where K is a tensor of external forces satisfying�− divK = f in Ω

KN = g on ∂Ω \ Γ .

6 The classical route to plasticity

After the pioneer works by Coulomb (1773), the theory of plasticity finds its roots
in the mid 19th and early 20th centuries by experimentalists (Tresca, 1864) and
engineers/mathematicians/physicists (e.g., Saint-Venant7, 1870, Von Mises, 1913,
Prandtl, 1924), and was later developed by Drucker (1947) and Hill (1950). Impor-
tants works were achieved by Taylor and Orowan (1934) putting the spot light on the
link between plasticity and dislocation motion.

6.1 The mathematical approaches: two perspectives

The mathematical literature starts with Hodge and Prager around 1950 who were
first to understand plasticity in modern mathematical terms, proposing a variational
formulation in terms of the stress rate and based on the principle of virtual power,
while in parallel Greenberg [27] proposed a variational formulation in terms of the
velocities. Thus we see that historically the two approaches of strain vs. displacement-
based elasto-plasticity models have already coexisted since the beginning. This is a
key aspect of our approach, which is an intrinsic model, i.e., considering the elastic
strain as basic model variable, in the sense of the geometers mentioned above,
of Prager, and recently (notably after decades of displacement-based approach) of

7 A name that we have encountered already above an which is also related to the incompatibility
operator, see below.
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Ciarlet and coauthors [13,14]. The philosophical standpoint can be recast in view of
the aformentioned history as follows:

Riemann’s view Gauss’ view
Intrinsic models Embeddings models

No reference configuration Reference configurations
Strain/strain rate-based approaches Displacement/velocity-based approaches.

(6.1)

Let us now describe the main ingredients of the conventional, historical approach,
which, we recall, has proven so far in complete agreement with the observations.
It is hence an excellent model for all practical purposes. In the general framework
of thermodynamics, one postulates the existence of a dissipation potential which
provides the evolution laws for plastic deformation (the so-called flow rules) and
possible other internal variables. This part of the theory is strongly linked with convex
analysis and thus was fostered in the 60ies by the remarkable works by Rockafellar
and Moreau [51]. In the end of the 70ies and in the 80ies, Strang and Temam [68]
and their collaborators introduced a new functional space to describe plasticity,
the space of bounded deformations, whose main feature is to allow the strain to
have a regular part and a measure part, thus well-suited to modeling discontinuous
phenomena, such as plastic slip on part of the boundary, or shear band formation in
perfect plasticity. This theory yielded on the one hand a first rigorous mathematical
formulation (i.e., with proofs of existence, etc., see the excellent textbook by Han
and Reddy [31]), and on the other hand gave rise to performent numerical schemes.
Summarizing, the conventional approach to elasto-plasticity is based on

(i) the velocities (or the displacement field) as first model variable,
(ii) a postulated decomposition in elastic and plastic parts of the total compatible

strain, where each part is assumed to model distinct sub-scale phenomena
(elastic deformation means variation in inter-atomic distance, whereas plastic
deformation is a macroscopic manifestation of the modification of inter-atomic
bonds, where dislocations play a role),

(iii) separate constitutive laws for the elastic and plastic strains,
(iv) a convex elastic domain (whose boundary is the so-called yield surface), which

is a sufficient condition in order to satisfy the 2nd principle of thermodynamics
and further permit the use of convex calculus.

First existence results for linear elasticity/perfect plasticity were provided around
1980 by Johnson [35], Suquet [66], by means of visco-plastic approximations (see
also Anzelotti, Giaquinta, Luckhaus [5, 6], Hardt and Kinderlehrer [32]). About
20 years later, a quasi-static evolutionary variational formulation was sucessfully
proposed by Mielke and coauthors (Mainik, Roubíc̆ek, Stefanelli, etc. [48,49]) in the
early 2000s, based on a balance between dissipative and potential restoring forces.
Slightly later a series of refinements were provided by Dal Maso’s school [16], and
also by other authors (such as, e.g., Ortiz, Francfort [17], De Simone, Neff [23]),
some of them grounding their approach on the energy dissipation principle and De
Giorgi’s theory of minimizing movements. In the 80ies and 90ies, computational
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plasticity has been developed, based on strain incremental schemes, see for instance
the classical textbooks of Hughes and Simo [64] and Han and Reddy [31].

6.2 Conventional (0th-order) elasto-plasticity models

Conventional models of small strain elasto-plasticity start with the following postu-
late. It is assumed that εe = A−1σ is the elastic strain, with A the isotropic elasticity
tensor and σ the Cauchy stress tensor. Then, the eigen-strain is called plastic strain,
ε̄ = εp , and there exists a vector field u called the displacement field, satisfying

e(u) = εe + εp . (6.2)

Whereas at time t, the elastic strain εe(t) obeys the elasticity system

− div(Aεe(t)) = f (t) in Ω, (Aεe(t))N = g(t) on ΓN , (6.3)

the plastic strain satisfies other laws, called the flow rules. These are based on another
series of postulates. Before recalling these rules, it is important to have in mind three
facts regarding (6.2).

(i) The partition is local, i.e., ε(x) = εe(x) + εp(x) for any x ∈ Ω and is purely of
physical nature, that is, there is not any sort of mathematical structure behind
it.

(ii) The geometric meaning of ε as an intrinsic metric has been lost, since each
part has its own definition, given by solving some equations, whereas the total
deformation is defined by their sum.

(iii) By (6.2), it is conventionally postulated that the total deformation is compatible,
that is, that there exists a displacement field u such that ε = ∇Su = e(u). This
statement is not justified by any mathematical argument and the adoption of
this hypothesis is made for simplicity. Indeed it automatically implies that the
incompatibilities of elastic and plastic parts mutually compensate, without the
need to let the flow rules comply with this property.

As for the plastic part, following Moreau [51] it is assumed that:

• There exists a compact and convex subset K of symmetric 3 × 3-matrices such
that the condition σ ∈ K is always satisfied. The yield surface is represented by
the boundary ∂K. Moreover, in the general context of plasticity with hardening,
the elastic domain K(t) at time t depends on σ(t), to account for the back-stress
tensor, and we write K(t) to mean K (σ(t)).

• Let IK be the indicator function of K, i.e. IK(η) = 0 if η ∈ K and IK(η) = +∞ if
η � K. Then the so-called associated flow rule (a special case commonly used)
can be written as
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σ(t) ∈ int K(t) ⇒ �εp(t) = 0
σ(t) ∈ ∂K(t) ⇒ �εp(t) ∈ ∂IK(t)(σ(t)) ⇔ (η − σ(t)) · �εp(t) ≤ 0,∀η ∈ K(t).

(6.4)

Here ∂IK(t) is the normal cone NK(σ(t)) and σ(t) ∈ int K(t) ⇔ NK(σ(t)) = {0}.
This formalism is to be compared with the model of Hill and Rice [33,56], which is
summarized as follows:

• Introduce the dissipation potential D( �εp) := sup{η · �εp |η ∈ K(t)}, that is the
support function of K(t). Convex calculus entails

D( �εp) = σ(t) · �εp ⇔ σ(t) ∈ ∂D( �εp). (6.5)

• It is easily proven that the two formalisms are equivalent [31]:

(6.4) ⇔ (6.5).

Note that the ⇐ implication shows that Hill and Rice formalism does not require
the notion of elastic domain and yield surface, which are obtained as consequences.
However they postulate the existence of a potential D that is convex, positively
homogeneous and lower semicontinuous. Thus we see that in both cases the model
is strongly based on convex analysis.

7 Gradient elasto-plasticity for continua with dislocations:
towards an incompatibility-driven model

7.1 The size effect

Zeroth-order models as described in Section 6 may not be sufficient with a view to
several technological applications. For instance, it is essential for micro-electronics
devices (such as silicon wafers for semiconductor production [52]) to accurately
identify the mechanical properties of micro-structured materials, since there exist
important strength differences that result from modification of the material micro-
structural characteristics with changing size (where in general smaller sizes correlate
with stronger responses). Indeed, the mechanical properties of micro-structured
materials (e.g., yield strength, strain-hardening rate) with small-scale structures are
extremely size-sensitive, and the increase in strength with decreasing scale can be
related to increasing the strain gradients. For instance, industrial silicon is produced
by the growth of a crystal seed, which by definition incorporates all material sizes
and various types of micro-structures (individual point-defects, voids, dislocations,
volumic clusters, dislocations): present in the small-size material, they will grow
together with the crystal and form defect structures of various sizes [52,75]. Further,
serious issues prevent the use of classical (local) theories of plasticity and fracture
(see [25] or [1]), since classical continuum mechanics cannot accurately capture size
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effects and highly localized deformations. On the other hand, atomistic simulations
are out of reach in terms of computational cost, and therefore are restricted to
small samples. In order to address the size effect problem, the so-called gradient
plasticity models have gained an increasing interest in the scientific and technological
communities.

7.2 Gradient models

The success of gradient theories stems from the incorporation of a micro-structural
length scale parameter. Indeed, it is a general feature that gradient-theories do not
assume stress as function of the sole history of strain at a point x, rather they take
into account possible interactions with other material points in its neighbourhood.
For example, the internal state variable that is responsible for isotropic hardening in
classical plasticity theory is the effective plastic strain p, that, in a non-local media
can be replaced by a weighted average p̄(x) =

∫
V

p(x+ξ)h(ξ)dx, where x is the point
of interest, ξ is the size of the localized plastic zone, and h(ξ) is a weighting function.
Then p̄(x) can be approximated in terms of p(x), L∇p(x) and L2∇2p(x), for a certain
characteristic length L. The physical basis of the gradient plasticity theory rests on
theoretical developments of geometrically necessary dislocations (GNDs), see Daya
Reddy, Gurtin and Neff works for instance [7, 20, 29, 30]. For instance, the micro-
mechanical modeling of the inelastic material behavior of metallic single crystals
is based on the fact that resistance to glide is due to random trapping of mobile
dislocations, “statistically stored” dislocations (SSDs), and acting as obstacles to
further dislocation motion. On the other hand, the GND are related to the elastic strain
incompatibility and are responsible for the observed macroscopic plastic behaviour,
as stated by the famous Kröner’s relation [40] “ inc � = Curl κ” with κ related to
dislocation density. In the last two decades, another class of gradient theories was
introduced, assuming higher-order gradients of the plastic strain field, as proposed
in our model. These theories are a particular case of the generalized continua, such
as continua with micro-structure, which were inspired by the pioneering work of the
Cosserat brothers8 [15].

7.3 Our approach: a gradient model based on the strain
incompatibility

We believe that the intrinsic point of view together with continuum-and gradient-
based theories as proposed by our approach (see Sections 8 and 9) are needed to
bridge the gap between classical continuum and micro-mechanical theories. The
main feature of our model is that we focus on dislocation micro-structure in single

8 Indeed, the Cosserat (or micro-polar) continuum enhances the kinematic description of deforma-
tion by an additional field of local rotations.
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crystals with a novel continuum model making an explicit link between plasticity and
dislocations, and based on a novel model paradigm. As we will explain, the model we
propose is of gradient type, involving the curl and the incompatibility of the strain.
Further, the deformation tensor is seen as a metric in the aforementioned geometric
sense. In particular we do not distinguish between elastic or plastic deformations.

The novel approach we propose has been introduced and discussed in [4]. In
our model, neither of the three above postulates are considered. Our paradigm is
radically different and our approach is based on the following rationales.

1. Strain rate is prefered to strain and is given the following, primordial definition.
Identify three fibers at x, denoted by a1,a2,a3, which at time t are oriented
along the axes of a Cartesian coordinate system and of unit lengths. Then the
deformation rate is defined at x as (see, e.g., [19, 67])

di j(t) = 1
2

�
d
dt

(ai · aj)
�
t

. (7.1)

Having fixed an initial time t0 = 0, the time integral of the objective tensor d,
called the strain or deformation tensor reads ε(t) =

∫ t

0 d(s)ds. Note that (7.1)
holds for infinitesimal as well as for finite strains and hence one is not forced to
specify the quantitative nature of the deformations before they take place.

2. This strain defined in this fashion is neither elastic nor plastic, it simply has
a compatible and an incompatible part, that are given by a structure theorem
called Beltrami decomposition [45]:

ε = ∇Su + E0. (7.2)

As opposed to elastic-plastic splittings this decomposition is unique once bound-
ary conditions for u are prescribed. Moreover, while ε is an objective field (in a
general sense discussed in section 9, neither ∇Su nor E0 are objective. Therefore
the model will be constructed upon ε and its derivatives.

3. The governing equations should generalize classical linear elasticity in the sense
that it must take into account the possible strain incompatibility. The idea behind
is that the model should explicitely account for the physical cause of plasticity:
the presence and motion of dislocations as microstructural perturbations.

As detailed below, the key point upon which our model relies is the fact that strain
incompatibility is directly related to the density of dislocations by (4.3). Moreover,
our model involves a new tangent material coefficient �, with the dimension of a force,
representing the resistance of matter against incompatibility. In general, this scalar
is space- and time-dependent, and evolves with the course of (at first quasi-static)
deformation. If � depends on space only, we proved in [2] that our model is a special
case of the classical Mindlin gradient elasticity [50], whereas for a time-dependent
�, it gives rise to a drastically new approach and a novel nonlinear plasticity model
in direct relation with dislocation motion.

A difficult modelling problem that we have not yet achieved is to find an appro-
priate evolution equation for the incompatibility modulus �. In principle it should be
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derived based on dislocation mechanics as a function of temperature, strain, strain
rate, and a set of measurable micro-structural physical parameters. Further, due to
the existence of plastic strain gradient terms, higher-order boundary conditions are
required on both external (free surfaces) and internal boundary (interfaces) regions
where plastic deformation occurs. Also, these higher-order boundary conditions,
which are motivated from the physical understanding of the dislocation mechan-
ics, may vary with the course of plastic deformation. It is a further principle of
our approach that boundary conditions should be naturally integrated in the func-
tional framework of our equations. Hence internal transmission conditions are only
byproducts of weak formulations.

7.4 Link with classical elasto-plasticity models

Recall that classical linearized elasto-plasticity models are based on the a priori
decomposition εtot = εe + εp, where the total strain εtot is compatible ( inc εtot = 0),
the elastic strain εe is derived from the Cauchy stress by Hooke’s law, and the plastic
strain εp obeys flow rules. We now compare this decomposition with the Beltrami
decomposition ε = ∇Su + ε0. Since inc εtot = inc∇Su = 0, there exists a vector
field w (see [45]) such that εtot = ∇Su − ∇Sw and we can write

εtot = ∇Su − ∇Sw = −
�
ε0 + ∇Sw

�
+
�
∇Su + ε0

�
.

We then recognize ∇Su + ε0 as the strain ε. The correspondence with the Beltrami
decomposition ε = ∇Su + ε0 can be made upon setting εe = ε, εp = −(ε0 + ∇Sw).

The interpretation is the following (see Fig. 1): for us, ε represents the deformation
from a reference state, say state A to a neighbour state B of the same material. It
can be viewed as the composition of the incompatible deformation ε0 from state A
to an intermediate state A�, and the compatible deformation ∇Su from A� to B. In
the classical approach, another configuration A�� serves as reference configuration.
The total deformation εtot from A�� to B is the sum of the plastic deformation
εp = −(ε0 + ∇Sw) from A�� to A and the elastic deformation εe = ε from A to B.
Therefore, plastic effects play somehow the role of configurational forces [28] that
account for the change of reference configuration. Of course, choosing w = 0 (thus
A�� = A�) would be a choice of simplicity, but in that case εp would be identified
with −ε0, hence it would not be trace-free as assumed in some standard flow rules.
We emphasize the arbirariness of A”, whereas A’ is uniquely determined from
Beltrami decomposition. However, a significant difference between the kinematical
frameworks of the two approaches is that εp is usually supposed trace-free whereas
ε0 is divergence-free. For us, incompressibility could be realized by an enrichment of
the model, with possible additional variables and equations, but it is not prescribed
a priori in the general setting.
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Fig. 1: The Beltrami decomposition (A → A� → B) vs the standard elastic/plastic
decomposition (A�� → A → B)

8 The incompatibility operator: functional framework

We have seen so far that the notion of incompatibility is a crucial ingredient in the
modeling of dislocated crystals and therefore in the understanding of the plastic
behavior of solids. From the mathematical point of view, inc is a second order
differential operator that acts on (usually symmetric) tensor fields. We address in
this section the analysis of this operator in the framework of Sobolev spaces. The
Beltrami9 decomposition asserts that any symmetric tensor field can be split into
a divergence-free part and an incompatibility-free part. It appears therefore natu-
ral to study the incompatibility operator in divergence-free spaces. As orthogonal
complements, incompatibility-free spaces will also be discussed.

LetΩ be a regular (C∞) bounded domain ofR3. We denote by ∂Ω its boundary and
by N its outward unit normal. Moreover S3 denotes the set of symmetric 3-matrices.

8.1 Divergence-free lifting, Green formula and applications

We begin with the divergence-free lifting of traces of symmetric tensor fields. Set

9 Eugenio Beltrami (1835-1900) is an Italian physicist and mathematician known in particular for
his works on elasticity–stating the equilibrium equations of a body in terms of the stress in place
of the strain [8]– but also in non-Euclidean geometries in the wake of Gauss and Riemann. He
was indeed a friend of Riemann whom he met at Pisa university where he had a chair. Moreover,
his chair of mathematical physics in Rome was later transmitted to Volterra in 1900. Vito Volterra
(1860-1940) is presumably the first who gave a correct definition of dislocations and disclinations
in [77]. It is thus not mere coincidence that the name of Beltrami will take a crucial place in our
survey on incompatibility and dislocations. Neither that the second author of this survey started his
study of dislocations with a book found in the main Scuola Normale library in Pisa in 2000 [37].
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H̃3/2(∂Ω,S3) =
�
E ∈ H3/2(∂Ω,S3) :

�
∂Ω

ENdS(x) = 0
�
.

Theorem 8.2 (Divergence-free lifting [3]) Let E ∈ H̃3/2(∂Ω,S3) and
G ∈ H1/2(∂Ω,S3). There exists E ∈ H2(Ω,S3) such that




E = E on ∂Ω,
(∂N E)T = GT on ∂Ω,
div E = 0 in Ω,

where the subscript T stands for the tangential part. In addition, such a lifting can
be obtained through a linear continuous operator

L∂Ω : (E,G) ∈ H̃3/2(∂Ω,S3) × H1/2(∂Ω,S3) �→ E ∈ H2(Ω,S3).

Define the subset of C∞(∂Ω,S3)

G = {V � N,V ∈ R3},

with the notation U � V := (U ⊗ V + V ⊗ U)/2.

Lemma 8.1 (Dual trace space [3]) Every E ∈ H−3/2(∂Ω,S3)/G admits a unique
representative Ẽ such that �

∂Ω
ẼNdS(x) = 0. (8.1)

Moreover, the dual space of H̃3/2(∂Ω,S3) is canonically identified with
H−3/2(∂Ω,S3)/G.

We define the spaces of symmetric tensor fields

Hdiv(Ω,S3) := {E ∈ L2(Ω,S3) : div E ∈ L2(Ω,R3)},
Hinc(Ω,S3) :=

�
E ∈ L2(Ω,S3) : inc E ∈ L2(Ω,S3)� ,

endowed with the norms defined by �E �2
Hdiv = �E �2

L2 + � div E �2
L2 , �E �2

H inc =

�E �2
L2 + � inc E �2

L2 , respectively.
Recall that the Green formula for the divergence allows to define, for any T ∈

Hdiv(Ω,S3), its normal trace T N ∈ H−1/2(∂Ω,R3) by�
∂Ω

(T N) · ϕdS(x) :=
�
Ω

�
divT · ϕ̃ + T · ∇S ϕ̃

�
dx ∀ϕ ∈ H1/2(∂Ω,R3),

with ϕ̃ ∈ H1(Ω,R3) an arbitrary lifting of ϕ. For the incompatibility operator one
has the following counterpart.

Lemma 8.2 (Green formula for the incompatibility [3]) Suppose that T ∈
C2(Ω,S3) and η ∈ H2(Ω,S3). Then
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Ω

T · inc ηdx =
�
Ω

incT · ηdx +
�
∂Ω
T1(T) · η dS(x) +

�
∂Ω
T0(T) · ∂Nη dS(x) (8.2)

with the trace operators defined as

T0(T) := (T × N)T × N, (8.3)

T1(T) :=
�
Curl (T × N)T

�S
+ ((∂N + k)T × N)t × N +

�
CurlT T × N

�S
,(8.4)

where k is twice the mean curvature of ∂Ω and TS = (T + TT )/2. In addition, it
holds �

∂Ω
T1(T)NdS(x) = 0. (8.5)

Note that (T × N)T × N is made of permutations of the tangential components of T .
Alternative expressions ofT1(T) are derived in [3]. Therefore, we can define the traces
T0(T) ∈ H−1/2(∂Ω,S3) and T1(T) ∈ H−3/2(∂Ω,S3)/G for every T ∈ Hinc(Ω,S3) by

�T0(T),ϕ0� =
�
Ω

T · inc η0dx −
�
Ω

incT · η0dx, ∀ϕ0 ∈ H1/2(∂Ω,S3),

�T1(T),ϕ1� =
�
Ω

T · inc η1dx −
�
Ω

incT · η1dx, ∀ϕ1 ∈ H̃3/2(∂Ω,S3),

with η0 = L∂Ω(0,ϕ0) and η1 = L∂Ω(ϕ1,0) (recall that L∂Ω is the lifting operator
defined in Theorem 8.2). In addition, by Lemma 8.1, T1(T) admits a unique rep-
resentative satisfying (8.5). By linearity of L∂Ω, this extends formula (8.2) to any
functions T ∈ Hinc(Ω,S3) and η ∈ H2(Ω,S3).

From the two Green formulas recalled above one immediately infers that:

• inc∇Sv = 0 in the sense of distributions for all v ∈ H1(Ω,R3);
• div inc E = 0 in the sense of distributions for all E ∈ Hinc(Ω,S3).

In particular, if E ∈ Hinc(Ω,S3), then inc EN is defined in H−1/2(∂Ω,R3) by�
∂Ω

inc EN · ϕdx =
�
Ω

inc E · ∇Sϕdx ∀ϕ ∈ H1(Ω,R3).

Let Γ be a smooth subset of ∂Ω and set

Hinc
0 (Ω,S3) = the closure of D(Ω,S3) in Hinc(Ω,S3).

Further properties of the trace operators are given below.

Proposition 8.1 (Trace properties [2])
1. Let v ∈ H1(Ω,R3) be such that v = r on Γ in the sense of traces, with r a rigid

displacement field. Then T0(∇Sv) = T1(∇Sv) = 0 on Γ.
2. We have the characterization

Hinc
0 (Ω,S3) = �

E ∈ Hinc(Ω,S3) : T0(E) = T1(E) = 0 on ∂Ω
�
.
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3. If E ∈ Hinc
0 (Ω,S3) then inc EN = 0 on ∂Ω.

8.2 Saint-Venant compatibility conditions and Beltrami decomposition

We state the following two results in the setting of Lp spaces for generality, although
we will be concerned with p = 2 only.
Theorem 8.3 (Saint-Venant compatibility conditions [45]) Assume that Ω is
simply-connected. Let p ∈ (1,+∞) be a real number and let E ∈ Lp(Ω,S3). Then,

inc E = 0 in W−2,p(Ω,S3) ⇐⇒ E = ∇Sv

for some v ∈ W1,p(Ω,R3). Moreover, u is unique up to rigid displacements.
Theorem 8.4 (Beltrami decomposition [45]) Assume that Ω is simply-connected.
Let p ∈ (1,+∞) be a real number and let E ∈ Lp(Ω,S3). Then, for any v0 ∈
W1/p,p(∂Ω), there exists a unique v ∈ W1,p(Ω,R3) with v = v0 on ∂Ω and a unique
F ∈ Lp(Ω,S3) with Curl F ∈ Lp(Ω,R3×3), inc F ∈ Lp(Ω,S3), div F = 0 and
FN = 0 on ∂Ω such that

E = ∇Sv + inc F . (8.6)
A variant of Saint-Venant’s compatibility conditions in the presence of boundary

conditions is the following.
Proposition 8.2 (Saint-Venant with boundary condition [2]) Assume that Ω is
simply-connected. If E ∈ L2(Ω,S3) satisfies�

inc E = 0 in Ω,
T0(E) = T1(E) = 0 on ∂Ω (8.7)

then there exists v ∈ H1
0 (Ω,R3) such that ∇Sv = E . Moreover, the map E ∈

L2(Ω,S3) �→ v ∈ H1
0 (Ω,R3) is linear and continuous.

We assume from now on that Ω is simply-connected.

8.3 Orthogonal decompositions

For Γ being a smooth subset of ∂Ω, we define the sets

V = �
E ∈ L2(Ω,S3) : inc E = 0

�
,

V0
Γ = {E ∈ V : T0(E) = T1(E) = 0 on Γ} ,

V00
Γ =

�∇Sv : v ∈ H1(Ω), v = 0 on Γ
�
,

W =
�
E ∈ L2(Ω,S3) : div E = 0

�
,

W0
Γ = {E ∈ W : EN = 0 on Γ} .
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From what precedes we infer the following relations [2]:

V = V0
∅ = V00

∅ V00
Γ ⊂ V0

Γ , V00
∂Ω = V0

∂Ω.

A refinement of the Beltrami decomposition is obtained as follows.

Theorem 8.5 (Orthogonal decomposition of L2(Ω,S3) [2]) Assume that ∂Ω admits
the partition ∂Ω = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = ∅. We have the orthogonal decomposition

L2(Ω,S3) = V00
Γ1

⊕ W0
Γ2
.

Related to this decomposition, the following lemma will be useful.

Lemma 8.3 (Boundary orthogonality relation [2]) If K ∈ V00
Γ1

and inc F̂ ∈ W0
Γ2

then �
Γ2

�
T1(K) · F̂ + T0(K) · ∂N F̂

�
dS(x) = 0.

We now define the spaces with further differentiability properties

Z = {E ∈ Hinc(Ω,S3) : div E = 0 in Ω,EN = 0 on ∂Ω},
Z0 = {E ∈ Z : inc EN = 0 on ∂Ω},
F = {E ∈ Hinc(Ω,S3) : inc EN = 0 on ∂Ω}.

A straightforward consequence of Theorem 8.5 is the following.

Proposition 8.3 We have the orthogonal decompositions

Hinc(Ω,S3) = Z ⊕ V, F = Z0 ⊕ V .

8.4 Boundary value problems for the incompatibility

If E ∈ Hinc(Ω,S3) is split into E = Ei + Ec , Ei ∈ Z, Ec ∈ V, then inc E = inc Ei .
Thus, a Poincaré inequality for the incompatibility is naturally sought in Z or one of
its subspaces. In fact, the following holds.

Proposition 8.4 (First Poincaré inequality [2]) There exists C > 0 such that, for
all E ∈ Z,

�E �H1 ≤ C� inc E �L2 .

As a straightforward consequence, given K ∈ L2(Ω,S3) and B a symmetric
uniformly positive definite fourth order tensor field, we infer by the Lax-Milgram
theorem the existence of a unique E ∈ Z such that�

Ω

B inc E · inc Êdx =
�
Ω

K · Êdx ∀Ê ∈ Z. (8.8)
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The same result holds if Z0 is substituted for Z. If divK = 0 in Ω, KN = 0 on ∂Ω
and E ∈ Z solves (8.8), then Proposition 8.3 shows that (8.8) holds actually for any
Ê in Hinc(Ω,S3). This yields the strong form




inc (B inc E) = K in Ω
div E = 0 in Ω

EN = 0 on ∂Ω
T0(B inc E) = T1(B inc E) = 0 on ∂Ω.

Dirichlet-type boundary conditions can be considered through the space

H0 = {E ∈ H2(Ω,S3) : div E = 0 in Ω,E = (∂N E × N)T × N = 0 on ∂Ω}.

Observe from the Green formula that the boundary conditions in H0 are dual to the
trace operators T1 and T0. We have the following Poincaré inequality:

Proposition 8.5 (Second Poincaré inequality [3]) There exists C > 0 such that, for
all E ∈ H0,

�E �H2 ≤ C� inc E �L2 .

Obviously, givenK ∈ L2(Ω,S3) andB a symmetric uniformly positive definite fourth
order tensor field, there is a unique E ∈ H0 such that�

Ω

B inc E · inc Êdx =
�
Ω

K · Êdx ∀Ê ∈ H0. (8.9)

Nonhomogeneous boundary conditions can also be prescribed, using Theorem 8.2.
In order to identify the strong form of (8.9), we first note that, if E ∈ H0 solves (8.9),
then there exists a Lagrange multiplier (see e.g. [10]) p ∈ L2(Ω,R3) such that�

Ω

B inc E · inc Êdx −
�
Ω

p · div Êdx =
�
Ω

K · Êdx

for all Ê ∈ H2(Ω,S3) with Ê = (∂N Ê × N)T × N = 0 on ∂Ω. Therefore the strong
form reads 


inc (B inc E) + ∇Sp = K in Ω

div E = 0 in Ω
E = (∂N E × N)T × N = 0 = 0 on ∂Ω.

9 Towards an intrinsic approach to linearized elasto-plasticity

9.1 Objectivity and principle of virtual powers

Consider a macroscopic solid represented by the domain Ω and subject to external
loading. We place ourselves in a linearized setting, that is, our aim is to descibe
the deformation of the solid between two close configurations (see Fig. 1), when
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the load admits a small increment. The evolution of this tangent modeling between
increments will be discussed later, but an integrated nonlinear approach is currently
out of our scope.

We will use the principle of virtual powers to describe the internal efforts act-
ing within the solid and derive balance equations. In this framework, efforts are
represented by powers, rather than forces. Two types of efforts are treated sepa-
rately: the external efforts (the exterior medium acts on the body) and the internal
efforts (the matter acts on itself). The corresponding powers are linear functionals
that act on kinematical descriptors also called test or virtual fields. This is why we
speak of virtual powers. The choice of these kinematical descriptors is of paramount
importance.

A kinematical field is said objective if it is independent of the observer. The
classical mathematical definition is the following: it is a scalar, vector, or tensor
field that obeys the standard rules of transformation for such quantities through a
roto-translation of the frame with arbitrary speed. In this setting, it is well-known
that the velocity is not objective, whereas its symmetric gradient is. Nonetheless,
we have seen that in the presence of defects the notion of velocity is not always
well-defined. More general kinematical concepts are the geometric data of the solid
seen as a Riemannian manifold. For us, only these fields (or their time rates) will be
considered as objective. Hence, objective kinematical descriptors will be built upon
the metric g. Typically, we will consider the strain E := g − I and its rate �E .

In our model we assume that the internal virtual power is a continuous linear
functional on L2(Ω,S3), the set of virtual strain rates. By Riesz representation, there
exists a generalized force field Σ ∈ L2(Ω,S3) such that

P(i)(Ê) =
�
Ω

Σ · Êdx ∀Ê ∈ L2(Ω,S3). (9.1)

Unlike its internal counterpart, the virtual external power is a linear functional
against kinematical fields which may be non-objective (see, e.g., [46]). Typically,
the velocity is considered in order to represent standard forces. However, in our
framework, the velocity is only a byproduct of the strain rate, defined by orthogonal
projection onto an appropriate function space. Therefore, it is natural to assume that
the virtual external power is a linear functional on the set of virtual strain rates and
we write

P(e)(Ê) =
�
Ω

K · Êdx ∀Ê ∈ L2(Ω,S3), (9.2)

for some K ∈ L2(Ω,S3). The interpretation of K will be discussed in section 9.4. In
the absence of inertial effects, the principle of virtual powers reads

P(i)(Ê) = P(e)(Ê), (9.3)

for all Ê satisfying possible kinematical constraints.
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9.2 Constitutive law

We assume that the generalized force Σ is a function of the local geometric data of
the solid. This relation is called constitutive law. In our linearized framework, we
assume that Σ(x) is expressed as a linear function of the pair composed of E(x), the
strain at point x, and inc E(x), the linearized Riemannian curvature. Therefore we
can write

Σ(x) = AE(x) + B inc E(x),
for some fourth-order tensors A and B.

In classical elasticity one has inc E = 0, so that A is recognized as the Hooke
tensor of the material. We place ourselves in the isotropic case where the standard
expression

A = λI2 ⊗ I2 + 2µI4
holds, with (λ, µ) the Lamé coefficients.

Tensor B is a new object. An assumption of consistency with linear elasticity
will reduce its expression. First, let us emphasize that classical compatible elasticity
formally corresponds to B ’large’: indeed, the term B inc E penalizes incompatible
deformations. Second, the equations of linear elasticity are derived from the principle
of virtual powers considering compatible test fields Ê = ∇S v̂. Thus, we want that
following property be fulfilled: if B is homogeneous, then�

Ω

B inc E · Êdx = 0 ∀Ê = ∇S v̂, v̂ ∈ D(Ω,R3).

From the Green formula, it turns out that B = �I4, where � is a scalar coefficient
which we call incompatibility modulus, is a sufficient condition. Eventually, we
arrive at the constitutive law

Σ = AE + � inc E . (9.4)

Different derivations of (9.4), based on Mindlin’s theory of gradient elasticity [50],
are given in [4, 43].

9.3 Equilibrium equations

Plugging (9.1), (9.2) and (9.4) into (9.3) entails that�
Ω

(AE + � inc E) · Êdx =
�
Ω

K · Êdx, (9.5)

for all admissible Ê . In the following, we will not consider any kinematical constraint,
whereby (9.5) reduces to

AE + � inc E = K. (9.6)
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9.4 Interpretation of the external power and kinematical framework

Assume that ∂Ω = Γ1∪Γ2, Γ1∩Γ2 = ∅, and take Ê ∈ L2(Ω,S3). In view of Theorem
8.5, we have the unique decomposition Ê = ∇S v̂ + inc F̂ with ∇S v̂ ∈ V00

Γ1
and

inc F̂ ∈ W0
Γ2

. The Green formula yields

P(e)(Ê) =
�
Ω

K · Êdx = −
�
Ω

divK · v̂dx +
�
Γ2

KN · v̂dS(x) +
�
Ω

incK · F̂dx

+

�
∂Ω

�
T1(K) · F̂ + T0(K) · ∂N F̂

�
dS(x). (9.7)

Therefore, f := − divK is identified with a body force, and g := KN is identified
with a surface load on Γ2. Now, if K ∈ V00

Γ1
the last two integrals of (9.7) vanish by

virtue of Lemma 8.3. Then (9.7) rewrites as the classical expression of the external
power in linear elasticity�

Ω

K · Êdx =
�
Ω

f · v̂dx +
�
Γ2

g · v̂dS(x). (9.8)

To sum up, given f ∈ L2(Ω,R3) and g ∈ H−1/2(Γ2,R
3), the standard external power

is obtained after solving 

− div∇Sw = f in Ω,
w = 0 on Γ1,
∇SwN = g on Γ2,

(9.9)

and setting K = ∇Sw ∈ L2(Ω,S3).

9.5 Existence results and elastic limit

The main result of this section is the following.

Theorem 9.6 (Well-posedness [2]) Assume Ω is simply connected. Let K ∈
L2(Ω,S3). Let C be the Poincaré constant of Proposition 8.4. If A is uniformly
positive definite and |� | > C |A| a.e., then there exists one and only one E ∈ F such
that

AE + � inc E = K. (9.10)

Moreover we have the a priori estimate

� inc E �L2 ≤ ��−1A�L∞

1 − C��−1A�L∞
�A−1K�L2 . (9.11)

The essential boundary condition inc EN = 0 (no incompatibility flux) appears
naturally in the proof, through integrations by parts. It models the fact that the outside
of Ω has a purely elastic behavior, however future work should go further into this
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point, see the discussion in [2] where an alternative condition for the modeling of
free boundaries is also analyzed. Inequality (9.11) shows that inc E tends to 0 as
|� | → +∞. The following result is more precise.
Theorem 9.7 (Elastic limit [2]) Assume that A, K are fixed, � is constant, E� ∈ F ,
AE� + � inc E� = K in Ω. There exists a unique E∞ ∈ V such that�

Ω

AE∞ · Êdx =
�
Ω

K · Êdx ∀Ê ∈ V . (9.12)

Moreover �E� − E∞�L2 → 0 when |� | → +∞.
Theorem 9.7 shows that the standard linear elasticity problem with Neumann bound-
ary condition is retrieved as a limit case when |� | → +∞. The modeling of Dirichlet
type boundary conditions require further work.

From our derivations so far, the question of the sign of � has not been fixed. The
example of the bar in traction shown below suggests that � be negative to obtain
realistic solutions.

9.6 Example: bar in traction

We present a variant of an example treated in [2]. Consider the domain Ω = R2 ×
(−h, h), for a given h > 0. Although the existence theory has been carried out for
bounded domains, the semi-infinite case will allow analytical calculations through
ordinary differential equations. We assume a uniform vertical traction on the planes
{z = ±h}. In view of (9.7)-(9.9) we obtain

K =
���
0 0 0
0 0 0
0 0 1

���
.

We search for a strain field of form

E = ���
ϕ 0 0
0 ϕ 0
0 0 ψ

���
,

where ϕ,ψ are functions of the z variable. One has

AE = ���
2(λ + µ)ϕ + λψ 0 0

0 2(λ + µ)ϕ + λψ 0
0 0 2λϕ + (λ + 2µ)ψ

���
, inc E = ���

ϕ�� 0 0
0 ϕ�� 0
0 0 0

���
,

whereby AE + � inc E = K if and only if�
2(λ + µ)ϕ + λψ + �ϕ�� = 0
2λϕ + (λ + 2µ)ψ = 1. (9.13)
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Substitution leads to
ψ =

1
λ + 2µ

(1 − 2λϕ), (9.14)

2µ(3λ + 2µ)ϕ + �(λ + 2µ)ϕ�� = −λ.
Due to the unboundedness ofΩ the above equation has no unique solution. Therefore
we prescribe ϕ(±h) = 0. This entails

ϕ(z) =




−λ
2µ(3λ + 2µ)

���
1 −

cos ωz√
�

cos ωh√
�

���
if � > 0,

−λ
2µ(3λ + 2µ)

����
1 −

cosh ωz√
|� |

cosh ωh√
|� |

����
if � < 0,

with ω =

�
2µ(3λ + 2µ)
λ + 2µ

.

The external work is obtained as

W =
� h

−h
ψ(z)dz,

with ψ given by (9.14), i.e.,

W =




2h
λ + 2µ

�
1 +

λ2

µ(3λ + 2µ)

�
1 −

√
�

ωh
tan
ωh√
�

��
if � > 0,

2h
λ + 2µ

�
1 +

λ2

µ(3λ + 2µ)

�
1 −

�
|� |
ωh

tanh
ωh�
|� |

��
if � < 0.

In the numerical outputs that follow we have used the data Y = 10, ν = 1/3 for
the Young modulus and the Poisson ratio of the material, respectively, and h = 1.
Figure 2 displays the work W in function of �. Clearly, choosing � > 0 is unphysical,
since incompatible deformations produce less work that in the purely elastic case
(� → ∞). In contrast, choosing � < 0 is consistent with our expectation from the
energetic point of view, the difference of work between the inelastic (irreversible)
and elastic (reversible) transformations being the dissipation, see [2, 4] for details.

Figure 3 shows the functions ϕ and ψ for some negative values of �. For � → −∞,
the classical elastic solution is retrieved.

Figure 4 shows the same functions calculated with � variable in space, namely
� = −1 in the interval [−0.1,0.1] and � = −1000 elsewhere. Although the domain
is unbounded, the horizontal compression suggests that the model is able to pre-
dict necking phenomena. Let us stress once more that we have restricted ourselves
to linearized equations. How to deal with finite deformations is briefly discussed
thereafter.
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Fig. 2: External work as a function of � for � > 0 (left) and � < 0 (right)

Fig. 3: Planar (left) and vertical (right) deformations for � = −10 (blue), � = −100
(red), � = −1000 (yellow).

Fig. 4: Planar (left) and vertical (right) deformations for � variable in space.

9.7 Incremental formulation of hardening problems

An incremental formulation consists in introducing a continuous family of loads,
here denoted by (Kt ), parameterized by a fictitious time t, starting from K0 = 0 and
reaching the target value KT = K at final time T . The interval [0,T] is split into
subintervals [tk, tk+1], and within each subinterval one solves the tangent problem
(9.10). Here A and � are tangent moduli, and E is the strain increment. Nonlinear
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phenomena occur when these moduli vary between two increments. In the first
increment, for small load, the behavior is usually elastic: |� | is taken very large, one
can even solve the standard elasticity equations. At some point, according to some
yield stress or energetic criterion, nonlinearity and irreversibility appear: |� | should
be locally decreased. As stipulated by the second principle of Thermodynamics, this
modification of the incompatibility modulus must be associated with a dissipation
of free energy. The procedure is repeated in the following increments. Of course, in
case of elastic unloading, � should be again taken everywhere "infinite".

The process of update of � (and also A) is obviously not completely determined.
The point is to represent the complex hardening phenomenon. This will be inves-
tigated in future works. At least to comply with the Second Principle a sensitivity
analysis of the free energy with respect to local perturbations of � may be carried
out. It has been done in [4] for the model (9.10) reduced to its principle part, i.e.
(8.8). The full model is under scrutiny.
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