Nombres de Bell

Références : [FGN07] p.14-16 ([Gou08]).

Théorème 0.1 Pour tout $n \in \mathbb{N}^*$, on pose B_n le nombre de partitions de l'ensemble $\{1, \ldots, n\}$, avec par convention $B_0 = 1$. Soit :

$$f(z) = \sum_{n=0}^{+\infty} \frac{B_n}{n!} z^n$$

Alors le rayon de convergence de cette série R n'est pas nul et $\forall z \in]-R, R[, f(z)=e^{e^z-1}.$ De plus :

$$B_k = \frac{1}{e} \sum_{n=0}^{\infty} \frac{n^k}{k!}$$

Démonstration

Étape 1 : Montrons une formule sur les B_n . Montrons que $\forall n \in \mathbb{N}$,

$$B_{n+1} = \sum_{k=0}^{n} C_n^k B_k$$

Tout d'abord, familiarisons-nous avec la famille des B_n et déterminons pour ce faire B_1 , B_2 et B_3 .

- B_1 est le nombre de partition de $\{1\}$, d'où $B_1 = 1$;
- $-B_2$ est le nombre de partition de $\{1,2\}$, il y a $\{1\} \cup \{2\}$ et $\{1,2\}$, d'où $B_2=2$;
- $-B_3$ est le nombre de partitions de $\{1,2,3\}$, il y a :
 - \rightsquigarrow $\{1\} \cup \{2\} \cup \{3\};$
 - \rightsquigarrow $\{1\} \cup \{2,3\};$
 - $\rightsquigarrow \{1,2\} \cup \{3\};$
 - $\rightsquigarrow \{1,3\} \cup \{2\};$
 - $\rightsquigarrow \{1,2,3\}.$
 - d'où $B_3 = 5$.

Montrons maintenant la formule. Soit $n \geq 0$.

On pose E_k l'ensemble des partitions de $\{1, \ldots, n+1\}$ pour lesquelles la partie de $\{1, \ldots, n+1\}$ contenant n+1 est de cardinal k+1.

On a alors $|E_k| = C_n^k B_{n-k}$, car pour constituer la partie contenant n+1, il faut choisir k vecteurs parmi $\{1,\ldots,n\}$, puis il faut réaliser une partition des n-k éléments restants.

Comme E_0, E_1, \ldots, E_n forment une partition de l'ensemble des partitions de $\{1, \ldots, n+1\}$, on obtient :

$$B_{n+1} = \sum_{k=0}^{n} E_k = \sum_{k=0}^{n} C_n^k B_{n-k} = \sum_{j=0}^{n} C_n^j B_j$$

(via le changement de variable j = n - k). D'où le résultat.

Étape 2 : Déterminons une inégalité sur R et calculons f(z). Pour minorer le rayon de convergence de la série $\sum_n \frac{B_n}{n!} z^n$, il faut majorer B_n . Montrons par récurrence sur $n \in \mathbb{N}$, que $B_n < n!$

- Si n = 0, alors par convention $B_0 = 1 \le 0! = 1$.

- Soit $n \ge 0$. Supposons la propriété vérifiée jusqu'au rang n et montrons-là au rang n + 1. D'après l'étape 1 et l'hypothèse de récurrence, on a :

$$B_{n+1} \le \sum_{k=0}^{n} C_n^k k! = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} k! = \sum_{k=0}^{n} \frac{n!}{(n-k)!} = n! \sum_{k=0}^{n} \frac{1}{(n-k)!} \le n! \sum_{k=0}^{n} 1 \le (n+1)!$$

D'où le résultat.

Ainsi $\forall n \in \mathbb{N}$:

$$\frac{B_n}{n!} \le \frac{n!}{n!} = 1$$

Donc le rayon de convergence de la série entière est supérieur ou égal à 1 (par définition du rayon de convergence d'une série entière).

Déterminons maintenant f(z) pour $z \in]-R, R[$, en utilisant l'étape 1. Soit $z \in]-R, R[$,

$$f(z) = \sum_{n=0}^{+\infty} \frac{B_n}{n!} z^n = \frac{B_0}{0!} z^0 + \sum_{n=1}^{+\infty} \frac{B_n}{n!} z^n = 1 + \sum_{n=0}^{+\infty} \frac{B_{n+1}}{(n+1)!} z^{n+1}$$

La fonction f est dérivable sur]-R,R[et :

$$f'(z) = \sum_{n=0}^{+\infty} \frac{B_{n+1}}{(n+1)!} (n+1)! z^n = \sum_{n=0}^{+\infty} \frac{B_{n+1}}{n!} z^n$$

D'où $\forall z \in]-R,R[$ (d'après l'étape 1) :

$$f'(z) = \sum_{n=0}^{+\infty} \frac{1}{n!} \left(\sum_{k=0}^{n} C_n^k B_k \right) z^n = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \frac{B_k}{k!(n-k)!} \right) z^n$$

On reconnaît un produit de Cauchy des séries $\sum_n \frac{B_n}{n!} z^n$ et $\sum_n \frac{z^n}{n!}$. La première série a pour somme f(z) et la seconde e^z . Elles ont toutes deux un rayon de convergence supérieur ou égal à R, on a donc $\forall z \in]-R, R[$:

$$f'(z) = f(z)e^z$$

On reconnaît une équation différentielle linéaire du premier ordre, elle admet pour solution $f(z) = Ce^{e^z}$ où C est une constante, or ici $f(0) = B_0 = 1 = Ce$ d'où $C = \frac{1}{e}$, ainsi $\forall z \in]-R, R[$:

$$f(z) = \frac{1}{e}e^{e^z} = e^{e^z-1}$$

Étape 3 : Montrons la formule asymptotique sur B_k . La série entière définissant la fonction exponentielle ayant un rayon de convergence infini, on a $\forall z \in \mathbb{C}$:

$$e^{e^z} = \sum_{n=0}^{+\infty} \frac{e^{nz}}{n!} = \sum_{n=0}^{+\infty} \frac{1}{n!} \sum_{k=0}^{+\infty} \frac{(nz)^k}{k!}$$

On pose $(u_{n,k})_{(n,k)\in\mathbb{N}^2}$ la série double définie par :

$$u_{n,k} = \frac{(nz)^k}{k!n!}$$

On a $\forall n \in \mathbb{N}$:

$$\sum_{k=0}^{+\infty} |u_{n,k}| = \sum_{k=0}^{+\infty} \frac{|nz|^k}{k! n!} = \frac{e^{|nz|}}{n!}$$

puis :

$$\sum_{n=0}^{+\infty} \frac{e^{|nz|}}{n!} = \sum_{n=0}^{+\infty} \frac{(e^{|z|})^n}{n!} = e^{e^{|z|}}$$

La série double est donc sommable pour tout $z \in \mathbb{C}$. On peut donc intervertir l'ordre des sommations et en déduire $\forall z \in]-R,R[:$

$$f(z) = \frac{1}{e} \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{+\infty} u_{n,k} \right) = \frac{1}{e} \sum_{k=0}^{+\infty} \left(\sum_{n=0}^{+\infty} u_{n,k} \right) = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{z^k}{k!} \left(\sum_{n=0}^{+\infty} \frac{n^k}{n!} \right)$$

Par unicité du développement en série entière de f, on obtient $\forall k \in \mathbb{N}$:

$$B_k = \frac{1}{e} \sum_{n=0}^{+\infty} \frac{n^k}{n!}$$

Lemmes utilisés et rappels

Définition 0.1 (Rayon de convergence) Soit $\sum a_n z^n$ une série entière. Le nombre :

$$R = \sup\{r \ge 0; la \ suite (|a_n z^n|) \ est \ born\'ee\}$$

s'appelle le rayon de convergence de $\sum a_n z^n$.

D'après le lemme d'Abel:

 $\begin{array}{l} - \ \forall z \in \mathbb{C} \ \ tel \ que \ |z| < R, \ \sum a_n z^n \ \ converge \ absolument; \\ - \ \forall z \in \mathbb{C} \ \ tel \ que \ |z| > R, \ \sum a_n z^n \ \ diverge; \\ - \ \forall 0 \leq r < R, \ \sum a_n z^n \ \ converge \ normalement \ sur \ \{z \in \mathbb{C}; |z| \leq r\}. \\ Le \ \ disque \ \ ouvert \ \{z \in \mathbb{C}; |z| < R\} \ \ \ est \ \ appelé \ \ disque \ \ de \ \ convergence \ \ de \ \ la \ \ série \ \ entière. \end{array}$

Définition 0.2 (Produit de Cauchy) Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence R > 0 et R' > 0. Notons f et g les sommes de ces séries entières sur leurs disques de convergence D et D'.

Alors $\sum c_n z^n$ où $c_n = \sum_{k=0}^n a_k b_{n-k}$ est appelée produit de Cauchy des séries entières $\sum a_n z^n$ et $\sum b_n z^n$. Son rayon de convergence R'' vérifie $R'' \geq \inf(R, R')$ et sur $D \cap D'$, fg est la somme de $\sum c_n z^n$.

Lemme 0.1 (Comparaison des rayons de convergence) Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergence R > 0 et R' > 0 telles que $|a_n| \leq |\overline{b_n}|$. Alors $R \geq R'$.

Démonstration Soit $z \in D'$, ie |z| < R'. Montrons que $\sum a_n z^n$ converge. On a $|a_n z^n| \le |b_n z^n|$ par hypothèse et comme $z \in D'$, alors $\sum b_n z^n$ converge normalement, donc absolument point par point, d'où la convergence absolue de $\sum a_n z^n$ par comparaison des séries à termes positifs, d'où la convergence de $\sum a_n z^n$ pour tout $z \in D'$, ainsi nécessairement $D' \subset D$,

Lemme 0.2 (Fubini pour les séries) Soit $(u_{p,q})_{(p,q)\in\mathbb{N}^2}$ une suite à double entrée à valeurs dans un espace de Banach. Alors les deux assertions suivantes sont équivalentes :

- 1. $\forall q \in \mathbb{N}, \sum_{p} u_{p,q} \text{ est absolument convergente et } \sum_{q} \left(\sum_{p=0}^{+\infty} \parallel u_{p,q} \parallel \right) \text{ converge};$
- 2. $\forall p \in \mathbb{N}, \sum_{q} u_{p,q} \text{ est absolument convergente et } \sum_{p} \left(\sum_{q=0}^{+\infty} \| u_{p,q} \| \right) \text{ converge.}$

De plus, sous ces hypothèses :

$$\sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q} \right) = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q} \right)$$

Démonstration

(1) \Rightarrow (2) Notons $A_q = \sum_{q=0}^{+\infty} \|u_{p,q}\|$. Pour p fixé, $\|u_{p,q}\| \le A_q$ et d'après (1), $\sum A_q$ converge, donc $\sum_q \|u_{pq}\|$ converge, ie $\forall p \in \mathbb{N}$, $\sum_q u_{p,q}$ est absolument convergente. Notons B_p la somme de cette série. On a $\forall P \in \mathbb{N}$:

$$\sum_{p=0}^{P} B_p = \sum_{q=0}^{+\infty} \left(\sum_{p=0}^{P} \| u_{p,q} \| \right) \le \sum_{q=0}^{+\infty} A_q$$

Cette majoration étant indépendante de P, on en conclut que $\sum_{p} B_{p}$ converge, d'où le (2).

On montre de la même manière que $(2) \Rightarrow (1)$. **Montrons l'interversion.** Notons $a_{n,q} = \sum_{p=0}^{n} u_{p,q}$ et $a_q = \sum_{p=0}^{+\infty} u_{p,q}$. La série $\sum a_q$ converge absolument car $||a_q|| \leq A_q$, donc elle converge. Soit $\epsilon > 0$, soit $Q \in \mathbb{N}$ tel que $\sum_{q>Q} A_q < \epsilon$. Notons $C_n = \sum_{0 \leq p,q \leq n} u_{p,q}$. Lorsque n > Q, on a :

$$\sum_{q=0}^{+\infty} a_q - C_n = \sum_{q=0}^{Q} (a_q - a_{n,q}) + \sum_{q=Q+1}^{n} (a_q - a_{n,q}) + \sum_{q=n+1}^{+\infty} a_q$$

Pour q>Q, on a $\parallel a_q-a_{n,q}\parallel=\parallel\sum_{p>n}u_{p,q}\parallel\leq A_q$ et comme $\parallel a_q\parallel\leq A_q,$ l'égalité ci-dessus

$$\| \sum_{q=0}^{+\infty} a_q - C_n \| \le \| \sum_{q=0}^{Q} (a_q - a_{n,q}) \| + \sum_{q=Q+1}^{+\infty} A_q \le \| \sum_{q=0}^{Q} (a_q - a_{n,q}) \| + \epsilon$$

Les suites $(a_{n,q})_n$ pour $0 \le q \le Q$ convergent vers a_q donc $\exists N_0 \ge Q$ tel que $\|\sum_{q=0}^Q (a_q - a_{n,q})\| < \epsilon$ dès que $n \geq N_0$.

Ainsi pour tout $n \geq N_0$, $\|\sum_{q=0}^{+\infty} a_q - C_n\| < 2\epsilon$ donc la suite $(C_n)_n$ converge vers $\sum_{q=0}^{+\infty} a_q$. On montre de même que $\sum b_p$ converge et que $(C_n)_n$ converge vers $\sum_{p=0}^{+\infty} b_p$ avec $b_p = \sum_{q=0}^{+\infty} u_{p,q}$. D'où l'interversion.

Références

[FGN07] Serge Francinou, Hervé Gianella, and Serge Nicolas. Oraux x-ens algèbre 1. Cassini, 2007. [Gou08] Xavier Gourdon. Analyse. Ellipses, 2008.