Théorème de Borel

Référence : [Rou09] p.359-360.

Théorème 0.1 (de Borel) Soit $(a_k)_{k\in\mathbb{N}}$ une suite de réels quelconque. Alors il existe une fonction $u\in C^{\infty}(\mathbb{R})$ telle que $u^{(k)}(0)=a_k$ pour tout k.

Corollaire 0.1.1 Toute fonction C^{∞} sur un intervalle compact [a,b] (avec dérivée à tous ordres à droite en a et à gauche en b) peut être prolongée en une fonction C^{∞} sur \mathbb{R} .

Démonstration

Étape 1 : le théorème.

Construction d'une fonction plateau. On souhaite construire une fonction $f \in C^{\infty}(\mathbb{R})$ telle que :

$$f(x) = \begin{cases} 1 & \text{si } |x| \le \frac{1}{2}; \\ 0 & \text{si } |x| \ge 1. \end{cases}$$

On considère pour ce faire la fonction ψ définie par :

$$\psi(t) = \begin{cases} e^{-1/t} & \text{si } t > 0; \\ 0 & \text{si } t \le 0. \end{cases}$$

Montrons que ψ est une fonction de classe C^{∞} .

- $-\psi$ est de classe C^{∞} sur $\mathbb{R}\setminus\{0\}$ et toutes ses dérivées sont nulles pour t<0.
- Pour t > 0 et pour $k \in \mathbb{N}$, on a :

$$\psi^{(k)}(t) = P_k\left(\frac{1}{t}\right)e^{-1/t}$$

où $P_0(X) = 1$ et $P_{k+1}(X) = X^2(P_k(X) - P'_k(X))$.

Ainsi P_k est un polynôme de degré 2k (par récurrence).

- Par récurrence sur k, on peut alors montrer que ψ est k fois dérivable sur \mathbb{R} avec $\psi^{(k)}(t) = 0$ pour $t \leq 0$. En effet :
 - Si k=0, le résultat est immédiat.
 - Supposons le résultat vrai au rang k, on a :

$$\frac{1}{t} \left(\psi_k(t) - \psi_k(0) \right) = \begin{cases} \frac{1}{t} \left(P_k \left(\frac{1}{t} \right) e^{-1/t} \right) & \text{si } t > 0; \\ 0 & \text{si } t < 0. \end{cases}$$

qui tend vers 0 avec t. Donc $\psi^{(k+1)}(0) = 0$ et la propriété est vraie au rang k+1. Donc ψ est indéfiniment dérivable, donc de classe C^{∞} .

Posons maintenant trois fonctions:

$$\alpha(t) = \psi(t)\psi(1-t)$$

$$\beta(t) = \frac{\int_0^t \alpha(s)ds}{\int_0^1 \alpha(s)ds}$$

$$f(t) = \beta\left(\frac{x-a}{b-a}\right)\beta\left(\frac{d-x}{d-c}\right)$$

Montrons que $f \in C^{\infty}(\mathbb{R})$ et vérifie f = 1 sur [b, c] et est de support [a, d].

- D'après ce qu'on vient de montrer sur ψ , on sait que α est de classe C^{∞} sur \mathbb{R} , positive et de support [0,1].
- Comme l'intégrale $\int_0^1 \alpha(s)ds > 0$ alors β est bien définie et $\beta \in C^{\infty}(\mathbb{R})$, de plus, on a :

$$\beta(t) = 0$$
 pour $t \le 0$;
 $\beta(t) = 1$ pour $t \ge 1$;

et β est strictement croissante sur [0,1] et vérifie $\beta(t)>0$ si et seulement si t>0.

– Donc f est de classe C^{∞} sur \mathbb{R} , comprise entre 0 et 1 et égale à 1 si $b \leq x \leq c$ et non nulle si et seulement si a < x et x < d, ie le support de f est [a, d].

Ainsi en posant $b=-\frac{1}{2},\ c=\frac{1}{2},\ a=-1$ et d=1, on obtient bien la fonction f voulue.

Démonstration du théorème de Borel

On vient donc de construire une fonction $f \in C^{\infty}(\mathbb{R})$ telle que :

$$f(x) = \begin{cases} 1 & \text{si } |x| \le \frac{1}{2}; \\ 0 & \text{si } |x| \ge 1; \end{cases}$$

On pose:

$$f_k(x) = f(\lambda_k x) \frac{a_k x^k}{k!}$$

Montrons que l'on peut choisir les $\lambda_k > 0$ pour assurer la convergence uniforme sur \mathbb{R} de la série $u = \sum_{k} f_k$ et de chaque série dérivée.

Pour $k \geq m$, on a, d'après la formule de Leibniz de dérivation d'un produit :

$$f_k^{(m)}(x) = a_k \sum_{p=0}^m C_m^p f^{(m-p)}(\lambda_k x) \lambda_k^{m-p} \frac{x^{k-p}}{(k-p)!}$$

Soit M_m un majorant uniforme sur \mathbb{R} de f et de toutes ses dérivées d'ordre au plus m.

Comme f est nulle en dehors de [-1,1], il suffit d'effectuer les majorations lorsque $|x| \leq \frac{1}{\lambda_s}$, ce qui donne :

$$|f_k^{(m)}(x)| \le M_m |a_k| \sum_{p=0}^m C_m^p \lambda_k^{m-p} \frac{\lambda_k^{p-k}}{(k-p)!}$$

$$= M_m |a_k| \sum_{p=0}^m C_m^p \frac{\lambda_k^{m-k}}{(k-p)!}$$

$$\le M_m |a_k| \lambda_k^{m-k} \frac{2^m}{(k-m)!}$$

valable pour $k\geq m\geq 0$ et $x\in\mathbb{R}$. Prenons $\lambda_k=\max(1,|a_k|)$ alors $\lambda_k^{k-m}\geq \lambda_k\geq |a_k|$ pour $k-m\geq 1$, d'où :

$$|f_k^{(m)}(x)| \le \frac{M_m 2^m}{(k-m)!}$$

pour $x \in \mathbb{R}$ et $k \ge m+1$.

D'autre part, pour $k=0,\ldots,m$, les fonctions $f_k^{(m)}$ sont continues sur \mathbb{R} et nulles en dehors de $\left[-\frac{1}{\lambda_k}, \frac{1}{\lambda_k}\right]$, on peut donc les bornées uniformément.

Par suite, la série des dérivées d'ordre m:

$$\sum_{k=0}^{\infty} f_k^{(m)} = \sum_{k=0}^{m} f_k^{(m)} + \sum_{k=m+1}^{\infty} f_k^{(m)}$$

est normalement convergente sur \mathbb{R} pour tout $m \in \mathbb{N}$.

La fonction $u = \sum_k f_k$ est donc de classe C^{∞} sur \mathbb{R} et ses dérivées se calculent terme à terme. En particulier $u^{(m)}(0) = \sum_k f_k^{(m)}(0) = a_m$ pour tout $m \ge 0$ puisque $f_k(x)$ coïncide avec $a_k \frac{x^k}{k!}$ sur le voisinage de l'origine défini par $|x| \le \frac{1}{2\lambda_1}$

Étape 2 : le corollaire. Soit f une fonction de classe C^{∞} sur [a,b]. D'après le théorème de Borel, on sait qu'il existe $u \in C^{\infty}(\mathbb{R})$ et $v \in C^{\infty}(\mathbb{R})$ telles que pour tout k :

$$u^{(k)}(a) = f^{(k)}(a^+)$$
 et $v^{(k)}(b) = f^{(k)}(b^-)$

La fonction \tilde{f} définie par :

$$\tilde{f}(x) = \begin{cases} u(x) & \text{si } x < a; \\ f(x) & \text{si } a \le x \le b; \\ v(x) & \text{si } x > b. \end{cases}$$

donne un prolongement C^{∞} de f.

Références

[Rou09] François Rouvière. Petit guide du calcul différentiel. Cassini, 2009.