Prolongement de la fonction Γ d'Euler

Références : [QZ06] et [BMP05] p.82-83 ([Rud98]).

Théorème 0.1 Considérons la fonction Γ d'Euler définie sur $\mathcal{P} = \{z \in \mathbb{C}; \Re(z) > 0\}$ par :

$$\Gamma: \mathcal{P} \longrightarrow \mathbb{C}$$

$$z \longmapsto \int_0^{+\infty} e^{-t} t^{z-1} dt$$

Alors Γ se prolonge en une fonction méromorphe sur \mathbb{C} .

Démonstration

Étape 1 : Γ est bien définie. Montrons que Γ est holomorphe sur \mathcal{P} . On pose $\Gamma(z) = \int_0^{+\infty} e^{-t} e^{(z-1)\log(t)} dt$ pour $z \in \mathbb{C}$ tel que $\Re(z) > 0$. On a : $-\forall z \in \mathcal{P}$, la fonction $t \longmapsto e^{-t} t^{z-1}$ est intégrable ; - à t > 0 fixé, la fonction $z \longmapsto e^{z\log(t)}$ est holomorphe sur \mathbb{C} ;

- soit K un compact de \mathcal{P} , alors $\Re(z) \in [\epsilon, M]$ pour $z \in K$ où $\epsilon > 0$ et donc :

$$|e^{-t}e^{(z-1)\log(t)}| \le e^{(\epsilon-1)\log(t)} = \frac{1}{t^{(1-\epsilon)}}$$
 si $0 \le t \le 1$;
 $|e^{-t}e^{(z-1)\log(t)}| \le t^{M-1}e^{-t}$ si $t \ge 1$.

Ainsi d'après le théorème d'holomorphie sous le signe intégrale, Γ est holomorphe sur \mathcal{P} , ce qui justifie le fait que Γ ait un sens et soit bien définie.

Étape 2 : une formule pour Γ **.** Montrons que $\forall z \in \mathcal{P}$:

$$\Gamma(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+z)} + \int_1^{+\infty} e^{-t} t^{z-1} dt$$

Découpons l'intégrale en deux :

$$\Gamma(z) = \int_0^1 e^{-t} t^{z-1} dt + \int_1^{+\infty} e^{-t} t^{z-1} dt$$

On souhaite donc exprimer le premier terme sous la forme d'une série. Développons alors l'exponentielle:

$$e^{-t}t^{z-1} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} t^{n+z-1}$$

Appliquons maintenant le théorème de Fubini (appliqué à la mesure produit de la mesure de Lebesgue et de la mesure de comptage). Pour cela il suffit de montrer que :

$$\int_{0}^{1} \sum_{n=0}^{+\infty} \left| \frac{(-1)^{n}}{n!} t^{n+z-1} \right| dt < +\infty$$

Or pour t > 0, on a $|t^z| = |t^{\Re(z) + i\Im(z)}| = |t^{\Re(z)}| |t^{i\Im(z)}| = t^{\Re(z)}$, ainsi pour $t \in]0,1]$, on a :

$$\sum_{n=0}^{+\infty} |\frac{(-1)^n}{n!}||t^{n+z-1}| = t^{\Re(z)-1} \sum_{n=0}^{+\infty} \frac{t^n}{n!} = e^t t^{\Re(z)-1}$$

Comme $\Re(z) > 0$, la fonction $t \longmapsto e^t t^{\Re(z)-1}$ est intégrable sur [0,1], d'où :

$$\int_0^1 e^{-t} t^{z-1} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \int_0^1 t^{n+z-1} dt$$
$$= \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+z)}$$

D'où sur \mathcal{P} .

$$\Gamma(z) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+z)} + \int_1^{+\infty} e^{-t} t^{z-1} dt$$

Étape 3 : la méromorphie de la somme. Montrons que :

$$f: z \longmapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(z+n)}$$

est méromorphe sur $\mathbb C$ et que ses pôles sont les entiers négatifs et sont simples. On applique pour ce faire le théorème de méromorphie sous le signe somme :

- $-\forall n \in \mathbb{N}$, la fonction $f_n: z \longmapsto \frac{(-1)^n}{n!(n+z)}$ est méromorphe sur \mathbb{C} avec pour seul pôle simple l'entier -n;
- soit K un compact de \mathbb{C} , alors il existe $N \in \mathbb{N}$ tel que $K \subset \overline{D(0,N)}$. Pour n > N, la fonction f_n n'a pas de pôle dans K.

De plus, $\forall z \in K$, on a $|z+n| \ge n - |z| \ge n - N$, par conséquent $|f_n(z)| \le \frac{1}{n!(n-N)}$ pour

tout $z \in K$ et la série $\sum_{n>N} f_n$ est donc normalement convergente sur K. Ainsi d'après le théorème de méromorphie, f est bien une fonction méromorphe sur $\mathbb C$ dont les pôles simples sont les eniters négatifs.

Étape 4 : conclusion. Si on applique le théorème d'holomorphie sous le signe intégral pour $t \geq 1$, on obtient que $z \longmapsto \int_1^{+\infty} e^{-t} t^{z-1} dt$ est holomorphe sur \mathbb{C} . Ainsi d'après l'étape 2, l'application :

$$z \longmapsto \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(z+n)} + \int_1^{+\infty} e^{-t} t^{z-1} dt$$

établit un prolongement méromorphe sur \mathbb{C} de Γ . Et le théorème de prolongement analytique entraı̂ne que cette fonction est l'unique prolongement analytique de Γ sur l'ouvert connexe $\mathbb{C}\setminus\{-\mathbb{N}\}$.

Lemmes utilisés

Lemme 0.1 (Théorème d'holomorphie sous le signe intégral) Soit ω un ouvert de $\mathbb C$ et $f:\omega\times X\longrightarrow \mathbb C$. On suppose que :

- $\forall z \in \omega, \ la \ fonction \ x \longmapsto f(z,x) \ est \ dans \ L^1(X) ;$
- $-\exists N\subset X \ tel \ que \ \mu(N)=0 \ et \ tel \ que \ \forall x\notin N, \ la \ fonction \ z\longmapsto f(z,x) \ est \ holomorphe \ sur \ \omega \ ;$
- pour tout compact $K \subset \omega$, il existe $g \in L^1$ positive et indépendante de z telle que $|f(z,x)| \leq g(x)$ $\forall z \in K \text{ et } \forall x \notin N$.

Alors la fonction $F(z) = \int f(z,x) d\mu(x)$ est holomorphe dans ω et

$$F'(z) = \int \frac{\partial f}{\partial z}(z, x) d\mu(x)$$

Lemme 0.2 (Théorème de méromorphie sous le signe somme) Soit $\sum f_n$ une série de fonctions méromorphes sur U telle que pour tout compact $K \subset U$, il existe $N_K \in \mathbb{N}$ tel que $\forall n \geq N_K$, les f_n n'ont pas de pôles dans K et que $\sum_{n \geq N_K} f_n$ converge uniformément sur K. Alors la somme de cette série est méromorphe sur U et on peut dériver terme à terme.

Lemme 0.3 (Prolongement analytique) Soit U un ouvert connexe. Si deux fonctions coïncident sur un ensemble $D \subset U$ ayant un point d'accumulation dans U, alors elles sont égales sur U.

Lemme 0.4 (Fubini) Soient (X, S, μ) et $(Y, \mathcal{F}, \lambda)$ deux espaces mesurés σ -finis. Soit f une fonction sur $X \times Y$ mesurable relativement à $S \times \mathcal{F}$. Alors :

1. $si\ 0 \le f \le +\infty$ et si l'on pose pour $x \in X$ et $y \in Y$:

$$\phi(x) = \int_{Y} f_x d\lambda \qquad \psi(y) = \int_{X} f^y d\mu$$

la fonction ϕ est alors mesurable relativement à S et la fonction ψ est mesurable relativement à F, de plus :

$$\int_{X} \phi d\mu = \int_{X \times Y} f d(\mu \times \lambda) = \int_{Y} \psi d\lambda$$

2. si f est une fonction à valeurs complexes et si l'on pose

$$\phi^*(x) = \int_Y |f|_x d\lambda \quad et \quad \int_X \phi^* d\mu < +\infty$$

dans ce cas $f \in L^1(\mu \times \lambda)$;

3. si $f \in L^1(\mu \times \lambda)$, $f_x \in L^1(\lambda)$ pour presque tout $x \in X$ et $f^y \in L^1(\mu)$ pour presque tout $y \in Y$; les fonctions ϕ et ψ définies presque partout par les relations précédentes appartiennent respectivement à $L^1(\mu)$ et $L^1(\lambda)$, enfin la relation sur les intégrales est exacte.

Remarque: La relation avec les intégrales peut aussi s'écrire :

$$\int_X d\mu(x) \int_Y f(x,y) d\lambda(y) = \int_Y d\lambda(y) \int_X f(x,y) d\mu(x)$$

ce sont ce qu'on appelle les intégrales itérées de f.

La conjonction de (2) et (3) fournit un résultat souvent utile : si f est mesurable relativement à $S \times F$ et si :

$$\int_X d\mu(x) \int_Y |f(x,y)| d\lambda(y) < +\infty$$

les deux intégrales itérées sont alors définies et égales.

Rappels:

Définition 0.1 (Méromorphie, holomorphie, analyticité, développable en série entière) $Soit \ f: U \longrightarrow \mathbb{C}. \ On \ dit \ que \ f \ est :$

- développable en série entière en un point $a \in U$ s'il existe r > 0 et $(a_n)_n \in \mathbb{C}^{\mathbb{N}}$ une suite de nombres complexes tels que le disque $\{z \in \mathbb{C}, |z-a| < r\}$ soit inclus dans U et que sur ce disque on ait :

$$f(z) = \sum_{n=0}^{+\infty} a_n (z-a)^n$$

On dit que f est égale à la somme de la série entière $z \mapsto \sum a_n(z-a)^n$ sur le disque de centre a et de rayon r;

- analytique sur U, si f est développable en série entière en tout point de U;
- holomorphe sur U si en tout point $a \in U$,

$$\frac{f(z) - f(a)}{z - a}$$

admet une limite quand $z \longrightarrow a$.

Si elle existe, cette limite est notée f'(a);

- méromorphe sur U s'il existe \mathcal{P} un ensemble de points isolés de U (appelés pôles de f) tel que f est analytique sur $U \setminus \mathcal{P}$ et si $\forall p \in \mathcal{P}, \exists n \in \mathbb{N}^*, \exists b \in \mathbb{C} \setminus \{0\}$ vérifiant $f(z) \simeq b(z-p)^{-n}$ quand $z \longrightarrow p$.

Définition 0.2 (Mesure produit) Soient (X, \mathcal{S}, μ) et $(Y, \mathcal{F}, \lambda)$ deux espaces mesurés σ -finis. Soit $Q \in \mathcal{S} \times \mathcal{F}$, on pose :

$$(\mu \times \lambda)(Q) = \int_X \lambda(Q_x) d\mu(x) = \int_Y \mu(Q^y) d\lambda(y)$$

où $Q = \{(x,y); f(x,y) \in V\}$ pour tout ouvert V et $Q_x = \{y; f_x(y) \in V\}$. On appelle $\mu \times \lambda$ la mesure produit des mesures μ et λ . De fait $\mu \times \lambda$ est une mesure σ -finie.

Références

[BMP05] Vincent Beck, Jérôme Malick, and Gabriel Peyré. Objectif agrégation. HK, 2005.

[QZ06] Hervé Queffelec and Claude Zuily. Analyse pour l'agrégation. Dunod, 2006.

[Rud98] Walter Rudin. analyse réelle et complexe. Dunod, 1998.