Surprises in patchy colloids

J. Russo^a, J. M. Tavares^{b,c}, P. I. C. Teixeira^{b,c}, M. M. Telo da Gama^{c,d} and F. Sciortino^a

^aDipartimento di Fisica and CNR-ISC, Università di Roma "La Sapienza", Rome, Italy ^bInstituto Superior de Engenharia de Lisboa, Portugal ^cCentro de Física Teórica e Computacional, Universidade de Lisboa, Portugal ^dDepartamento de Física, Faculdade de Ciências da Universidade de Lisboa, Portugal

Phases and phase transitions

• In general, interactions between atoms, molecules or ions comprise a short-range repulsion and a longer-ranged attraction.

- In the Van der Waals picture, the interplay of interaction energy and entropy – expressed as free energy – determines which phases are realised.
 - At low temperatures/high densities energy wins and we have a condensed phase a liquid or a solid.
 - At high temperatures/low densities entropy wins and we have a dilute phase a gas.

- Most molecular species have permanent dipoles.
- Criticality of strongly dipolar fluids is still unsolved problem (image by J.-J. Weis).

- A related, more general issue is interplay between condensation and association.
- We want to study a model that retains the essential symmetry of dipolar forces leading to association, but leaves out apparently inessential features (long range and complex angular dependence).

Patchy colloids

- Patchy colloids are custom-fabricated matter that exhibits both self-assembly and the usual phase transitions (condensation, freezing, etc) (images by Y. S. Cho *et al.*).
- Sciortino *et al.* [Phys. Rev. Lett. **97**, 168301 (2006); J. Chem. Phys. **128**, 144504 (2008)] simulated patchy particles with *M* identical sites: $\rho_c \rightarrow 0$ and $T_c \rightarrow 0$ as $M \rightarrow 2$.

J. Russo^a, J. M. Tavares^{b,c}, P. I. C. Teixeira^{b,c}, M. M. Telo da Gama^{c,d} Surprises in patchy colloids

J. Russo^a, J. M. Tavares^{b,c}, P. I. C. Teixeira^{b,c}, M. M. Telo da Gama^{c,d} Surprises in patchy colloids

Theory and model

- Hard spheres of diameter σ and volume v_s , each decorated with $2 + m_B$ sticky spots: two A's and m_B B's. AA, BB or AB bonds may form.
- Bonding free energy from Wertheim's theory:

$$\beta f_b \equiv \frac{\beta F_b}{N} = 2 \ln X_A + m_B \ln X_B - X_A - \frac{m_B X_B}{2} + \frac{2 + m_B}{2}$$

X_i is the probability of having a sticky spot of type i not bonded.Law of mass action yields:

$$\begin{aligned} X_A + 2\eta \Delta_{AA} X_A^2 + m_B \eta \Delta_{AB} X_A X_B &= 1\\ X_B + m_B \eta \Delta_{BB} X_B^2 + 2\eta \Delta_{AB} X_A X_B &= 1, \end{aligned}$$

where $\eta \equiv ({\it N}/{\it V}) \textit{v_s}$ is the packing fraction, and

$$\Delta_{ij} = rac{1}{ extsf{v}_{s}^{ij}} \int_{ extsf{v}_{ij}} g_{ref}(\mathbf{r}) \left[\exp(-eta \epsilon_{ij}) - 1
ight] d\mathbf{r}$$

• Free energy per particle is a function of (η, T) only:

$$\beta f = \beta f_{\rm HS} + \beta f_b$$

Ground states (without loops)

Linear chains $(\epsilon_{AB} = \epsilon_{BB} = 0, \ \epsilon_{AA} \neq 0)$

Dimers ($m_B = 1$ only!) $\epsilon_{AA} = \epsilon_{AB} = 0, \ \epsilon_{BB} \neq 0$

Hyperbranched polymers $(\epsilon_{AA} = \epsilon_{BB} = 0, \epsilon_{AB} \neq 0)$

X-junction is always favourable: $\epsilon_j = -\epsilon_{BB} < 0$

Y-junction is favourable only if $\epsilon_j = -\epsilon_{AB} + \epsilon_{AA}/2 < 0$ $\Leftrightarrow \epsilon_{AB}/\epsilon_{AA} > 1/2$

Asymptotic behaviour

• X-junction driven criticality: $\epsilon_{AB} = 0, \ \epsilon_{BB} \rightarrow 0$

$$T_{c} = \frac{\epsilon_{BB}}{\ln b},$$

$$\eta_{c} = \left[\frac{9v_{b}}{8v_{s}(B_{3}+6B_{2}^{2})^{2}}\right]^{\frac{1}{5}} \exp\left[-\frac{\ln b}{5(\epsilon_{BB}/\epsilon_{AA})}\right].$$

A critical point is always present, with lower and lower critical density and temperature.

• Y-junction driven criticality: $\epsilon_{BB} = 0$, $\epsilon_{AB} \rightarrow 0$

$$T_{c} = \frac{\epsilon_{AB} - \frac{1}{3}\epsilon_{AA}}{b},$$

$$\eta_{c} = \frac{v_{b}}{v_{s}} \exp\left(-\frac{b\epsilon_{AB}}{3\epsilon_{AB} - \epsilon_{AA}}\right).$$

On decreasing ϵ_{AB} a critical point of vanishingly small density and temperature is obtained only up to $\epsilon_{AB}/\epsilon_{AA} = \frac{1}{3}$.

X and Y criticality

J. Russo^a, J. M. Tavares^{b,c}, P. I. C. Teixeira^{b,c}, M. M. Telo da Gama^{c,d}

Surprises in patchy colloids

Summary of results so far

- If $\epsilon_{AA} = 0$ there is no critical point.
- If $\epsilon_{AA} \neq 0$:
 - If $\epsilon_{AB} = 0$, the critical point exists all the way to $\epsilon_{BB}/\epsilon_{AA} = 0$. This corresponds to X-junction condensation.
 - If ε_{BB} = 0, there is no critical point for ε_{AB}/ε_{AA} < 1/3. This corresponds to Y-junction condensation.
- By changing the ratio of interaction strengths, we are able to engineer very low density liquid phases: 'empty liquids'.
- Likewise, different cluster structures may result, which may or may not lead to percolation.
- But wait. . . What happens if $1/3 < \epsilon_{AB}/\epsilon_{AA} < 1/2?$

Diversion: Tlusty and Safran's theory

- At low T (large μ), dipolar fluid consists mostly of long chains.
- Treated as a perturbation of a ground state of infinitely long chains.
- Perturbation consists of two types of thermally-excited defects:

chain ends ϵ_e and Y-junctions ϵ_e of energy ϵ_i .

• There is a critical point if $\epsilon_i/\epsilon_e < 3$. Coexistence is between a lower-density phase rich in ends and a higher-density phase rich in junctions. Phase diagram pinches (is re-entrant) at low T.

On we also find pinching in our theory?

- TS theory coincides with ours in limit $\epsilon_{AB}/\epsilon_{AA} << 1$. It affords greater insight into our own theory, BUT:
 - TS theory is lattice-based \Rightarrow not-so-good entropy.
 - ϵ_e and ϵ_i are not related to interparticle potentials.
- BUT we need to be able to approach limit where critical point disappears, where vapour densities are extremely low.

Solution: Artificially increase AB-bond volume by choosing $m_B = 9$: not one larger patch, but many small ones.

(a) How do we go from 'pinched' to 'normal' phase behaviour? Solution: Switch on ϵ_{BB} at fixed $1/3 < \epsilon_{AB}/\epsilon_{AA} < 1/2$.

Snapshot of vapour and liquid phases

Phase diagram

- T_c^* well predicted, ρ_c^* less so.
- Vapour phase rich in ends, liquid phase rich in junctions.

Results for 2A + 9B model, $\epsilon_{BB} = 0$, $\epsilon_{AB} = 0.37 \epsilon_{AA}$

Fractions of chain ends and junctions along coexistence line

- Excellent agreement between theory and simulation (using simulation input).
- Vapour phase rich in ends, liquid phase rich in junctions.

Results for 2A + 9B model, $\epsilon_{BB} = 0$, variable ϵ_{AB}

Phase diagram

- For all $\epsilon_{AB}/\epsilon_{AA}$ a clear pinching is observed, which becomes more pronounced as $\epsilon_{AB}/\epsilon_{AA} \rightarrow 1/3$.
- On decreasing $\epsilon_{AB}/\epsilon_{AA}$, both T_c and ρ_c decrease.
- Theory correctly predicts the temperature range of condensation, but significantly underestimates ρ_c and the density of the liquid-branch of the binodal.

Phase diagram and fraction of unbonded A's

- Phase diagram gradually un-pinches as $\epsilon_{BB}/\epsilon_{AA}$ increases.
- In the re-entrant region for small $\epsilon_{BB}/\epsilon_{AA}$, both phases consists almost exclusively of extremely long chains ($X_A \approx 0$).

Fractions of X- and Y-junctions

- Close to T_c, coexistence is between a liquid of long chains and rich in Y-junctions, and a vapour of shorter chains with fewer Y-junctions, both with practically no X-junctions
- As $T \rightarrow 0$, the liquid has many X-junctions and no Y-junctions, the vapour is an ideal gas of monomers.
- At intermediate *T*, coexistence is between a gas of short chains and a liquid of very long chains with X- and, in some cases, Y-junctions.

Phase diagram and fraction of unbonded A's

- Phase diagram gradually un-pinches as $\epsilon_{BB}/\epsilon_{AA}$ increases.
- In the re-entrant region for small $\epsilon_{BB}/\epsilon_{AA}$, both phases consists almost exclusively of extremely long chains ($X_A \approx 0$).

Results for 2A + 9B model, $\epsilon_{AB} = 0.45\epsilon_{AA}$, variable ϵ_{BB} II

Fractions of X- and Y-junctions

- Close to T_c, coexistence is between a liquid of long chains and rich in Y-junctions, and a vapour of shorter chains with fewer Y-junctions, both with practically no X-junctions
- As $T \rightarrow 0$, the liquid has many X-junctions and no Y-junctions, the vapour is an ideal gas of monomers.
- At intermediate *T*, coexistence is between a gas of short chains and a liquid of very long chains with X- and, in some cases, Y-junctions.

Summary and conclusions

- We have applied Wertheim's theory of association to patchy colloids with two A sites and $m_B B$ sites.
- For ε_{BB} → 0 or ε_{AB} → 0, long AA chains form with either AB or BB branches. These are relevant to strong-dipolar-fluid criticality.
- When $\epsilon_{BB} = \epsilon_{AB} = 0$ we recover the non-trivial limit of two A's:
 - If $\epsilon_{AB} = 0$, the critical point exists all the way to $\epsilon_{BB}/\epsilon_{AA} = 0$. This corresponds to X-junction condensation.
 - If ε_{BB} = 0, there is no critical point for ε_{AB}/ε_{AA} < 1/3. This corresponds to Y-junction condensation.
- We have been able to reproduce the pinched phase diagram of Tlusty-Safran theory using our patchy particles and Wertheim's theory of association.
- This re-entrance can be understood a temperature controlled effective valence: the number of bonded sites per particle goes down with decreasing *T*.
- The structure of the coexisting phases can be understood simply by noting that Y-junctions are favoured at high temperatures, whereas X-junctions dominate at low temperatures.

BUT this version of the theory ignores completely:

- higher densities;
- rings;
- patch positions on the hard core \Rightarrow orientational correlations.

- J. M. Tavares, P. I. C. Teixeira and M. M. Telo da Gama, Molec. Phys. **107**, 453–466 (2009).
- J. M. Tavares, P. I. C. Teixeira and M. M. Telo da Gama, Phys. Rev. E **80**, 021506 (2009).
- J. Russo, J. M. Tavares, P. I. C. Teixeira, M. M. Telo da Gama and F. Sciortino, Phys. Rev. Lett. **106**, 085703 (2011).
- J. Russo, J. M. Tavares, P. I. C. Teixeira, M. M. Telo da Gama and F. Sciortino, J. Chem. Phys. **135**, 034501 (2011).
- J. M. Tavares and P. I. C. Teixeira, J. Phys.: Condens. Matter 24, 284108 (2012).

Financial support is acknowledged from the Portuguese Foundation for Science and Technology (FCT), under contracts nos.

POCI/FIS/55592/2004 POCTI/ISFL/2/618 PTDC/FIS/098254/2008

and from the European Union under contracts nos.

ERC-226207-PATCHYCOLLOIDS ITN-234810-COMPLOIDS

This visit to Stuttgart and Mainz was funded by a FCT-DAAD Transnational Cooperation Programme grant.

Shameless publicity plug...

Topics

- Ionic Liquids and Liquid Metals
- Water and Solutions
- Liquid Crystals
- Polymers, Polyelectrolytes, Biopolymers
- Colloids
- Films, Foams, Surfactants, Emulsions

- Confined Fluids, Interfacial Phenomena
- Supercooled Liquids, Glasses, Gels
- Driven Systems, Rheology and Nanofluidics
- Active Matter
- Biological and Biomimetic Fluids