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As you may have learned in high school, there are geometric constructions for some
regular polygons using only a straightedge and compass. The constructions for the
triangle, the square, and the hexagon are simple. For the pentagon, the construction is
more delicate, but well known. For the octagon, one can simply bisect the angle of the
square. Similarly for the decagon.

The reader may have noticed that we skipped two regular polygons, the heptagon
(7 sides) and the nonagon or enneagon (9 sides). There is a good reason for the omis-
sion: No matter how hard we try, it is impossible to find a straightedge-and-compass
construction for either of them. This is a consequence of the following classical result.

Theorem (Gauss–Wantzel). The division of the circle in n equal parts with
straightedge and compass is possible if and only if n = 2k p1 · · · pt where p1, . . . , pt
are distinct Fermat primes.

Fermat primes are those of the form 22
m + 1. Presently, the only known Fermat

primes are 3, 5, 17, 257, and 65,537.
Gauss proved, in his early years, that the 17-gon is constructible. He went on to for-

mulate the theorem andWantzel concluded the proof [13]. Visit youtu.be/87uo2TPrsl8
to see David Eisenbud constructing a 17-gon and youtu.be/oYlB5lUGlbw for a dis-
cussion of the mathematics involved. See [10, chap. 19] for a complete proof of this
theorem, where you can also find a reference for the construction of the 257-gon as
well as some funny anecdotes about the 65,537-gon.

As mentioned, this result implies that the heptagon and the nonagon are not con-
structible with straightedge and compass: 7 is not a Fermat prime and 9 = 3 · 3 with
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Figure 1. Reproduction of two drawings by Almada Negreiros.

the Fermat prime 3 repeated in the factorization of 9. Nevertheless, it is possible to find
good approximate constructions for both these polygons.

Several artists took an interest in finding ways to divide the circle in n parts and
use this in their work, including Dürer [5]. In the 20th century, a famous Portuguese
modernist artist, José de Almada Negreiros, produced drawings consisting solely of
such constructions. We reproduce two of them here.

On the left in Figure 1, the arc Ô7 is one-seventh of the circle; on the right, the lines
ab, aO, and ac are the chords for the 14th, 10th, and 9th parts of the circle, respectively.
The errors are 0.2% for the 7th part, 1% for the 14th, and an amazing 0.001% for
the 9th (the constructible 10th part is exact). See [4, 6] for detailed analysis of these
approximate constructions.

General approximate constructions
Generally, the constructions become more and more intricate as we increase the num-
ber of sides of the polygon. Moreover, they vary from one polygon to the other. While
searching for good approximations, one needs to balance the complexity of the con-
struction and its accuracy. One of the authors once asked a friend who teaches high
school descriptive geometry if there is a general approximate construction for the n-
gon with such characteristics. It turns out there is. She proceeded to draw the picture
in Figure 2 (left) as a construction for the nonagon.

Starting with a circle of diameter s, draw arcs of two circles having radius s centered
at endpoints of a diameter. (This figure is known as the vesica piscis, the fish’s bladder,
and appears frequently in the composition of Medieval art, for instance.) Let V be the
point where these arcs intersect above the original circle. Divide the diameter into nine
equal parts and use the second point from the left to define the ray as shown in Figure 2
(left). The process is completely general—for the n-gon, divide the diameter into n
equal parts and use the second point from the left.

This method can be found in some descriptive geometry books [2, 8] and is called
the Bion method, see [1, 7]. Tempier proposed a variation [11, 12], using a different ray
directed by another point, situated on the diameter two nth parts from the circle center,
demonstrated for the nonagon in Figure 2 (right).
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Figure 2. Bion’s method for the nonagon, left, and Tempier’s, right.

The 19th century papers [7, 11, 12] include mathematical descriptions of the
methods and error tables and point out that the 17-gon constructions are much sim-
pler than Gauss’s (even though they are approximate). This material does not seem
to be well known in the present mathematical community, with the recent excep-
tion [9]. We have provided Geogebra applets producing the polygons determined
by Bion’s method (tube.geogebra.org/student/m630691) and by Tempier’s method
(tube.geogebra.org/student/m630601).

These constructions are simple and elegant, but it is not at all clear why they give
an approximation of the nth part of the circle. What is so special about the point V and
the length of two nth parts of the diameter? We will develop a unified analysis of the
two methods in order to address these concerns.

Measuring error
To determine the errors produced by these general constructions, we must find the ex-
act values of the angles they determine. Our analysis differs slightly from the original
papers [7, 11, 12] and handles both Bion’s and Tempier’s methods simultaneously.

Figure 3 shows vertical and horizontal lines meeting at the center of the circle de-
termining, with a ray from the constructions, angles α, β, x, y, and lengths a, b, c, d.
We determine the complementary angles x and y that meet at the center of the circle.

Beginning with β, we have

sinβ = sin(π − β ) = b

c
, cosβ = cos(π − β ) = −a

c
.
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Figure 3. Angles and lengths in the constructions.

Since β is obtuse and given the main restrictions of sine, cosine, and tangent,

β = π − arcsin
b

c
= arccos

Å
−a

c

ã
= π + arctan

Å
−b

a

ã
. (1)

For α, by the law of sines, (sinα)/a = (sinβ )/d, which gives

α = arcsin
ab

cd
. (2)

Since α, β, and x are the angles of a triangle, by (1) and (2),

x = π −
Å
π − arcsin

b

c

ã
− arcsin

ab

cd
= arcsin

b

c
− arcsin

ab

cd
.

For y, notice that cos(π/2 − α) = sinα = (ab)/(cd) so, since π/2 − α ∈ [0, π],

y = β + α − π

2
= arccos

Å
−a

c

ã
− arccos

ab

cd
.

We can now determine the angles that appear in the approximate methods by cal-
culating a, b, c, and d in a division of the circle into n parts. Assume a unit circle, i.e.,
d = 1, so that the diameter is divided into n parts of length 2/n.

Bion’s method. Here a = 1 − 4/n = (n− 4)/n and b = √
22 − 12 = √

3, so that

c =
√Ä√

3
ä2 +

Å
n− 4

n

ã2
= 2

√
n2 − 2n+ 4

n
.
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Figure 4. Graph of the relative errors for Bion’s method, left, and Tempier’s method, right.

Therefore,

x = arcsin

√
3n

2
√
n2 − 2n+ 4

− arcsin

√
3(n− 4)

2
√
n2 − 2n+ 4

.

Define the following relative error function for n ≥ 4 as the quotient of the error and
the exact angle:

n �→
2π
n − x(n)

2π
n

= 1 − n x(n)

2π
.

(Actually, one usually uses the absolute value of this expression, but that would provide
less information.) Using Mathematica to study this function, we find that it vanishes
only at n = 4 and 6, has a maximum at n = 5, and is strictly decreasing for n ≥ 6,
converging to 1 − 2

√
3/π ≈ −0.102658 as n → ∞. Figure 4 (left) shows the graph

for n from 4 to 25. Besides the two cases when Bion’s method is exact, the error can
range from 0.1% to 10.27%.

Tempier’s method. Here a = 4/n, b = √
3, and c = √

3n2 + 16/n. In this case,
the approximation for 2π/n is

y = arccos
Å
− 4√

3n2 + 16

ã
− arccos

4
√
3√

3n2 + 16
.

The analogous relative error function 1 − (n y(n))/(2π ) is zero at n = 4 and 12,
again has a maximum at n = 5, and is strictly decreasing for n ≥ 5, converging to
−(6 + 2

√
3 − 3π )/(3π ) ≈ −0.004172 as n → ∞. See Figure 4 (right) for the cor-

responding graph for n from 4 to 25. Besides the two cases when Tempier’s method is
exact, the error is never worse than 0.9%!

Comparing the two methods, one concludes that Bion’s is better for n = 5, 6, 7,
they are more or less equivalent for n = 8, and then for n ≥ 9 Tempier’s is much more
accurate.

Among the exact constructions are the Bion hexagon and the Tempier dodecagon.
Both polygons can be illustrated by Figure 5 with BF = BC/3 and FA = BC/6. This
also implies BF = 2FA.

It is straightforward to prove this exactness using more elementary methods: Take
a parallel to BV through point A and let G be its intersection with VF . Using the
similarity of triangles BFV and GFA, one can show ∠BAG = π/3 (which implies
∠GAF = π/6), so that G is on the circle. This is what we need, as π/3 and π/6 are
the center angles for the hexagon and dodecagon, respectively.
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Figure 5. One figure for the Bion hexagon and the Tempier dodecagon.

The rectification of the quadrant
We now turn to the question about the point V . Why was this point chosen for these
constructions?

We noticed that, in [2], there is a construction for rectification of arcs smaller than
π/2 that uses a point very close toV . The point R in Figure 6 is marked on the vertical
line at distance 3/4 of the radius from D (we chose R for rational). This construction
is used to produce segment A′B with length approximately equal to that of the arc ÂB.
Without delving too much on the accuracy of this construction, we calculate the length
when the arc is a full quadrant such as Q̂B.

Figure 6. Rectification of arcs.
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By simple proportions (and still using a unit circle), we have Q′B/RB = QC/RC
which leads to Q′B = (11/4)/(7/4) = (22/7)/2. That is, the position of R gives a
rectification of the quadrant equivalent to the famous approximation of π as 22/7 ≈
3.142857.

UsingV from the constructions to rectify the quadrants leads to the implicit approx-
imation of π as 2 + 2

√
3/3 ≈ 3.154701.

One can also work the other way around: What is the position of a point P on BD
such that the rectification of the full quadrant is exact? Working out the proportion
once more, we find the distance from P to C would be 2/(π − 2) ≈ 1.751938. This is
a nonconstructible length, since it is transcendental; R is a very good approximation.
Table 1 summarizes these computations. If we use this point P in the Tempier process
and calculate the corresponding relative error, the limit is 0 as n → ∞.

Table 1. Comparing points for the constructions.

point distance to C 2 (rectified quadrant)

V
√
3 ≈ 1.732051 2 + 2

√
3/3 ≈ 3.154701

R 7/4 = 1.75 22/7 ≈ 3.142857

P 2/(π − 2) ≈ 1.751938 π ≈ 3.141593

We conclude that points V , R, and P are all reasonable base points for rectifying
arcs. In particular, it probably explains why V was chosen: Of the two constructible
lengths, it is probably the easier to mark.

So, when we look for the value of the angle in the Tempier or Bion methods, we
can look at the length of the corresponding (approximately) rectified segment on the
tangent line. Now, if you divide the diameter into n equal parts, this corresponds to a
division of the full rectified half-circle into n equal parts as well. Each part will then
have length π/n, so one has to take two of these in order to get a length of 2π/n, as
we wish. And this explains why we must take two segments on the diameter in order
to define the angle 2π/n.

In practice, approximations are acceptable in certain circumstances; some errors are
so small that the very thickness of the trace renders them negligible. Our computations
confirm that the Bion and Tempier methods are good options for a regular n-gon, being
acceptable even in the cases when an exact construction is known.

This study arose in relation to the first author’s ongoing work on Almada Negreiros’s
geometric drawings, mentioned at the beginning. Many of the artist’s works include
approximate geometrical constructions for the division of the circle in equal parts (see
modernismo.pt for more of his work). See [3] for a general presentation of the mathe-
matics in Almada’s work. The book [4] includes 29 of Almada’s drawings made from
a mathematical viewpoint along with analysis of then. Expanding on these studies, the
website gulbenkian.pt/almada-comecar/en gives mathematical and historical explana-
tions of the geometrical constructions in Almada’s monumental mural Começar.

Acknowledgment. Figure 4 was made in Mathematica, the rest were created with Geogebra.
The first author was partially supported by FCT/Portugal through project UID/MAT/04721/
2013, the second by FCT/Portugal through project UID/MAT/04459/2013.

Summary. Some but not all regular polygons can be constructed using only straightedge and
compass; the Gauss–Wantzel theorem states precisely which. The known constructions differ
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from one polygon to the other. There are, however, general processes for determining the side
of an arbitrary n-gon approximately, but sometimes with great precision. We describe two such
methods, named for Bion and Tempier, analyze their errors, and explain why these approximate
constructions work. We also highlight some related geometric artwork of Almada Negreiros.
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