
On the Action of

the Symplectic Group

on the

Siegel Upper Half Plane

by

Pedro Jorge Freitas
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Summary

The symplectic group Sp2nR is one possible generalization of the group SL2R = Sp2R
to higher dimensions. This generalization goes further, since, like the latter, they
act on a symmetric homogeneous space, the Siegel upper half plane, and this action
has quite a few similarities with the action of SL2R on the hyperbolic plane. A
study of this action was done by Carl Ludwig Siegel in 1943, and published in his
book “Symplectic Geometry”, where not only the analytical and geometrical aspects
of the action are considered, but also some applications to number theory. In this
work, we present a study of this action, inspired by modern studies of Fuchsian and
Kleinian groups as presented for example in Beardon’s “The Geometry of Discrete
Groups” [Bea].

Since the Fuchsian groups, that is, the discrete subgroups of SL2R, serve as a
motivation for our studies, we review some relevant well known results about these
groups in Chapter 1.

A basic study of the group and the half plane is done in Chapter 2. In this chapter
we review some algebraic properties of the symplectic group, presenting new proofs
to a few results, such as the fact that any symplectic matrix has determinant 1.
We also present a direct proof for the Cartan decomposition in Sp2nR, which makes
use of the linear algebraic structure induced in C2n by the symplectic group. We
also define hyperbolic transformations and deduce a block diagonal normal form for
these matrices. We also present a few more models for the space: the Siegel disk (a
model analogous to the unit disk for SL2R), two projective models and a Lie group
quotient model. Using the latter we deduce a new condition for bi-transitivity of
the action of Sp2nR, different form the Siegel condition.

We then compactify the Siegel upper half plane, so that we can extend the ac-
tion continuously to a compact domain. This is the purpose of Chapter 3. There
we deal with possible compactifications of the space. The first one (and the one
that will be used if the following chapters) will be the bounded domain compactifi-
cation, which consists on simply closing the Siegel disk (a bounded domain) in its
environment space CN under the usual topology. This compactification will yield a
stratified boundary in which each stratum is an orbit for the action of the group,
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and in which the stratum of smallest dimension is the Shilov boundary of the space.
These results are known to the experts and in fact serve as the first step in the
Satake compactification for the action of the modular group. We then discuss three
other compactifications: the visual boundary, the Furstenberg boundary and the
compactification induced by the Busemann functions. These will be defined using
the Lie group quotient model, and the relations between the Lie algebra and the
tangent space to the model at a given coset. We will deduce a connection between
the compactification by Busemann functions and the Shilov boundary: our new
result shows that for a special non-Riemannian choice of the metric on the Siegel
upper half plane, the compactification using the corresponding Busemann functions
yields the Shilov boundary.

In Chapter 4 we will do a full normal form and fixed point study for the 4 × 4
symplectic group. Since the 2×2 symplectic group is equal SL2R, as we said, this is
the first non studied case. In order to find the normal forms we start by observing,
using the Schauder fixed point theorem, that any symplectic transformation must
have a fixed point in the closure of the Siegel disk. Then by making assumptions
on the location of this fixed point, we can immediately simplify the matrix (by
conjugation). Then we work a bit on the simplified forms and then solve the fixed
point equation M(Z) = Z for each case, obtaining a full classification of number
and location of fixed points. After this we summarize some results that hold for
transformations of a special form: given two matrices X,Y ∈ SL2R, it is possible
to define a matrix X � Y ∈ Sp4R; we present then some general results for the
fixed points of transformations of this type. We also obtain quite a few symplectic
transformations that are not conjugate to X � Y in Sp4R.

In Chapter 5 we present some results about the dynamics of the action of Sp2nR,
and point out the similarities and differences with the action of SL2R on the upper
half plane. The main concern in this chapter is to define the limit set for a discrete
group Γ. Turns out that it is impossible to do this as it is done in the SL2R case,
because not all orbits accumulate at the same points. We have to restrict ourselves
to the limit points that lie on the Shilov boundary in order to be able to define a limit
set. Using this definition we show, as in the case of the Fuchsian groups, that the
limit set of Γ lying in the Shilov boundary is independent of the orbit ΓZ. We also
study the hyperbolic transformations (as defined in Chapter 2), which very much
resemble the hyperbolic transformations in SL2R. Namely, if <A> is the discrete
group generated by a hyperbolic element A, then the limit set of <A>, independent
of the orbit <A>Z, has only two points located on the Shilov boundary. However,
not all their fixed points of A appear as limit points (that is, accumulation points
for the orbits <A>Z), as was the case for SL2R. This leads us to the definition
of three limit sets. We finish the chapter by deducing a complete ordering of these
sets and presenting and extra property for one of these limit sets in case Γ is Zariski
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dense. More precisely, for such a Γ, the set of accumulation points of any ΓZ on
the Shilov boundary is the closure of the set containing the two distinguished fixed
points of every hyperbolic element of Γ, described as above.

There are a few new results in Chapters 2 and 3, as we mentioned above, namely,
the normal form for hyperbolic transformations and the condition for bi-transitivity
in Chapter 2 and the connection between the Busemann functions and the Shilov
boundary in Chapter 3. However, most of the new results (to our knowledge) are in
Chapters 4 and 5. Whenever we present a known result, we will refer to the place
where this result can be found.

In this work we followed many suggestions of the author’s advisor, Shmuel Fried-
land, these were an invaluable contribution to this thesis. All the imprecisions and
lacks of accuracy in this study are of course of the responsibility of the author.

This work has been supported by a scholarship from FCT (Fundação Para a
Ciência e Tecnologia). The author is a member of the Departamento de Matemática,
Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, and of the Centro
de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003, Lisboa.

This work has been presented and accepted towards the granting of a PhD.
degree.
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Chapter 1

Introduction

1 Notation and basic results

In this work we’ll use the following notation:

• For a matrix A, with real or complex entries, we’ll denote by AT the transpose
of A, by A the complex conjugate of A, byA∗ the transpose conjugate of A. For
an invertible A, we’ll denote by A−1 the inverse of A and by A−T the transpose
of the inverse of A, which coincides with the inverse of its transpose.

• In or simply I – the n× n identity matrix,

• i – the complex unit, i2 = −1,

• Mm,nF – the space of all m× n matrices with entries in the field F ,

• MnF – the space Mn,nF

• SymnF – the space of all symmetric n× n matrices with entries in F ,

• DiagnF – the space of all diagonal matrices with entries in F ,

• GLnF – the group of all invertible n× n matrices with entries in F ,

• SLnF – the group of all matrices in GLnF with determinant 1,

• On – the real n× n orthogonal group,

• Un – the complex n× n unitary group,

• Sn – the n-dimensional sphere.
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• For x1, . . . , xn ∈ F we denote by diag(x1, . . . , xk) the diagonal matrix in MnF
with the elements x1, . . . , xk on the diagonal. We use a similar notation for
block diagonal matrices.

• For a matrix A ∈ Mm,nF , and k ≤ m,n, we represent by A[i1, . . . , ik|j1 . . . , jk]
the minor of the matrix A obtained as the determinant of the submatrix with
lines i1, . . . , ik and columns j1 . . . , jk taken from A.

• For a matrix A ∈ Mm,nF , and k ≤ m,n, we denote by ∧kA the k-th compound
matrix of A, a matrix with

(
m
k

)
lines and

(
n
k

)
columns, defined as ∧kA(α, β) =

A[α|β], with α, β being lists of k lines and columns, α = (i1, . . . , ik), β =
(j1, . . . , jk), in lexicographic order. The following properties hold: ∧n(AT) =
∧n(A)T, ∧n(A) = ∧n(A), ∧n(AB) = ∧n(A) ∧n (B), and if A is invertible,
∧n(A−1) = ∧n(A)−1.

• For a matrix A, real symmetric or complex hermitian, we write A > 0 if A is
positive definite, and A ≥ 0 if A is positive semidefinite.

• For a square matrix A, we denote the eigenvalues of A as λj(A), counted with
multiplicities, and consider an order such that

|λ1(A)| ≥ . . . ≥ |λn(A)|, j = 1, . . . , n.

We denote the singular values of A as

σj(A) :=
√
λj(AA∗), j = 1, . . . , n.

For A ∈ GLnF , we have σj(A)−1 = σn−j+1(A−1).

• For a square matrix A, we’ll denote by ||A|| the norm of A as an operator on
the `2 space Fn, F = R or C. This means

||A|| := max
||x||2=1

||Ax||2,

where, for x = (x1, . . . , xn), ||x||p = (xp1 + . . . + xpn)
1
p . It is simple to see that

||A|| = σ1(A).

• Let A be a normal matrix, AA∗ = A∗A. The because A is unitarily diagonal-
izable, A has a square root. If A is positive semidefinite, then there is a unique
positive semidefinite square root of A, and if A is real, this unique square root
will be real.
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The notation is inspired in the one used in [FH2]. The next result is well known,
and proofs can be found in [HJ].

Proposition 1.1.1 (Singular value and polar decompositions) Let A be
a matrix in MnR. Then there exist matrices Q1, Q2 ∈ On such that

A = Q1Σ(A)Q2

where Σ(A) = diag(σ1(A), . . . , σn(A)) is a well defined matrix. This is called the
singular value decomposition.

It comes as a consequence that for A ∈ MnR, there exist matrices P ∈ SymnR,
positive definite, and Q ∈ On such that A = PQ. The matrix P is always uniquely
defined and the matrix Q is uniquely defined if A is invertible. This is called the
polar decomposition.

If A ∈ SymnR, then the singular values are the absolute values of the eigenvalues
of A, and if A is positive definite, they are the same. If A ∈ MnC, we have a similar
result, with Q1, Q2 ∈ Un.

Now, we’ll present some general considerations about metrics on matrix spaces
which will be useful. As they are not specific to the study of the Symplectic group,
we present them in this more general setting.

Proposition 1.1.2 Let p ≥ 1 and A,B ∈ GLnR. Let

dp(A,B) =

 n∑
j=1

| log σj(A−1B)|p
 1

p

and as a limit,

d∞(A,B) = max{| log σ1(A−1B)|, | log σ1(B−1A)|}.

Then for each 1 ≤ p ≤ ∞, dp is a metric on the homogeneous space X = GLnR/On.
Moreover, GLnR acts (from the left) on X as group of isometries for all these
metrics.

Proof. We have

σj(M) = σj(MQ) = σj(QM), M ∈ MnR, Q ∈ On,

which can be easily seen using the singular value decomposition. Thus, for each p,
dp(·, ·) is a well defined non-negative continuous function on the space X ×X. To
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see that A and B belong to the same left coset of On if and only if dp(A,B) = 0,
take two points such that dp(A,B) = 0. This means (even in the case p =∞) that
| log σj(A−1B)| = 0 for all j. So σj(A−1B) = 1 for all j, and by the singular value
decomposition, this means A−1B ∈ On and so A and B represent the same coset.

We have dp(A,B) = dp(B,A) since σj(A−1B) = σn−j+1(B−1A)−1, and as you
apply the absolute values of the logarithms and add them up, the sum will be the
same. For p = ∞ the symmetry is obvious. The only thing left to prove is the
triangle inequality. Take A,B,C ∈ SLnR. Since σ1(M) = ||M ||, M ∈ MnR we get

σ1(MN) ≤ σ1(M)σ1(N), M,N ∈ MnR.

Apply the above inequality to the k-th compound matrix ∧k(MN) to deduce

k∏
j=1

σj(MN) ≤
k∏
j=1

σj(M)
k∏
j=1

σj(N), k = 1, ..., n.

Because the absolute value of the determinant is the product of all singular values,
we deduce that for k = n equality holds in the above inequality. As A−1C =
(A−1B)(B−1C) from the above inequalities we obtain, for k = 1, ..., n,

k∑
j=1

log σj(A−1C) ≤
k∑
j=1

log σj(A−1B) +
k∑
j=1

log σj(B−1C).

For k = n the above inequality becomes an equality. As f(t) = |t|p is a convex
function on R for 1 ≤ p, the majorization principle in [HLP] yields that for p ≥ 1,

n∑
j=1

| log σj(A−1C)|p ≤
n∑
j=1

| log σj(A−1B)|p +
n∑
j=1

| log σj(B−1C)|p.

Thus we can conclude that

dp(A,C)p ≤ dp(A,B)p + dp(B,C)p.

Now, consider the `p norm in R2:

dp(A,C) ≤ (dp(A,B)p + dp(B,C)p)
1
p

= ||(dp(A,B), dp(B,C))||p
≤ ||(dp(A,B), 0)||p + ||(0, dp(B,C))||p
= dp(A,B) + dp(B,C),

which was the desired inequality. Now use the continuity of p at ∞ to obtain the
triangle inequality for p ∈ [1,∞].

We have similar resultes for the action of GLnC on GLnC/Un. �
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2 The hyperbolic plane

In this work we are going to study the action of the symplectic group on the Siegel
upper half plane. An early study of this action was done by C. L. Siegel in his 1943
book “Symplectic Geometry” [Sie], and we use some of the basic arguments in his
study, hence the name of the model.

Because this action is a generalization of the action of SL2R over the hyper-
bolic half-plane, also called the Lobachevski-Bolyai plane, we will begin with a brief
overview of this action and of some things pertaining to it. Most of the proofs of
basic facts stated here will be given later in the more general setting of the Siegel
plane. A thorough study of this action is done in [Bea]. As it is not our intention to
establish this theory, we will not present proofs for the results stated; instead, we’ll
refer the interested reader to this book.

Given a matrix M ∈ SL2R, and a point z ∈ H2 = {z ∈ C : Im(z) > 0}, we define
its action as a Möbius transformation:

M =
(
a b
c d

)
, M(z) :=

az + b

cz + d
.

These transformations indeed map the complex upper half-plane to itself, this
action is transitive (hence we can call this a homogeneous space), and it is straight-
forward to prove that we do have all the properties pertaining to a group action. The
matrices M and −M have the same action, so we can identify them, and consider
that PSL2R = SL2R/<−I2> acts on H. This space has also a disk model, namely
D = {z ∈ C : |z| < 1} and there are two complex Möbius maps connecting these
models bijectively:

H → D
z 7→ z−i

z+i

D → H.
z 7→ i1+z

1−z

Using these maps one can define a conjugate action of SL2R over D.
It can be shown that the maps defined by matrices in SL2R are the analytic

isometries for the hyperbolic metric that can be defined on these models. One way
of defining it is through the element of distance.

On H, ds2 =
dx2 + dy2

y2
, and on D, ds2 =

4dz2

(1− |z|2)2
.

The next important step is to compactify the model, so that each transformation
will have a fixed point. To do so, the easiest way is to consider the compactification
of D in C, Cl(D) = {z ∈ C : |z| ≤ 1}, and the corresponding compactification of H,
Cl(H) = {z ∈ C : Im(z) ≥ 0} ∪ {∞}. The action is easily extended to the closed
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models, by continuity (using the expected computation rules when considering ∞).
We then get that the action is also transitive on the boundary ∂H (which is S1),
but it is impossible to extend the metric to this boundary, so we can no longer talk
about isometries. We now consider a normal form classification of the elements of
SL2R that will be relevant to our study. It is easy to see that any matrix in SL2R
not equal to ±I2 is conjugate (in GL2R) to one and only one of the following:

gλ =
(
λ 0
0 λ−1

)
if it has a real eigenvalue λ 6= ±1

±g1 = ±
(

1 1
0 1

)
if it has ± 1 as an eigenvalue, or

gα =
(

a b
−b a

)
if α = a+ bi is an eigenvalue, a2 + b2 = 1, b 6= 0.

These transformations are called hyperbolic, parabolic and elliptic, depending on
whether they’re conjugate to a matrix of the first, second or third type, respectively.
The corresponding actions as Möbius transformations are

z 7→ λ2z, z 7→ z + 1 and z 7→ az + b

−bz + a
.

It is clear that the two first ones are a dilation and a translation, respectively. As to
the third one, if we look at its conjugate action on the circle z 7→ (a+bi)2z, a2+b2 =
1, we readily see it is a rotation.

Even though the conjugation may be in GL2R, the above forms still give us all
the right information about the number and dynamical nature of the fixed points
of the transformations. This is because for elliptic and hyperbolic elements, the
conjugation can be had in SL2R and a parabolic element will be similar to either g1

or g−1
1 , up to sign.
A hyperbolic map will have two fixed points on ∂H (0 and ∞ for the normal

form above), a parabolic one will have one, also on ∂H (∞ for the normal form),
and an elliptic one will have a fixed point inside H (the point i for the normal form),
since the number of fixed points is preserved under conjugation.

Now we consider the iterated action of each one of these maps. For this we
consider the group generated by each one of the maps above. Let z ∈ H be any
point. Its orbit under the action of <gλ> is {λ2nz : n ∈ Z}, which accumulates at 0
and∞, infinity being an attracting point and 0 a repelling one if |λ| > 1, otherwise,
the dynamical behaviors are interchanged. As for <g1>, the only accumulation
point for the orbit will be ∞. In each of these cases, we note that the accumulation
points are exactly the fixed points of the transformation. Finally, in the third case,
if the argument of α is a rational multiple of π, the orbit is finite, otherwise it is
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dense in the (hyperbolic) circle centered at i and passing through z, so all points in
this circle are accumulation points. We see that this is a very different case from the
ones above, since the fixed point i is not an accumulation point and we may have
an infinite number of accumulation points.

As we now generalize these ideas, we’ll now consider discrete groups.

Definition 1.2.1 A discrete subgroup of GLnC is a subgroup that is a discrete
set for topology induced by the Euclidean norm in MnC.

In the rest of this section we’ll always consider Γ to be a discrete subgroup
of SL2R. In the examples above, <gλ> and <g1> were discrete subgroups, and
<gα>, α ∈ C will be discrete if and only if it is finite. Discrete subgroups of SL2R
have important properties, for instance, if you factor H by the action of a discrete
subgroup Γ, that is, if you identify two points p1, p2 ∈ H if they belong to the same
Γ-orbit, then you get a Riemann surface. Moreover, all Riemann surfaces can be
obtained this way.

Definition 1.2.2 The action of a group G on a topological space X is said to
be properly discontinuous if for any compact set K ⊂ X

K ∩ g(K) = ∅,

except for a finite number of elements g ∈ G.

Proposition 1.2.3 A discrete group of SL2R has a properly discontinuous ac-
tion on H.

Lemma 1.2.4 Let z1, z2 ∈ H. Then if Γ is a discrete group, the orbits Γz1 and
Γz2 have the same accumulation points.

The above lemma allows us to define the limit set for a discrete group.

Definition 1.2.5 Let Γ be a discrete subgroup of SL2R. Then the limit set Λ(Γ)
is defined as the set of accumulation points of any orbit Γz, with z ∈ H. If Λ(Γ) is
finite we call Γ elementary, and if it is infinite, we call Γ non-elementary.

Here are some important properties of the limit set:

Proposition 1.2.6 Let Γ be an infinite discrete subgroup of SL2R and Λ(Γ) its
limit set. Then the following hold:

• We have Γ ⊂ ∂H and its cardinality can only be one or two, if it is finite. If
it is infinite, it is a perfect set.
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• The set Λ(Γ) is closed and Γ-invariant. Moreover, if Γ is non-elementary, then
Λ(Γ) is the smallest closed Γ-invariant set in Cl(H), that is, if X ∈ Cl(H) and
X is closed and Γ-invariant, then Λ(Γ) ⊂ X.

• If Γ is non-elementary, then Λ is the closure of the set of the fixed points of
the hyperbolic maps in Γ. Moreover, Ω := Cl(H) \ Λ(Γ) is the largest set in
Cl(H) where the action of SL2R is properly discontinuous.

In the next chapters we present a generalization of these results in the Siegel
upper half plane.
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Chapter 2

The Symplectic Group and the
Siegel Upper Half Plane

1 Basic definitions and results

Here we define the group and the action that is going to be the object of our study
in this work.

Definition 2.1.1 Let F be either the real or the complex field. The Symplectic
Group is the group of all matrices M ∈ GL2nF satisfying

MTJM = J, with J =
(

0 In
−In 0

)
.

We denote it by Sp2nF .

If we decompose M ∈ M2nF in four n×n blocks according to J , and work a bit
on the matrix equation, we get that

M =
(
A B
C D

)
is symplectic if and only if

ATC and BTD are symmetric and ATD − CTB = In. (2.1)

We can readily see that a symplectic matrix has have determinant ±1, by taking
the determinant on both sides of the defining equation—we’ll see later that the
determinant has to be 1. Moreover, MT = JM−1J−1, and since M is similar to
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MT, M has to be similar to its inverse. Also, if M is symplectic, then MT is
symplectic too:

MJMT = MJ(JM−1J−1) = −MM−1(−J) = J, since J−1 = −J.

We have also the following formula for the inverse of M :(
A B
C D

)−1

=
(

DT −BT

−CT AT

)
.

Finally, it is clear from equations (2.1) that Sp2F = SL2F .

We now present the generalization of the upper half plane.

Definition 2.1.2 The Siegel upper half plane is the set of all complex sym-
metric n× n matrices with positive definite imaginary part. We denote it by SHn:

SHn = {X + iY ∈ SymnC, X, Y ∈ SymnR : Y > 0}.

We now present the action. For

M =
(
A B
C D

)
∈ Sp2nR and Z ∈ SHn, M(Z) := (AZ +B)(CZ +D)−1.

In order to see that this is indeed an action, we have to verify first that the
matrix CZ +D is invertible, and then that the product is in SHn. We’ll follow the
proofs in [Sie]. For Z to be a point in SHn, it has to be symmetric, and to have a
positive definite imaginary part. These two statements can be written, respectively,
as follows: (

ZT I
)
J

(
Z
I

)
= 0 and − 1

2i
(
Z∗ I

)
J

(
Z
I

)
> 0,

since the first equation is just ZT − Z = 0 and the second 1/2i (Z − Z∗) > 0.
Now we set E := AZ +B and F := CZ +D, or equivalently

M

(
Z
I

)
=
(
E
F

)
.

We then have (
ET FT

)
J

(
E
F

)
=

(
ZT I

)
MTJM

(
Z
I

)
=

(
ZT I

)
J

(
Z
I

)
= 0
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and

− 1
2i
(
E∗ F ∗

)
J

(
E
F

)
= − 1

2i
(
Z∗ I

)
MTJM

(
Z
I

)
= − 1

2i
(
Z∗ I

)
J

(
Z
I

)
> 0.

If we now develop the left hand side of both of the equations above, we get

ETF = FTE and − 1
2i

(E∗F − F ∗E) > 0.

Now, to see that F is invertible, suppose that v is a solution to Fv = 0. Then we
have v∗F ∗ = 0 and v∗(E∗F − F ∗E)v = 0, so v = 0, and hence F is invertible, and
we can write M(Z) = EF−1. From ETF = FTE we get that EF−1 is symmetric
and from the last equality, we get

− 1
2i
F ∗
(
(F−1)∗E∗ − EF−1

)
F > 0,

1
2i

(EF−1 − (EF−1)∗) > 0

so Im(EF−1) > 0. �

We will call these maps generalized Möbius transformations. Here, like in the
2-dimensional upper half plane, the matrices M and −M have the same action.
This action does indeed generalize the action of SL2R over H, since H = SH1, and
Sp2R = SL2R as we have seen. It is possible to get a closer connection between the
SL2R action and the Sp2nR action. First, it is easy to see that we can define a 1-1
map from Hn to SHn as follows:

Hn → SHn

(z1, . . . , zn) 7→ diag(z1, . . . , zn)

Since all the imaginary parts of the zj ’s are positive, diag(z1, . . . , zn) ∈ SHn. We
have a corresponding map for the groups:

Φ : (SL2R)n → Sp2nR
(M1, . . . ,Mn) 7→ T (M1 ⊕ . . .⊕Mn)T−1

where T is a permutation matrix. To define T , let’s denote by Ej , j = 1, . . . , n the
2n× 1 matrix with zeros in all entries except in entry (j, 1) where it has a 1, and by
Fk the 2n× 1 matrix also with zeros in all entries except in entry (n + k, 1) where
it has a 1. Then we can define T column by column:

T =
(
E1 F1 E2 F2 . . . En Fn

)
.

11



We will denote the image of (M1, . . . ,Mn) under this map by M1 � . . .�Mn. If

Mj =
(
aj bj
cj dj

)
, j = 1, . . . , n, then

M1 � . . .�Mn =



a1 b1
. . . . . .

an bn
c1 d1

. . . . . .
cn dn


.

It is straightforward to see that the action of this matrix on the image of Hn can be
done componentwise:

M1 � . . .�Mn(diag(z1, . . . , zn)) = diag(M1(z1), . . . ,Mn(zn)).

Moreover, since Φ is injective, and it is a homomorphism, Φ is a faithful repre-
sentation of (SL2R)n.

Before we start our study of the group, we will draw a parallel with the action
on the two-dimensional model:

Proposition 2.1.3 The action of the symplectic group on the Siegel upper half
plane is transitive.

Proof. It is enough to prove that it is possible to find a symplectic map that
sends iI to any X + iY ∈ SHn, Y > 0. Take then the composition of the symplectic
maps Z 7→

√
Y Z
√
Y and Z 7→ Z +X, associated with the symplectic matrices( √

Y 0
0
√
Y −1

)
and

(
I X
0 I

)
,

respectively. That transformation maps iI to X + iY . �

As another parallel, we refer that every holomorphic bijective map from SHn

onto itself can be represented as a symplectic map (see [Sie]). We’ll present a result
about bi-transitivity in the last section of this chapter.
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2 Symplectic linear algebra

The matrix J used to define the symplectic group can be used to define a skew-
symmetric form in M2n,1R: for vectors u, v ∈ M2n,1R, define the form as

(u, v) := uTJv.

We will call it the symplectic form. With this definition, we can say that a matrix
M is symplectic if and only if (Mu,Mv) = (u, v) for all u, v ∈ M2n,1R.

Recall now the matrices Ej and Fk defined above. It is clear that (Ej , Fk : j, k =
1, . . . , n) is a basis for M2n,1R. According to the following definition, this will be a
symplectic basis.

Definition 2.2.1 A symplectic basis of M2n,1R is a basis such that the matrix
of the symplectic form with respect to this basis is J . In other words, it it a basis
(e1, . . . , en, f1, . . . , fn) such that

(ej , fk) = −(fk, ej) = δjk, (ej , ek) = (fj , fk) = 0 for all j, k = 1, . . . , n.

With this definition we can easily see that a matrix is symplectic if and only if
it is a change of basis matrix from one symplectic basis to another one.

Definition 2.2.2 A subspace of M2n,1R is called Lagrangean if it has dimension
n and for all u, v in the subspace, (u, v) = 0.

As examples of Lagrangean spaces we have <Ej : j = 1, . . . , n> and <Fk : k =
1, . . . , n>.

Now we proceed to find a normal form for symplectic matrices, a form that
generalizes the concept of hyperbolic transformation in SL2R, as defined in page
6. We start with a simple but important result. As this is probably the first basic
result with a non-trivial proof, we present here two possible proofs.

Proposition 2.2.3 A symplectic matrix M has determinant 1.

Proof. We’ll use here a quick proof (if not a straightforward one) taken from
[Sie]. Write, as before,

M =
(
A B
C D

)
and

(
E
F

)
= M

(
iIn
In

)
=
(
Ai+B
Ci+D

)
.

As we have seen, det(Ci + D) 6= 0, since iIn ∈ SHn. It is also easy to ascertain,
from the equations (2.1) that FTA − ETC = In and FTB − ETD = −iIn. Now it
is easy to check that(

FT −ET

0 I

)
M

(
In iIn
C In

)
=
(
In 0
C F

)
.
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By computing the determinant on both sides of the above inequality and recalling
that det(F ) 6= 0 we have the result. �

Sketches to other proofs can be found in [FH2]. Notice that a real orthogo-
nal matrix can have determinant 1 or −1; a symplectic matrix, however, can only
have determinant 1, even though the defining equation for both groups is formally
similar—the first one involves a positive definite symmetric form, the second one a
non-degenerate skew-symmetric form.

Now let M be a symplectic matrix. According to the last proposition, and to
the already known result that a symplectic matrix has to be similar to its inverse,
we can list the eigenvalues of M , with multiplicities, in the following way:

(λ1, . . . , λn, λ
−1
n , . . . , λ−1

1 ), (2.2)

and we consider the above list to be ordered decreasingly according to the absolute
values of the eigenvalues as follows:

|λ1| ≥ . . . ≥ |λn| ≥ 1 ≥ |λ−1
n | ≥ . . . ≥ |λ−1

1 |.

Definition 2.2.4 Let M ∈ Sp2nR. We will call the matrix M (and the corre-
sponding induced transformation) hyperbolic if M has no eigenvalue on the complex
unit circle, that is, if |λj | 6= 1 for all j = 1, . . . , n,

We will now present a normal form for hyperbolic matrices M . We know from
linear algebra that we can conjugate M by a matrix Q ∈ GL2nR in order to bring it
to block diagonal form diag(A,D), where A comprises all the blocks pertaining to
the first n eigenvalues in the list, and D the ones pertaining to the last n. Consider
this matrix now as the matrix of a linear map with respect to some basis B, Q being
the change of basis matrix. Let B = (e1, . . . , en, f1, . . . , fn).

Proposition 2.2.5 The spaces <ej : j = 1, . . . , n> and <fk : k = 1, . . . , n>
are Lagrangean.

Proof. They clearly have dimension n. Now we’ll check that the restriction of
the form to each of the spaces is the zero form. Let V be the first space, B1 = (ej :
j = 1, . . . , n) a basis for it—the proof for the second one would be similar.

Consider this restriction. Then put the matrix of M |V (which is A for the basis
B1) in Jordan normal form, considering Jordan blocks with complex eigenvalues if
necessary. This means we consider that M is acting on the complex span of B1. Now
we prove that with respect to the new basis C (with complex vectors if necessary),
we have vTJu = O for all v, u ∈ C2n. This will prove that the bilinear form restricted
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to V is zero since this is the real span of B1, contained in the complex span. We
have, since M is symplectic, (Mu,Mv) = (u, v). Now we consider three cases.

1. Suppose the vectors u and v are eigenvectors for two eigenvalues a and b.
Notice that, because of the definition of V , neither a, b or ab are equal to 1. Then

(u, v) = (Mu,Mv) = ab(u, v), so (1− ab)(u, v) = 0,

and since ab is not 1 because a, b > 1, we can conclude that (u, v) = 0; in particular,
this is true even if a = b.

2. Suppose now that u is and eigenvector and v a generalized eigenvector (pos-
sibly associated with the same eigenvalue). In this case, if we order the generalized
eigenvectors such that Mv0 = bv0, Mvj = vj−1+bvj , then we can prove by induction
that (u, vj) = 0 in a similar way. We know (u, v0) = 0 from the previous case. Now
assume that for j < n, (u, vj) = 0. Then

(u, vn) = (Mu,Mvn) = (au, vn−1 + bvn)
= a(u, vn−1) + ab(u, vn)
= ab(u, vn)

since by induction hypothesis (u, vn−1) = 0. Again, since ab 6= 1, we can conclude
that (u, vn) = 0, and again, this is true even if a = b.

3. Both u and v are generalized eigenvectors. This is done again by induction,
using the same type of arguments. �

Now, we can start to transform the basis B into a symplectic basis, by altering
just the last n vectors. This is equivalent to saying that it is possible to find a sym-
plectic matrix Q′, which will be the change of basis matrix from the canonical basis
to the new symplectic basis, such that the conjugate of M by Q′ is block diagonal
and symplectic. To do this, consider the n linear forms defined by (ej , ·), where the
dot indicates the place for the argument. Now, if you consider the restriction of
these forms to the space U := <fk : k = 1, . . . , n>, they’re still a linearly indepen-
dent set of vectors (since its action on V is identically zero), and hence you can find
a basis of U dual to this system. These new vectors along with the original basis of
V will form a symplectic basis, and hence we proved the following result:

Proposition 2.2.6 Let M be a symplectic matrix with no eigenvalue with ab-
solute value 1. Then M is symplectically similar to a matrix of the form(

A 0
0 A−T

)
,

with A having all eigenvalues with absolute value greater than 1.
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Also, from the computations done in case 1. above, we can conclude the following
technical result:

Lemma 2.2.7 Let u and v be eigenvectors (possibly generalized) for a symplectic
matrix A, associated with two eigenvalues a and b with ab 6= 1. Then (u, v) = 0.

Another important result we can get using these methods is the singular value
decomposition in Sp2nR. This is a particular case of the general Cartan decomposi-
tion for semisimple connected Lie groups, as described, for instance, in [Hel, p. 402].
We present here a direct proof in the symplectic case.

Let’s denote by SpO2nR the group of symplectic orthogonal matrices.

Proposition 2.2.8 Let M ∈ Sp2nR. Then there exist matrices Q,R ∈ SpO2nR
such that M = QΣs(M)R, where

Σs(M) = diag(σ1(M), . . . , σn(M), σ2n(M), σ2n−1(M), . . . , σn+1(M)),

and since σj(M) = σ2n−j+1(M)−1, the diagonal matrix Σs(M) can be written as

Σs(M) = S ⊕ S−1, S = diag(σ1(M), . . . , σn(M)).

Proof. Using the usual singular value decomposition and conjugating Σ(M) by
a permutation matrix, we can have MMT = QΣ2

sQ
T with Q ∈ O2n, Σs = Σs(M).

Let’s prove we can have this decomposition with Q in SpO2nR. For this, we need
the columns of Q to be an symplectic orthonormal basis of R2n. All the diagonal
entries of Σ are positive, so the matrix N := MMT will only have an eigenvalue
with absolute value 1 if 1 is an eigenvalue. Notice that since MT is symplectic, N
is still symplectic.

We know that
R2n =

⊕
λ

Vλ

where λ runs over all the eigenvectors of N and Vλ are the corresponding eigenspaces.
Moreover, the eigenspaces are orthogonal to each other. From the lemma above, we
have that if λ 6= 1/µ then for v ∈ Vλ and u ∈ Vµ, (u, v) = 0. So, if we build a
symplectic orthonormal basis for each space Vµ⊕Vµ−1 , µ 6= 1, and for V1 we will be
done.

Thus, let λ 6= 1 be an eigenvalue, Vλ its eigenspace, and Vλ−1 the eigenspace
for λ−1, λ > 1 > λ−1. They must have the same dimension, as you can see from
equation (2.2). Now take an orthonormal basis for Vλ, say (e1, . . . , ed). Since λ2 6= 1,
by the previous lemma, (ej , ek) = 0. Now take fj := −Jej for j = 1, . . . , d. This
will be a symplectic orthonormal basis for Vλ ⊕ Vλ−1 . To see that the fj ’s are in
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Vλ−1 , notice that since N is symmetric and symplectic, NJN = J ⇔ NJ = JN−1,
so

Nfj = −NJej = −JN−1ej = −λ−1Jej = λ−1fj , j = 1, . . . , d.

All vectors fj have norm one, since ||Jv|| = ||v|| for any vector v. Now all we have
to do is check that (ej , fk) = δjk, for all j, k and that all vectors are orthogonal.
Using the facts that J2 = −I and JT = −J , we have, for all j, k = 1, . . . , d,

ej |fk = eT
j (−Jek) = 0, fj |fk = (eT

j J
T)(−Jek) = δjk,

(ej , fk) = eT
j J(−Jek) = δjk, (fj , fk) = (−eT

j J
T)J(−Jek) = 0.

This gives us a basis for Vλ ⊕ Vλ−1 . Once we do this for every space Vµ ⊕ Vµ−1 ,
µ 6= 1, we have an orthonormal symplectic basis for

⊕
λ 6=1 Vλ. If this is the whole

space, we’re done. If V1 6= (0), we still have to find an orthonormal symplectic basis
for this space, and we need a different algorithm.

Notice that this space has to have even dimension, say 2d. We’ll build a set of
orthonormal symplectic vectors e1, . . . , ed and then the other vectors of the desired
basis for the space will again be given by fj := −Jej , j = 1, . . . , d, since all the
considerations above about these vectors will still hold.

To build these first d vectors, start by taking a vector e1 of norm one in V1.
Then take e2 to be any vector of norm one in <e1>

⊥ ∩ ker(e1, ·). Both these
spaces have dimension 2d− 1, so they must intersect. Then take e3 in <e1, e2>

⊥ ∩
(ker(e1, ·) ∩ ker(e2, ·)), still of norm 1. The intersection is nonzero because both
spaces have dimension 2d− 2—if the dimension of the second one were 2d− 1, then
ker(e2, ·) = ker(e2, ·) and the vectors would be linearly dependent.

You then iterate the procedure, and as you reach d− 1, you need ed to be in

<e1, . . . , ed−1>
⊥
⋂d−1⋂

j=1

ker(ej , ·)

 .

The intersection is still nonzero, since the first space has dimension d + 1 and the
second will have dimension at least d+1. This is because each kernel has dimension
2d−1 (it’s a hyperplane), and as you go along and intersect the space

⋂l
j=1 ker(ej , ·)

with ker(el+1, ·), you can only bring the dimension down by one. It can be seen
that you actually do, since otherwise el+1 ∈ <e1, . . . , el>, so the said dimension is
actually d+ 1—to see this, just notice that ker(ej , ·) = <Jej>

⊥.
This gives us d orthonormal vectors such that (ej , ek) = 0, for all j, k = 1, . . . , d,

by construction. As we add the fj ’s as defined above, we have a symplectic orthonor-
mal basis for V1, and as we add it to the basis for

⊕
λ6=1 Vλ, we have a symplectic

orthonormal basis for the space.
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This proves that you can have MMT = QΣ2
sQ

T with Q ∈ SpO2nR. Now define
R := Σ−1

s QTM , and we’ll have

RRT = Σ−1
s QTMMTQΣ−1

s = I2 and QΣsR = QΣsΣ−1
s QTM = M,

which is what we wanted. �

An immediate result we can draw from this one is the polar decomposition for
symplectic matrices.

Proposition 2.2.9 Let M be a symplectic matrix. Then there exist a symplectic
positive definite symmetric matrix A and a symplectic orthogonal matrix Q, both
uniquely defined, such that M = AQ.

Given the singular value decomposition above,

M = Q1Σs(M)R = (Q1Σs(M)QT
1 )(Q1R),

and this gives a polar decomposition. The uniqueness of both matrices is true for
the polar decomposition in GL2nR, when M is invertible, so we have the result. �

In order to characterize the subgroup Sp2nR ∩ O2n, we can solve the equation
M−1 = MT using the formula we have for the inverse of a symplectic matrix, and
get that the orthogonal symplectic matrices are the matrices of the form(

A B
−B A

)
, (2.3)

with ATA+BTB = In and ATB symmetric.

3 Other models

The disk. We define SDn as the set

{Z ∈ SymnC : I − ZZ > 0}.

This is a generalization of the unit disk, since the condition I − ZZ > 0 can
be rewritten as ||Z|| < 1, this norm being the operator norm, regarding Z as an
operator on an `2 space. There are two complex symplectic maps connecting these
two models, namely

Φ1 : SHn → SDn

Z 7→ (Z − iIn)(Z + iIn)−1
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and
Φ−1

1 : SDn → SHn.
Z 7→ i(In + Z)(In − Z)−1

These are generalizations of the maps between H and D, presented in the Introduc-
tion. These maps can be expressed as complex symplectic transformations, associ-
ated with the matrices (

In −iIn
In iIn

)
and

(
iIn iIn
−In In

)
respectively. Thus, the action on this model is defined by conjugation, the acting
group is a conjugate of Sp2nR within Sp2nC: the group of all complex symplectic
matrices such that

M∗ diag(−In, In)M = diag(−In, In),

and the action is still by generalized Möbius transformations (see [Sie] and [Hel]).

The projective models. We start by considering the Grassmannian G2n,nC
which is the variety of all n-dimensional subspaces of C2n. Take all the complex
matrices of type 2n× n with full rank, that is, rank n, denoted M2n,n;nC and view
the columns of each of these matrices as a basis of a subspace of C2n. Now, consider
the action of GLnC by right multiplication on this set—this action preserves the
said subspace, by changing the basis. Then the Grassmannian is

G2n,n = M2n,n;nC/GLnC.

The model for our space will now be the set of all classes that admit as a represen-
tative a matrix of the type(

Z
In

)
with Z ∈ SymnC, Im(Z) > 0.

We’ll denote this set by SPHn. We use square brackets to represent the class of a
matrix. The group action is now left matrix multiplication by a representative of
the class:(

A B
C D

)[
Z
In

]
=
[
AZ +B
CZ +D

]
=
[

(AZ +B)(CZ +D)−1

In

]
.

It’s trivial to see that the action is well defined. The map connecting SHn to SPHn

is clearly
Φ2 : SHn → SPHn

Z 7→
[
Z
In

]
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which is a 1-1 map, as it is easy to check.

This model and the action are studied in a more general setting in [SZ]
It is also useful to consider another projective model related to this one. Take

the set ∧nSPHn := {∧nW : [W ] ∈ SPHn} with the identification v = u if and only
if there exists a nonzero complex number z such that v = uz. This is a subset of
the projective space CPN−1, N =

(
2n
n

)
. The action is defined as left multiplication

by ∧nM : for M ∈ Sp2nR and v ∈ ∧nSPHn, the action is [v] 7→ [∧nMv]. Notice that
if V and V ′ are two representatives of the same class in G2n,n, then V ′ = V U , for
some U ∈ GLnC. Then ∧nV ′ = (∧nV ). detU , since ∧nU = detU . This allows us to
write [∧nV ] = ∧n[V ], and we have a well defined map from SPHn to ∧nSPHn given
by [V ] 7→ [∧nV ].

We now see that this map gives a 1-1 correspondence between these last two
models. A class in SPHn is determined by the span of the columns of any of its
representatives, so if [V ] 6= [W ], W,V ∈ M2n,nC, then the column spans of V and
W are not the same, and in this case it is well known that <∧nV > 6= <∧nW>, and
[∧nV ] 6= [∧nW ] in CPN−1.

The Lie group quotient. Finally, we have as model a quotient of the Lie
group Sp2nR. To describe this model, we need to know the subgroup of Sp2nR that
stabilizes an element in SHn. Let’s consider the element iIn ∈ SHn. Then it is easy
to see by direct computation that the stabilizer subgroup is exactly the subgroup of
symplectic orthogonal matrices (see equation (2.3) above). As we have said, we’ll
denote this subgroup by SpO2nR or simply K. The model is now the set of all
equivalence classes Sp2nR/K and the action is again left matrix multiplication by
a representative, which is a well defined action. To find the class corresponding to
the element X + iY , we recall that this element must be the image of iI under the
map defined by the matrix

MX+iY :=
(
I X
0 I

)( √
Y 0
0
√
Y −1

)
=

( √
Y X

√
Y −1

0
√
Y −1

)
, (2.4)

as we have seen in the proof of the transitivity, proposition 2.1.3. As it is natural
to make the point iI ∈ SHn correspond to the class of the identity matrix, and we
expect the action to be left matrix multiplication, it is also natural to define the
map between SHn and Sp2nR/SpO2nR by

Φ3 : SHn → Sp2nR/K
Z 7→ MZK

To see that this is a 1-1 map, suppose that the image of X1 + iY1, is the same
equivalence class. Then MX+iYM

−1
X1+iY1

would be a symplectic orthogonal block
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upper triangular matrix, and, according to formula (2.3), it would have to be the
identity. Hence from block (2, 2) we get Y = Y1 and then from block (1, 2) we get
X = X1. This correspondence is also studied in [Fre]. From the symplectic polar
decomposition we can also see that there is a unique symplectic positive definite
symmetric representative in each class.

We’ll denote by sp2nR the Lie algebra of Sp2nR. This is the set of all matrices
M in M2nR that satisfy the equation MTJ + JM = 0. We have

M =
(
A B
C −AT

)
, with B and C symmetric. (2.5)

We see that the matrix M must have trace zero.

This concludes our presentation of models. As we will see, each one of them will
prove to be useful, depending on what kind of result we desire. For instance, if we
restrict any of the metrics dp defined in the Introduction to the space Sp2nR/K, we
get from those results that Sp2nR acts as a group of isometries for any one of those
metrics, since its action is the restriction of the action of GLnR (left multiplication).
This is very easily verified using the quotient space model. Notice also that given
a symplectic matrix A, AT is also symplectic, and hence AAT is symplectic. This
means that σj(A) = σn−j+1(A)−1 for 1 ≤ j ≤ n, and if A, B ∈ Sp2nR,

dp(A,B)p =
2n∑
j=1

| log σj(A−1B)|p = 2
n∑
j=1

log σj(A−1B)p. (2.6)

In [Sie], it is proved that symplectic transformations are isometries for the Siegel
metric in SHn. This metric corresponds to d2 in Sp2nR/K as we will see. It can be
defined on SHn using the distance element at the point Z = X + iY , as defined in
[Sie, p. 17]:

ds2 = tr(Y −1dZY −1dZ).

The distance induced in SHn by this Riemannian metric can be found in [Sie, p. 19],
and is

dS(Z1, Z2) =

(
n∑
k=1

log2 1 +
√
rk

1−√rk

) 1
2

, Z1, Z2 ∈ SHn,

where the rk’s are the eigenvalues of the cross-ratio

R(Z1, Z2) := (Z1 − Z2)(Z1 − Z2)−1(Z1 − Z2)(Z1 − Z2)−1.
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Siegel proves that there is a symplectic map that maps (A,B) to (C,D) if and
only if R(A,B) and R(C,D) have the same eigenvalues. Here we give a condition
in the Lie group model.

Proposition 2.3.1 Let (A,B), (C,D) be two pairs of points in Sp2nR/K. Then
there exists a symplectic transformation mapping A to C and B to D if and only if

σj(A−1B) = σj(C−1D) for all j,

or equivalently, if dp(A,B) = dp(C,D) for all 1 ≤ p ≤ ∞.

Proof. If TA ∈ CK,TB ∈ DK then for some Q1, Q2 ∈ K, A−1B = Q1C
−1DQ2

and the singular value equality holds.
Suppose now that we have this equality. Clearly, the pairs (A,B), (C,D) can

be mapped to the pairs (I2n, A
−1B), (I2n, C

−1D) respectively. Because we have a
singular value decomposition with orthogonal matrices taken from K (proposition
2.2.8), there exist Q1, Q2 ∈ K such that Q1A

−1BQ2 = C−1D. Hence the pairs
(Q1K,Q1A

−1BK) and (K,C−1DK) are the same. �

Corollary 2.3.2 The Siegel metric in SHn corresponds to d2 in Sp2nR/K.

Proof. First, take two points X, Y ∈ SHn. By the previous result it is possible
to simultaneously bring their corresponding cosets in Sp2nR/K to

I2nK and (D ⊕D−1)K, D = diag(
√
y1, . . . ,

√
yn),

where √yj = σj(M−1
X MY ) ≥ 1, 1 ≤ j ≤ n (see equation (2.4)). These points

correspond to iIn and idiag(y1, . . . , yn) = iD2 in SHn. It is now a matter of carrying
the computations to see that indeed

d2
S(iIn, iD2) = d2

2(I2n, D ⊕D−1) =
n∑
j=1

log2 yj .

This proves the desired result. �

We now proceed to compactify the space in order to be able to do a dynamical
study similar to the one done on the hyperbolic plane.
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Chapter 3

Compactifications

1 The boundaries

In this chapter we will be mainly concerned with the compactification of the Siegel
upper half plane. In the two-dimensional model, this could be done by taking the
closure of the circle model of the space, since this was a bounded set. We’ll do the
same thing here. Thus, let

Cl(SDn) = {Z ∈ MnC : I − ZZ ≥ 0}.

Our first remark is that this space has a stratification of the boundary. The strata
are

∂kSDn = {Z ∈ ∂SDn : rank(I − ZZ) = n− k}.

This can be written in terms of singular values as:

∂kSDn = {Z ∈ ∂SDn : σ1(Z) = . . . = σk(Z) = 1 > σk+1(Z)}

for k ≤ n− 1, and

∂nSDn = {Z ∈ ∂SDn : σ1(Z) = · · · = σn(Z) = 1}.

Observe that
USymn := ∂nSDn = Un ∩ SymnC.

The group acting on SDn is a conjugate of Sp2nR in Sp2nC as we have seen. We now
extend this action by continuity to the boundary, still by Möbius transformations.
We can also take the closure of the Siegel upper half plane,

Cl(SHn) = {Z ∈ SymnC : Im(Z) ≥ 0},
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and then try to match it to ∂SDn using the extensions of the maps Φ1 and Φ−1
1

defined in the last chapter, but we’ll notice that the map Φ−1
1 is not defined on the

set
{Z ∈ SDn : det(Z − I) = 0}.

On the hyperbolic plane, this set was reduced to one point, namely the complex
number 1. This set is clearly contained in ∂SDn and we will call it informally the
infinite boundary. We will call its complement in ∂SDn the finite boundary. We
note that the finite boundary of SDn contains a part of every stratum.

Lemma 3.1.1 The image of the finite part of the stratum ∂kSDn under the
extension of Φ−1

1 is

fin(∂kSHn) = {Z ∈ SymC : Im(Z) ≥ 0 and rank(ImZ) = n− k}.

Proof. Let’s compute the imaginary part of Φ−1
1 (Z), with Z in the finite bound-

ary of SDn.

Im(Φ−1
1 (Z)) =

=
1
2i

(
Φ−1

1 (Z)− Φ−1
1 (Z)

)
=

1
2i
(
i(I + Z)(I − Z)−1 + i(I + Z)(I − Z)−1

)
=

1
2

(I − Z)−1
(
(I + Z)(I − Z) + (I − Z)(I + Z)

)
(I − Z)−1

= (I − Z)−1(I − ZZ)((I − Z)−1)∗.

So we see that this imaginary part is always similar to I − ZZ, and we have the
result. �

Even though Cl(SHn) only contains the points in the finite part of the boundary,
we’ll always consider that ∂SHn will have the same structure as ∂SDn, that is, that
∂SHn also contains the infinite part of the boundary.

The next result concerns the boundary in the projective model SPHn.

Lemma 3.1.2 The finite boundary in SPHn is the set of all equivalence classes
that admit a representative of the type(

Z
I

)
with Z symmetric and ImZ ≥ 0,

and such a representative is unique. Moreover, let Z1, Z2 be points in the finite
boundary of SHn such that(

A B
C D

)[
Z1

I

]
=
[
Z2

I

]
.
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Then CZ1 +D is invertible.

Proof. These are all immediate consequences of the definitions of the action and
of the quotient space. �

Proposition 3.1.3 Each stratum of ∂SDn is an orbit for the action of Sp2nR.

Proof. Let Z1 and Z2 be points in ∂kSDn. Notice that we can bring these to
the finite part of this stratum, by means of a rotation: it is possible to choose θ
such that neither eiπθZ1 nor eiπθZ2 have 1 as an eigenvalue. This transformation
corresponds to the matrix diag(e

iπθ
2 In, e

− iπθ
2 In). Once this is done, we can use the

extension of Φ−1
1 to map them to the boundary of SHn and prove the transitivity

on ∂kSHn. As we did in the proof of the transitivity of the action, assume that
Z2 = i diag(1, . . . , 1, 0, . . . , 0), with k zeros on the diagonal and Z2 = X + iY is any
point in ∂kSH. Take Q ∈ On such that

Y = Qdiag(r1, . . . , rn−k, 0, . . . , 0)QT, r1, . . . , rn−k > 0.

Set D := diag(r1, . . . , rn−k, 1, . . . , 1). Now we see that it is possible to map Z1 to
Z2 using the composition of the maps defined by the symplectic matrices

diag(
√
D,
√
D−1), diag(Q,Q) and

(
I X
0 I

)
in the order presented.

Now, let’s see that if Z ∈ ∂kSDn, then M(Z) ∈ ∂kSDn. Take Z ∈ ∂kSDn and,
as above, consider both Z and M(Z) to be in the finite part of the boundary, since
the unitary diagonal transformations clearly preserve the starta ∂jSDn. Now, for

M =
(
A B
C D

)
,

(
E
F

)
= M

(
Z
I

)
,

we have, like in the proof of the transitivity of the action,

− 1
2i

(E∗F − F ∗E) = − 1
2i
(
E∗ F ∗

)
J

(
E
F

)
= − 1

2i
(
Z∗ I

)
MTJM

(
Z
I

)
= − 1

2i
(
Z∗ I

)
J

(
Z
I

)
.

= Im(Z).
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Notice that, by the previous lemma, F is invertible, so

F ∗ ImM(Z)F = − 1
2i
F ∗
(
(F−1)∗E∗ − EF−1

)
F = ImZ,

so the rank is preserved. �

The previous result is a particular case of the general result about boundary
components of bounded symmetric domains as described in [Bai, p. 200].

Proposition 3.1.4 USymn = Un ∩ SymnC is the Shilov boundary of SDn.

Proof. Note that SDn ∩ DiagnC is equal to Dn, where D ⊂ C is the unit
disk. Clearly, the Shilov boundary of SDn ∩ DiagnC is (S1)n, which is equal to
USymn ∩ DiagnC. Let f : SDn → C be a holomorphic function which extends to a
continuous function on Cl(SDn). Then

|f(0)| ≤ max
Z∈USymn∩DiagnC

|f(Z)| ≤ max
Z∈USymn

|f(Z)|.

As Sp2nR acts transitively on SDn and preserves USymnC, for any W ∈ SDn we
have

|f(W )| ≤ max
Z∈USymn

|f(Z)|.

Hence the Shilov boundary of SDn is contained in USymn. As Sp2nR acts transitively
on USymn we deduce the result. �

As we have seen, the action of Sp2nR on the Shilov boundary is transitive,
so, if we take 0 ∈ ∂nSHn, we’ll have a presentation of the Shilov boundary as
Sp2nR/ Stab(0), and it is easy to see that this stabilizer is the set of all lower block
triangular symplectic matrices. These have the form(

A 0
C A−T

)
(3.1)

with ATC symmetric.

We now present two more possible boundaries of this space. For this, we need
some more information about the Lie group structure. Recall that for A ∈ MmR the
Frobenius norm ||A||F is given by

√
tr(AAT). Now consider the Lie group quotient

model, Sp2nR/K, K := SpOn.

Lemma 3.1.5 Let Q ∈ K. Then the automorphism of sp2nR defined by conju-
gation by Q maps Weyl chambers to Weyl chambers.
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Proof. The defining equation for sp2nR is MTJ + JM = 0. Then for Q ∈ K
and M ∈ sp2nR,

QMTQTJ + JQMQT = Q(MTJ + JM)QT = 0.

It is now easy to check the morphism properties. To see it preserves Weyl chambers,
notice that is maps the walls of Weyl chambers one to another, since the elements of
these walls are the matrices A such that λj(A) = λj+1(A) for some j. Moreover, it
preserves the inner product A|B = tr(ABT), so it must preserve the angles between
these walls. Hence, it maps a Weyl chamber into another Weyl chamber. �

Proposition 3.1.6 Any coset AK ∈ Sp2nR/K has a unique symmetric positive
definite element B ∈ AK ∩ Sym2nR with B > 0. This element can be obtained as
etR with R ∈ sp2nR, ||R||F =

√
2/2, t = d2(I2n, A).

Proof. The existence and uniqueness of B is a consequence of the symplectic
polar decomposition: if A = Q1Σ(A)Q2, then

B = Q1Σ(A)QT
1 = A(QT

2 Q
T
1 ) ∈ AK.

For the result about the exponential, take

rj =
log σj(A)
d2(I2n, A)

, j = 1, ..., n,

and take D := diag(r1, . . . , rn), R := Q1 diag(D,−D)QT
1 , Q ∈ K. It is now easy to

check all the assertions. �

In our space, the Visibility boundary is the set of all the geodesics coming out
of a reference point. In our case, if we fix I2nK, and consider the cosets BK with
d2(I2K,BK) = 1, we get one geodesic per coset, so, in view of our previous result,
we have one geodesic for each matrix of the type Q(D ⊕−D)QT as defined above,
Q ∈ K.

Before we present yet another boundary, it is pertinent to make a short study of
the flats of our symmetric space. These are maximal submanifolds of the symmetric
space with zero sectional curvature. Their dimension is exactly the rank of the
group of symmetries, which in turn is the dimension of a Cartan subalgebra of its
Lie algebra. In our case, we can take as the Cartan subalgebra1 the space C of all
diagonal elements of the Lie algebra:

C = {D ⊕−D : D = diag(r1, . . . , rn), rj ∈ R}.
1Every time we mention the Cartan subalgebra, we are referring to this space, by abuse of

language.
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This space has clearly dimension n. Then eC is going to yield a flat eCK. This
is because all flats can be obtained as images (under the exponential map) of a
maximal abelian subalgebra contained in the tangent space at the coset K (see
[Hel, p. 245]). By the previous result, all these can be expressed as QCQT, Q ∈ K.
To verify this in our present case, for Q ∈ K, set

F(Q) := eQCQ
T

= {QeD⊕−DQT : D = diag(r1, . . . , rn), rj ∈ R}.

Then, given two elements E1, E2 ∈ QCQT,

Ek = Q(Xk ⊕−Xk)QT , Xk = diag(xk1, ..., xkn),

with xkj ∈ R, j = 1 . . . , n, k = 1, 2, the Riemannian distance between the corre-
sponding elements in F(Q) is given by

d2(eE1 , eE2) =
√

2||x1 − x2||2,

for xk = (xk1, ..., xkn), k = 1, 2. So we see that F(Q) is indeed a flat, since with
the restriction of the Siegel metric d2, it becomes isometric to Rn with the usual
Riemannian metric, and since the rank of Sp2nR is n, the subvariety is indeed
maximal.

The rank of SL2R is 1, so the flats in the 2-dimensional upper plane were just
the geodesics.

We now describe the space of all flats of Sp2nR containing the coset K. A certain
geodesic ray etR, R ∈ sp2nR, coming from the base coset K will be in one and only
one flat if and only if R is a regular element of sp2nR (see [Kai]), that is, if R is
similar to an element D ⊕−D ∈ C such that

D = (r1, . . . , rn) with rj 6= rk, for j 6= k.

This is equivalent to saying that the dimension of its commutator in sp2nR is min-
imal amongst the dimensions of all commutators of elements of C. Let Mn be the
monomial group, that is, the subgroup of On whose elements are matrices with
exactly n entries equal to ±1 and all others equal to 0.

Theorem 3.1.7 The space of all flats of Sp2nR/K containing the coset K is
homeomorphic to K/(M2n ∩K).

Proof. Consider a regular element D ⊕ −D ∈ C. This element determines the
flat F(I2n) uniquely. Then

F(Q) = F(I2n) ⇔ Q(D ⊕−D)QT ∈ C
⇔ Q ∈M2n.
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We then have our result. �

Each flat can be decomposed into a union of closed Weyl chambers with disjoint
interiors. To do this, consider for instance the flat eC and remove from it the geodesic
rays corresponding to the non-regular elements in the Cartan subalgebra. Then once
you remove those rays from the flat, what you’re left with is a union of a certain
number of connected components. Each one of those is the image of a Weyl chamber
in the Cartan subalgebra, and if we close them, their union gives us the whole flat.
Note that we use the name “Weyl chamber” both for subsets of sp2nR and for their
images under the exponential map in Sp2nR/K.

The Furstenberg boundary can be defined as Sp2nR/P where P is a maximal
parabolic subgroup, that is, a subgroup that fixes a geodesic ray etR, with a regular
R. This boundary can also be defined (see [Kai]) as the set of all the Weyl chambers
based at a point AK. We’ll (naturally) take as our dominant Weyl chamber in
sp2nR the set W of all diagonal matrices of the form

diag(r1, . . . , rn,−r1, . . . ,−rn), with r1 > r2 > . . . > rn > 0,

as in [FH2]. From proposition 3.1.6, we can see that all other Weyl chambers in the
tangent space can be obtained as QWQT, Q ∈ K, since the action of K is transitive
on sp2nR and each Weyl chamber is determined by any of its elements AK with A
symmetric and λj(A) 6= λk(A) for all j 6= k.

Now, let Dm be the group of all m×m diagonal matrices with diagonal entries
equal to plus or minus 1.

Theorem 3.1.8 The Furstenberg boundary of Sp2nR/K can be presented as

K/(D2n ∩K) ∼ Un/Dn.

Proof. Let D ⊕ −D, be a regular element in the dominant Weyl chamber,
D = (r1, . . . , rn), r1 > r2 > . . . > rn > 0. Then, for Q ∈ K,

QWQT = W ⇔ Q(D ⊕−D)QT ∈W
⇔ Q(D ⊕−D)QT = D ⊕−D
⇔ Q ∈ D2n

This gives us the first part of the result. As for the second, notice that K is the
subgroup of Sp2nR that fixes the coset K. If we now think of the disk model SDn,
then the coset K corresponds to the element 0 ∈ SDn and its stabilizer is a conjugate
of K, namely, the subgroup of all matrices A⊕A, with A ∈ Un, clearly isomorphic
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to Un. If we also conjugate D2n ∩K, the corresponding subgroup will be Dn, and
this concludes our proof. �

We see that for n > 1 the Shilov boundary USymn has smaller dimension the
Furstenberg boundary of SDn.

Proposition 3.1.9 The Furstenberg boundary has dimension n2 and the Shilov
boundary has dimension n(n+ 1)/2.

Proof. The dimension of Un is n2, it can be seen by considering its Lie alge-
bra, the space of skew-hermitian matrices. The subspace of this Lie algebra that
yields the unitary symmetric matrices is the space of all skew-hermitian and skew-
symmetric matrices, of dimension n(n+1)/2. �

2 The Shilov boundary

The Shilov boundary of SDn can be obtained by identifying the points in the Fursten-
berg boundary using the action of On.

Theorem 3.2.1 The Shilov boundary USymn of SDn can be presented as

K/Õn ∼ Un/On

where Õn is the set of all matrices of the form diag(Q,Q) with Q ∈ On

Proof. Let’s consider the action of K over ∂nSHn. We’ll prove that this action is
transitive. Once we’ve proved this, we know from equation (3.1) that the stabilizer
of 0 ∈ ∂nSHn in K is the set of all symplectic orthogonal matrices with the (1,2)
block equal to zero2, that is, it’s exactly Õn. This gives us the first presentation.
To get the second, consider the action of the conjugate groups in Sp2nC on SDn.
These are, respectively,

Ũn := {(A⊕A) : A ∈ Un} and Õn,

since the conjugate of the element(
A B
−B A

)
∈ K is

(
A+ iB 0

0 A− iB

)
∈ Ũn.

Thus, the Shilov boundary can be presented as Ũn/Õn ∼ Un/On.
2The stabilizer of 0 ∈ ∂2SH2 will be studied in more detail in the next chapter
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To establish the transitivity of K on ∂SHn, let’s prove we can bring any point
Z ∈ ∂nSHn to the point 0. Notice that we’ve seen that it is possible to bring a
point in the infinite boundary to the finite boundary of SDn using the action of
a diagonal unitary matrix. In SHn this corresponds to a matrix in K, so we can
assume that Z is in the finite boundary of SHn. Now, since Z is real symmetric,
we can diagonalize it by an orthogonal matrix, say Q, which corresponds to the
action of diag(Q,Q) ∈ K. Now we have Z = diag(z1, . . . , zn). Let zj be any of these
diagonal entries, zj ∈ ∂H. It is possible now to find an elliptic map Mj ∈ SL2R such
that Mj(zj) = 0. This will be a rotation around i ∈ H, given by the matrix(

cos θj sin θj
− sin θj cos θj

)
, with tan θj = −zj .

Notice that θj is exactly the angle symmetric to the one formed by the imaginary
axis and the line connecting i and zj . Now

M1 � . . .�Mn ∈ K and M1 � . . .�Mn(diag(z1, . . . , zn)) = 0 ∈ ∂nSHn,

as we wished. �

The results of the two previous theorems can be found in [Jo1]. Notice that, from
the previous result, we can conclude that the action of K is transitive on ∂nSHn.

To end this chapter, we present another model for the Shilov boundary involving
Busemann functions. Consider the group Õn defined in the last theorem, and take

W = {D ⊕−D : D = diag(r1, . . . , rn), r1 ≥ . . . ≥ rn > 0} ⊂ sp2nR.

Let E0 be the subset of sp2nR defined by

E0 := {Q(D ⊕−D)QT : Q ∈ Õn, D ∈ W}.

Notice that E0 is a union of Weyl chambers. The presently relevant fact about E0

is that for any A ∈ E0, the ray in SHn corresponding to e−tA converges to the point
0 ∈ ∂nSHn. To see this, notice that if A = Q(D ⊕−D)QT with Q = Q1 ⊕Q1,

e−tA =
(
Q1e

−tDQT
1 0

0 Q1e
tDQT

1

)
,

and according to equation (2.4) in Chapter 2, the sequence corresponding to this
one in SHn goes to 0.

This allows us to identify the set E0 with this limit point. Any other point in
∂nSHn can be expressed as R(0), 0 ∈ ∂nSHn, R ∈ K (see previous theorem). We
see that for A ∈ E0,

e−tRAR
T
K = Re−tARTK = Re−tAK,
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and so the corresponding ray in SH2 will converge to the point R(0). So we associate
the set RE0R

T with the point R(0). It is easy to see that RE0R = E0 if and only if
R ∈ Õn, so the set of all images

{RE0R
T : R ∈ K} (3.2)

can be expressed as K/Õn, so it is indeed the Shilov boundary. Now we pick a
special representative in each RE0R

T, namely R(In ⊕−In)RT. Notice that there is
one and only one representative of this type in each set, since

R1(In ⊕−In)RT
1 = R2(In ⊕−In)RT

2 ⇔ R1R
T
2 ∈ Õn,

and moreover, this element is in the boundary of all the Weyl chambers contained
in E0. Set

L := {R(In ⊕ 0n)RT : R ∈ K}.

It’s clear that

R1(In ⊕ 0n)RT
1 = R2(In ⊕ 0n)RT

2 ⇔ R1(In ⊕−In)RT
1 = R2(In ⊕−In)RT

2 ,

so L is another presentation of the set in (3.2) above.
Now, notice that, for

A ∈ E0, A = Qdiag(r1, . . . , rn,−r1, . . . ,−rn)QT, r1 ≥ . . . ≥ rn > 0, Q ∈ Õn

and R ∈ K, we have

lim
t→∞

∧n(etRAR
T

)
|| ∧n (etRART)||

= lim
t→∞
∧n(R)

∧n(etRAR
T

)

e
Pn
j=1 rj

∧n (RT)

= ∧n(R(In ⊕ 0n)RT), (3.3)

In this case we’ll say that etRAR
T → R(In⊕ 0n)RT. We now prove this convergence

this is well defined.

Lemma 3.2.2 Let F, F ′ be two distinct elements of L. Then, if x1, . . . , xn and
y1, . . . , yn are the n first eigenvectors of F and F ′ respectively (associated with the
eigenvalue 1), then

<x1, . . . , xn> 6= <y1, . . . , yn>

or equivalently, ∧n(x1, . . . , xn) 6= ± ∧n (y1, . . . , yn).
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Proof. Take F = Q(In ⊕ 0n)QT and F ′ = R(In ⊕ 0n)RT, Q,R ∈ K. The
columns of Q and R are exactly the eigenvectors of F and F ′ respectively—take
Q = (x1, . . . , x2n) and R = (y1, . . . , y2n). Suppose now that the span of the first n
columns of Q is equal to the span of the first n columns of R, and let’s prove F = F ′.
If they are the same, then the off-diagonal n×n blocks of QTR are zero, since for j ≤
n and k > n, yT

j yk = 0, and given the condition on the spans, yT
j xk = 0. In a similar

way, we could see that xT
k yj = 0. This means that QTR ∈ Õn = Stab(In ⊕ 0n), and

we then have

F = Q(In ⊕ 0n)QT = Q(QTR)(In ⊕ 0n)(RTQ)QT = R(In ⊕ 0n)RT = F ′.

For the last result, notice that the referred spans are equal if and only if the vectors
∧n(x1, . . . , xn) and ∧n(y1, . . . , yn) are collinear. They have both norm one, because
they can be expressed as ∧nQe1, ∧nRe1 where e1 ∈ MN,1, N =

(
2n
n

)
is the first

vector of the canonical basis, e1 = ∧n(In, 0n)T. As they have norm 1, they are
collinear if and only if they are either equal or symmetric. This concludes our proof.
�

It is easy to check that ∧n(F ) = ∧n(x1, . . . , xn)∧n (x1, . . . , xn)T. Since for a real
symmetric rank 1 matrix M , the real vector v such that M = vvT is well defined
up to sign, we have

∧n(R1(In ⊕On)R1)T = ∧n(R(In ⊕On)RT)
⇔ R1(In ⊕ 0n)RT

1 = R(In ⊕ 0n)RT

⇔ R1(In ⊕−In)RT
1 = R(In ⊕−In)RT

⇔ R1E0R
T
1 = RE0R

T.

So

{RE0R
T : R ∈ K}, L = {R(In ⊕ 0n)RT : R ∈ K} and {∧n(F ) : F ∈ L} (3.4)

are yet three more presentations of the Shilov boundary K/Õn. We will henceforth
denote ∂n(Sp2nR/K) := L.

Now we take for each class AK its unique symmetric positive definite element A,
in the symplectic polar decomposition, identifying thus Sp2nR/K with the set of the
symplectic positive definite real symmetric matrices which we’ll simply denote by S.
We now find an expression for the Busemann functions with respect to the distance
d1. We present the definition of the Busemann functions (we’ll follow [Bal]). For
A,B,C ∈ S, let

b1(A,B,C) := d1(A,C)− d1(A,B).
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The function b1(A,B, ·) is a Lipschitz function with constant 1. We denote this
function by b1B(A). Then

b1B : S → C(S)
A 7→ b1B(A) = b1(A,B, ·)

is an embedding. We consider C(S) endowed with the topology of uniform conver-
gence on bounded subsets. We say that a sequence An of elements of S converges
at infinity if d1(An, B) → ∞ for some B and b1B(An) converges in C(S). It’s easy
to see that this definition is independent of the choice of B. Two such sequences
(An) and (A′n) are called equivalent if limn→∞ b1B(An) = limn→∞ b1B(A′n) for some
(and hence for any) B. We now denote the set of equivalence classes by S(∞).
For any F ∈ S(∞), there is a well defined function f = b1(F,B, ·) ∈ C(S), called
the Busemann function at F based at B, namely, f = limn→∞ b1B(An), where An
represents F .

As we now define these functions, we’ll always consider the sequences (An) to
be converging to F along a geodesic for the Riemannian metric. For E ∈ Sym2nR∩
sp2nR, we know that etEK is such a geodesic. Let’s assume that

E = QΣ(E)QT, Q ∈ K, Q = (x1, . . . , x2n),

and (x1, . . . , x2n) is the family of the orthogonal eigenvectors of E. Notice that for
t ∈ R, etE = QΣ(etE)QT, so (x1, . . . , x2n) are also the eigenvectors for etE , and this
is why we can choose Q ∈ K.

Recall that d1(etE , B) = d1(B, etE) = 2
∑n

j=1 log σj(B−1etE). We now establish
a formula for this distance. The arguments in the following two results are due to
Shmuel Friedland.

Proposition 3.2.3 Let E ∈ Sym2nR∩ sp2nR, B ∈ S and suppose that λ1(E) >
λ2(E), or equivalently, λ1(etE) > λ2(etE) for all t > 0. Then

lim
t→∞

σ1(BetE) = tλ1(E) +
log λ1(Bx1x

T
1 B

T)
2

+W (t),

where limt→∞W (t) = 0.

Proof. By definition,

σ2
1(BetE) = λ1(Be2tEBT)

= λ1(e2tλ1(E)InBe2t(E−λ1(E)I2)BT)
= e2tλ1(E)λ1(Be2tE′BT)
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with E′ = E − λ1(E)In, and so

log σ1(BetE) = tλ1(E) +
log λ1(Be2tE′BT)

2
.

We have λj(E′) < 0 for 2 ≤ j ≤ n. In this case, the matrix e2tE′ converges to a
rank one matrix, namely x1x

T
1 and thus Be2tE′BT converges to B(x1x

T
1 )BT, and

we have our result. �

Corollary 3.2.4 Let E ∈ Sym2nR ∩ sp2nR and suppose now that λn(E) >
λn+1(E). Then

n∑
j=1

log σj(BetE) = t
n∑
j=1

λj(E) +

+
log λ1

(
∧nB ∧n (x1, . . . , xn) ∧n (x1, . . . , xn)T ∧n BT

)
2

+

+ W (n)(t),

with limt→∞W
(n)(t) = 0.

Proof. Apply the previous result to ∧n(BetE) = ∧n(B)∧n etE , since under this
condition,

log λ1(∧netE) = tn
n∏
j=1

λj(E) > tnλn+1(E)
n−1∏
j=1

λj(E) = log λ2(∧netE),

and hence λ1(∧netE) > λ2(∧netE). The eigenvector corresponding to λ1(∧neE) is
clearly ∧n(x1, . . . , xn) and this concludes our proof. �

Notice that for a matrix E ∈ sp2nR, to say that λn(E) > λn+1(E) is to say that
0 is not an eigenvalue of E (see equation (2.5) in Chapter 2). Hence etE converges
to a point in the Shilov boundary as t→∞.

Lemma 3.2.5 Under the conditions of the previous corollary, with E ∈ QE0Q
T,

let

lim
t→∞

∧n(etE)
|| ∧n (etE)||

= ∧n(F ),

F = Q(In ⊕ 0n)QT ∈ ∂n(Sp2nR/K). Then

λ1

(
∧nB ∧n (x1, . . . , xn) ∧n (x1, . . . , xn)T ∧n BT

)
= σ2

1(∧nB ∧n F ).
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Proof. Notice that the first n columns of Q are exactly x1, . . . , xn. So

∧n(Q(In ⊕ 0n)QT) = ∧n(Q(In ⊕ 0n)) ∧n ((In ⊕ 0n)QT)
= ∧n(x1, . . . , xn, 0, . . . , 0) ∧n (x1, . . . , xn, 0, . . . , 0)T

= ∧n(x1, . . . , xn) ∧n (x1, . . . , xn)T.

Now, since FFT = F 2 = F , we have

λ1

(
∧nB ∧n (x1, . . . , xn) ∧n (x1, . . . , xn)T ∧n BT

)
=

= λ1(∧nB ∧n F ∧n (BT))
= λ1(∧nB ∧n F ∧n (FT) ∧n (BT))
= σ2

1(∧nB ∧n F ).

This concludes our proof. �

This allows us to write
n∑
j=1

log σj(BetE) = t
n∑
j=1

λj(E) + log σ1(∧nB ∧n F ) +W (t), lim
t→∞

W (t) = 0.

For A,B ∈ Sp2nR, we have

d1(A,B) = 2
n∑
j=1

log σj(A−1B),

from formula (2.6) in Chapter 2. With the previous results, we can now express the
Busemann functions as follows:

b1(F,B,C) = lim
etE→F

b1(etE , B,C)

= lim
etE→F

d1(etE , C)− d1(etE , B)

= lim
etE→F

d1(C, etE)− d1(B, etE) (3.5)

= 2 log σ1(∧nC−1 ∧n F )− 2 log σ1(∧nB−1 ∧n F )
= 2

(
log σ1(∧nC−1 ∧n F )− log σ1(∧nB−1 ∧n F )

)
Notice that in our previous arguments, we didn’t specify which exponent matrix

we took—any exponent E ∈ QE0Q
T, etE → F yields the same Busemann function.

We now present a 1-1 and onto correspondence between the Shilov boundary and
the set of all Busemann functions that correspond to sequences that go to ∞ along
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a geodesic ray with E as in the previous results. We recall here, that equation (2.3)
states that the elements of K are of the form(

A B
−B A

)
ATA+BTB = In, A

TB symmetric.

Theorem 3.2.6 Let F ∈ ∂n(Sp2nR/K). Then, for a given B ∈ Sp2nR/K, there
is a 1-1 and onto correspondence between the sets

{b1(F,B, ·) : F ∈ ∂n(Sp2nR/K)} and ∂n(Sp2nR/K).

Proof. We’ve seen that to each element F ∈ ∂n(Sp2nR/K), we can associate
a well defined Busemann function. Now, let’s see that if F 6= F ′, the Busemann
functions we get are not the same. From formula (3.5), we can see that, for a given
B, the functions b1(F,B, ·) and b1(F ′, B, ·) will be equal if and only if for all C ∈ S,
|| ∧n (C−1F )|| = || ∧n (C−1F ′)|| for all such C, since the operator norm, given by
the first singular value. Suppose F = Q(In ⊕ 0n)QT, F ′ = R(In ⊕ 0n)RT with Q
and R as in the previous lemma, and take C−1 = Q(2In ⊕ 1

2In)QT. Then, taking
v = ∧n(Q(In, 0n)T) ∈ MN,1, N =

(
2n
n

)
, we have

|| ∧n (C−1F )v|| = 2n.

and since ||v|| = 1, we must have || ∧ (C−1F )|| ≥ 2n. However, since

|| ∧n (C−1F )|| = || ∧n (C−1) ∧n (F )|| ≤ || ∧n C−1||.|| ∧n F || = 2n.1 = 2n,

we have || ∧n (C−1F )|| = 2n.
Consider now F ′. Denote by E11 the N × N matrix with all entries equal to

zero, except for entry (1, 1) which is equal to 1. We have

∧n(F ′) = ∧n(R)E11 ∧n (RT) = ∧n(y1, . . . , yn) ∧n (y1, . . . , yn)T.

This is a matrix of rank 1, and moreover, its image subspace is generated by
∧n(y1, . . . , yn). Since we assumed that F 6= F ′, by lemma 3.2.2, this subspace is not
<∧n(x1, . . . , xn)>, which is exactly the eigenspace associated with the largest eigen-
value of ∧nC−1, 2n. Therefore, for any v ∈ MN,1 of norm 1, we know ∧n(F ′)v will
not be an eigenvector for ∧nC−1, for its largest eigenvalue, 2n. Since || ∧n F ′|| = 1,
if w = ∧nF ′v, ||w|| ≤ 1 and

|| ∧n C−1 ∧n F ′v|| = || ∧n C−1w|| < 2n||w|| ≤ 2n,

so || ∧n C−1F ′|| < 2n, and hence b1(F,B, ·) 6= b1(F ′, B, ·) as we wished. �

We have then proved that there is a subset of the set of all Busemann functions
for d1 that is exactly the Shilov boundary of our space. Notice that we excluded
the Busemann functions associated with points in the other strata of the boundary.
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In the next chapter we do a study of the symplectic transformations that have
fixed points in the Shilov boundary in the case n = 2.
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Chapter 4

Sp4R and SH2

1 Normal forms

We are now going to present a study of the action of Sp4R on SH2, since this is the
first non-trivial model of the Siegel upper half plane.

We start by locating the fixed points of a symplectic map. To do this, we’ll
consider the compactification as bounded space, with the corresponding stratifica-
tion of the boundary. In this case the finite boundary of SH2 has the following
stratification:

fin(∂1SH2) = {Z ∈ Sym2C : rank Im(Z) = 1},

fin(∂2SH2) = Sym2R.

The boundary in SD2 is USym2 and will have a corresponding stratification,
according to the rank of I −ZZ. As we extend the action of Sp4R to the boundary
of SD2 by continuity, we have that every transformation must have a fixed point, by
the Schauder fixed point theorem (cf. [DS]), since each map is continuous and the
set in question os closed, bounded an convex.

This fixed point has to be either in one of the boundary strata or inside SH2. We
will determine how many fixed points does the transformation have, and on which
region are they located. Since the action of Sp4R is transitive on each stratum and
also inside SH2, we can consider that M fixes, in turn, a specific point in each one
of these regions. As in some cases it will be possible to reduce the matrix M to the
form X�Y , X,Y ∈ SL2R, by conjugation, we present a list of all normal forms that
you can get for matrices in SL2R with the conjugation being made inside SL2R.

Proposition 4.1.1 Let X ∈ SL2R, X 6= ±I2. Then X is similar to one and
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only one of the following normal forms within SL2R:(
α 0
0 1/α

)
, α > 1,

±
(

1 0
1 1

)
, ±

(
1 0
−1 1

)
,(

a b
−b a

)
,

(
a −b
b a

)
, b > 0.

Proof. Suppose the eigenvalues of X are a and 1/a, real, and with |a| 6= 1.
Then X is similar to a matrix of the first type in GL2R. If the conjugating matrix T
has positive determinant, we are done, since we can always take T/

√
detT ∈ SL2R,

and this will also conjugate X to the normal form. If the conjugating matrix T has
negative determinant, notice that the matrix diag(1,−1) preserves diag(a, 1/a) by
conjugation, and hence T diag(1,−1) has positive determinant and diagonalizes X.

Now suppose X is a Jordan block, an let’s consider that the corresponding
eigenvalue is 1, the case for −1 is similar. In this case, we know that it is possible to
find a matrix in SL2R that maps X to either one of the two normal forms presented,
since they are conjugate by the matrix diag(1,−1). It is left to show that they are
not similar to each other in SL2R. to do so, consider the equation(

1 0
1 1

)(
a b
c d

)
=
(
a b
c d

)(
1 0
−1 1

)
.

As we write the scalar equations, we get b = 0 and a = −d, so the matrix must have
negative determinant.

The elliptic case is argued similarly. �

We now establish normal forms with respect to where the fixed point is located.

— // —

Let’s assume that M has a fixed point in ∂2SH2, and we can assume, without
loss of generality, that it is the point 0. To determine Stab(0), 0 ∈ ∂2SH2, the
equation is M(0) = 0, A0 + B = 0(C0 + D), which simply leads to B = 0. In
this case ATD = I2, so both matrices are invertible, and the matrix C0 + D = D
is invertible, so the equation we studied gives us the stabilizer: all matrices of the
form (

A 0
C D

)
,
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with ATD = I and ATC symmetric. Now we’ll divide our matrices into four types.

Type 1. The matrix M doesn’t have any eigenvalue with absolute value 1. Then
we can bring the matrix to the form we already described: diag(A,A−T) with
|λ1(A)|, |λ2(A)| > 1. This form includes the case X � Y with X and Y hyper-
bolic.

Type 2. Now, let’s assume that A has a complex eigenvalue (necessarily with ab-
solute value 1), or that it is similar to a Jordan block associated with the eigenvalue
1 or −1. In this case, using again conjugation by a block diagonal matrix, we can
bring A to the form(

0 1
−1 b

)
, and D becomes

(
b 1
−1 0

)
,

where b = tr(A) is the sum of the eigenvalues, so |b| ≤ 2. Then, by conjugating M
by a matrix of the type (

I 0
X I

)
, (4.1)

namely with

X =
(

0 c1
2

c1
2 c3

)
, with C =

(
c1 c2

c3 c4

)
,

we can bring C to the form (
0 c3 − c2

0 c1 + c4 + bc3

)
.

Now, from the equation ATC = CTA we can see that c1 +c4 +bc3 = 0, so the matrix
C has the form (

0 c3 − c2

0 0

)
.

If c2 − c3 6= 0, we can, as before, conjugate M by diag(c2 − c3, 1, 1/(c2 − c3), 1), in
order to bring C to the form (

0 δ
0 0

)
,

with δ = 1 or, in case C was symmetric to start with, 0. We end up with the matrix
0 1 0 0
−1 b 0 0
0 δ b 1
0 0 −1 0

 , δ = 0, 1, |b| ≤ 2.
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Type 3. Now suppose A has eigenvalues 1 and α, with α 6= ±1—we’re not
considering the eigenvalue −1 because of the identification M ≡ −M . We can
certainly diagonalize A, and then bring C to diagonal form, by conjugating with a
matrix of the type (4.1) with

X =
(

0 αc3
1−α

αc2
1−α 0

)
,

since in this case c2 = αc3 because ATC has to be symmetric. Then we can put the
(2,2) entry of C to zero, conjugating again by a matrix of the same type, with

X =
(

0 0
0 αc4

1−α2

)
.

Finally, we can make the (1,1) entry equal to ±1 or 0, depending on whether it was
positive, negative or zero, in the original C, by conjugating with a diagonal matrix,
as in the previous case, obtaining in the end C = diag(δ, 0), with δ = ±1 or 0. The
matrix becomes 

1 0 0 0
0 α 0 0
δ 0 1 0
0 0 0 1/α

 =
(

1 0
δ 1

)
�
(
α 0
0 1/α

)
,

with δ = 0,±1.

Type 4. Finally, if A = I2 or similar to diag(1,−1) (we can consider it to be
diagonalized to start with), then C is respectively symmetric or skew-symmetric.
In the first case, we can still bring it to diagonal form by either conjugating M by
diag(T, T ), where T is an orthogonal matrix diagonalizing C. In the second case,
we can still diagonalize C using a matrix of the type (4.1), with

X =
(

0 c2
2

c2
2 0

)
.

Then we can again conjugate M by a diagonal symplectic matrix, in order to bring
C to the form diag(δ1, δ2), where δ1, δ2 = 0 or ±1, according to the rank of C. We
end up with the matrix

1 0 0 0
0 ±1 0 0
δ1 0 1 0
0 δ2 0 ±1

 =
(

1 0
δ1 1

)
�
(
±1 0
δ2 ±1

)
,
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with δ1, δ2 = 0,±1.

— // —

Now suppose the fixed point is in ∂1SH2, and, without loss of generality, take it
to be the point i diag(1, 0) ∈ ∂1SH2. Let’s characterize the stabilizer of this point.
Let L := diag(1, 0), iL ∈ ∂1SH2. To find the stabilizer of iL, we take

A =
(
a1 a2

a3 a4

)
and use a similar notation for B, C and D. If CiL+D is invertible, we have

(AiL+B)(CiL+D)−1 = iL ⇔ ALi+B = iL(iCL+D)
⇔ B +ALi = −LCL+ LDi,

which can be written as: (
b1 b2
b3 b4

)
=
(
−c1 0

0 0

)
,

and (
a1 0
a3 0

)
=
(
d1 d2

0 0

)
.

So the matrix M is a symplectic matrix that looks like this:
a1 a2 −c1 0
0 a4 0 0
c1 c2 a1 0
c3 c4 d3 d4

 . (4.2)

From the equation MTJM = J , you get that

a2
1 + c2

1 = 1, a4d4 = 1,
c3 = d4(a1c2 − c1a2) and
d3 = −d4(c1c2 + a1a2).

Notice that with such C and D, the matrix CiL+D is indeed invertible, since
det(CiL+D) = (a1 + ic1)d4 6= 0, since d4 is invertible and a2

1 + c2
1 = 1.

The characteristic polynomial of the matrix above is

(x− a4)(x− d4)((x− a1)2 + c2
1),
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which means that the eigenvalues of M must be a4, d4 = a−1
4 , a1 + ic1, a1 − ic1,

a2
1 + c2

1 = 1. Denote by λ the eigenvalue a1 + ic1,and assume for the moment
that a4 6= ±1. As we have seen before, if v ∈ Va4 ⊕ Vd4 and u ∈ Vλ ⊕ Vλ, we’ll
have (v, u) = 0, provided that a4λ 6= 1, and to have the equality we must have
a4 = 1 = λ = 1 or a4 = 1 = λ = −1. Otherwise, it is possible to find a symplectic
basis formed by two eigenvectors for a4 and d4 respectively, and by the eigenvectors
in Vλ⊕Vλ such that the matrix of the restriction ofM to the eigenspace isM [1, 3|1, 3].
This is because, given any vector v in either one of these spaces, any other non-
collinear vector u in the same space will provide (v, u) 6= 0, since otherwise the form
(v, ·) would be degenerate. We may have to renormalize the vectors, so that the
value of the form is 1 for the corresponding pairs of vectors.

If a4 = ±1 (assume it is 1), then the matrix may or may not have a Jordan block
associated with the eigenvalue. At any rate, the above argument will hold, replacing
V1 by the 2-dimensional space associated with the Jordan block if this is the case.
Notice, however, that A can similar to two possible Jordan blocks within SL2R,
according to proposition 4.1.1: the diagonal entries of the block must be equal to 1,
but the nonzero non-diagonal entry can be either 1 or −1.

Thus, we have proved that, unless a4 = a1 + ic1 = a1 = ±1, we can bring M to
the form 

a1 0 −c1 0
0 a4 0 0
c1 0 a1 0
0 0 0 a−1

4

 =
(
a1 −c1

c1 a1

)
�
(
a1 0
0 a−1

4

)
,

or, up to sign, 
a1 0 −c1 0
0 1 0 0
c1 0 a1 0
0 δ 0 1

 =
(
a1 −c1

c1 a1

)
�
(

1 0
δ 1

)
,

with δ = 0,±1; otherwise, the matrix is, again up to sign,
1 a2 0 0
0 1 0 0
0 c2 1 0
c2 c4 −a2 1

 .

which is a matrix of Type 2 or Type 4 above, depending on a2 being zero or not.

— // —

Suppose finally that M has a fixed point inside SH2, and by conjugation, suppose
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it is the point iI2. This means M ∈ K, and M has the known form(
A B
−B A

)
, ATB symmetric and ATA+BTB = I2.

If we consider the action on the Siegel disk SD2, the action of this matrix corresponds
to the action of M ′ = U ⊕ U , U unitary, U = A + iB, fixing the point 0 ∈ SD2.
The group that fixes this point is Ũ2 = {T ⊕ T : T ∈ Un}. Since any unitary
matrix is unitarily diagonalizable, take V ∈ U2 such that V UV ∗ = D = diag(λ, µ),
|λ| = |µ| = 1. Then V ⊕ V ∈ Ũ2 and

(V ⊕ V )(U ⊕ U)(V ∗ ⊕ V T) = D ⊕D,

and this means that M can be brought to the form
a1 0 b1 0
0 a2 0 b2
−b1 0 a1 0

0 −b2 0 a2

 =
(

a1 b1
−b1 a1

)
�
(

a2 b2
−b2 a2

)
,

where λ = a1 + ib1, µ = a2 + ib2, |λ| = |µ| = 1. This means every element in K can
be brought to the form X � Y , where X,Y ∈ SL2R are elliptic or ±I2.

— // —

We summarize all the normal forms we got for a 4 × 4 symplectic matrix with
M 6= ±I4.

I. If M has a fixed point in ∂2SH2, then M can be brought to the form(
A 0
C A−T

)
and we have the following forms for each type:

• Type 1. If |λ1(M)| 6= 1, and |λ2(M)| 6= 1, M is similar to(
A 0
0 A−T

)
.

This includes, but is not restricted to, the case X�Y with X and Y hyperbolic.
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• Type 2. If λ1(A), λ2(A) ∈ C \R, |λ1(A)| = |λ2(A)| = 1 or A is a Jordan block
associated with the eigenvalue 1, then M is similar to

0 1 0 0
−1 b 0 0
0 δ b 1
0 0 −1 0

 , δ = 0, 1, |b| ≤ 2.

• Type 3. If λ1(A) = 1, λ2(A) = α, |α| 6= 1, M is similar up to sign to
1 0 0 0
0 α 0 0
δ 0 1 0
0 0 0 1/α

 , δ = 0,±1.

In this case, the matrix can always be expressed as X � Y , X parabolic or I2,
and Y hyperbolic.

• Type 4. If A is similar to diag(1,−1) or I2, M is similar up to sign to
1 0 0 0
0 ±1 0 0
δ1 0 1 0
0 δ2 0 ±1

 , δ1, δ2 = 0,±1.

Again, in this case the matrix is always similar to X � Y , X and Y parabolic
or ±I2.

II. If M is a matrix that has a fixed point in ∂1SH2, then, unless all its eigenvalues
are equal to 1 or all equal to −1, it can be brought to the form

a1 0 −c1 0
0 a4 0 0
c1 0 a1 0
0 δ 0 a−1

4

 ,

a2
1 + c2

1 = 1, δ = 0,±1, and δ can only be nonzero if a4 = ±1. We have that the
matrix can be written as X�Y , with X elliptic and Y hyperbolic, parabolic or ±I2.
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If all eigenvalues of M are equal to 1 or all equal to −1, it can be brought to either
form 2 or form 4 above.

III. If M has a fixed point inside SH2, then M can be brought to the form
a1 0 b1 0
0 a2 0 b2
−b1 0 a1 0

0 −b2 0 a2

 , a2
1 + b21 = a2

2 + b22 = 1,

which is X � Y , with X and Y elliptic or equal to I2 or −I2.

— // —

Notice that, by the Schauder fixed point theorem, every symplectic matrix must
have a fixed point in Cl(SD2) (and hence in SH2 ∪ ∂SH2), therefore, any symplectic
matrix can be brought to one of these forms by conjugation. Thus, by looking at
the forms we have, we can get the following normal forms for a symplectic matrix
M ∈ Sp2n.

(a) If none of the eigenvalues of M is on the complex unit circle (|λj(M)| 6= 1 for
all j = 1, . . . , 4), then the transformation fixes a point in ∂2SH2 and can be
reduced to the generic normal form in I, type 1 above, as we have seen.

(b) If M has one eigenvalue α in the complex unit circle, α 6= ±1, and its other
eigenvalue is real, the transformation must have a fixed point in ∂1SH2 and
can be brought to the corresponding form described above in II, and it must
be similar to X � Y , with X hyperbolic, parabolic or ±I2 and Y elliptic.

(c) If M has two complex non-real eigenvalues, they must be either both on the
complex unit circle or both off of it. This last case is already classified above
in (a). If they’re on the circle, we have the following:

– If they’re not associated with a Jordan block (this is always the case if
we have four distinct ones, for instance), the transformation must have
a fixed point inside SH2, in which case it can be brought to the form
X � Y as in III above, with X and Y elliptic. We’ll soon see that the
transformations in case I, type 2 (with A a Jordan block and C = 0)
must also have a fixed point inside SH2, so they must be similar to the
form mentioned.

– If the eigenvalues are associated with a Jordan block, we must only have
two distinct eigenvalues. The transformation has a fixed point in ∂2SH2,
and it falls under I, type 2, with δ = 1.
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(d) If both eigenvalues of M are ±1, the transformation must have a fixed point
in ∂2SH2 and can be reduced to either form I, type 2, with A a Jordan block,
or form I, type 4, and be written as X � Y with X and Y parabolic or ±I2.

We now proceed to make a classification of the fixed points of these matrices.

2 Fixed points: classification

In this section we present the results regarding the classification fixed points. The
proofs of the results will be given in the last section of this chapter.

Notice that in case M = X � Y , if p is a fixed point for X and q a fixed point
for Y , then diag(p, q) ∈ Cl(H×H) will be a fixed point for X � Y . We’ll informally
refer to this kind of fixed points as expected fixed points, in case the transformation
can be written as X � Y . Also, in case we have infinitely many fixed points, they
will form a semi-algebraic variety, since the defining equations for the set of fixed
points are algebraic and we have some inequalities in the definition of the space. In
each case, we’ll present the dimension of this variety over R.

Proposition 4.2.1 Let M be a symplectic transformation M that fixes a point
in ∂2SH2, (case I) and is of type one, M = diag(A,A−T), |λ1(M)|, |λ2(M)| 6= 1.
Then the map will have:

• a 1-dimensional variety of fixed points, if it has only two distinct real eigen-
values, each one with a corresponding eigenspace of dimension 2,

• four fixed points if it has four distinct real eigenvalues,

• three fixed points if it has only two real distinct eigenvalues, each one associated
with a 2× 2 Jordan block, or

• two fixed points if it has two complex (conjugate) eigenvalues.

Moreover, all fixed points will lie in the Shilov boundary.

Notice that in the case where M has two real eigenvalues α and β, it is conjugate
(in Sp4R) to X�Y , X,Y ∈ SL2R, X with eigenvalues α, α−1 and Y with eigenvalues
β, β−1. These were hyperbolic maps, with two fixed points each, so the four fixed
points in the case α 6= β are exactly the expected fixed points: they correspond to
the four possible combinations of those two pairs of fixed points in ∂2SH2. Notice
also that in the case α = β we have many unexpected fixed points. This result agrees
with the results in section 5 of [FH1], where the case αIn ⊕ (1/α)In is discussed.
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Proposition 4.2.2 Let M be a symplectic transformation that fixes a point in
∂2SH2 (case I) and is of type two:

0 1 0 0
−1 b 0 0
0 δ b 1
0 0 −1 0

 , δ = 1, 0, |b| ≤ 2

(a) If C = 0, it will have

• a 2-dimensional variety of fixed points, including points inside SH2 if A
is not a Jordan block,

• a 2-dimensional variety of fixed points lying on both strata of the boundary
if A is a Jordan block.

(b) If C 6= 0, it will have one fixed point on the small boundary.

Notice that this is the only case where we can have only complex eigenvalues
(all on the complex unit circle) with Jordan blocks associated to them (case δ = 1).

Proposition 4.2.3 A symplectic transformation M that fixes a point in ∂2SH2

(case I) and is of type three,
1 0 0 0
0 α 0 0
δ 0 1 0
0 0 0 1/α

 , δ = 0,±1,

will have:

• a 2-dimensional variety of fixed points, lying on both strata, if the eigenvalue
1 has a corresponding eigenspace of dimension 2 (C = 0), or

• two fixed points if there is a 2× 2 Jordan block associated with the eigenvalue
1 (C 6= 0).

In this case, we can always write M = X � Y , where X is either I2 or a Jordan
block (a parabolic map) and Y a hyperbolic one with eigenvalues α and 1/α. Here,
the results agree with what was expected, and moreover, all the fixed points are in
Cl(H×H).
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Proposition 4.2.4 Let M be a symplectic transformation that fixes a point in
∂2SH2 (case I) and is of type four:

1 0 0 0
0 ±1 0 0
δ1 0 1 0
0 δ2 0 ±1

 , δ1, δ2 = 0,±1.

(a) If A = diag(1,−1), it will have

• a 4-dimensional variety of fixed points, both inside SH2, and in both strata
of the boundary, if C = 0,

• a 2-dimensional variety of fixed points, located on both strata, if C has
rank 1, or

• one fixed point, if C has rank 2.

(b) If A = I (and C 6= 0), it will have

• a 2-dimensional variety of fixed points, on both strata if C 6= ±I, and

• one fixed point if C = ±I2.

All the fixed points here are in Cl(H×H), except in case A = I2 and C = diag(1,−1).

Again, in this case, we can write M = X � Y , with X,Y being ±I2 or a Jordan
block. Notice however, that the previous result gives us the expected fixed point in
the cases (

1 0
1 1

)
�
(

1 0
1 1

)
and

(
1 0
−1 1

)
�
(

1 0
−1 1

)
,

where A = I2 and C = ±I2, but it shows many unexpected fixed points in the case

M =
(

1 0
1 1

)
�
(

1 0
−1 1

)
,

which corresponds to C = diag(1,−1). This shows that, even though these last
two transformations have the same Jordan structure, they have different dynamics,
which means that, even though they are conjugate in GL4R they are not so in Sp4R.

Notice also that whenever we got a finite number of fixed points, they were all
in ∂2SH2.
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Proposition 4.2.5 A symplectic transformation that fixes a point in ∂1SH2

(case II) is either conjugate to X � Y , with X elliptic, or must fall under types
2 or 4 above. In case it is similar to X � Y , it has the form

a1 0 −c1 0
0 a4 0 0
c1 0 a1 0
0 δ 0 a−1

4

 with a2
1 + c2

1 = 1, δ = 0,±1,

δ 6= 0⇒ a4 = ±1.

The map will have

• two fixed points in ∂1SH2 if Y is hyperbolic,

• one fixed point if Y is parabolic, and

• a 2-dimensional variety of fixed points if Y = I2.

All the fixed points will be in Cl(H×H).

Proposition 4.2.6 A symplectic transformation not equal to ±I4 with a fixed
point inside SH2 (case III) is always similar to X � Y , with X and Y elliptic or
±I2. The corresponding normal form is

a1 0 b1 0
0 a2 0 b2
−b1 0 a1 0

0 −b2 0 a2

 α = a1 + ib1, β = a2 + ib2,
|α| = |β| = 1.

The map will have:

• one fixed point if α 6= β, and neither of them is real,

• a 2-dimensional variety of fixed points if one of X and Y is elliptic and the
other is ±I2,

• a 2-dimensional variety of fixed points if α = β, α, β /∈ R,

• a 4-dimensional variety of fixed points if one of X and Y is I2 and the other
is −I2.

All the fixed points will be in Cl(H×H), except in case α = β.

The last case had already been studied in proposition 4.2.4, it corresponds to
A = diag(1,−1) and C = 0. Here we get only the expected fixed points unless
α = β, or equivalently, diag(α, α) 6= diag(β, β)−1. We can also conclude that in the
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third case here (α = β), M has to be conjugate to a matrix that fixes a point in
∂2SH of type 2, with δ = 0, since that matrix had 4 complex non-real eigenvalues
and it had a 2-dimensional variety of fixed points inside SH2.

As we now look back to all our cases, we can conclude the following result.

Proposition 4.2.7 Let M be a symplectic transformation with only a finite
number of fixed points. Then they must be either all in the same boundary stratum
or all inside SH2.

To finish this section, we state a result that brings together our considerations
about the maps that can be expressed as X � Y .

Theorem 4.2.8 Let X and Y be any matrices in SL2R. Then the map induced
on SH2 by X�Y will have infinitely many unexpected fixed points in Cl(SH2) if and
only if Y is similar to X−1 in SL2R. In case it isn’t, we’ll have only the expected
fixed points, finite in number if neither X nor Y are ±I2.

Proof. Let’s consider first the case when Y is similar to X−1 in SL2R. Then
X � Y is similar to X �X−1 in Sp4R, since if X−1 = QY Q−1, we have X �X−1 =
(I2 �Q)(X � Y )(I2 �Q)−1.

If X is hyperbolic, then X � X−1 is of type 1, proposition 4.2.1, and can be
brought to the form aI2 ⊕ 1

aI2, a > 1. We have infinitely many fixed points as
opposed to the four expected ones.

If X is parabolic, then

X �X−1 is similar to
(

1 0
1 1

)
�
(

1 0
−1 1

)
up to sign,

which is our Type 4, proposition 4.2.4, with A = I2 and C = diag(1,−1), which also
has infinitely many fixed points.

If X is elliptic, the result comes from proposition 4.2.6, Y is similar to X−1 in
SL2R if α = β. Notice that the case Y similar to X in SL2R corresponds to α = β,
that yields only one fixed point.

If X = I2 or −I2, the transformation X�X−1 is the identity, and it will fix every
point in Cl(SH2), more than just Cl(H×H). In any of these cases, the unexpected
fixed points lie outside Cl(H×H), of course.

If X is not similar to Y in SL2R, we now list the possible cases and refer to
where their study is done. In each case, we get only the expected fixed points. The
cases X � Y are presented up to sign, but since M and −M have the same action,
the transformation is the same. Also, these are the only cases we need to consider,
since X � Y is similar to Y �X by a symplectic permutation matrix.
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X Y X � Y
hyperbolic hyperbolic Prop. 4.2.1, α 6= β

parabolic hyperbolic Prop. 4.2.3, δ = 1
elliptic hyperbolic Prop. 4.2.5
I2 hyperbolic Prop. 4.2.3

parabolic parabolic
Prop. 4.2.4, A = I2, C = ±I2

or A = diag(1,−1), rank(C) = 2
elliptic parabolic Prop. 4.2.5
I2 parabolic Prop. 4.2.3

elliptic elliptic Prop. 4.2.6
I2 elliptic Prop. 4.2.5

I2 −I2
Props. 4.2.5 or 4.2.4

with A = diag(1,−1), C = 0.

This concludes our proof. �

3 The boundary in the projective model

Before we present the proofs to the results above, we present some considerations
on the boundary. We’ll consider the projective model SPH2. Recall that this is
the subset of the Grassmanian G2n,n formed by all equivalence classes

[
(Z, I2)T

]
,

Z ∈ SH2 with [
W1

V1

]
=
[
W2

V2

]
⇔
(
W1

V1

)
=
(
W2

V2

)
U,

for some U ∈ GLnC.
In SD2, the infinite boundary is the set of points that is isomorphic to the set

{Z ∈ ∂SD2 : |Z − I| = 0}, which is the set where the map Z 7→ i(I +Z)(I −Z)−1 is
not defined. If we conjugate the map Z 7→ −Z−1, which is defined on SH2, by the
map g, which has as matrix (

iI iI
−I I

)
,

then we get the map Z 7→ −Z, defined on SD2. Now, if |Z − I| = 0, it is not always
true that | −Z − I| 6= 0, namely, if Z is similar to diag(−1, 1), then this is not true.
In this case, however, we can use the map Z 7→ iZ, on SD2 to bring it to the finite
boundary. To get the corresponding map on SH2, we notice that, for any α such
that |α| = 1, the mapping Z 7→ αZ on D corresponds to the mapping of H having
as matrix (

aI bI
−bI aI

)
,
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where a and b are real, β = a+ ib, β2 = α. So, in our case, for the mapping Z 7→ iZ
of D, we get the mapping of H defined by the matrix( √

2
2

√
2

2

−
√

2
2

√
2

2

)
. (4.3)

If we now apply these maps to the finite boundary of the projective model, we
get the following result.

Proposition 4.3.1 For every point in the boundary of SPH2, there is a repre-
sentative of one of the following forms:(

Z
I

)
,

(
I
−Z

)
or
(
I + Z
I − Z

)
,

with Z ∈ Sym2C, ImZ positive semidefinite in all cases. Moreover, we can take Z
to be non-invertible in the second case and Z real with eigenvalues 1 and −1 in the
third case.

Proof. The part of the boundary represented by the first type of matrices
corresponds to the finite boundary of SH2. The other two correspond to what you
get when you apply to this boundary the maps Z 7→ Z−1 and the one associated
with the matrix in (4.3). In this last case, what we get is

√
2

2

(
I + Z
I − Z

)
,

but we can multiply on the right by a scalar matrix in order to get the desired form,
ImZ being always positive semidefinite since we started out with such matrices
before applying the transformations. Now, if either I + Z or I − Z were invertible,
then we could multiply on the right by its inverse, and get one of the previous forms,
so we can assume that Z has eigenvalues 1 and −1. Let’s write the matrix as(

a b
b c

)
.

With eigenvalues 1 and −1, its trace has to be 0, which means that a = −c, and
for the imaginary part to be positive semidefinite, this means that Im a = Im c = 0.
Now, we must have | ImZ| ≥ 0, so −(Im b)2 ≥ 0, and therefore Im b = 0.

Finally, to see that we can take Z to be non-invertible in the second case, notice
that if it is, we can multiply on the right by −Z−1 and get a representative of the
first form. �

We’ll refer to points in this boundary as being of the first, second or third kind,
according to the representatives above.
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If you consider H×H ⊂ SH2, then it’s easy to see that ∂(H×H) corresponds to
the set of all above classes that can be expressed with a real diagonal Z.

4 Fixed points: proofs

We start with two technical lemmas.

Lemma 4.4.1 We have the following results.

1. If Z is a complex symmetric matrix and Im(Z) is positive definite then Z is
invertible.

2. If a real matrix A has a complex eigenvalue, and v is an eigenvector associated
to it, then v cannot be real.

3. If Z ∈ M2F , Z 6= 0 and not invertible, then there exist vectors u, v ∈ F 2 such
that Z = uvT. These vectors are uniquely defined up to scalar multiplication.
Moreover, if Z ∈ Sym2C or if Z ∈ Sym2R and is positive semidefinite (in the
real case), then we can write Z = uuT, with u ∈ C2 or u ∈ R2 respectively,
and the vector u is unique up to sign.

Proof. 1. Suppose Im(Z) is invertible, and Zv = 0 for some complex vector
v. Then Zv = 0, vTZ = 0 and thus vT(Z − Z)v = 0, and v = 0.

2. If v were real, with Av = αv and α ∈ C \ R, we would have

αv = Av = Av = αv = αv,

and therefore v = 0, since α 6= α.
3. The vector u is defined as the generator of ZC2 and v = (v1, v2)T is such

that (−v2, v1)T generates kerZ. This defines the vectors uniquely up to scalar
multiplication. For the second part, take

Z =
(
z1 z2

z2 z3

)
, for k ∈ F, F = R or C.

Then the vector (
√
z1, z2/

√
z1) will do, if z1 6= 0, otherwise take (z2/

√
z3,
√
z3),

since z1 and z3 cannot be both zero, otherwise Z = 0 because of the rank. Since
the vector u such that Z = uuT is defined up to scalar multiplication, if v = ku is
such that Z = uuT, then vvT = uuT = k2vvT and k = ±1. �
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Lemma 4.4.2 Consider a point of the type (I + Z, I − Z)T, with I + Z = uuT

and I − Z = vvT. Then u and v verify the following:

uTv = 0 and vTv = uTu = 2.

Moreover, any pair u, v satisfying the above conditions will yield a matrix Z such
that uuT = I + Z and vvT = I − Z.

Proof. We need that Notice that Z2 has two eigenvectors with eigenvalue
1, therefore it is the identity. This means that (Z − I)(Z + I) = Z2 − I = 0, which
implies that 0 = uuTvvT = (uTv)uvT, and since uvT is not the zero matrix, for this
would imply u = 0 or v = 0, we have uTv = 0. We will call this last equality the
perpendicularity condition. Also, uTu and vTv are the traces of I +Z and I −Z, so
they are both 2.

Conversely, take u and v as above. then Z := (uuT + vvT)/2 will be the desired
matrix. To check this, notice that (I +Z)u = 2u and (I +Z)v = 0, so I +Z = uuT,
since (u, v) is a basis of R2. We can similarly prove that I − Z = vvT. �

— // —

Now we will study the four possible types of transformations fixing 0 ∈ ∂2SH2

as described above in page 45, number I.

Type 1. The matrix M is of the form(
A 0
0 A−T

)
.

as presented before. Using again square brackets to denote equivalence classes, the
equation we get when we look for fixed points of the first kind is(

A 0
0 A−T

)[
Z
I

]
=
[
AZ
A−T

]
=
[
AZAT

I

]
,

so we would need that AZ = ZA−T, which is impossible if Z 6= 0, in this case, since
this would only be possible if A and A−T shared an eigenvalue, which is not the case
here, since in this form |λi(A)| > 1, i = 1, 2. A similar analysis would show that
for the representatives of the second kind, we get only one fixed point with Z = 0.

Now for points of the third kind. We know that, since both matrices I + Z
and I − Z are symmetric and of rank 1, there exist vectors u, v ∈ C2 such that
I + Z = uuT and I − Z = vvT, u and v in the conditions of Lemma 4.4.2. we then
must have
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AvvTU = uuT and ATuuTU = vvT,

for some invertible U . Then we must have Au = αu and ATv = βv, because u
and v are well defined up to scalar multiplication, and hence α and β have to be
eigenvalues of A.

Let us now assume, for the moment, that A has two distinct real eigenvalues.
Then you can diagonalize A, say by conjugation with a matrix T ∈ GL2R,

T

(
α 0
0 β

)
T−1 = A,

which allows us to diagonalize M by conjugation, using the matrix T ⊕T−T ∈ Sp2R.
Now we take u and v to be eigenvectors of A and AT associated with different

eigenvalues, such that uuT = vvT = 2. Clearly, we have vTu = 0. Notice that
we cannot take two eigenvectors associated with the same eigenvalue, otherwise we
would not have the perpendicularity condition. If we choose u = (

√
2, 0)T, we have

I + Z =
(

2 0
0 0

)
, I − Z =

(
0 0
0 2

)
and we get a fixed point of the third kind with Z = diag(1,−1). If we chose
u = (0,

√
2)T, we get another fixed point, with Z = diag(−1, 1). So we get two fixed

points in this part of the boundary if A has two distinct eigenvalues.

Now, let’s suppose that the matrix A has only one eigenvalue. Then, either it is
similar to a Jordan block or it is scalar. In the first case, we can bring A to Jordan
form and assume that

A =
(
α 1
0 α

)
,

by conjugation, and find that the vectors u = (
√

2, 0)T and v = (0,
√

2)T will do,
since Au = αu, ATv = αv, uTv = 0 and vvT = uuT = 2. So, as before, we
have a fixed point, but in this case, only one, as there is no choice possible for the
eigenvectors.

If the matrix is scalar it must fix all the points in this part of the boundary.
The equations become a(I + Z)U = (I + Z) and A(I − Z)U = (I − Z), and if
I + Z = uuT and I − Z = vvT, then we can choose U such that uTU = (1/a)uT

and vTU = avT. This part of the boundary is 1-dimensional, since the matrices Z
can be written as Qdiag(1,−1)QT, Q ∈ O2. Notice that many of these points will
not be in Cl(H × H), even though the matrix can be expressed as X �X, with X
hyperbolic.
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Now, if A has two complex (conjugate) eigenvalues, we will have no fixed point.
Indeed, if the matrix A were to have a fixed point here, it would have to be with
a real Z (as we’ve seen in lemma 4.3.1), so we could choose v as above to be real.
But by lemma 4.4.1, we know that A does not admit real eigenvectors. By lemma
4.4.2, this is impossible.

We’ve now proved proposition 4.2.1.

Type 2. Now, let’s suppose that the matrix A has an eigenvalue α with |α| = 1,
If α = ±1, then A is a Jordan block—because of the identification M ≡ −M , we
can assume α = 1. The form obtained is

0 1 0 0
−1 b 0 0
0 δ b 1
0 0 −1 0

 , δ = 0, 1.

Then the other eigenvalue of A is α.
For fixed points of the first kind, (Z, I)T, we need

AZ(CZ +D)−1 = Z, or AZ = Z(CZ +D).

We will have two very different behaviors, for C = 0 and C 6= 0. Let’s assume
for the moment that C 6= 0, that is, δ = 1. In this case, if we look for an invertible
Z as solution of the above equation, we will find that A and CZ + D have to be
similar. Taking into account that A and D are already similar, we conclude that,
with

Z =
(
z1 z2

z2 z3

)
, CZ =

(
z2 z3

0 0

)
(4.4)

cannot alter neither the trace nor the determinant of D. From the trace, we conclude
that z2 = 0, and from the determinant, z3 = 0, so Z would not be invertible. Thus,
if we want a fixed point of this form, we need Z to be non-invertible. Let’s write
Z = vvT, with v being a complex vector. Then the equation becomes

AvvT = vvT(CvvT +D).

By the unicity of decomposition of a 2 × 2 matrix in this form, up to scalars, we
need

Av = αv or Av = αv.

Let’s go on assuming Av = αv, the other case is similar. Since we know how A looks
like from the normal form, we can write v = s(1, α)T, for some complex s. Then
vTCv = s2α and vTD = αvT, and the whole equation becomes

α(vvT) = s2α(vvT) + αvvT,
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and thus α = s2α+ α. Solving for s2, we get s2 = 2i(Imα)α, and the candidate for
fixed point will thus have

Z = 2i Imα

(
α 1
1 α

)
.

Notice, however, that the imaginary part of this matrix is

2
(

Reα Imα Imα
Imα Reα Imα

)
,

with determinant (Im2 α)(Re2 α − 1) ≤ 0, so we only have a fixed point here if α
is real, and in this case, the fixed point will be zero, the one we had already. The
study for the other eigenvalue is absolutely similar, and would lead to the same
conclusion.

Now for fixed points in the form (I,−Z)T. The equation we get in this case
is linear: DZ − ZA = C, and if we write down the entries, we get, with Z as in
equation (4.4), (

−bz1 + 2z2 z3 − z1

z3 − z1 2z2 + bz3

)
=
(

0 δ
0 0

)
,

which is clearly impossible if δ = 1, for we would need 0 = z3 − z1 = 1.
Before going to the third part of the boundary, let’s examine the case C = 0.

Then, the equations we get for fixed points in forms (Z, I)T and (I,−Z)T are very
similar, they are:

AZ = ZD and ZA = DZ,

respectively. Solving the first, we get as fixed points all matrices with

Z =
(

z1
bz1
2

bz1
2 z1

)
,

provided that Im(Z) ≥ 0. So, if we write Im(z1) = y, then we need y ≥ 0 and

| ImZ| ≥ 0⇔ y2 − b2y2

4
≥ 0⇔ y = 0 or b2 ≤ 4.

As b = α+α, we always have −2 ≤ b ≤ 2, so all these matrices provide indeed fixed
points. Notice also that the variety of fixed points will have many points inside SH2

if b2 < 4 ⇔ α ∈ C \ R. If b = ±2, then A is a Jordan block associated with the
eigenvalue 1 or −1. In this case, the variety will lie completely on the boundary,
partly on the big one, partly on the small one, depending on z1 being real or not.
In any case, it will clearly have dimension 2, since we can choose any z1 ∈ C with
Im z1 ≥ 0.
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The analysis for the points of the form (I,−Z)T would lead to a similar conclu-
sion.

Now for fixed points of the third kind, (I + Z, I − Z)T. The equations we get
are:

A(I + Z)U = I + Z and
C(I + Z)U +D(I − Z)U = I − Z

for some invertible U . Again, if we write I + Z = uuT with u real, we find that it
must be an eigenvector of A, thus, if the eigenvalues of A are complex (non-real)
there is no fixed point here. If A is a Jordan block, we take u = (1, 1)T (it’s the
only choice possible), and get the equation(

δ + 1 δ − 1
−1 1

)
U =

(
1 −1
−1 1

)
,

which is only possible if δ = 0, since the determinant of the matrix on the left is 2δ.
In this case U = I will do. These are the results in proposition 4.2.2.

Type 3. let’s assume that A has an eigenvalue 1 and another one α 6= ±1,
α2 6= 1; α has to be real. The form obtained is:

1 0 0 0
0 α 0 0
δ 0 1 0
0 0 0 1/α

 , δ = 0,±1.

For fixed points of the first kind, we come again to the equation AZ = Z(CZ+D). If
we write down the entries, having as usual Z as in equation (4.4), and C = diag(δ, 0),
δ = 0 or 1, we get (

z1 z2

αz2 αz3

)
=
(

δz2
1 + z1 δz1z2 + z2

α
δz1z2 + z2 δz2

2 + z3
α

)
If z2 6= 0, we can simplify the equations from entries (1,2) and (2,1), canceling

z2, obtaining 1 − 1
α = δz1 = α − 1, which leads to the equation α2 − 2α + 1 = 0,

only possible if α = 1. So, z2 has to be zero, and we end up with the conditions:

δz2
1 = 0 and

α2 − 1
α

z3 = 0,
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so to have a fixed point other that the one with Z = 0 we need z3 = 0 and δ = 0.
In this case, we get a variety of fixed points, and the variety will have dimension 2
since we can choose any z1 ∈ C. It will lie on both strata.

For fixed points of the second kind, the equation is DZ−ZA = 0 and if we write
down the entries, we get the conditions 0z1 = δ and z2 = z3 = 0, so we will only
have fixed points if δ = 0, in which case we get a variety of dimension 2 (any z3 will
do), lying on both strata.

For the third kind, we write again I+Z = uuT, and the equation AuuTU = uuT

tells us again that u has to be an eigenvector for A, so u = (
√

2, 0) or (0,
√

2). If we
take the first choice, the second equation CuuTU +DvvTU = vvT becomes(

2δ 0
0 2

α

)
U =

(
0 0
0 2

)
,

which is only solvable if δ = 0, in which case U = diag(1, α) will work. If we choose
u = (0,

√
2), we have the equation diag(2, 0)U = diag(2, 0), always possible. So here

we have two fixed points if δ = 0 and one if δ 6= 0.
Notice that the matrix in this case can always be written as I2 � Y , with Y

parabolic or hyperbolic. In either of these cases, notice that the points we get are
all inside Cl(H×H). The previous results yield proposition 4.2.3.

Type 4. The matrix is
1 0 0 0
0 ±1 0 0
δ1 0 1 0
0 δ2 0 ±1

 , δ1, δ2 = 0,±1.

We consider first the case when A = diag(1,−1). In this case D = A. This time
we’ll only look for fixed points on the first part on the boundary that have a non-
invertible Z, because the other ones will also have a representation as (I,−Z)T,
with Z invertible, of course. So, let’s assume that Z = vvT, with v complex. Then
we get, from equation AZ = Z(CZ +D),

AvvT = vvTCvvT + vvTA

= v(vTCvvT + vTA),

so v has to be an eigenvector of A, suppose it’s (s, 0)T for some complex s. Then
the equation becomes

vvT = vvTCvvT + vvT ⇔ vvTCvvT = 0
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and since vTCv = δ1s
2 so we must have δ1s

2 = 0, so if δ1 6= 0 we must have
s = 0, otherwise, we get a 2-dimensional variety of fixed points. If we carry out
similar computations for the other possible eigenvector, we would get to the a similar
conclusion: if δ2 = 0 we get infinitely many fixed points with v = (0, s)T, otherwise,
none. Therefore, if δ1δ2 6= 0, we only get one fixed point here, the one with Z = 0.
Otherwise, we get a 2-dimensional variety of fixed points if any one of the deltas is
zero, with two components if they are both zero. It will be located on both strata.

For points of the second kind, the equation is linear: AZ − ZA = C, and it can
be written as (

0 2z2

−2z2 0

)
=
(
δ1 0
0 δ2

)
,

so z2 = 0 and we only have fixed points here if C = 0, lying on both strata and also
inside, of the form diag(z1, z3) ∈ Cl(H×H). The variety will be 4-dimensional.

Now for the third part of the boundary. As usual, if I + Z = uuT, the equation
AuuTU = uuT tells us that u will have to be an eigenvector of A, so let’s pick
u = (

√
2, 0). The second equation, CuuTU + AvvTU = vvT, becomes, after some

simplification, (
2δ1 0
0 −2

)
U =

(
0 0
0 2

)
,

so it has a solution (namely U = A) if and only if δ1 = 0. In a similar fashion, we
could see that the other eigenvector provides a fixed point if and only if δ2 = 0, so
we get as many fixed points here as the number of zeros in C.

Finally, for the case A = I2. Notice that, in this case, if C = 0, the transforma-
tion we get is the identity, so we’ll always consider C 6= 0.

For the first part of the boundary, the equation is Z = Z(CZ + I). If Z is
invertible, we simplify the equation, and it leads to C = 0. If it is not, then, as
usual, consider Z = vvT, and the equation becomes

vvTCvvT = 0⇔ (vTCv)vvT = 0,

so, with v = (v1, v2), 0 = vTCv = δ1v
2
1 + δ2v

2
2. If at least one of the deltas is zero,

we will have a variety of solutions, all on the boundary. If they are both nonzero,
the result will depend on the signs of the deltas. If they have the same sign, we get
v2

1 = −v2
2, and we can’t find any nonzero real solutions to this equation. If we take

complex numbers, then Im(v2
1) = − Im(v2

2), and this is only possible if Im(v2
1) = 0,

since v2
1 and v2

2 are the diagonal entries of the matrix Z that must have positive
semidefinite imaginary part. Since its real parts have be symmetric, we need v1 to
be pure imaginary, say v1 = ki, and v2 real, v2 = k (or vice-versa). However, in this
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case, the imaginary part of Z would be of the type

Im(vvT) =
(

0 k2

k2 0

)
,

which is not positive semidefinite. So we get no fixed points in this case.
If the deltas have different signs, the equation v2

1 = v2
2 is solvable, taking v1 =

v2 such that its square has non-negative imaginary part. This will provide a 2-
dimensional variety of fixed points, all lying on the boundary. With Z like this, the
matrix CZ + D will have determinant 1, so they do provide fixed points. Notice
that the fixed points we got are not diagonal, so they’re not in Cl(H×H).

For the points of the second kind, the equation is C − Z = −Z, which only has
a solution if C = 0.

For the points of the third kind, take as usual I + Z = uuT and I − Z = vvT,
with uvT = 0 and uTu = vTv = 2. Then we need

uuT = uuTU and CuuT + vvT = vvTU,

which can be written as CuuT = v(vTU − vT), and so we must have Cu = λv,
for some real λ. If δ1 6= 0 and δ2 = 0, then Cu = (±u1, 0), and therefore v =
(v1, 0)T, and by the perpendicularity condition, u = (0, u2)T, which is impossible.
The same would happen if δ1 = 0 and δ2 6= 0. If C = ±I, then we would get
u = ±λv which is also impossible, because of the perpendicularity condition. If
C = ±diag(1,−1), then if u = (u1, u2)T, v = Cu/λ = (δu1,−δu2)T/λ, δ = ±1,
and the perpendicularity condition would give us u2

1 = u2
2, and from uTu = 2 we

get u1, u2 = ±1. Therefore, we must have u = (1, 1)T or (1,−1)T (the symmetric
vectors would yield the same matrix I + Z), and indeed v := Cu does satisfy the
perpendicularity condition (again, −Cu would lead to the same matrix I − Z). To
check, finally, that these two choices do indeed provide two fixed points, by finding
a suitable U , notice that, since Cu = λv, the equation above can be written

λv(uT + vT − vTU) = 0,

so if we choose U to be such that uTU = uT and vTU = vT + uT, we’ll have a
uniquely defined invertible linear transformation, since u and v are a basis of R2.

All the fixed points we got were in Cl(H × H), except for the case A = I2 and
C = diag(1,−1). Proposition 4.2.4 sums up these results.

— // —

Now, we present a study of the fixed points of the transformations that fix iL,
L = diag(1, 0) which are similar to X � Y , X, Y ∈ SL2R and we can assume X to
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be elliptic and Y parabolic, hyperbolic or the identity. Notice that if they’re not,
then they can be brought to types 2 or 4 above.

The matrix X � Y is
a1 0 −c1 0
0 a4 0 0
c1 0 a1 0
0 δ 0 a−1

4

 δ = 0,±1,

with a2
1 +c2

1 = 1. Notice that δ can only be nonzero if a4 = 1 (we are not considering
the case a4 = −1 because of the identification M ≡ −M). This corresponds to(

a1 −c1

c1 a1

)
�
(
a4 0
δ a−1

4

)
.

Let’s assume that c1 6= 0, otherwise we would get B = 0, which we have already
studied. The equation for the first part of the boundary and the points inside is
AZ +B = Z(CZ +D):(

a1z1 − c1 a1z2

a4z2 a4z3

)
=
(

c1z
2
1 + δz2

2 + a1z1 c1z1z2 + δz2z3 + z2/a4

c1z1z2 + δz2z3 + a1z2 c1z
2
2 + δz2

3 + z3/a4

)
.

If we subtract the equation coming from entry (2,1) from the one coming from
entry (1,2) we get

z2(a1 − a4) = z2(
1
a4
− a1),

and if z2 6= 0 we get to the equation 2a1 = a4 + 1/a4 and thus |a1| ≥ 1, which is
impossible, since we’re taking −1 < a1 < 1, so that c1 6= 0. So we must have z2 = 0,
and thus the equation from entry (1,1) gives us z1 = ±i, and only the solution z1 = i
is acceptable, since we want ImZ ≥ 0. Equation from entry (2,2) is

z3(δz3 + a−1
4 − a4) = 0,

so either z3 = 0 or δz3 = a4 − a−1
4 . The second equation is impossible if a4 6= 1

(since in this case δ = 0), possible (z3 = 0) if a4 = 1 and δ = ±1 and undetermined
if a1 = 1 and δ = 0. At any rate, we get a 2-dimensional variety of fixed points here
(z3 can be any) if a4 = 1 and δ = 0 and one fixed point, diag(i, 0), otherwise.

For the second part of the boundary, the equation is C −DZ = −Z(A−BZ):(
c1 − a1z1 −a1z2

−z2/a4 δ − z3/a4

)
=
(
−c1z

2
1 − a1z1 −c1z1z2 − a4z2

−c1z1z2 − a1z2 −c1z
2
2 − a4z3

)
.
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This time we get z1 = i from the (1,1) entry equation immediately (we’re as-
suming c1 6= 0), and then we can easily conclude that z2 = 0 from equation (1,2).
As for z3, the equation

a4z3 = z3/a4 − δ

becomes impossible if a4 = 1 and δ = ±1, undetermined if a4 = 1 and δ = 0 (any
z3 with Im z3 ≥ 0 will do), and z3 = 0 if a4 6= 1. So we have a variety if a4 = 1 and
δ = 0, one more fixed point if a4 6= 1, and no fxed point otherwise.

For the third part of the boundary, the equations are{
A(I + Z)U +B(I − Z)U = I + Z
C(I + Z)U +D(I − Z)U = I − Z (4.5)

Take B′ := diag(0, 1), and notice that B′B = 0. If we then multiply the first
equation above by B′ on the left, and consider, as usual I+Z = uuT and I−Z = vvT,
we get

B′AuuTU = B′uuT,

and hence uTU = αU for some α 6= 0.
Now we consider the second equation in (4.5), which can be written as

CuuTU +DvvTU = vvT.

Taking into account that uTU = αuT, and rearranging, we get

αCuuT − vvT = −DvvTU.

Multiplying the above equation on the right by v, and using the facts that vTv = 2,
uTv = 0, we get −2v = −(vTUv)Dv, and we must have Dv = βv for some β, so v
has to be an eigenvector of D, v = (0,

√
2)T or v = (

√
2, 0)T. We’ll see that neither

one will provide a fixed point.
If v = (0,

√
2)T, we must have u = (

√
2, 0)T, I+Z = diag(2, 0), I−Z = diag(0, 2),

and the second equation in (4.5) becomes(
2c1 0
0 2/a4

)
U =

(
0 0
0 2

)
,

which is impossible, with c1, a4 6= 0.
If v = (

√
2, 0)T, the first equation in (4.5) becomes(

−2c1 0
0 2a4

)
U =

(
0 0
0 2

)
,
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which is again impossible with c1, a4 6= 0. So we have no fixed points in this part of
the boundary.

Notice that if the transformation was of the type I2 × X, with X elliptic, the
fixed points we got are in Cl(H×H). This concludes the proof of proposition 4.2.5.

— // —

Finally, if M fixes iI2, then it must be in K. Consider the action of the conjugate
of K, Ũ2 = {U ⊕ U : U ∈ Un} on the Siegel disk SDn. We’ve seen that every
transformation is similar to a diagonal matrix is Ũ, so let’s assume that M =
diag(α, β, α, β), U = diag(α, β), |α|, |β| = 1. This corresponds to X � Y in K, with
X and Y elliptic or ±I2,

X =
(

Reα Imα
− Imα Reα

)
, and Y =

(
Reβ Imβ
− Imβ Reβ

)
,

The fixed point equation in SD2 is UZ(U)−1 = Z ⇔ UZ = ZU .(
αz1 αz2

βz2 βz3

)
=
(
αz1 βz2

αz2 βz3

)
,

which yields the three equations

αz1 = αz1, αz2 = βz2, βz3 = βz3.

The first equation will have a non-zero solution if and only if α = ±1, and we have
a similar result for the third. The second will have a nonzero solution if α = β and
this means that X and Y above are inverse to each other. If α 6= ±1, β 6= ±1 and
α 6= β we only have one solution, zero.

So we have nonzero solutions to one and only one equation (yielding a 2-dimen-
sional variety of fixed points) if one of α and β is ±1 and the other is not real or
α = β. We have nonzero solutions to two equations if α = 1 and β = −1 or vice-
versa, in this case we get a 4-dimensional variety. The last case left is α = β = 1 or
α = β = −1, which would yield M = ±I2.

The only case that yields non-diagonal fixed points (outside Cl(H×H)) is α = β.
This proves proposition 4.2.6.
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Chapter 5

On Discrete Subgroups

1 General concepts

We now take Γ to be a discrete subgroup of Sp2nR. As in the 2-dimensional hyper-
bolic plane, we can define a Dirichlet domain, for Γ. This is done in [Sie, p. 27ff],
we’ll follow this construction. Let Γ be a discrete group, Γ = {γj : j = 1, 2, . . .}, and
take γ1 = In. Take Z0 ∈ SHn such that it is not fixed by any element in Γ, except
the identity, and take

∆p(Z0) := {Z ∈ SHn : dp(Z,Z0) ≤ dp(Z, γj(Z0)), ∀j = 2, 3, . . .}.
We’ll call this set the Dirichlet domain for Γ centered at Z0. This is a set that is
closed in SHn. One important property of this set is that there is a fundamental
set D for Γ—that is, a set that contains one and only one element of each orbit of
Γ—satisfying Int(∆p(Z0)) ⊆ D ⊆ ∆p(Z0). The set ∆p(Z0) will be a star-shaped set,
that is, a set such that if Z ∈ ∆p(Z0), then it contains the geodesic arc connecting
Z0 and Z.

Another important concept is the Poincaré exponent. To define it we recall the
definition of the orbital counting function:

Np(r,A,B) = #{γ ∈ Γ : dp(A, γB) < r}, 1 ≤ p ≤ ∞.
The Poincaré exponent can now be presented as:

δp(Γ) := lim sup
r→∞

logNp(r,A,B)
r

, A,B ∈ Sp2nR/K.

This definition is independent of A and B. Consider now the associated Poincaré
series

gs,p(A,B) :=
∑
γ∈Γ

e−sdp(A,γB) for s > 0
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It is known that this series diverges if s < δp(Γ) and converges if s > δp(Γ). The
Poincaré exponent can also be defined as the exponent s0 such that the series con-
verges for s > s0 and diverges for s < s0.

Finally, we present the Poisson kernel of our space, with respect to the Shilov
boundary ∂n(Sp2nR/K). There is a formula for this kernel in [Jo1] (and also in
[Jo2]), with respect to the model SHn. Here we give a formula for the kernel in the
model Sp2nR/K. This kernel is a real function defined on Sp2nR/K×∂n(Sp2nR/K),
and for this boundary we’ll take the set defined in Chapter 3, equation (3.4):

∂n(Sp2nR/K) = {R(In ⊕ 0n)RT, R ∈ K}.

For A, B, C ∈ Sp2nR/K, F ∈ ∂nSp2nR/K and p ≥ 1, the function Pp is such that:

lim
A→F

edp(A,C)

edp(A,B)
=
Pp(B,F )
Pp(C,F )

. (5.1)

As with the Busemann functions, the distance d1 will be the one that works better
for the Shilov boundary, since for this distance the quotient on the left hand side of
the equation above will not depend on the choice of Weyl chamber representing F .
Notice that this expression can be written as

edp(A,C)

edp(A,B)
= edp(A,C)−dp(A,B) = eb1(A,B,C),

and the limit
Pp(B,F )
Pp(C,F )

= lim
A→F

ebp(A,B,C) = ebp(F,B,C).

As we have seen at the end of Chapter 3, formula (3.5), for p = 1, the Busemann
function can be written as

b1(F,B,C) = 2
(
log σ1(∧nC−1 ∧n F )− log σ1(∧nB−1 ∧n F )

)
.

So, we can write the Poisson kernel for d1 as

P1(A,F ) =
1

σ1(∧nA−1 ∧n F )
=

n∏
j=1

1
σj(A−1F )

and then indeed

eb1(F,B,C) = e2 log σ1(∧nC−1∧nF )−2 log σ1(∧nB−1∧nF )

=
σ1(∧nC−1 ∧n F )
σ1(∧nB−1 ∧n F )

=
P1(B,F )
P1(C,F )

.
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2 Limit sets

We are about to define the concept of a limit set for a discrete subgroup of Sp2nR.
In this chapter we’ll always work with the bounded domain boundary, with its
stratification, just like in the study we’ve made of the case n = 2 in Chapter 4. If
we now define the limit set of a discrete subgroup Γ by taking all the accumulation
points of an orbit of Γ, the first thing we notice is that this set depends on the orbit,
as can be seen from the following simple example. Take

Γ = <

(
1/2 0
0 2

)
� I2> = <diag(1/2, 1, 2, 1)>.

Then, if you take

Z =
(
z1 z2

z2 z3

)
∈ SH2,

its orbit will accumulate at (
0 0
0 z3

)
∈ ∂1SH2,

so the accumulation point does depend on the point chosen to define the orbit.
However, this does not happen if we only look at the accumulation points in ∂nSHn,
as we sill see. This is another very important property of the Shilov boundary. To
prove this, we start with a technical lemma.

Lemma 5.2.1 Let A,B ∈ MnR and j = 1, ..., n. Then we have the following
inequalities:

σn(A)σj(B) ≤ σj(AB) ≤ σ1(A)σj(B),
σj(A)σn(B) ≤ σj(AB) ≤ σj(A)σ1(B).

This is the multiplicative version of Weyl’s inequalities, and a proof of the right-
hand side of the two inequalities can be found in [HJ, p. 423]. The left-hand side is
argued similarly.

Theorem 5.2.2 Let Γ < Sp2nR be a discrete subgroup, and let Z,W ∈ SHn.
Then

Cl(ΓZ) ∩ ∂nSHn = Cl(ΓW ) ∩ ∂nSHn.

Moreover, if (γk) is a sequence of elements in Γ such that γkZ → Z0 ∈ ∂nSHn, then
γkW → Z0 ∈ ∂nSHn.
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Proof. Clearly the last result implies the one about the sets. In order to prove
it, notice that, because of the transitivity of the action of Sp2nR on ∂nSHn, we
can assume that γkZ → 0 ∈ ∂nSDn. Let W ∈ SHn be any point, and write
γkZ = Xk + iYk, γkW = Uk + iVk. According to our assumptions Xk + iYk → 0,
and we wish to prove that Uk + iVk → 0.

Take AK and BK to be the cosets in Sp2nR/K corresponding to Z and W
respectively, and consider furthermore the upper triangular form representatives for
the sequences γkAK and γkBK, as in equation (2.4):

Ak =

(
Y

1
2
k XkY

− 1
2

k

0 Y
− 1

2
k

)
, Bk =

(
V

1
2
k UkV

− 1
2

k

0 V
− 1

2
k

)
,

and we have
γkAK = AkK and γkBK = BkK.

Now, since for any C ∈ M2mR, its operator norm is given by

||C|| = max
||x||2=||y||2=1

|yTCx|,

we have

||C|| ≥ max
l,m=1,2

||Clm||, for C =
(
C11 C12

C21 C22

)
, Clm ∈ MnR, l,m = 1, 2. (5.2)

Because the γk’s are isometries for all dp’s, p ∈ [1,∞], we have

||B−1A|| = σ1(B−1A) = σ1(B−1
k Ak) = ||B−1

k Ak||.

Now, using the formula we have for the inverse of a symplectic matrix, we get

B−1
k Ak =

(
V
− 1

2
k Y

1
2
k V

− 1
2

k XkY
− 1

2
k − V −

1
2

k UkY
− 1

2
k

0 V
1
2
k Y

− 1
2

k

)
,

In view of equation (5.2), and considering the (2, 2) block of matrix B−1
k Ak

above,

||B−1A|| ≥ ||V
1
2
k Y

− 1
2

k ||.
Using the results in the previous lemma, we have

||V
1
2
k Y

− 1
2

k || = σ1(V
1
2
k Y

− 1
2

k )

≥ σ1(V
1
2
k )σn(Y

− 1
2

k )

= σ1(V
1
2
k )(σn(Yk)−1)

1
2

= σ1(V
1
2
k )σ1(Yk)−

1
2

= ||Vk||
1
2 ||Yk||−

1
2 .
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Part of the above inequality follows from the fact that for a symmetric positive
definite matrix Y the singular values are equal to the eigenvalues, and so σn(Y

1
2 ) =

λn(Y
1
2 ) = λn(Y )

1
2 = σn(Y )

1
2 .

Combining the last two results, we get

||B−1A|| ≥ ||Vk||
1
2 ||Yk||−

1
2

and thus
||Vk|| ≤ ||B−1A||2||Yk||.

As ||Yk|| → 0 we deduce that ||Vk|| → 0. From the (1, 2) block of (γkB)−1(γkA), we
get

||B−1A|| ≥ ||V −
1
2

k (Xk − Uk)Y
− 1

2
k ||

≥ ||V −
1
2

k (Xk − Uk)||σn(Y
− 1

2
k )

≥ σn(V
− 1

2
k )||Xk − Uk||σn(Y

− 1
2

k )

= σ1(Vk)−
1
2 ||Xk − Uk||σ1(Yk)−

1
2 .

Thus
||Xk − Uk|| ≤ ||B−1A||.||Yk||

1
2 ||Vk||

1
2 , k = 1, . . . , n,

and since Yk, Vk → 0, Xk − Uk → 0. As Xk → 0 we deduce Uk → 0, thus proving
the desired result. �

In the 2-dimensionl upper half plane, all fixed points of a transformation M
would appear also as limit points for any orbit <M>Z. This, however, will not be
the case in SHn. We give some examples.

In general, for a hyperbolic transformation M = A ⊕ A−T, |λn(A)| ≥ 1, and
γ = <M>, there will be two accumulation points for the orbit {Mk(Z) : k ∈ Z},
in spite of the other fixed points of the transformation. These two points will be
limk→∞M

k(Z) and limk→−∞M
k(Z), for any Z ∈ SHn.

Let’s study the case M−k first. Recall that |λj(A)| > 1, 1 ≤ j ≤ n, and
hence |λj(A−1)| < 1 and now it follows from the Jordan canonical form for A that
||A−k|| → 0 as k →∞.

The sequence M−k(Z) is

A−kZ(AT)−k and ||A−kZ(AT)−k|| ≤ ||A−k||2||Z|| → 0,

since for every m ∈ Z, ||Am|| = ||(AT)m||, so we must have M−k(Z)→ 0 as k →∞.
For Mk(Z), the limit point will be 0̃ = J(0), the image of 0 under the map

Z 7→ −Z−1, associated with the matrix J used to define the symplectic group.
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We have J−1MJ = A−T ⊕ A, |λj(A−T)| < 1 for all j, and we can apply here the
previous argument to conclude that (J−1MJ)k(Z) = J−1Mk(JZ) → 0, and hence
Mk(JZ)→ J(0), but since Z was arbitrary, Mk(Z)→ J(0).

We can see this more explicitly in the special case when M = X1 � . . . � Xn,
with all Xj ’s hyperbolic. We take them in diagonal form, with fixed points 0 and
∞ in ∂H, and with ∞ attracting and 0 repelling, for each one of them. Take p(0)
and p(∞) to be the points in ∂nSHn corresponding to (0 . . . , 0) and (∞, . . . ,∞) in
∂(H× . . .×H). We have p(0) = 0n and p(∞) = 0̃n.

By theorem 5.2.2, we can choose a point Z in H × . . . × H and look at the
accumulation points of its orbit—this will give us the accumulation points of any
orbit, since these points will be in ∂nSHn. As we can do the computations compo-
nentwise, we see that p(0) and p(∞) will be the accumulation points, the first for
{Mk(Z) : k → −∞} and the second for {Mk(Z) : k → ∞}. This agrees with the
previous result.

Also, in the case M = X1� . . .�Xn, with all Xj ’s parabolic, all with fixed point
0, we can use a similar argument to see that the only point in of accumulation for
the orbit will be 0n = p(0), in spite of the other fixed points the transformation
might have.

We can thus define several limit sets. We define them here as subsets of ∂nSDn,
but they can be obviously considered to be subsets of the Shilov boundary of any
of the models.

Definition 5.2.3 Let Γ < Sp2nR be a discrete group. We define the following
limit sets:

• Λh(Γ) – the closure of the set of all fixed points of hyperbolic transformations
in M ∈ Γ that appear as accumulation points of <M>Z, Z ∈ SDn,

• Λl(Γ) – the set of all limits of sequences of the type γkZ, Z ∈ SDn that lie in
∂nSDn,

• Λd(Γ) – the complement in ∂nSDn of Ω, the latter being the maximal open set
of ∂nSDn on which the action of Γ is properly discontinuous.

In the 2-dimensional half plane we always have that Λh(Γ) ⊆ Λl(Γ) ⊆ Λd(Γ),
and if Γ is non-elementary, then all three sets are equal (see the last proposition in
the Introduction, or [Bea]).

In our case, it is evident that Λh(Γ) ⊆ Λl(Γ) because all the accumulation points
in the former are in the latter, and since Λl is closed, we have the containment. Also,
by the study of fixed points of hyperbolic transformations made above, we can see
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that every limit point for a hyperbolic transformation will also be an accumulation
point for the orbit of an element in ∂nSHn, as all the arguments will hold even for
such a Z. This will imply that Λh(Γ) ⊆ Λd(Γ).

If we take, instead of non-elementary subgroups, Zariski dense subgroups (as in
[Alb]), we get an extra property for Λl(Γ). The following result is due to Shmuel
Friedland.

Theorem 5.2.4 Let Γ be a Zariski dense subgroup of Sp2nR. Then for any
hyperbolic element A ∈ Γ, with v being one of its fixed points that is a limit point,
Λh(Γ) = Cl(Γv) and this is the smallest closed Γ-invariant subset of ∂nSDn. More-
over, Λh(Γ) is a perfect set.

Proof. Since Γ is Zariski dense, it must have a hyperbolic element, this is a
consequence of the results in [GM]. Let A be such an element. Then, for N =

(
2n
n

)
,

let v ∈ CN be the eigenvector for the largest eigenvalue of ∧nA:

∧nAv = ρv, ρ =
n∏
j=1

λj(A).

Now, given a point w ∈ CN , we know that limm→∞[∧n(Am)w] = [v] in CPN−1 if
and only if vTw 6= 0 (again we use square brackets to denote equivalence classes).

Now consider our projective model SPHn, and take E to be any closed (non-
empty) Γ-invariant subset of ∧n(∂nSPHn) ⊂ CPN−1. Take any point w ∈ E. Since
Γ is Zariski dense, there exists Q ∈ Γ such that vT∧n (QT)w 6= 0. Then consider the
hyperbolic element A1 := QAQ−1 ∈ Γ. By what we just said, ∧n(Am1 )w converges
to Qv ∈ CPN−1. Since we chose w ∈ E, and E was Γ-invariant, we have Qv ∈ E,
and hence Γv ⊆ E and Ev := Cl(Γv) ⊆ E.

Clearly Ev is also closed and Γ-invariant, so if we take another hyperbolic element
B ∈ Γ with the corresponding fixed point u, and repeat the previous argument with
Ev instead of E, we get Eu := Cl(Γu) ⊆ Ev, and finally, if we consider E = Eu, we
conclude that Eu = Ev. This shows that, for any hyperbolic element A with limit
fixed point v,

Λh(Γ) = Cl(Γv)

and this is the smallest closed Γ-invariant subset of the n-th stratum of the boundary.
It is left to show that this is a perfect set. Let w be a point in Λh(Γ). If w /∈ Γv

then it has to be in its closure, and so it is an accummulation point of Γv ⊆ Λl(Γ).
If w ∈ Γv, then we can assume, without loss of generality that v = w. Since Γ is
Zariski dense, there exists a point z ∈ Γv such that z 6= v and vTz 6= 0 and hence
limm→∞ ∧n(Am)w = v and v is an accumulation point of Λh(Γ). �

We now proceed to prove that Λl(Γ) ⊂ Λd(Γ).
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Lemma 5.2.5 Let (Mk) be a sequence of elements in Sp2nR. Then if Mk(Z)→
Z0, Z0 ∈ ∂nSHn, then the largest n singular values of Mk go to ∞, and hence the
other n go to 0.

Proof. Consider the singular value decomposition, with a slight modification:
Mk = QkDkRk,

Qk, Rk ∈ K, Dk = Σs(Mk)−1,

Dk = Sk ⊕ S−1
k , Sk = diag(σ2n(Mk), . . . , σn+1(Mk)),

This decomposition exists because Σs(Mk)−1 = JΣs(Mk)JT. Assume, without loss
of generality, that Z0 = 0. Then consider the point iIn ∈ SHn. We know, because
of theorem 5.2.2, that Mn(iIn) → 0, Mn(iIn) = RkDk(iIn), since Rk(iIn) = iIn.
Then, Dk(iIn) = SkiInSk. If not all the eigenvelues of Sk go to 0, the limit matrix
limk Rk(SkiInSk) will not be zero, so we must have Sk → 0 as we wished. �

It would be possible, if a bit more cumbersome, to prove this result without
using theorem 5.2.2, by considering the sequence MkZ̃K ∈ Sp2nR/K, with Z̃K
being the coset corresponding to Z, and looking at the n smallest eigenvalues of
matrices MkZ̃, and concluding they have to go to 0. The result would then come
from the Weyl inequalities.

Theorem 5.2.6 Let Γ < Sp2nR be a discrete subgroup. Let Z0 ∈ ∂nSHn such
that for some sequence of elements (Mk) in Γ, Mk(Z) → Z0 for some (and hence
any) Z ∈ SHn. Then there exist W ∈ ∂SHn and a subsequence of (Mk), Mkm, such
that Mkm(W )→ Z0.

Proof. Let Mk = RkΣs(Mk)−1Qk in the previous result. Now, since K is
compact, we can find subsequences of Qk and Rk such that Qkm → Q and Rkm → R,
Q,R ∈ K. Rename the subsequence, so that we can assume that Qk and Rk
converge. As usual, without loss of generality, we’ll consider Z0 = 0.

We are going to use our projective model SPHn. As a general result in the
projective space CN−1, we know that if v ∈ CN , v 6= 0, and Xk is a sequence of
matrices in MNC such that Xk.zk → X for some sequence of non-zero complex
numbers zk, and Xv 6= 0, then lim[Xkv] = [Xv], using as usual square brackets to
denote equivalence classes.

Let’s apply this last result to our case, with Xk := ∧n(Mk) and zk := 1/||Mk||.
Take Σs(M)−1 = diag(dk,1, . . . , dk,2n), a symplectic diagonal matrix whose first n
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diagonal entries are the n smallest singular values of Mk. For 1 ≤ j ≤ n, we have

Σs(Mk) = diag(σ1(Mk)−1, . . . , σn(Mk)−1, σ2n(Mk)−1, . . . , σn+1(Mk)−1)
= diag(σ2n(Mk), . . . , σn+1(Mk), σ1(Mk), . . . , σn(Mk))
= diag(dk,1, . . . , dk,2n),

and, by the previous result, dk,j → 0 for 1 ≤ j ≤ n.
Notice that, given the way we chose the order of the singular values of Mk in

the diagonal of Dk, we have

∧n(Dk)∏2n
j=n dk,j

→ ∧n(0n ⊕ In) as k →∞.

Thus we have:

∧n(Mk)
|| ∧n (Mk)||

=
∧n(Qk) ∧n (Dk) ∧n (Rk)

|| ∧n (Dk)||

= ∧n(Qk)
∧n(Dk)∏2n
j=n dk,j

∧n (Rk)

→ ∧n(Q) ∧n (0n ⊕ In) ∧n (R)
= ∧n(Q(0n ⊕ In)R).

Denote this limit matrix by M :

M := ∧n(Q(0n ⊕ In)R).

Now, take any point W in Cl(SHn) of the form RTW ′ where W ′ admits a represen-
tative of the type (W ′0, In)T, W ′0 ∈ SymnC, Im(W ′0) ≥ 0; we have this if W ′ is either
inside SHn or in the finite part of ∂SHn, so we can find such W ’s in any stratum of
the boundary. Take the following representative of W :(

W1

W2

)
:= RT

(
W ′0
In

)
.

Then we have

M ∧n (W1,W2)T = ∧n
(
Q(0n ⊕ In)(W ′0, In)T

)
= ∧n(Q(0n, In)T) 6= 0,
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since this corresponds to the image of (0n, In)T ∈ ∂nSPHn under Q. This means we
can write

lim∧nMk ∧nW = lim[∧n(Mk) ∧n (W1,W2)T]
= [M ∧n (W1,W2)T]
= [∧n(Q(0n ⊕ In)RRT(W ′0, In)T)] (5.3)
= [∧n(Q(0n, In)T]
= ∧n[Q(0n, In)T].

Now consider our hypothesis that Mn(Z) → 0. We must have the following:
first, since obviously Z = RTZ ′, with Z ′ = RZ ∈ SHn, by formula (5.3) above with
W = Z, we get

limMk[(Z, In)T] = ∧n[Q(0n, In)T];

and second, since Mn(Z)→ 0,

limMk[(Z, In)T] = ∧n[(0n, In)T].

Combining the two equalities, we get ∧n[Q(0n, In)T] = ∧n[(0n, In)T], and hence
Q ∈ Stab(0) ∩K = Õn.

Finally, we get, from the equality above and equation (5.3),

lim
k→∞

∧nMk ∧nW = ∧n[Q(0n, In)T]

= ∧n[(0n, In)T]

and Mk(W ) → 0, as we wished, since we could pick W ′ from any of the boundary
strata, in particular, from ∂nSHn, which proves what we wished. �

This last result would also provide a proof that every orbit under the action of Γ
has the same accumulation points in ∂nSHn, with a result slightly weaker that the
one in theorem 5.2.2, namely, that if a sequence MkZ converges to Z0 ∈ ∂SHn, then
there is a subsequence of Mk, Mkm , such that MkmZ → Z0. This is because, as we
have seen, any Z ∈ SHn can be written as RTZ ′, with Z ′ = RZ having (obviously)
the representative (Z ′, In)T in SPHn.

Since clearly the set ∂nSDn \ Λd(Γ) cannot have accumulation points for any
orbit of an element of ∂nSDn, we arrive at the desired result.

Corollary 5.2.7 For a discrete subgroup Γ < Sp2nR, we have

Λh(Γ) ⊂ Λl(Γ) ⊂ Λd(Γ).
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To finish this chapter, we present discrete subgroups of Sp4R, Γ1 and Γ2, such
that Λh(Γ1) 6= Λl(Γ1) and Λl(Γ2) 6= Λd(Γ2). For Γ1, we can take

Γ1 := <X �X>, with X =
(

1 0
1 1

)
.

The group will have only one limit point, 0 ∈ ∂2SH2, so Λl(Γ1) = {0}, and since
there are no hyperbolic maps in the group, Λh(Γ1) = ∅.

For the other group, we can take

Γ2 := <Y � Y >, with Y = diag(1/2, 2).

In this case, Λl(Γ2) = {0, 0̃}, where 0̃ represents as usual the point J(0) ∈ ∂2SH2.
The set Λd(Γ2) will have to include at least the 1-dimensional variety of fixed points
in ∂2SH2 also, so we must have Λl(Γ2) 6= Λd(Γ2).
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