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a b s t r a c t

An experimental phylogeny was constructed using bacteriophage T7 and a propagation protocol, in the
presence of the mutagen N-methyl-N0-nitro-N0-nitrosoguanidine, based on Hillis et al. [Hillis, D.M., Bull,
J.J., White, M.E., Badgett, M.R., Molineux, I.J., 1992. Experimental phylogenetics, generation of a known
phylogeny. Science 255, 589–592]. The topology presented in this study has a considerable variation in
branch lengths and is less symmetric than the one presented by Hillis et al. [Hillis, D.M., Bull, J.J., White,
M.E., Badgett, M.R., Molineux, I.J., 1992. Experimental phylogenetics, generation of a known phylogeny.
Science 255, 589–592]. These features are known to present additional difficulties to phylogenetic infer-
ence methods. The performance of several phylogenetic methods (conventional and less conventional)
was tested using restriction site and nucleotide data. Only methods that encompassed a molecular clock
or those based on sequence signatures recovered the true phylogeny. Nevertheless a likelihood ratio test
rejected the hypothesis of the existence of a molecular clock when the whole sequence data set was con-
sidered. This fact or the particular substitution pattern (mainly G ? A and C ? T) may be related to the
unexpected performance of distance methods based on sequence signatures. To test if the results could
have been predicted by simulation studies we estimated the evolution parameters from the real phylog-
eny and used them to simulate evolution along the same tree (parametric bootstrap). We found that sim-
ulation could predict most but not all of the problems encountered by phylogenetic inference methods in
the real phylogeny. Short interior branches may be more prone to error than predicted by theoretical
studies.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Studies that specifically address the subject of known phyloge-
nies essentially report the cases of known transmission stories for
which records have been kept (Leitner et al., 1996), well estab-
lished phylogenetic relationships (by fossil records and morpho-
logical data) (Russo et al., 1996; Steinbachs et al., 2001) and
experimental phylogenies (Bull et al., 1993) or pseudo-phylogenies
(Sanson et al., 2002) generated for the purpose of testing phyloge-
netic methods. It can be argued that historical records are severely
limited, that such organisms have undergone relatively little
genetic divergence (as is the case for experimentally generated
phylogenies where mutation rate is usually an issue) or that they
cover little diversity of the phylogenies estimated from the real
world. Nevertheless they do involve real, evolving biological organ-
isms and situations for which phylogenetic methods are supposed
to be applicable. In a simulation a particular mutation model is
ll rights reserved.
defined but then there’s no way of knowing which substitution
model would be tolerated by a real organism or how substitutions
in different parts of a gene might interact. This is not a limitation
for experimental phylogenies (Hillis et al., 1994).

The experimental model used in this study has been imple-
mented elsewhere (Hillis et al., 1992) and its merits (Bull
et al., 1993; Hillis et al., 1993) and demerits (Sober, 1993) exten-
sively argued in the literature. We must add, however, that in
the past few years several studies have been conducted that con-
tinue to argue on the advantages of this model. For example, the
amazing potential of T7 to recover from the most severe condi-
tions was demonstrated by the work of Heineman et al. (2005)
that reported the re-evolution of lysis in T7 deleted for its lysin
gene or by the experiences of Springman et al. (2005) that
showed the regain of wild-type position of the RNApol coding
gene ectopically positioned. These results illustrate the extreme
plasticity of T7 genome, an essential feature for an experimental
phylogeny model, since many of the interesting problems in
phylogenetic reconstruction concern organisms that differ by a
large percentage of their genome.
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There are a number of papers exploring the applications and
pitfalls of Bayesian inference (Holder and Lewis, 2003; Huelsen-
beck et al., 2002). Like the maximum-likelihood method, Bayesian
estimation of phylogeny is based on the likelihood function which
should be an advantage since maximum-likelihood (ML) is known
to outperform other methods of phylogenetic estimation under a
range of conditions. Bayesian methods for phylogeny inference
are now a practical alternative to more traditional methods. The
primary analysis of Bayesian inference produces both a tree esti-
mate and measures of uncertainty for the groups of the tree (faster
than ML bootstrapping) and in addition allows complex models of
sequence evolution to be implemented. Major disadvantages are
that the prior distributions for parameters must be specified and
that it can be difficult to determine whether the Markov chain
Monte Carlo approximation has run long enough. For the above
reasons, Bayesian analysis seems unavoidable when the goal is to
compare the efficiency of tree-building methods.

Besides traditional and Bayesian methods, the emergence of
new approaches to molecular phylogeny that take into account
new characteristics of sequences has been rising. Among these ap-
proaches is the sequence signature method. A sequence signature
is defined as the whole set of frequencies of short oligonucleotides
in a sequence (Deschavanne et al., 1999). Species-specificity and
conservation of signature in any part of the genome makes
sequence signature a promising tool for phylogenetic analysis. It
has been hypothesized that a phylogenetic analysis of signatures
can reflect genomic changes that shift motif frequencies, yielding
higher-order homologies available for phylogenetic analysis
(Chapus et al., 2005). In T7, RNApol causes a class of transcrip-
tion-induced mutations (C ? T) that alter the composition of bac-
teriophage T7 genome and may be a significant force in genome
evolution (Beletskii et al., 2000). In addition to this ‘‘natural”
substitution process, T7 was propagated in the presence of NG,
which enhanced several times this kind of mutation rate and also
G ? A mutations. The previous knowledge of this preferential
mutation spectrum led us to the use of the of sequence signature,
since we suspected it might be a favourable situation for this
method.

Our goal was to test the performance of traditional and a few
emergent phylogeny inference methods in the recovery of an
experimentally generated phylogeny presenting variation in
branch lengths and a less symmetric topology than previously con-
sidered (Hillis et al., 1992). The completely symmetric topology
had already been tested in the paper of Hillis et al. (1994) and all
methods recovered the true tree, so in order to perform a compar-
ison an almost symmetric tree (Fig. 1B) was adapted from the more
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Fig. 1. (A) True asymmetric tree. (B) True symmetric tree. Circled numbers represent in
sites.
complex tree (Fig. 1A) and the performance of all the methods with
these two phylogenies was compared. Despite having a symmetric
branching pattern, tree B (Fig. 1) presents two particularly short
interior branches, which allow the discrimination between the ef-
fects of symmetry and the effects of short branches.
2. Materials and methods

2.1. Propagation of bacteriophage T7

Escherichia coli strain W3110 was used to propagate bacterio-
phage T7 strain NCCB 3462 following a protocol similar to the
one described by Hillis et al. (1992). The phage was grown in
1 ml cultures of E. coli in the presence of 20 lg/ml of the mutagen
N-methyl-N0-nitro-N0-nitrosoguanidine (NG). After lysis proceeded
to completion a 10 ll aliquot of this lysate was used to infect an-
other culture. This procedure was repeated five times and then
the phages were plated on solid medium. Next, a single plaque
was randomly chosen, the clonal stock of phages present in this
plaque was eluted from the agar and an aliquot was used to infect
the first lysate of the next round of five.

2.2. Phylogeny construction

Bacteriophage T7 was serially propagated (as described above)
according to the topology and branch lengths of the tree depicted
in Fig. 1A. At each internal node, the clonal stock recovered from
one plaque was used to infect two independent lineages.

To check possible contamination or swaps between different
lineages, the genomes of the phages in every isolated plaque were
fully mapped with HpaI and ClaI and partly mapped with Sau3AI.
The restriction pattern of these enzymes evolved very quickly in
this system (in particular Sau3AI) so the few cases of contamina-
tion were immediately detected and lineages were regrown from
the last contamination free stock.

2.3. Restriction data (physical mapping)

Both the terminal and internal nodes were mapped for 36 en-
zymes (the same 34 enzymes used by Hillis et al. (1992): ApaLI,
AseI, BamHI, BclI, BglII, BstBI, BstEII, BstNI, ClaI, DraI, EcoNI, EcoRI,
EcoRV, HindIII, HpaI, KpnI, MboI, MluI, NcoI, NdeI, NheI, NsiI, PstI,
PvuI, PvuII, SacI, SalI, ScaI, SpeI, SspI, StuI, XbaI, XhoI and XmnI,
plus Eco72I and SnaBI). Viral DNA from these 26 nodes (internal
and terminal) was digested with each of the enzymes, electropho-
A

B

C

D

I

J

M

O

3

4

5

8

10

12

62

3

3

16

12

13

15

25
16

27
9

49
12

20

A

B

C

D

I

J

M

O

3

4

5

8

10

12

62

3

3

16

12

13

15

25
16

27
9

49
12

20

A

B

C

D

I

J

M

O

3

4

5

8

10

12

62

3

3

16

12

13

15

25
16

27
9

49
12

20

B

terior nodes. Numbers above branches indicate number of differences in restriction



A. Sousa et al. / Molecular Phylogenetics and Evolution 48 (2008) 563–573 565
resed on 0.8% agarose gels and then Southern blotted. Fine map-
ping of the restriction site variation was accomplished by the
amplification, for each of the nodes, of 22 partly overlapping frag-
ments ranging from 615 to 4907 bp (Fig. 2) covering the whole
genome (except for the first 1363 and the last 63 bp) for each
of the nodes (Annex 1). These fragments were either used as
probes for Southern blots hybridization or to be digested with
restriction enzymes in order to infer the loss or gain of new sites.
This methodology allowed a precise location of the majority of
the newly created sites. The data produced from the whole set
of enzymes, from all the enzymes except Sau3AI and exclusively
from Sau3AI were gathered in 3 matrixes (Annex 2) and used
for phylogenetic analysis.

2.4. Sequence data

A total of 4824 bp were sequenced for each of the 14 terminal
nodes. The sequenced regions (Fig. 2) consisted of 9 fragments
scattered through the genome and covering both essential and
non essential functions of the phage. This strategy was chosen in
light of the finding by Cummings et al. (1995) that ‘‘blocks of con-
tigous sites are less likely to lead to the whole-genome tree than
samples composed of sites drawn individually from throughout
the genome”. These fragments were sequenced at least once on
both strands using the CEQ Dye Terminator Cycle Sequencing
(DTCS) Quick Start Kit (Beckman Coulter). Nucleotide sequences
were determined with a CEQ 2000 XL Sequencer (Beckman
Coulter) and are available at GenBank under the Accession Nos.:
EF516992–EF517117.

All the sequence alignments were performed with CLUSTAL X
(version 1.83) (Thompson et al., 1997) with the default options.

2.5. Phylogenetic analysis

2.5.1. Congruence analysis
Measuring and testing the significance of phylogenetic incon-

gruence is necessary when considering genome-scale datasets
composed of multiple genes (Planet, 2006). Non significant incon-
gruence can be due to inadequate sample sizes but significant
incongruence can arise from different rates of evolution between
partitions (Kolaczkowski and Thornton, 2004; Mossel and Vigoda,
2005) (codon position, functional constraints) or from partitions
that have had different histories.

Four character incongruence tests were performed to decide
whether or not to combine nucleotide and restriction site data.
In addition incongruence between each pair of genes and between
the fast evolving Sau3AI restriction sites and all the other enzymes
was also assessed.

The parsimony-based tests were the incongruence length differ-
ence test (ILD) (Farris et al., 1994), Kishino–Hasegawa test (KH)
P1 P2 P3 P4 P5 P6 P7
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Fig. 2. T7 bacteriophage genome. Gray boxes stand for the PCR amplified regions used fo
used for fine restriction site mapping (dimension of these sequences, in bp, are showed
‘*’ Means fully sequenced gene. The known functions for some of these genes are also s
(Kishino and Hasegawa, 1989), winning-sites test (Prager and
Wilson, 1988) and Templeton test (Templeton, 1983) as imple-
mented in PAUP* (version 4.0b10) (Swofford, 2003).

2.5.2. Phylogenetic inference
2.5.2.1. Traditional approach. The seven methods of phylogenetic
inference evaluated were: unweighted pair-group method of arith-
metic averages (UPGMA) (Sokal and Michener, 1958), neighbour
joining (NJ) (Saitou and Nei, 1987), minimum-evolution (ME)
(Rzhetsky and Nei, 1992), Cavalli-Sforza method (uLS) (Cavalli-Sforza
and Edwards, 1967), Fitch–Margoliash method (wLS) (Fitch and
Margoliash, 1967), maximum parsimony (MP) (Eck and Dayhoff,
1966) and maximum-likelihood (ML) (Felsenstein, 1981).

For the restriction site data the distance methods UPGMA, NJ,
ME, uLS and wLS the mean character difference, total character dif-
ference, Upholt distance and Nei–Li distance were used. All the
analyses were performed in PAUP� except for the maximum-likeli-
hood analysis that was done with RestML program of the PHYLIP
(Felsenstein, 2006) (version 3.66) package.

The same seven phylogenetic inference methods were used for
the analysis of sequence data and the distance measures were: p,
Jukes-Cantor (JC) and Kimura-2-parameter (K2 P) distances. We
used these methods as implemented in PAUP�, with heuristic
searches for ME, uLS and wLS and the search algorithm branch
and bound for MP (weighted with the rescaled consistency index
and unweighted). ML analysis was also performed in PAUP� with
a full heuristic search with 100 random additions of sequences
and the evolutionary model (that best fits the data based on the
Akaike information criterion, AIC (Akaike, 1974)) selected by Mod-
eltest (version 3.7) (Posada and Crandall, 1998). For the symmetric
tree exhaustive searches were performed for all the analyses.

The robustness of the methods of analysis was evaluated by
bootstrapping. The bootstrap procedure was replicated 1000 times
for UPGMA, NJ and MP and 100 times for ML.

A combined analysis of restriction site and nucleotide data was
also done.

2.5.2.2. Bayesian methods. MrBayes (version 3.1) (Huelsenbeck and
Ronquist, 2001; Ronquist and Huelsenbeck, 2003) allows the spec-
ification of a partitioned model, making it possible to assign differ-
ent evolutionary models for each gene partition in a single analysis.
It also permits the combined analysis of different data set (e.g.
restriction site and nucleotide), so besides the separate analysis
of sequence and restriction data we also joined these data in a sin-
gle analysis. Analysis of individual partitions by MrModeltest
(Nylander, 2004) indicated the best fit model for each partition
according to the AIC.

For the Bayesian analysis, besides the partitions considered
above, we also considered the following: all sequences and a single
evolutionary model, all sequences and one evolutionary model per
P8 P9
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sequenced region, all sequences and one evolutionary model per
gene, all sequences plus one evolutionary model for first and sec-
ond codon positions and one evolutionary model for the third po-
sition and finally all sequences and one evolutionary model for the
first and second codon positions of each gene and one evolutionary
model for the third position.

For the combined data set analysis we considered all sequences
and a single evolutionary model plus the restriction sites of all en-
zymes or all enzymes except Sau3AI or only Sau3AI.

For all analyses we treated each partition as ‘‘unlinked”, so that
separate parameter estimates were obtained for all runs. Two inde-
pendent runs of one million generations were performed, each
with 4 chains and trees were sampled every 100 generations. We
checked the stationarity of the sampled trees with the Tracer soft-
ware (version 1.3) (Rambaut and Drummond, 2005) and summa-
rized the posterior distribution of trees by a majority-rule
consensus tree.

2.5.2.3. Sequence signatures. Sequence signatures were computed
with the algorithm ‘‘Chaos game representation” implemented in
NASC software (version 4.21) (Vinga and Almeida, 2003). NASC
performs different types of sequence comparison based in some
distance definitions between frequencies of L-words or L-tuples.
For each sequence and each chosen sub-sequence of length L, a
vector of counts was extracted. These vectors were used to calcu-
late the Euclidean distance1 between the sequences and the sample
probabilities distributions of the 6-words present. This metric dis-
tance and word length have been reported to give the best results
for phylogenetic analysis (Chapus et al., 2005). The distance matrices
were then used to infer trees with UPGMA, NJ, ME, uLS and wLS algo-
rithms implemented in PAUP�.

For all of the phylogenetic methods whenever a method pro-
duced more than one but less than 5 trees the strict consensus tree
was obtained; above 5 trees the majority-rule consensus tree was
constructed.

2.5.2.4. Accuracy of topology. The accuracy of topology of the trees
obtained from each gene was evaluated from the topological dis-
tance (dT) (Penny and Hendy, 1985; Robinson and Foulds, 1981)
of each inferred tree to the true tree. This distance reflects the
number of internal branches present in one tree but not in the
other. In our data set (tree A) dT ranges from 0 (same topology as
the true tree) to 22, as the true tree has 11 internal branches.

3. Results and discussion

As expected, since the true phylogeny is known and all the par-
titions have had the same history, no major incongruence cases
were detected. ILD tests detected no cases of significant (p < 0.05)
incongruence for all the partitions considered (Annex 3.1 and
3.2) and the KH and Templeton tests considered the nucleotide
and restriction site data incongruent with respect to the first par-
tition but not significantly incongruent when the second partition
was considered (Annex 3.1). For the non-ILD tests of incongruence
(Annex 3.3) most of the 66 pairwise comparisons of genes revealed
a non-significant level of incongruence (p > 0.05) the only excep-
tions being the genes 1.3, 1.7, 7.7, and 10B (without a Bonferroni
correction2). For genes 1.3, 1.7 and 10B this might be the result of
these genes having twice the length of the remaining but this was
not the case for gene 7.7. In fact, although the probability of rejecting
the null hypothesis of congruence for all the pairwise gene compar-
1 The square root of the sum of the square of the differences in frequency of strings
between species.

2 If this correction was applied only genes 1.3, 1.7 and 10B showed a few cases of
significant incongruence.
isons involving this gene was never significant with the ILD test
(Annex 3.2), these had the lowest p values. These results compelled
us to test the accuracy of the phylogeny inferred when this gene was
omitted. Five equally parsimonious trees were produced (in opposi-
tion to the single MP tree inferred by the whole data set) when gene
7.7 was discarded from the global analysis, but the strict consensus
tree had half the dT to the true tree. The topological accuracy did not
improve for the other inference methods when gene 7.7 was deleted.

The two partitions in the restriction site data were considered
significantly incongruent (p < 0.05) by the KH and Templeton test
with respect to the first partition (Annex 3.1). By contrast to the
gene data, the accuracy of tree reconstruction suffered from com-
bining both partitions since when the restriction site data (omit-
ting Sau3AI sites) were considered alone the true tree was
recovered (UPGMA, NJ, ME and wLS) or at least the dT was smaller
than for the combined analysis. In comparison, the Sau3AI parti-
tion performed much worse when considered isolated (Table 1).

3.1. Inferred and actual phylogeny comparison

3.1.1. Accuracy of topology
As expected from the incongruence analysis results, combining

all the restriction site data did not improve the accuracy of topol-
ogy. In fact the dT values were between 2 and 6 for the complete
data set but dropped to a minimum of 0 and a maximum of 3 when
the Sau3AI sites were omitted from the analysis (Table 1). When
these sites were considered alone the trees inferred departed from
the true tree by a dT of 4 to 10. As Bull et al. (1993) pointed out in a
similar study, Sau3AI recognition sites have unique features in T7
genome that distinguishes them from the other enzymes. Based
on the wild-type genome and on the knowledge of the mutation
spectrum they identified the sites that are a single mutation
G ? A or C ? T from becoming a recognition sequence (1-off sites)
for all the enzymes. These sites are much more abundant for
Sau3AI than they are for the other enzymes, since the recognition
sequence of this enzyme is counter selected in the wild-type (Bull
et al., 1993). The recognition sequence of Sau3AI, GATC, is statisti-
cally expected 156 times in a 40 kb genome but occurs only 6 times
in T7 (Granoff and Webster, 1999). As in the work by Hillis et al.
(1992), the gains of new restriction sites for this enzyme were al-
most half of the total gains (131 new sites only for Sau3AI against
144 for all the other enzymes). In our work, the mapping strategy
of Sau3AI was improved but a high level of convergent gains is still
expected (that is two different gains being scored as only one due
to their proximity or to the same mutation arising in two individ-
uals by chance alone). This may disturb phylogenetic inference,
particularly for methods based on the Nei–Li distance (Nei and
Li, 1979). This model makes the assumption that all sites that are
shared between two species were present at a common ancestor
halfway between them.

Sau3AI sites did not affect phylogeny inference in Hillis et al.
(1992) probably due to the simple chosen topology. Bull et al.
(1993), in their study of the molecular evolution of T7, estimated
probabilities of gains and losses for Sau3AI sites and found that
these were significantly different from the rest of the enzymes.
The use of these parameters in complex phylogenies, such as the
one presented in this paper, might be a real necessity.

Ranking the methods by their overall performance with restric-
tion site data we get almost the opposite order than by doing the
same procedure with nucleotide data. With restriction site data,
UPGMA and ME had the best performance, Bayesian and likelihood
criteria produced the worst topologies.

If instead we consider the data set composed of all the restric-
tion sites except those of Sau3AI than all methods performed al-
most equally well but only the distance methods retrieved the
exact true topology (dT = 0). MP, ML, and Bayesian methods consis-



Table 1
Topological distances (dT) of inferred trees from the true tree for restriction site data and both restriction site data and sequence data combined in a single data set

Data sets All enza All enz b Sb Sauc Sum All enz + all seqs All enz b S + all seqs Sau + all seqs Sum

UPGMA
Upholtd 2 0 6 8
Nei–Lie 2 0 6 8
Tot. diff.f 2 0 4 6 0 0 0 0
Mean diff.g 2 0 4 6 0 0 0 0

NJ
Upholt 4 0 10 14
Nei–Li 4 0 10 14
Tot. diff. 4 0 6 10 2 2 2 6
Mean diff. 4 0 6 10 2 2 2 6

ME
Upholt 4 0 6 10
Nei–Li 4 0 6 10
Tot. diff. 2 0 5 7 2 2 2 6
Mean diff. 2 0 6 8 2 2 2 6

uLS
Upholt 4 2 8 14
Nei–Li 4 2 8 14
Tot. diff. 4 2 5 11 2 2 4 8
Mean diff. 4 2 6 12 3 3 5 8

wLS
Upholt 2 0 10 12
Nei–Li 2 0 10 12
Tot. diff. 2 2 4 8 2 2 2 6
Mean diff. 2 2 4 8 2 2 2 6

MP
Unweighted 4 3 6 13 2 2 2 6
Weighted 4 2 5 11 2 2 2 6

ML
6 2 10 18

Bayesian
6 2 6 14 2 3 4 9

Sum 80 21 157 23 21 29

a Restriction sites from all the enzymes.
b Restriction sites from all the enzymes except Sau3AI.
c Restriction sites from Sau3AI.
d Upholt distance.
e Nei–Li distance.
f Total difference distance.
g Mean difference distance.

Table 2
Statistical properties of genes included in this study

Genes ntot
a nprint

b nvar
c p (%)d g1e CIf Rlg RCh

1 532 16 33 1.77 (0–3) �0.58 0.94 0.97 0.91
1.3 553 27 49 2.63 (0–4.3) �0.65 0.85 0.90 0.76
1.7 564 27 54 2.5 (0.5–3.9) �0.47 0.81 0.83 0.67
3.5 292 9 28 2.2 (0–4.5) �0.60 0.93 0.93 0.87
3.8 186 8 21 2.68 (0–6.5) �1.15 0.88 0.85 0.74
4.5 270 6 18 1.66 (0–3.7) �0.29 0.90 0.92 0.83
5.5 239 12 25 2.6 (0–5.5) �0.90 0.86 0.88 0.76
5.7 210 9 19 2.5 (0–3.79) �0.68 0.86 0.91 0.79
7.3 238 13 22 2.99 (0–6.8) �0.45 0.85 0.92 0.78
7.7 275 15 33 3.12 (0–5.81) �0.63 0.83 0.84 0.69
10B 565 22 48 2.3 (0.2–3.9) �0.57 0.87 0.90 0.79
19.5 150 5 15 2.2 (0–4.8) �0.55 0.76 0.70 0.54
All 4824 200 434 2.4 (0.5–3.7) �0.59 0.85 0.88 0.75

a Total number of nucleotides of each gene.
b Number of parsimony informative sites.
c Number of variable positions.
d Mean pair wise p distance in percent and range.
e g1 statistic.
f Average consistency index.
g Average retention index.
h Rescaled consistency index.
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tently failed to correctly place lineage H and MP (unweighted), uLS
and wLS (with total and mean differences distance) could not
resolve or correctly infer branch 3–5.

The distance matrices produced by the sequence signature
method led to the inference of trees that differed from the true tree
by very high dTs (data not shown).

Gene length is usually considered an important factor in recov-
ering the true topology. In our study, omitting gene 1 from the
regression analysis, 80% of the variance of the performance of the
genes could be explained by gene length (results based on regres-
sion analysis of the sum of dTs of the trees produced by each gene
versus its length). Therefore a dependence of the accuracy of the
inferred topology on sequence length is apparent. Gene 1 will be
discussed later.

Table 2 summarises some statistical properties of the genes
included in this analysis. The g1 statistics (Huelsenbeck, 1991) is
related to phylogenetic signal. A more negative g1 value (left-
skewed distribution) indicates a stronger phylogenetic signal.
Consistency of information among individual parsimony informa-
tive sites in the true tree is apparent from average consistency
indices (CI), average retention indices (RI) and rescaled consistency
indices (RC). The range of these indices is 0–1, a higher value indi-
cates a higher agreement between the characters in the data set.

The values of mean pairwise proportion of differences in
percent (Table 2) are relatively small so that synonymous sites
are most certainly not saturated. Despite this, we examined the
efficiency in obtaining the correct tree by using all three codon
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positions versus only first and second codon positions. As pre-
dicted, trees inferred with the first approach showed generally
lower dT values (data not shown). Interestingly the use of all codon
positions but with one evolutionary model for the first and second
positions and a different model for the third positions (Bayesian
inference with all sequence data) reduced dT from 4 to 2. This
may indicate that although there’s no saturation in synonymous
positions their evolution under different constraints is worth tak-
ing into account.

In Table 3, nc stands for the number of genes that produced a
tree with dT 6 4. For the distance methods this was accomplished
38 times, 12 of them when the Euclidean distance was used (be-
tween six base sequence signatures).

If we now consider the global analysis, all methods recovered
the true topology, at least once, except for uLS, MP and Bayesian
criterion. UPGMA is the only method that assumes a molecular
clock, and was also the distance method that recovered more often
the true tree. The best-fit model (TIM + G) selected by AIC in Mod-
eltest accounts for base frequency differences, substitution rate
variation among sites and bias in substitution types. These features
are neglected by simpler models such as JC or K2P, yet the accuracy
of the topologies inferred did not benefit from this more sophisti-
cated model (dT = 4, for both models of nucleotide substitution).
Excluding the distance methods, the true topology was only recov-
ered when a molecular clock was enforced. This seems in agree-
ment with UPGMA results. Nevertheless a likelihood ratio test
(LRT) rejected the null hypotheses of the existence of a molecular
clock (p < 0.01). This test was also made for each gene separately
and none rejected the hypothesis of a molecular clock, probably
Table 3
Topological distances (dT) of inferred trees from the true tree for nucleotide sequence dat

Genes 1 1.3 1.7 3.5 3.8 4.5 5.5

UPGMA
P 12 4 10 12 16 16 14
JC 12 4 10 12 16 14 14
K2P 12 4 10 12 16 14 14
L6 12 4 10 12 16 16 14

NJ
P 12 8 4 8 14 14 8
JC 14 8 4 6 14 12 8
K2P 14 8 4 6 14 12 8
L6 10 4 4 12 14 14 10

ME
P 8 5 4 9 10 11 7
JC 10 5 4 6 11 13 7
K2P 10 7 5 8 11 13 7
L6 9 2 4 8 13 14 10

uLS
P 11 6 4 8 10 10 8
JC 11 6 4 8 10 11 9
K2P 11 6 4 8 10 10 8
L6 10 4 6 7 11 12 12

wLS
P 11 7 6 7 10 13 7
JC 11 7 6 6 12 13 7
K2P 11 7 6 6 12 13 7
L6 9 4 8 10 13 14 10

MP
Unweighted 7 5 3 5 8 8 7
Weighted 7 5 3 5 8 8 7

ML
8 7 5 5 8 8 7

Clock ndb 1 5 6 10 9 7

Bayesian 9 7 4 5 7 9 7

a Number of genes that produced a tree with a dT < 4 from the true tree.
b Non determined because >1000 optimal trees were found.
because the trees inferred from each of the genes alone were based
on few informative positions which led to frequent politomies. So
there is a greater probability that there are several trees that ex-
plain equally well the data, among those being the tree that as-
sumes a molecular clock. The same argument justifies the fact
that the LRT, based on all sequences concatenated, rejected the
existence of a molecular clock, since when enough informative
positions are considered the inferred tree is better supported mak-
ing the difference between this and the tree assuming a molecular
clock statistically significant.

Even when we consider the best estimates of the known phy-
logeny, every method, except those assuming a molecular clock
(UPGMA, ME and ML with a molecular clock) seem to have diffi-
culty inferring the small internal branch (slow evolving) that leads
to H, I and J cluster (branch 8–9) and branch 9–10.

It has been verified, by simulation studies (Nei et al., 1998), that
these small interior branches tend to be frequently misinferred. On
top of that, if we look at the number of differences in restriction
sites in branch 8–9, we have reasons to suspect that, in reality, this
branch is even smaller than planned, i.e. fewer differences than
expected arise. To test if this fact was related to the consistently
failure of most of the methods we conducted a simulation study
(parametric bootstrapping) generating 100 data sets using the true
tree plus the evolution parameters estimated from the real data
(model, general time reversible; frequency of bases, A = 0.2931,
C = 0.2162, G = 0.2339, T = 0.2568; rate matrix, 1.0000, 233.4292,
4.2426, 4.2426, 303.5897, 1.0000; gamma rate heterogeneity with
shape = 0.2172). All the branch lengths were the same as in the real
phylogeny, except for the branch 8–9, which was shrunken to fit
a

5.7 7.3 7.7 10B 19.5 All Sum nc
a

14 16 12 0 18 0 130 2
14 16 8 0 18 0 124 2
14 16 8 0 18 0 124 2
14 16 10 0 20 4 148 2

12 12 8 4 18 4 106 2
12 14 8 4 18 4 106 2
12 14 8 4 18 4 106 2
12 10 8 0 18 0 116 3

9 11 9 4 16 4 80 2
11 12 8 4 16 4 88 2
11 12 8 4 16 4 92 1
12 8 8 0 14 0 102 3

9 11 9 4 13 3 89 2
9 11 9 3 13 3 94 2
9 11 8 3 13 3 91 2

12 10 10 1 14 4 113 2

11 11 9 4 15 4 97 1
10 11 8 4 15 4 98 1
10 11 8 4 15 4 98 1
14 8 10 0 14 0 114 2

7 9 8 4 12 4 66 2
7 9 8 4 12 4 79 2

7 9 8 4 13 4 59 1
9 12 9 4 13 0 85 2

7 7 8 4 12 4 90 2
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the relative size observed from the number of differences of
restriction sites. One hundred data sets were produced and used
to infer the UPGMA (JC distance), NJ (JC distance), MP and ML (JC
distance) trees. UPGMA produced the true tree 4% of the time, NJ
43%, MP 30% and ML 54%.

Fig. 3 shows a comparison between the results of the simula-
tion with those from real data. UPGMA results were reasonably in
agreement with those of the real data. As stated before, UPGMA
produced the true topology for all the distances except for se-
quence signatures. In the later case one or both of the two
branches misinferred were also wrong in 65% (dT = 2 and dT = 4)
of the trees estimated from simulated data (including Bayesian
analysis that misinferred these two branches with a posterior
probability of 0.5 and 0.64, respectively). The rest of the methods
were all wrong about branches 9–10 and 8–9 in the real phylog-
eny. Branch 8–9 was also misinferred in a high percentage of
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Fig. 3. Number of times (in percent) on top of columns, that the branches indicated below
also misinferred from real data. Percentages below the line are bootstrap values.
trees by all the methods in the simulation study, but this was
not the case for branch 9–10, which was never incorrectly pre-
dicted. Branches 3–5 and 3–4 were also a problem for the simu-
lation study probably because these branches were larger in the
true phylogeny (relying on restriction site data). Branch 6–7
was also a small problem for MP and ML, probably because of a
phenomenon known as ‘‘long branch attraction”. Parametric boot-
strapping failed to infer the misplacing of branch 9–10, yet in the
real phylogeny this branch was consistently misinferred by all
methods but UPGMA, with moderate to high support (bootstrap
indices from 52% to 86%). This fact may indicate that theoretical
studies (even with empirical parameters) cannot predict all the
details of ‘‘real life” and some other explanation must be found
to account for this phenomenon.

Branches 3–4 and 3–5 were also predicted to be misinferred a
significant number of times, yet they were both correctly inferred
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by NJ, MP and ML in the real phylogeny. This was probably due to a
phenomenon inverse to what led to the misinference of 8–9 in the
real phylogeny, i.e. a higher number of substitutions accumulate in
these branches than were expected by the known length (number
of lysates) of these branches (number of differences in branches 3–
4 and 3–5 in Fig. 1). It is known that variable rates among lineages
are also a source of error (Lyons-Weiler and Takahashi, 1999).

Taken together the overall performance of the methods, ML and
MP produced the smaller sum of dTs. By this criterion NJ and UP-
GMA performed the worst and the other methods were fairly sim-
ilar. The use of different evolutionary models for each gene or each
Ge
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Fig. 4. Percentage of branches correctly inferred for the symmetric tree (white colum
represent a different distance measure (from left to right: p, JC, K2P and sequence signatu
without and with a molecular clock enforced.
sequenced region, in the global analysis, by the Bayesian criterion
did not improve the accuracy of the inferred phylogeny (data not
shown).

Since heuristic searches were done for all the methods except
parsimony, the ME and ML scores were calculated for both the true
tree and the tree inferred for each method. The true tree had al-
ways a higher ME score and a lower likelihood (so even if an
exhaustive search was conducted it would never converge to the
true topology).

Ranking the genes by their performance in recovering the
most accurate trees and relating it to their known features, such
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as length, proportion of differences (p distance), phylogenetic
signal or biological function is not straightforward matter.
Lengthier genes usually produced more accurate trees, but this
was not true for gene 1, which performed worst than expected,
or for gene 3.8 which was the second smaller but the fifth in
performance.

Approximately half of the 59 genes in T7 are considered nones-
sential, or at least conditionally essential. These genes are desig-
nated with fractional numbers (Dunn and Studier, 1983). Not
surprisingly gene 7.7, 5.5, and 1.3 presented 3, 1 and 1 nonsense
mutations, respectively, and gene 1.7 presented one dinucleotide
(AT) insertion.

Gene 1 and 10 are the only essential genes for viability in this
study. Gene 1 codes for T7 RNA polymerase, which is highly spe-
cific for phage promoters, being responsible for the expression of
class II and III genes and for the translocation of 81% of the
phage genome into the bacterium. Gene 10 codes for the major
capsid protein gp10A and, by programmed ribosomal frameshift
originates the minor capsid protein gp10B. Both are assembled
into wild-type particles but either alone suffices for viability.
Being essential, gene 1 has a lower proportion of differences
which makes this a poor gene for phylogenetic inference. As ex-
pected gene 10A has a lower proportion of differences too, but
after the frameshift, that permits the transcription of gene 10B,
we see a greater accumulation of mutations than expected (27
different mutations were seen in the first 441 bp of gene 10
and 19 mutations in the 124 bp sequenced after the frameshift).
To ensure that at least the smaller capsid protein maintained its
structure with relatively few errors was probably enough for
phage viability.

Gene 10B produced by far the most accurate trees, almost as
well as the global analysis. Probably this result arises from stochas-
tic effects, since neither of the above reasons seems to justify it.
Despite its exceptional performance, gene 10B encountered the
same problems of misplacing lineages H, I and J.

A great part of T7’s genome was well represented by restriction
site data, since a large set of restriction sites was determined for
each individual. This kind of information (except for Sau3AI recog-
nition sites) is less prone to sampling errors that arise from bad
choices of genes. In fact, at least in this case, joining the two data
sets (restriction and nucleotide) improved the accuracy of the anal-
ysis except for the data set composed of all the enzymes but Sau3AI
(Tables 1 and 3).

The overall results obtained with the symmetric topology are
illustrated in Fig. 4. The percentage of branches correctly inferred
was usually very similar for both topologies (except for gene 3.5,
for which the symmetric topology performed much worse).
Branches 3–4 and 3–5 were poorly resolved by both topologies
as well as branch 8–10 (9–10 in the asymmetric tree) which
was still consistently misinferred by many of the algorithms. Lin-
eages I and J differ from the wild-type (wt, common ancestor of
all lineages) in 38 and 47 positions, respectively (70 mutations
were expected given the distance between these nodes and the
wt). The observed and expected number of differences between
all the terminal nodes and the wt were considered significantly
different by a v2 test (p < 0.005), but this difference became not
significant if lineages I and J were removed from the analysis. Ta-
ken together these results may indicate that the sampled se-
quences of lineages I and J evolved at a sufficiently lower rate
as to confound the majority of the inference methods even when
a simple topology was considered.

It seems plausible to conclude that in this case, short branches
were more difficult to infer than a less symmetric branching pat-
tern. That is, even a symmetric branching pattern could not pre-
vent short branches from being consistently misinferred by the
generality of the methods.
3.1.2. Branch lengths and ancestral states
In order to assess the accuracy of branch length estimates a cor-

relation analysis between estimated and known/observed branch
lengths was done (Annex 4-A). The branch score (Bs; Kunher and
Felsenstein, 1994) between the inferred trees and the true tree
(with known/observed branch lengths) was also calculated (Annex
4-B). This distance reflects simultaneously topological and branch
length differences between trees (the branch score value increases
with the distance between trees).

The correlation (r), for all the data partitions, was always great-
er (and conversely the branch score was always smaller) when the
branch lengths were measured in restriction site differences (ob-
served lengths) than in number of lysates (real lengths). Estimates
of branch lengths are known to be particularly sensitive to the
choice of model so the evaluation of the reliability of an estimated
tree may be misleading if oversimplified models are used (Leitner
et al., 1997). This was particularly true for UPGMA, which always
produced the worst estimates of branch lengths regardless of the
distance measure, data partition or branch length units (correla-
tion ranging from 0.4 to 0.7). Total and mean differences distance
usually gave better estimates of branch lengths (and smaller Bs)
than Upholt and Nei–Li distances, especially when the branches
were measured in number of lysates. Euclidean distance was the
worst distance measure. Distance methods were all fairly equiva-
lent but slightly worse than MP and ML. Overall restriction site
(r = 0.53–0.75, number of lysates; r = 0.8–0.96, number of differ-
ences) and combined data sets produced better estimates of
branch lengths than sequence data (r = 0.46–0.69, number of ly-
sates; r = 0.63–0.83, number of differences).

Concerning the branch score results, UPGMA was fairly equiva-
lent to the other methods since this measure reflects also the dT

and this was the algorithm that more often inferred the true tree.
Nevertheless having a similar Bs but a higher dT means that branch
lengths were more accurately estimated. This explains the results
for some distance methods and MP. Like in the correlation analysis,
Euclidean distance was the worst distance measure, leading to
greater Bs values even when the correct topology was inferred.

Parsimony correctly inferred 97.4% of ancestral states (12 inter-
nal nodes) from restriction site data.
4. Conclusions

The purpose of this study was to compare different data and dif-
ferent tree-building methods with a well studied experimental
model in the recovery of a known phylogeny. The novelty of this
study consists in the choice of a tree with unequal evolutionary rates
and the use of an alignment free method such as the sequence signa-
tures that still is in a primordial phase in the phylogenetic context.

Parametric bootstrapping offers a method of producing inde-
pendent replicates of observed data sets, which can be used to test
the performance of competing methods or to extend the conclu-
sions of experimental studies (Hillis, 1995). Though this might be
a valuable tool in predicting in what aspects most methods will
fail, our results show that there will always be some details of ‘‘nat-
ural history” difficult to incorporate in simulation.

Overall restriction site produced more accurate trees in respect
to topology and branch length estimates than nucleotide data. This
is not an unexpected result since the former data represents the
genome more broadly than sequence data. Only 12% of the genome
was sequenced, so the bias coming from sampling errors is proba-
bly larger than from restriction sites.

For nucleotide data (allseqs) only methods that assume a
molecular clock (UPGMA), had a molecular clock enforced (ML
and ME—using FITCH from PHYLIP, data not shown) or used
sequence signature based distance recovered the true tree. These
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results might seem in disagreement with the work published by
Cunningham et al. (1997, 1998) where they reported a superior
performance of ML in relation to ME and a very important role
for the correction for among-site rate variation in overcoming
long-branch attraction. However, our work and theirs differ in
the experimental protocol. Despite using the same phage they bot-
tlenecked it every 50 lysates while we did it every 5 lysates. Botle-
necking so often diminishes the action of natural selection and
increases the effect of genetic drift which allows the system to
evolve more like a molecular clock and explains the overall success
of the algorithms that assume this kind of evolution.

For restriction site (all enzymes but Sau3AI) all the distance
methods infer the true tree except uLS. So we can conclude that
when all sequences are considered, distance methods (UPGMA
being the best) performed better for both data sets.

If we consider the individual performance of each gene, then the
order is almost reversed with UPGMA and NJ being the worst, ML
and MP the best and the others intermediate. It is important to
note that many of the high values of dT produced for most of the
genes are due to polytomies (lack of resolution) rather than to er-
rors in the branching pattern.

A previous study (Hillis et al., 1994) compared the ability of
methods to infer the correct phylogeny from restriction sites ver-
sus nucleotide sequences. Restriction sites proved to be somehow
superior, yet it was partly attributed to the fact that the number of
variable sites almost tripled the number of variable positions in the
nucleotide sequence. In the present work, the number of variable
restriction sites (304) for the symmetric tree was equivalent to var-
iable nucleotide positions (312), nevertheless the performance of
restriction sites was undoubtedly superior since all the methods
produced the correct tree. As stated before (Hillis et al., 1994) this
might be explained by the independence of evolution (an assump-
tion of most of the methods) being less affected in restriction sites
than in nucleotide sequences. Although restriction mapping im-
plies a much bigger effort than sequencing it may be rewarding.

We must also emphasize the performance of sequence signa-
ture based distance in the global analysis. As stated before we
are convinced that the mutation bias of this system (page T7 prop-
agated in the presence of NG) can shift motif frequencies and this
may be reflected in the Euclidean distance matrices. Sequence sig-
nature has been described as a fast tool for exploring phylogenetic
data since it avoids the alignment step and allows the use of
numerous sequences of varying size that need not be homologous.
It has also been demonstrated that long word frequencies de-
scribes DNA sequence information more accurately, but long
words are difficult to apply to short sequences because word fre-
quencies are poorly estimated (Chapus et al., 2005). In the system
described in this paper, all the sequences are homologous, their
mean pairwise proportion of differences in percent is small (about
2.4%) and the genes size is also small between 150 bp and 565 bp.
In spite of these limiting features, sequence signatures based meth-
ods were the only methods (apart from those assuming a molecu-
lar clock) capable of inferring the true phylogeny, even for a small
gene like 10B. Another interesting result that supports our findings
was the fact that sequence signatures based methods (NJ, ME, uLS)
(data not shown) were able to infer the true tree with 1091 bp
(Hillis et al., 1994) of Hillis et al. (1992) phylogeny. In the study
of Hillis et al. (1994) all the tested methods (UPGMA, NJ and ML)
except MP (that produced two equally parsimonious trees, one of
which was the true tree) inferred an incorrect tree.

There are several other systems that have similar mutation
spectrums, such as eukaryotic pseudogenes (Gojobori et al.,
1982; Li et al., 1984) and HIV virus (Leitner et al., 1997; Moriyama
et al., 1991; Vartanian et al., 1991), and preliminary studies (data
not shown) have suggested that this might also be a good approach
for these cases.
Nevertheless some other method like Bayesian or maximum-
likelihood methods must be used to infer branch lengths since
the sequence signature performed very poorly in this matter.
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