
Enhancing Modularity and Feedback in Computer Aided Assessment

Duarte P., Nunes I., Neto J.P., and Chambel T.
Faculty of Sciences, Lisbon University

pduarte@ptmat.fc.ul.pt , in@di.fc.ul.pt, jpn@di.fc.ul.pt, tc@di.fc.ul.pt

Abstract

We present a model of a computer aided assessment

system — CATS (Computer Assessable Task System) —
for mathematics, which is both modular and has rich
feedback. Modular in the sense that elaborated tasks
need not be built from scratch but, instead, from
already existing tasks. Modules are made general
enough to be reusable in many different contexts. As a
consequence, the construction and management of
multiple-step problems with complex system-user
interaction, is facilitated for non-expert users. By rich
feedback we mean that the system automatically
generates messages explaining errors, whenever
students make algebraic manipulation and logical
mistakes. This contrasts with current assessment
software where feedback must be hard coded by the
teacher, therefore constraining feedback richness by
the teacher programming skills.

1. Introduction

Computer Aided Assessment (CAA) is a broad area
covering both teacher creation of interactive exercises,
and electronic assessment of students in the form of,
e.g., homework, automatic graded tests or just a set of
questions for self-assessment. This area involves
several different concerns as, e.g., pedagogical,
usability, or extensibility ones.

There are already many computer systems that
assist and assess students through the resolution of
mathematical exercises, going from simple true/false,
multiple choice or fill-in questions to more elaborated
ones where students are asked to give step by step
answers to many different sorts of problems. Most of
the systems we know of, ask users to specify new
problems in such a way that problem reuse is not
accounted for — e.g., teachers hardcode, using some
high-level editor tool, all the student/system
interactivity. Besides compromising reuse, this
approach also limits feedback richness since it is the

teacher who writes the problem, that gets responsible
for specifying feedback.

We present a model of an interactive computer
assessment system that allows, on the one hand,
students to solve elaborated mathematical problems,
while being given feedback on their mistakes, and on
the other hand, teachers to easily build new complex
interactive problems from a pool of pre-defined
modules. The non-trivial part of feedback in our
approach is not defined directly by the teacher, but is
partially built into basic tasks available for
composition.

In section 2.1 we present the main concepts that
comprise our model. Section 2.2 describes the model
we envisaged for knowledge representation. Section
2.3 describes the intended problem resolution process.
The main steps of the task construction process are
described in section 2.4. Examples of generic tasks to
be used by teachers when creating their own tasks are
given in Section 2.5. Related work is discussed in
section 3. Finally section 4 concludes and identifies
directions for future work.

2. The CATS Model

We present a model of a CAA system which
benefits from the following properties:
− Supplying rich feedback information to students;
− Being modular in the sense that the exercises –

tasks – that are built can be reused and
recombined to create other tasks.

Although feedback is “the most powerful single
moderator that enhances achievement” (c.f. Hattie03]),
nevertheless, and to the extent of our knowledge, it is
poorly supported by almost CAA systems (including
those that are based in some Computer Algebra
System). We do not consider mere “right/wrong
answer” information, or teacher pre-defined, general
messages to be a rich feedback. We aim at giving the
student clues about incorrect rule application, or
application of invalid rules, possibly providing for
counter-examples, etc.

The second property aims at an extensible system
where the effort spent in building some mathematical
task can be capitalized by using that task to build some
other, more complex, task. Teachers will be able to
create complex exercises that would otherwise be very
difficult to define.

2.1. Conceptual Model

The model we devised is based on the following
main concepts:

Tasks are the building blocks of our approach. They
represent mathematical challenges that students must
overcome. A task is more than a simple mathematical
exercise — it proposes a problem to the student, and
then guides, assesses, and provides feedback,
throughout the resolution process. In general, a task is
a generic module, depending on parameters, which
abstracts some class of problems. Basic tasks (e.g.,
expression manipulation, equation solving, logic
reasoning) are initially created by experts.

Subtasks of a given main task are the tasks the
student may choose to perform during the resolution
process of the main task.

By default, a task has no subtasks. In this case, the
student may have access to all existing tasks sharing
the same Context. This gives the student a great
freedom to choose the resolution path he likes. In other
words, no guidance is provided by the teacher. By
enumerating the subtasks of a task, the teacher narrows
the set of possible resolution paths, thus helping the
student. The teacher can, furthermore, define a
precedence graph among subtasks, which amounts to
even more guidance through the task resolution
process.

By combining existing subtasks, the teacher can
build complex multiple step problems, which
automatically benefit from their components rich
feedback. The teacher may create links among the
subtasks, forcing the output of one subtask to be the
input of another.

Contexts define a grammar specifying the language
representing the knowledge under evaluation, and a
meta-language, consisting of a set of meta-functions,
for teacher usage.

Meta-Functions are functions designed to evaluate
student answers, providing him/her with error
explanations.

Oracles are dynamical objects, created for
evaluation of student answers. Oracles are associated
with Contexts, and are able to provide
appropriate feedback to the student's resolution.

Resolution is the sequence of intermediate answers
given by the student.

Solution Set comprises the answer type plus a
condition to be fulfilled by the answer (the Success
meta-condition).

Answer is a mathematical term, input by the
student, which the system verifies to be in the solution
set.

2.2. Knowledge Representation

Each task has an associated context which defines
the object-language and the meta-language needed to
specify the problem. The object-language is the
mathematical speech language. The meta-language
consists of the meta-functions used to evaluate
student’s answers, providing him/her with feedback on
errors.

When solving a task, students use the object-
language. When creating a task, teachers use meta-
functions in order to define task solution conditions
and partial progress evaluation.

Meta-functions are the core of our system feedback.
Some basic meta-functions evaluate, for instance,
whether two algebraic expressions, or two equations,
are equivalent, or whether a proposition follows from a
given set of premises. These meta-functions identify
common errors, like incorrect rule application,
application of invalid rules, and small misspellings.

Error messages explain these errors to students,
possibly providing counter-examples. Such basic meta-
functions may depend on complex algorithms,
therefore some of them are provided as the result of
expert work. Teachers can easily create their own
meta-functions, by recombining and customizing
messages of already existing meta-functions, thus
creating a higher level of feedback messages.

Each context has an associated oracle which is
capable of evaluating the context meta-functions and,
therefore, the teacher meta-conditions on student
answers.

If teachers want to add new meta-functions, e.g., in
order to define some specific feedback, they may
extend the corresponding context. Contexts are
extended through object-language and/or meta-
language extension.

All mathematical content is represented as terms,
which, in our system, are typified. Term types are
defined grammatically within contexts. Some of these
types have a random attribute, which means that
random values of those types can be generated. Thus,
parametric tasks depending on random parameters
allow the automatic generation of random instances.

2.3. Task Resolution Process

Solving a task may involve several steps. Each step
corresponds to the resolution of a subtask, which itself
is a task. At any stage of resolution, the next step may
either be predefined in the task, or else selected by the
student, among available tasks.

Two additional important concepts are:
Resolution Sheet: contains the sequence of

intermediate accepted answers given by the student.
More precisely, the resolution sheet is a tree formed by
the resolution sheets of all undertaken and completed
subtasks.

Draft Sheet: is used to write and draw marginal
notes, or to perform auxiliary calculations. The set of
available input tools is determined by the task Context.
All objects written by the student in the draft sheet are
terms of that Context.

During the task resolution process, the system: (i)
manages the tree of all subtasks under execution; (ii)
maintains coherence among states of all involved tasks;
(iii) keeps track of the resolution sheet; (iv) provides a
draft sheet (common to all subtasks).

2.4. Task Construction

A teacher builds a new task specifying the
following items:
− the Context in which the problem is defined; it

must be chosen from a pool of available
Contexts;

− a set of typed parameters representing terms
(optional);

− a statement that describes the problem and issues
the challenge; this can be a parametric statement
depending on the above parameters — from it,
several instances of the problem are generated;

− the problem assumptions as terms of the
associated Context (optional);

− the solution set, that is, the answer type, and the
Success meta-condition (the condition that any
answer must fulfill);

Most teachers will create tasks within already
existing contexts supplied by experts, although any
teacher with some programming skills will be able to
make extensions of available contexts.

2.5. Task Examples

Any contextualized problem that needs to be
interpreted, equated, and then solved, can be modeled
as a task, which makes use of generic subtasks such as:

• stating relations between problem variables;
• solving equations, and systems of equations;
• simplifying algebraic expressions;

• symbolic computing (e.g., computing
derivatives, anti-derivatives, and limits);

• performing short deductions and proofs;
• filling-in tables with function values. This is a

very general task that can, for instance, be
specialized to filling-in a table with the first
and second derivatives' signs of some
function, or else filling-in a table with the
symbolic description of monotonicity and
concavities of a given function in a given
interval partition;

• draw the graph of a function. The student uses
a graphical interface to sketch the graph of a
one variable function;

• make some geometric graphical construction.
Tasks listed above are constructed by experts to be

used by teachers. Combining them, the teacher can
build complex multiple step problems, which
automatically benefit from their components rich
feedback.

3. Related Work

In order to clearly relate the CATS system with the
present state of knowledge in this area, we restrict this
analysis to mathematical CAA systems, and stress two
important issues – feedback to student’s answers, and
problem creation – that we identified as being the main
issues for which the CATS system contributes.

The kind of questions CAA systems support are
commonly divided into closed and open ones,
depending on whether corresponding answers belong
to a pre-defined solution set, or not. The former class
includes Multiple Choice, True/False, Multiple
Answer, Ordering, and Matching questions. The latter
includes Fill in the Blanks, and other free answering
mathematical exercises as, e.g., interactive equation
solving.

Although CATS aims at supporting both closed and
open questions, we will focus on the state of the art of
open ones, because most open research issues fall in
this category. The relevant limitations we identified on
some existing applications are due to the creation of
open questions on the one hand, and their answer
interpretation, verification, and feedback on the other.

From a pedagogical point of view, the intuitive idea
that feedback is of extreme importance in problem
solving has strong support from several studies (see,
for example, [3] where it is concluded that “feedback is
the most powerful single moderator that enhances
achievement”). Therefore, whenever a student is
solving a problem in a learning mode, rich feedback
concerning a specific error on the student’s answer as,
e.g., incorrect rule application, application of invalid

rules, possibly providing for counter-examples, or
directing the student to a piece of learning material, are
important features for every CAA system.

In open questions solving, students may type any
symbolic mathematical expression that must be
evaluated against the teacher’s solution specification.

Some CAA systems are expression-oriented in the
sense that teachers specify a solution expression which
will be checked against the student’s answer through
some kind of equivalence test. For example, in [2],
three kinds of equality comparison are considered:
syntactic equality checking whether two expressions
are syntactically equal; numerical equality checking
that two numbers are equal, and semantical equality
checking whether two symbolic expressions are
equivalent, that is, that they represent the same
mathematical object.

Other CAA systems are property-oriented in the
sense that teachers define an expression specifying the
properties the student’s answer must satisfy. This
approach is more general than the expression-oriented
one because equivalence testing can be specified
through some adequate property statement.

Many existing CAA systems use a Computer
Algebra System (CAS) to evaluate student’s answers:
Maple TA [6] and Aim [1] use Maple [5], Stack [7]
uses Maxima [8] or Axiom [9], LeActiveMath [10] and
MathDox [11] use a variety of CAS and theorem
provers, Wallis [12] uses CAS supporting MathML or
OpenMath like Maple or Yacas [13].

Although computer algebra systems are invaluable
in what function evaluation is concerned, their
functions do not provide feedback. Therefore, in CAS-
based CAAs, feedback messages have to be hard-
coded by the teacher in the process of creating an
exercise. This feedback is typically given at the time
the student inputs her final answer to the problem in
hands. This contrasts with, for example, step-by-step
feedback given by the non CAS-based Interactive
Equation Solver described in [4].

CATS is not based on any computer algebra system
to evaluate student’s answers; it will rather provide an
initial set of meta-functions on algebraic manipulation
and logic reasoning that will be extensively reused
through all mathematical contexts. Besides evaluating
student’s answers, these meta-functions also identify
common errors, like incorrect rule application,
application of invalid rules, and small misspellings,
possibly providing counter-examples. From these
evaluation results, the system can automatically
generate rich and useful feedback messages. Other
meta-functions can be created by teachers, by

recombining and customizing messages of already
existing meta-functions.
Exercise reusability is supported by existing CAAs in
the sense that teachers may reuse already built
exercises, stored in some question bank, in order to
create exams, or some other exercise collections for
student practice and drill. We aim at a broader meaning
of reusability: that teachers can assemble complex
contextualized problems from available tasks. To the
best of our knowledge, existing CAAs do not support
this kind of reusability.

4. Conclusions and Further Work

Concepts such as task, sub-task, context, meta-
function are key to CATS’ model meeting the goal we
have stated above: enriching feedback and simplifying
task creation through the composition of task modules.

Strong modularity is at the basis of CATS simple
architecture and extensibility. We hope, in a near
future, to exploit these properties by adding new
features such as automatic grading, student knowledge
profiling, and adaptive assessment.

Teachers using CATS contexts and tools for task
construction will be able to provide specific libraries of
problems to guide their students and, eventually, to
share their libraries with a community of users.

5. References

[1] Aim, http://maths.york.ac.uk/moodle/aiminfo/ .
[2] G.Goguadze, A.G.Palomo, E.Melis, "Interactivity of
Exercises in ActiveMath", in Proceedings of International
Conference on Computers in Education (ICCE05), December
2005, Singapore..
[3] John Hattie, “Teachers Make a Difference: What is the
research evidence?”, in Australian Council for Educational
Research Annual Conference on: Building Teacher Quality,
University of Auckland, October 2003
[4] Harrie Passier and Johan Jeuring. “Feedback in an
interactive equation solver”. In Proceedings of the Web
Advanced Learning Conference and Exhibition, WebALT
2006.
[5]. Maple, http://www.maplesoft.com/ .
[6]. Maple TA, http://www.maplesoft.com/ .
[7]. Stack, http://eee595.bham.ac.uk/~stack/ .
[8]. Maxima, http://www.maxima.sourceforge.org/ .
[9]. Axiom, http://page.axiom-developer.org/.
[10]. LeActiveMath, http://www.leactivemath.org/ .
[11]. MathDox, http://www.riaca.win.tue.nl/ .
[12]. Wallis, http://www.maths.ed.ac.uk/~wallis/ .
[13]. Yacas http://www.xs4all.nl/~apinkus/yacas.html

