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Abstract 

 
We present a model of a computer aided assessment 

system — CATS (Computer Assessable Task System) — 
for mathematics, which is both modular and has rich 
feedback. Modular in the sense that elaborated tasks 
need not be built from scratch but, instead, from 
already existing tasks. Modules are made general 
enough to be reusable in many different contexts. As a 
consequence, the construction and management of 
multiple-step problems with complex system-user 
interaction, is facilitated for non-expert users. By rich 
feedback we mean that the system automatically 
generates messages explaining errors, whenever 
students make algebraic manipulation and logical 
mistakes. This contrasts with current assessment 
software where feedback must be hard coded by the 
teacher, therefore constraining feedback richness by 
the teacher programming skills.  
 
1. Introduction 
 

Computer Aided Assessment (CAA) is a broad area 
covering both teacher creation of interactive exercises, 
and electronic assessment of students in the form of, 
e.g., homework, automatic graded tests or just a set of 
questions for self-assessment. This area involves 
several different concerns as, e.g., pedagogical, 
usability, or extensibility ones.  

There are already many computer systems that 
assist and assess students through the resolution of 
mathematical exercises, going from simple true/false, 
multiple choice or fill-in questions to more elaborated 
ones where students are asked to give step by step 
answers to many different sorts of problems. Most of 
the systems we know of, ask users to specify new 
problems in such a way that problem reuse is not 
accounted for — e.g., teachers hardcode, using some 
high-level editor tool, all the student/system 
interactivity. Besides compromising reuse, this 
approach also limits feedback richness since it is the 

teacher who writes the problem, that gets responsible 
for specifying feedback.  

We present a model of an interactive computer 
assessment system that allows, on the one hand, 
students to solve elaborated mathematical problems, 
while being given feedback on their mistakes, and on 
the other hand, teachers to easily build new complex 
interactive problems from a pool of pre-defined 
modules. The non-trivial part of feedback in our 
approach is not defined directly by the teacher, but is 
partially built into basic tasks available for 
composition.  

In section 2.1 we present the main concepts that 
comprise our model. Section 2.2 describes the model 
we envisaged for knowledge representation. Section 
2.3 describes the intended problem resolution process. 
The main steps of the task construction process are 
described in section 2.4. Examples of generic tasks to 
be used by teachers when creating their own tasks are 
given in Section 2.5. Related work is discussed in 
section 3. Finally section 4 concludes and identifies 
directions for future work. 
  
2. The CATS Model 
 

We present a model of a CAA system which 
benefits from the following properties:  
− Supplying rich feedback information to students;  
− Being modular in the sense that the exercises – 

tasks – that are built can be reused and 
recombined to create other tasks.  

Although feedback is “the most powerful single 
moderator that enhances achievement” (c.f. Hattie03]), 
nevertheless, and to the extent of our knowledge, it is 
poorly supported by almost CAA systems (including 
those that are based in some Computer Algebra 
System). We do not consider mere “right/wrong 
answer” information, or teacher pre-defined, general 
messages to be a rich feedback. We aim at giving the 
student clues about incorrect rule application, or 
application of invalid rules, possibly providing for 
counter-examples, etc. 



The second property aims at an extensible system 
where the effort spent in building some mathematical 
task can be capitalized by using that task to build some 
other, more complex, task. Teachers will be able to 
create complex exercises that would otherwise be very 
difficult to define.  
  
2.1. Conceptual Model 
 

The model we devised is based on the following 
main concepts:  

Tasks are the building blocks of our approach. They 
represent mathematical challenges that students must 
overcome. A task is more than a simple mathematical 
exercise — it proposes a problem to the student, and 
then guides, assesses, and provides feedback, 
throughout the resolution process.  In general, a task is 
a generic module, depending on parameters, which 
abstracts some class of problems. Basic tasks (e.g., 
expression manipulation, equation solving, logic 
reasoning) are initially created by experts.  

Subtasks of a given main task are the tasks the 
student may choose to perform during the resolution 
process of the main task.  

By default, a task has no subtasks. In this case, the 
student may have access to all existing tasks sharing 
the same Context. This gives the student a great 
freedom to choose the resolution path he likes. In other 
words, no guidance is provided by the teacher. By 
enumerating the subtasks of a task, the teacher narrows 
the set of possible resolution paths, thus helping the 
student. The teacher can, furthermore, define a 
precedence graph among subtasks, which amounts to 
even more guidance through the task resolution 
process.  

By combining existing subtasks, the teacher can 
build complex multiple step problems, which 
automatically benefit from their components rich 
feedback. The teacher may create links among the 
subtasks, forcing the output of one subtask to be the 
input of another. 

Contexts define a grammar specifying the language 
representing the knowledge under evaluation, and a 
meta-language, consisting of a set of meta-functions, 
for teacher usage.  

Meta-Functions are functions designed to evaluate 
student answers, providing him/her with error 
explanations.  

Oracles are dynamical objects, created for 
evaluation of student answers. Oracles are associated 
with Contexts, and are able to provide 
appropriate feedback to the student's resolution.  

Resolution is the sequence of intermediate answers 
given by the student.  

Solution Set comprises the answer type plus a 
condition to be fulfilled by the answer (the Success 
meta-condition).  

Answer is a mathematical term, input by the 
student, which the system verifies to be in the solution 
set.  
 
2.2. Knowledge Representation 
 

Each task has an associated context which defines 
the object-language and the meta-language needed to 
specify the problem. The object-language is the 
mathematical speech language. The meta-language 
consists of the meta-functions used to evaluate 
student’s answers, providing him/her with feedback on 
errors.  

When solving a task, students use the object-
language. When creating a task, teachers use meta-
functions in order to define task solution conditions 
and partial progress evaluation.  

Meta-functions are the core of our system feedback. 
Some basic meta-functions evaluate, for instance, 
whether two algebraic expressions, or two equations, 
are equivalent, or whether a proposition follows from a 
given set of premises. These meta-functions identify 
common errors, like incorrect rule application, 
application of invalid rules, and small misspellings. 

Error messages explain these errors to students, 
possibly providing counter-examples. Such basic meta-
functions may depend on complex algorithms, 
therefore some of them are provided as the result of 
expert work. Teachers can easily create their own 
meta-functions, by recombining and customizing 
messages of already existing meta-functions, thus 
creating a higher level of feedback messages.  

Each context has an associated oracle which is 
capable of evaluating the context meta-functions and, 
therefore, the teacher meta-conditions on student 
answers.  

If teachers want to add new meta-functions, e.g., in 
order to define some specific feedback, they may 
extend the corresponding context. Contexts are 
extended through object-language and/or meta-
language extension.  

All mathematical content is represented as terms, 
which, in our system, are typified. Term types are 
defined grammatically within contexts. Some of these 
types have a random attribute, which means that 
random values of those types can be generated. Thus, 
parametric tasks depending on random parameters 
allow the automatic generation of random instances.  
 
2.3. Task Resolution Process 
 



Solving a task may involve several steps. Each step 
corresponds to the resolution of a subtask, which itself 
is a task. At any stage of resolution, the next step may 
either be predefined in the task, or else selected by the 
student, among available tasks.  

Two additional important concepts are:  
Resolution Sheet: contains the sequence of 

intermediate accepted answers given by the student. 
More precisely, the resolution sheet is a tree formed by 
the resolution sheets of all undertaken and completed 
subtasks.  

Draft Sheet: is used to write and draw marginal 
notes, or to perform auxiliary calculations. The set of 
available input tools is determined by the task Context. 
All objects written by the student in the draft sheet are 
terms of that Context.  

During the task resolution process, the system: (i) 
manages the tree of all subtasks under execution; (ii) 
maintains coherence among states of all involved tasks; 
(iii) keeps track of the resolution sheet; (iv) provides a 
draft sheet (common to all subtasks).  
 
2.4. Task Construction  
 

A teacher builds a new task specifying the 
following items:  
− the Context in which the problem is defined; it 

must be chosen from a pool of available 
Contexts; 

− a set of typed parameters representing terms 
(optional); 

− a statement that describes the problem and issues 
the challenge; this can be a parametric statement 
depending on the above parameters — from it, 
several instances of the problem are generated; 

− the problem assumptions as terms of the 
associated Context (optional);  

− the solution set, that is, the answer type, and the 
Success meta-condition (the condition that any 
answer must fulfill); 

Most teachers will create tasks within already 
existing contexts supplied by experts, although any 
teacher with some programming skills will be able to 
make extensions of available contexts.  
 
2.5. Task Examples 
 

Any contextualized problem that needs to be 
interpreted, equated, and then solved, can be modeled 
as a task, which makes use of generic subtasks such as:  

• stating relations between problem variables;  
• solving equations, and systems of equations; 
• simplifying algebraic expressions; 

• symbolic computing (e.g., computing 
derivatives, anti-derivatives, and limits); 

• performing short deductions and proofs; 
• filling-in tables with function values. This is a 

very general task that can, for instance, be 
specialized to filling-in a table with the first 
and second derivatives' signs of some 
function, or else filling-in a table with the 
symbolic description of monotonicity and 
concavities of a given function in a given 
interval partition; 

• draw the graph of a function. The student uses 
a graphical interface to sketch the graph of a 
one variable function; 

• make some geometric graphical construction. 
Tasks listed above are constructed by experts to be 

used by teachers. Combining them, the teacher can 
build complex multiple step problems, which 
automatically benefit from their components rich 
feedback.  
 
3. Related Work 
 

In order to clearly relate the CATS system with the 
present state of knowledge in this area, we restrict this 
analysis to mathematical CAA systems, and stress two 
important issues – feedback to student’s answers, and 
problem creation – that we identified as being the main 
issues for which the CATS system contributes.  

The kind of questions CAA systems support are 
commonly divided into closed and open ones, 
depending on whether corresponding answers belong 
to a pre-defined solution set, or not. The former class 
includes Multiple Choice, True/False, Multiple 
Answer, Ordering, and Matching questions. The latter 
includes Fill in the Blanks, and other free answering 
mathematical exercises as, e.g., interactive equation 
solving.  

Although CATS aims at supporting both closed and 
open questions, we will focus on the state of the art of 
open ones, because most open research issues fall in 
this category. The relevant limitations we identified on 
some existing applications are due to the creation of 
open questions on the one hand, and their answer 
interpretation, verification, and feedback on the other.  

From a pedagogical point of view, the intuitive idea 
that feedback is of extreme importance in problem 
solving has strong support from several studies (see, 
for example, [3] where it is concluded that “feedback is 
the most powerful single moderator that enhances 
achievement”). Therefore, whenever a student is 
solving a problem in a learning mode, rich feedback 
concerning a specific error on the student’s answer as, 
e.g., incorrect rule application, application of invalid 



rules, possibly providing for counter-examples, or 
directing the student to a piece of learning material, are 
important features for every CAA system.  

In open questions solving, students may type any 
symbolic mathematical expression that must be 
evaluated against the teacher’s solution specification.  

Some CAA systems are expression-oriented in the 
sense that teachers specify a solution expression which 
will be checked against the student’s answer through 
some kind of equivalence test. For example, in [2], 
three kinds of equality comparison are considered: 
syntactic equality checking whether two expressions 
are syntactically equal; numerical equality checking 
that two numbers are equal, and semantical equality 
checking whether two symbolic expressions are 
equivalent, that is, that they represent the same 
mathematical object. 

Other CAA systems are property-oriented in the 
sense that teachers define an expression specifying the 
properties the student’s answer must satisfy. This 
approach is more general than the expression-oriented 
one because equivalence testing can be specified 
through some adequate property statement.  

Many existing CAA systems use a Computer 
Algebra System (CAS) to evaluate student’s answers: 
Maple TA [6] and Aim [1] use Maple [5], Stack [7] 
uses Maxima [8] or Axiom [9], LeActiveMath [10] and 
MathDox [11] use a variety of CAS and theorem 
provers, Wallis [12] uses CAS supporting MathML or 
OpenMath like Maple or Yacas [13]. 

Although computer algebra systems are invaluable 
in what function evaluation is concerned, their 
functions do not provide feedback. Therefore, in CAS-
based CAAs, feedback messages have to be hard-
coded by the teacher in the process of creating an 
exercise. This feedback is typically given at the time 
the student inputs her final answer to the problem in 
hands. This contrasts with, for example, step-by-step 
feedback given by the non CAS-based Interactive 
Equation Solver described in [4].  

CATS is not based on any computer algebra system 
to evaluate student’s answers; it will rather provide an 
initial set of meta-functions on algebraic manipulation 
and logic reasoning that will be extensively reused 
through all mathematical contexts. Besides evaluating 
student’s answers, these meta-functions also identify 
common errors, like incorrect rule application, 
application of invalid rules, and small misspellings, 
possibly providing counter-examples. From these 
evaluation results, the system can automatically 
generate rich and useful feedback messages. Other 
meta-functions can be created by teachers, by 

recombining and customizing messages of already 
existing meta-functions.  
Exercise reusability is supported by existing CAAs in 
the sense that teachers may reuse already built 
exercises, stored in some question bank, in order to 
create exams, or some other exercise collections for 
student practice and drill. We aim at a broader meaning 
of reusability: that teachers can assemble complex 
contextualized problems from available tasks. To the 
best of our knowledge, existing CAAs do not support 
this kind of reusability. 
 
4. Conclusions and Further Work 
 

Concepts such as task, sub-task, context, meta-
function are key to CATS’ model meeting the goal we 
have stated above: enriching feedback and simplifying 
task creation through the composition of task modules.  

Strong modularity is at the basis of CATS simple 
architecture and extensibility.  We hope, in a near 
future, to exploit these properties by adding new 
features such as automatic grading, student knowledge 
profiling, and adaptive assessment. 

Teachers using CATS contexts and tools for task 
construction will be able to provide specific libraries of 
problems to guide their students and, eventually, to 
share their libraries with a community of users. 
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