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Abstract. In this paper we address a class of replicator dynamics, referred

as polymatrix replicators, that contains well known classes of evolutionary
game dynamics, such as the symmetric and asymmetric (or bimatrix) repli-

cator equations, and some replicator equations for n-person games. Polyma-

trix replicators form a simple class of algebraic o.d.e.’s on prisms (products
of simplexes), which describe the evolution of strategical behaviours within a

population stratified in n ≥ 1 social groups.

In the 80’s Raymond Redheffer et al. developed a theory on the class
of stably dissipative Lotka-Volterra systems. This theory is built around a

reduction algorithm that “infers” the localization of the system’ s attractor in
some affine subspace. It was later proven that the dynamics on the attractor

of such systems is always embeddable in a Hamiltonian Lotka-Volterra system.

In this paper we extend these results to polymatrix replicators.

1. Introduction. Lotka-Volterra (LV) systems were introduced independently by
Alfred Lotka [31] and Vito Volterra [50] to model the evolution of biological and
chemical ecosystems. The phase space of a Lotka-Volterra system is the non-
compact polytope Rn+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}, where a point in Rn
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represents a state of the ecosystem. The LV systems are defined by the following
o.d.e.

dxi
dt

= xi fi(x), i = 1, . . . , n,

where usually the so called fitness functions fi(x) are considered to be affine, i.e.,
of the form

fi(x) = ri +

n∑
j=1

aij xj ,

where A = (aij) ∈ Matn×n(R) is called the system’s interaction matrix.
In general, the dynamics of LV systems can be arbitrarily rich, as was first

observed by S. Smale [46] who proved that any finite dimensional compact flow can
be embedded in a LV system with non linear fitness functions. Later, using a class
of embeddings studied by L. Brenig [5], L. Brenig and A. Goriely [6], B. Hernández-
Bermejo and V. Fairén [16], it was proven (see [16, Theorems 1 and 2]) that any
LV system with polynomial fitness functions can be embedded in a LV system with
affine fitness functions. Combining this with Smale’s result, we infer that any finite
dimensional compact flow can be, up to a small perturbation, embedded in a LV
system with affine fitness functions. These facts emphasize the difficulty of studying
the general dynamics of LV systems.

In spite of these difficulties, many dynamical consequences have been driven from
information on the fitness data fi(x) for some special classes of LV systems. Two
such classes are the cooperative and competitive LV systems, corresponding to fitness
functions satisfying ∂fi

∂xj
≥ 0 and ∂fi

∂xj
≤ 0, respectively, for all i, j. Curiously, the

fact that Smale’s embedding takes place in a competitive LV system influenced the
development of the theory of cooperative and competitive LV systems initiated by
M. Hirsch [18–20].

In his pioneering work Volterra [50] studies dissipative LV systems as general-
izations of the classical predator-prey model. A LV system with interaction matrix
A = (aij) is called dissipative, resp. conservative, if there are constants di > 0 such
that the quadratic form Q(x) =

∑n
i,j=1 aijdjxixj is negative semi-definite, resp.

zero. Note that the meaning of the term dissipative is not strict because dissipative
LV o.d.e.s include conservative LV systems. In addition we remark that conserva-
tive LV models are in some sense Hamiltonian systems, a fact that was well known
and explored by Volterra.

Given a LV system with interaction matrix A = (aij), we define its interaction
graph G(A) to be the undirected graph with vertex set V = {1, . . . , n} that includes
an edge connecting i to j whenever aij 6= 0 or aji 6= 0. The LV system and its matrix
A are called stably dissipative if

∑n
i,j=1 ãijxixj ≤ 0 for all x ∈ Rn and every small

enough perturbation Ã = (ãij) of A such that G(Ã) = G(A). This notion of stably
dissipativeness is due to Redheffer et al. whom in a series of papers [36–40] studied
this class of models under the name of stably admissible systems.

Assuming the system admits an interior equilibrium q ∈ int(Rn+), Redheffer et al.
describe a simple reduction algorithm, running on the graph G(A), that ‘deduces’
the minimal affine subspace of the form ∩i∈I{x ∈ Rn+ : xi = qi} that contains the
attractor of every stably dissipative LV system with interaction graph G(A).

Under the scope of this theory, Duarte et al. [12] have proven that the dynamics
on the attractor of a stably dissipative LV system is always described by a conser-
vative (Hamiltonian) LV system.
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The replicator equation, which is now central to Evolutionary Game Theory
(EGT), was introduced by P. Taylor and L. Jonker [48]. It models the time evo-
lution of the probability distribution of strategical behaviors within a biological
population. Given a payoff matrix A ∈ Matn×n(R), the replicator equation refers
to the following o.d.e.

x′i = xi
(
(Ax)i − xtAx

)
, i = 1, . . . , n

on the simplex ∆n−1 = {x ∈ Rn+ :
∑n
j=1 xj = 1}. This equation says that the

logarithmic growth of the usage frequency of each behavioural strategy is directly
proportional to how well that strategy fares within the population.

Another important class of models in EGT, that includes the Battle of sexes,
is the bimatrix replicator equation. In this model the population is divided in two
groups, e.g. males and females, and all interactions involve individuals of different
groups. Given two payoff matrices A ∈ Matn×m(R) and B ∈ Matm×n(R), for the
strategies in each group, the bimatrix replicator refers to the o.d.e.{

x′i = xi ((Ay)i − xtAy) i = 1, . . . , n
y′j = yj ((Bx)j − ytB x) j = 1, . . . ,m

on the product of simplices ∆n−1 × ∆m−1. It describes the time evolution of the
strategy usage frequencies in each group. These systems were first studied in [43]
and [44].

We now introduce the polymatrix replicator equation studied in [1]. Consider a
population is divided in p ∈ N groups, α = 1, . . . , p, each with nα ∈ N behavioral
strategies, in a total of n =

∑p
α=1 nα strategies, numbered from 1 to n. The system

is described by a single payoff matrix A ∈ Matn×n(R), which can be decomposed
in p2 blocks Aα,β ∈ Matnα×nβ (R) with the payoffs corresponding to interactions
between strategies in group α with strategies in group β. Let us abusively write i ∈ α
to express that i is a strategy of the group α. With this notation the polymatrix
replicator refers to the following o.d.e.

x′i = xi

(Ax)i −
∑
j∈α

xj (Ax)j

 , i ∈ α, α ∈ {1, . . . , p}.

on the product of simplexes ∆n1−1× . . .×∆np−1. Notice that interactions between
individuals of any two groups (including the same) are allowed. Notice also that this
equation implies that competition takes place inside the groups, i.e., the relative
success of each strategy is evaluated within the corresponding group.

This class of evolutionary systems includes both the replicator equation (when
p = 1) and the bimatrix replicator equation (when p = 2 and A1,1 = 0 = A2,2).
It also includes the replicator equation for n-person games (when Aα,α = 0 for all
α = 1, . . . , p). This last subclass of polymatrix replicator equations specializes more
general replicator equations for n-person games with multi-linear payoffs that were
first formulated by Palm [33] and studied by Ritzberger, Weibull [41], Plank [34]
among others.

In this paper we define the class of admissible polymatrix replicators (the ana-
logue of stably dissipative for LV systems), and introduce a reduction algorithm
similar to the one of Redheffer that ‘deduces’ the constraints on the localization
of the attractor. We also generalize the mentioned theorem in [12] to polymatrix
replicator systems.
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This paper is organized as follows. In Section 2 we introduce the notion of
polymatrix game as well as its associated polymatrix replicator system (o.d.e.),
proving some elementary facts about this class of models. In Section 3 we recall
some known results of Redheffer et al. reduction theory for stably dissipative LV
systems. In sections 4 and 5, we define, respectively, the classes of conservative and
dissipative polymatrix replicators, and study their properties. In particular, we
extend to polymatrix replicators the concept of stably dissipativeness of Redheffer
et al.. We generalize to this context the mentioned theorem in [12] about the
Hamiltonian nature of the limit dynamics of a “stably dissipative” system. Finally,
in Section 6 we illustrate our results with a simple example.

2. Polymatrix Replicators.

Definition 2.1. A polymatrix game is an ordered pair (n,A) where n = (n1, . . . , np)
is a list of positive integers, called the game type, and A ∈ Matn×n(R) a square
matrix of dimension n = n1 + . . .+ np.

This formal definition has the following interpretation.
Consider a population divided in p groups, labeled by an integer α ranging from

1 to p. Individuals of each group α = 1, . . . , p have exactly nα strategies to interact
with other members of the population. The strategies of a group α are labeled by
positive integers j in the range

n1 + . . .+ nα−1 < j ≤ n1 + . . .+ nα .

We will write j ∈ α to mean that j is a strategy of the group α. Hence the strategies
of all groups are labeled by the integers j = 1, . . . , n.

The matrix A is the payoff matrix. Given strategies i ∈ α and j ∈ β, in the groups
α and β respectively, the entry aij represents an average payoff for an individual
using the first strategy in some interaction with an individual using the second.
Thus, the payoff matrix A can be decomposed into nα × nβ block matrices Aα,β ,
with entries aij , i ∈ α and j ∈ β, where α and β range from 1 to p.

Definition 2.2. Two polymatrix games (n,A) and (n,B) with the same type are
said to be equivalent, and we write (n,A) ∼ (n,B), when for α, β = 1, . . . , p, all the
rows of the block matrix Aαβ −Bαβ are equal.

The state of the population is described by a point x = (xα)α in the prism

Γn := ∆n1−1 × . . .×∆np−1 ⊂ Rn ,

where ∆nα−1 = {x ∈ Rnα :
nα∑
i=1

xi = 1}, xα = (xj)j∈α and the entry xj represents

the usage frequency of strategy j within the group α. The prism Γn is a (n − p)-
dimensional simple polytope whose affine support is the (n− p)-dimensional space
En−p ⊂ Rn defined by the p equations∑

i∈α
xi = 1, 1 ≤ α ≤ p .

Definition 2.3. A polymatrix game (n,A) determines the following o.d.e. on the
prism Γn

dxi
dt

= xi

(Ax)i −
p∑

β=1

(xα)TAα,βxβ

 , ∀ i ∈ α, 1 ≤ α ≤ p , (1)



DISSIPATIVE POLYMATRIX REPLICATORS 5

called a polymatrix replicator system.

This equation says that the logarithmic growth rate of each frequency xi is the
difference between its payoff (Ax)i =

∑n
j=1 aijxj and the average payoff of all

strategies in the group α. The flow φtn,A of this equation leaves the prism Γn
invariant. Hence, by compactness of Γn, this flow is complete. The underlying
vector field on Γn will be denoted by Xn,A.

In the case p = 1, we have Γn = ∆n−1 and (1) is the usual replicator equation
associated to the payoff matrix A.

When p = 2, and A11 = A22 = 0, Γn = ∆n1−1 × ∆n2−1 and (1) becomes the
bimatrix replicator equation associated to the pair of payoff matrices (A12, A21).

The polytope Γn is parallel to the affine subspace

Hn :=

x ∈ Rn :
∑
j∈α

xj = 0, for α = 1, . . . , p

 . (2)

For each α = 1, . . . , p, we denote by πα : Rn → Rn the projection

x 7→ y, yi :=

{
xi if i ∈ α
0 if i /∈ α .

We also define 1 := (1, . . . , 1) ∈ Rn .

Lemma 2.4. Given a matrix C ∈ Matn×n(R), the following statements are equiv-
alent:

(a) Cαβ has equal rows, for all α, β ∈ {1, . . . , p},
(b) Cx ∈ H⊥n , for all x ∈ Rn.

Moreover, if any of these conditions holds then Xn,C = 0 on Γn.

Proof. Assume (a). Since H⊥n is spanned by the vectors πα(1) with α = 1, . . . , p,

we have v ∈ H⊥n iff vi = vj for all i, j ∈ α. Because all rows of C in the group α are

equal, we have (Cx)i = (Cx)j for all i, j ∈ α. Hence item (b) follows.
Next assume (b). For all i ∈ α, with α ∈ {1, . . . , p}, Cei ∈ H⊥n , which implies

that ci,k = cj,k for all j ∈ α. This proves (a).
If (a) holds, then for any α ∈ {1, . . . , p}, i, j ∈ α and k = 1, . . . , n, we have

cik = cjk. Hence for any x ∈ Γn, and i, j ∈ α with α ∈ {1, . . . , p}, (C x)i = (C x)j ,
which implies that Xn,C = 0 on Γn.

Proposition 1. Given two polymatrix games (n,A) and (n,B) with the same type
n, if (n,A) ∼ (n,B) then Xn,A = Xn,B on Γn.

Proof. Follows from Lemma 2.4 and the linearity of the correspondence A 7→ Xn,A.

We have the following obvious characterization of interior equilibria.

Proposition 2. Given a polymatrix game (n,A), a point q ∈ int(Γn) is an equilib-
rium of Xn,A if and only if (Aq)i = (Aq)j for all i, j ∈ α and α = 1, . . . , p.

In particular the set of interior equilibria of Xn,A is the intersection of some
affine subspace with int(Γn).
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3. Lotka-Volterra systems. The standard sector

Rn+ = {(x1, . . . , xn) ∈ Rn : xi ≥ 0, ∀i ∈ {1, . . . , n}}.

is the phase space of Lotka-Volterra systems.

Definition 3.1. We call Lotka-Volterra (LV) any system of differential equations
on Rn+ of the form

x′i = xi

ri +

n∑
j=1

aijxj

 , i = 1, . . . , n . (3)

In the canonical interpretation (3) models the time evolution of an ecosystem
with n species. Each variable xi represents the density of species i, the coefficient ri
stands for the intrinsic rate of decay or growth of species i, and each coefficient aij
represents the effect of population j over population i. For instance aij > 0 means
that population j benefits population i. The matrix A = (aij)1≤i,j≤n is called the
interaction matrix of system (3).

The interior equilibria of (3) are the solutions q ∈ Rn+ of the non-homogeneous
linear equation r+Ax = 0. Given A ∈ Matn×n(R) and q ∈ Rn such that r+Aq = 0,
the LV system (3) can be written as

dx

dt
= XA,q(x) := x ∗A (x− q) , (4)

where ∗ denotes the point-wise multiplication of vectors in Rn.

Definition 3.2. We say that the LV system (4), the matrix A, or the vector field
XA,q, is dissipative iff there is a positive diagonal matrix D such that QAD(x) =
xTADx ≤ 0 for every x ∈ Rn.

Proposition 3. If XA,q is dissipative then, for any D = diag(di) as in Defini-
tion 3.2, XA,q admits the Lyapunov function

h(x) =

n∑
i=1

xi − qi log xi
di

, (5)

which decreases along orbits of XA,q.

Proof. The derivative of h along orbits of XA,q is given by

ḣ(x) =

n∑
i,j=1

aij
di

(xi − qi)(xj − qj) = (x− q)TD−1A(x− q)

= [D−1(x− q)]TAD[D−1(x− q)] ≤ 0.

We will denote by Ker(A) the kernel of a matrix A.

Proposition 4. If A ∈ Matn×n(R) is dissipative and D is a positive diagonal
matrix such that QAD ≤ 0 then Ker(A) = DKer(AT ).

Proof. Assume first that QA ≤ 0 on Rn and consider the decomposition A = M+N
with M = (A+AT )/2 and N = (A−AT )/2. Clearly Ker(M) ∩Ker(N) ⊆ Ker(A).
On the other hand, if v ∈ Ker(A) then vT M v = vTAv = 0. Because QM =
QA ≤ 0 this implies that M v = 0, i.e., v ∈ Ker(M). Finally, since N = A −M ,
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v ∈ Ker(N). This proves that Ker(A) = Ker(M) ∩ Ker(N). Similarly, one proves
that Ker(AT ) = Ker(M) ∩Ker(N). Thus Ker(A) = Ker(AT ).

In general, if QAD ≤ 0, we have Ker((AD)T ) = Ker(DAT ) = Ker(AT ), and
Ker(AD) = D−1Ker(A). Thus, from the previous case applied to AD we get
D−1Ker(A) = Ker(AT ).

Proposition 5. Any dissipative LV system admits an invariant foliation on int(Rn+)
with a unique equilibrium point in each leaf.

Proof. See [13, Proposition 2.1 and Theorem 2.3].

On the rest of this section we focus attention on LV systems with interior equilbria
q ∈ int(Rn+). In this case the Lyapunov function h is proper, and hence the forward
orbits of (4) are complete. Therefore, the vector field XA,q induces a complete
semi-flow φtA,q on int(Rn+).

Definition 3.3. Given a matrix A = (aij) ∈ Matn×n(R) of a LV system, we define
its associated graph G(A) to have vertex set {1, . . . , n}, and to contain an edge
connecting vertex i to vertex j iff aij 6= 0 or aji 6= 0.

Given a matrix A = (aij) ∈ Matn×n(R) we call admissible perturbation of A any

other matrix Ã = (ãij) ∈ Matn×n(R) such that

ãij = 0 ⇔ aij = 0.

By definition, admissible perturbation are perturbations of A such that G(A) =

G(Ã).

Definition 3.4. A matrix A ∈ Matn×n(R) is said to be stably dissipative if any

close enough admissible perturbation Ã of A is dissipative, i.e., if there exists ε > 0
such that for any admissible perturbation Ã = (ãij) of A = (aij),

max
1≤i,j≤n

|aij − ãij | < ε ⇒ Ã is dissipative.

A LV system (4) is said to be stably dissipative if its interaction matrix is stably
dissipative.

Lemma 3.5. Let D be a positive diagonal matrix. If A is a stably dissipative
matrix, then AD and D−1A are also stably dissipative.

Proof. Since A is dissipative there exists a positive diagonal matrix D′ such that
QAD′ ≤ 0 , which is equivalent to Q(AD)(D−1D′) ≤ 0 . Hence AD is dissipative.

Analogously, since QAD′ ≤ 0 we have QD−1AD′D−1(x) = QAD′(D
−1x) ≤ 0, which

shows that D−1A is dissipative.
Let B be a small enough admissible perturbation of AD. Then there exists an

admissible perturbation Ã of A such that B = ÃD. Since A is stably dissipative
the matrix Ã is dissipative as well. Hence there exists a positive diagonal matrix
D′′ such that QÃD′′ ≤ 0 , which is equivalent to Q(ÃD)(D−1D′′) ≤ 0. This proves

that B = ÃD is dissipative. Therefore AD is stably dissipative.
A similar argument proves that D−1A is stably dissipative.

Definition 3.6. Given a matrix A ∈ Matn×n(R) and a subset I ⊆ {1, . . . , n}, we
say that AI = (aij)(i,j)∈I×I is the submatrix I × I of A.

Lemma 3.7. Let A ∈ Matn×n(R) be a stably dissipative matrix. Then, for all
I ⊆ {1, . . . , n}, the submatrix AI is stably dissipative.
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Proof. Let I ⊂ {1, . . . , n} and consider an admissible perturbation B = (bij)i,j∈I of

AI . Define Ã = (ãij) to be the matrix with entries

ãij =

{
bij if (i, j) ∈ I × I
aij if (i, j) /∈ I × I .

Clearly, Ã is an admissible perturbation of A. Hence there exists a positive diagonal
matrix D such that ÃD ≤ 0. Letting now DI be the I × I submatrix of D, we see
that BDI = (ÃD)I ≤ 0, which concludes the proof.

Definition 3.8. We call attractor of the LV system (4) the following topological
closure

ΛA,q := ∪x∈Rn+ω(x) ,

where ω(x) is the ω-limit of x by the semi-flow {φtA,q : Rn+ → Rn+}t≥0.

We need the following classical theorem (see [30, Theorem 2]).

Theorem 3.9 (La Salle). Given a vector field f(x) on a manifold M , consider the
autonomous o.d.e. on M ,

x′ = f(x). (6)

Let h : M → R be a smooth function such that

1. h is a Lyapunov function, i.e., the derivative of h along the flow satisfies
ḣ(x) := Dhxf(x) ≤ 0 for all x ∈M .

2. h is bounded from below.
3. h is a proper function, i.e. {h ≤ a} is compact for all a ∈ R.

Then (6) induces a complete semi-flow on M such that the topological closure of
all its ω-limits is contained in the region where the derivative of h along the flow
vanishes, i.e.,

∪x∈Mω(x) ⊆ {x ∈M : ḣ(x) = 0}.

The following lemma plays a key role in the theory of stably dissipative systems.

Lemma 3.10. Given a stably dissipative matrix A, if D is a positive diagonal
matrix D such that QAD ≤ 0 then for all i = 1, . . . , n and w ∈ Rn,

QAD(w) = 0 ⇒ aii wi = 0 .

Proof. See [40].

By Theorem 3.9 the attractor ΛA,q is contained in the set {ḣ = 0}. By the proof

Proposition 3 we have ḣ(x) = QD−1A(x− q). Hence

ΛA,q ⊆
{
x ∈ Rn+ : QD−1A(x− q) = 0

}
,

and by Lemma 3.10 it follows that ΛA,q ⊆ {x : xi = qi} for every i = 1, . . . , n such
that aii < 0.

Let us say that a species i is of type • to mean that the following inclusion holds
ΛA,q ⊆ {x : xi = qi}. Similarly, we say that a species i is of type ⊕, to state
that ΛA,q ⊆ {x : Xi

A,q(x) = 0}, where Xi
A,q(x) stands for the i-th component of

the vector XA,q(x). Equivalently, the strategy i is of type ⊕ if and only if the sets
{xi = const} are invariant under the flow φtA,q : ΛA,q ←↩. With this terminology it
can be proven that

Proposition 6. Given neighbor vertexes j, l in the graph G(A),
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(a) If j is of type • or ⊕ and all of its neighbors are of type •, except for l, then
l is of type •;

(b) If j is of type • or ⊕ and all of its neighbors are of type • or ⊕, except for l,
then l is of type ⊕;

(c) If all neighbors of j are of type • or ⊕, then j is of type ⊕.

Proof. See [38].

Based on these facts, Redheffer et al. introduced a reduction algorithm on the
graph G(A) to derive information on the species’ types of a stably dissipative LV
system (4).

Rule 1. Initially, colour black, •, every vertex i such that aii < 0, and colour white,
◦, all other vertices.

The reduction procedure consists in applying the following rules, corresponding
to valid inference rules:

Rule 2. If j is a • or ⊕-vertex and all of its neighbours are •, except for one vertex
l, then colour l as •;

Rule 3. If j is a • or ⊕-vertex and all of its neighbours are • or ⊕, except for one
vertex l, then draw ⊕ at the vertex l;

Rule 4. If j is a ◦-vertex and all of is neighbours are • or ⊕, then draw ⊕ at the
vertex j.

Redheffer et al. define the reduced graph of the system, R(A), as the graph
obtained from G(A) by successive applications of the reduction rules 2-4, until they
can no longer be applied. An easy consequence of this theory is the following result.

Proposition 7. Let A ∈ Matn(R) be a stably dissipative matrix and consider the
LV system (4) with an equilibrium q ∈ int(Rn+).

1. If all vertices of R(A) are • then q is the unique globally attractive equilibrium.
2. If R(A) has only • or ⊕ vertices then there exists an invariant foliation with

a unique globally attractive equilibrium in each leaf.

Proof. Item (1) is clear because if all vertices are of type • then for every orbit
x(t) = (x1(t), . . . , xn(t)) of (4), and every i = 1, . . . , n, one has limt→+∞ xi(t) = qi.

Likewise, if R(A) has only • or ⊕ vertices then every orbit of (4) converges to
an equilibrium point, which depends on the initial condition. But by Proposition 5
there exists an invariant foliation F with a single equilibrium point in each leaf.
Hence, the unique equilibrium point in each leaf of F must be globally attractive.

Definition 3.11. We say that a dissipative matrix A ∈ Matn×n(R) is almost skew-
symmetric iff aij = −aji whenever aii = 0 or ajj = 0, and the quadratic form QA
is negative definite on the subspace

E = {w ∈ Rn : wi = 0 for all i such that aii = 0 } .

Definition 3.12. We say that the graph G(A) has a strong link (•−•) if there is
an edge {i, j} between vertexes i, j such that aii < 0 and ajj < 0.

Proposition 8 (Zhao-Luo [54]). Given A ∈ Matn×n(R), A is stably dissipative iff
every cycle of G(A) contains at least a strong link and there is a positive diagonal
matrix D such that AD is almost skew-symmetric.
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Proof. See [54, Theorem 2.3], or [13, Proposition 3.5].

A compactification procedure introduced by J. Hofbauer [22] shows that every
Lotka-Volterra system in Rn+ is orbit equivalent to a replicator system on the n-
dimensional simplex ∆n. We briefly recall this compactification. Let A be a n× n
real matrix and r ∈ Rn a constant vector. The Lotka-Volterra equation associated
to A and r is defined on Rn+ as follows

dzi
dt

= zi ( ri + (Az)i) 1 ≤ i ≤ n . (7)

For each j = 1, . . . , n + 1, let σj := {x ∈ ∆n ⊂ Rn+1 : xj = 0 } and consider the
diffeomorphism

φ : Rn+ → ∆n\σn+1

(z1, . . . , zn) 7→ 1

1 +
n∑
i=1

zi

(z1, . . . , zn, 1).

A straightforward calculation shows that the push-forward of the vector field (7) is
equal to 1

xn+1
XÃ. where XÃ is the replicator vector field associated to the payoff

matrix

Ã =


a11 . . . a1n r1

...
...

...
...

an1 . . . ann rn
0 . . . 0 0

 .

Since the flows of 1
xn+1

XÃ and XÃ are orbit equivalent, we refer to XÃ as the

compactification of the LV equation (7).

4. Hamiltonian Polymatrix Replicators.

Definition 4.1. We say that any vector q ∈ Rn is a formal equilibrium of a poly-
matrix game (n,A) if

(a) (Aq)i = (Aq)j for all i, j ∈ α, and all α = 1, . . . , p,
(b)

∑
j∈α qj = 1 for all α = 1, . . . , p.

The matrix A induces a quadratic form QA : Hn → R defined by QA(w) :=

wT Aw, where Hn is defined in (2).

Definition 4.2. We call diagonal matrix of type n any diagonal matrix D =
diag(di) such that di = dj for all i, j ∈ α and α = 1, . . . , p.

Definition 4.3. A polymatrix game (n,A) is called conservative if it has a formal
equilibrium q, and there exists a positive diagonal matrix D of type n such that
QAD = 0 on Hn.

In [1] we have defined conservative polymatrix game as follows.

Definition 4.4. A polymatrix game (n,A) is called conservative if

(a) it has a formal equilibrium,
(b) there are matrices A0, D ∈ Matn×n(R) such that

(i) (n,A) ∼ (n,A0D),
(ii) A0 is skew-symmetric,
(iii) D is a positive diagonal matrix of type n.
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However, we will prove in Proposition 11 that these two definitions are equivalent.
Let {e1, . . . , en} denote the canonical basis in Rn, and Vn be the set of vertices

of Γn. Each vertex v ∈ Vn can be written as v = ei1 + · · · + eip , with iα ∈ α,
α = 1, . . . , p, and it determines the set

Vv := { (i, iα) : i ∈ α, i 6= iα, α = 1, . . . , p }

of cardinal n−p = dim(Hn). Notice that (i, j) ∈ Vv iff i 6= j are in the same group
and vj = 1. Hence there is a natural identification Vv ≡ { i ∈ {1, . . . , n} : vi = 0 }.
For every vertex v, the family Bv := { ei − ej : (i, j) ∈ Vv } is a basis of Hn.

Lemma 4.5. For any vertex v of Γn and x, q ∈ Γn,

x− q =
∑

(i,j)∈Vv

(xi − qi) (ei − ej) .

Proof. Let v be a vertex of Γn. Notice that for all α = 1, . . . , p,

−(xiα − qiα) =
∑
i 6=iα
i∈α

(xi − qi) .

∑
(i,j)∈Vv

(xi − qi) (ei − ej) =

p∑
α=1

∑
i 6=iα
i∈α

(xi − qi)(ei − eiα)

=

p∑
α=1

∑
i6=iα
i∈α

(xi − qi)ei −
p∑

α=1

∑
i 6=iα
i∈α

(xi − qi)eiα

=

p∑
α=1

∑
i6=iα
i∈α

(xi − qi)ei +

p∑
α=1

(xiα − qiα)eiα

=

p∑
α=1

∑
i∈α

(xi − qi)ei = x− q

Given ordered pairs of strategies in the same group (i, j), (k, l), i.e., i, j ∈ α and
k, l ∈ β for some α, β ∈ {1, . . . , p}, define

A(i,j),(k,l) := aik + ajl − ail − ajk .

Proposition 9. The coefficients A(i,j),(k,l) do not depend on the representative A
of the polymatrix game (n,A).

Proof. Consider the matrix B = A − C, where the blocks Cαβ = (cij)i∈α,j∈β of

C have equal rows for all α, β = 1, . . . , p. Let (i, j) ∈ α and (k, l) ∈ β with
α, β ∈ {1, . . . , p}. Then

B(i,j),(k,l) = bik + bjl − bil − bjk
= aik − ck + ajl − cl − ail + cl − ajk + ck

= A(i,j),(k,l) ,

where ck is the constant entry on the kth-column of Cαβ .
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Definition 4.6. Given v ∈ Vn, we define Av ∈ Matd×d(R), d = n − p, to be the
matrix with entries A(i,j),(k,l), indexed in Vv × Vv, and G(Av) to be its associated
graph (see Definition 3.3).

Proposition 10. The matrix Av represents the quadratic form
QA : Hn → R in the basis Bv.

More precisely, if q is a formal equilibrium of the polymatrix game (n,A) then
the quadratic form QA : Hn → R is given by

QA(x− q) =
∑

(i,j),(k,l)∈Vv

A(i,j),(k,l) (xi − qi) (xk − qk) . (8)

Proof. Using lemma 4.5, we have

QA(x− q) =

 ∑
(i,j)∈Vv

(xi − qi)(ei − ej)

T

A

 ∑
(k,l)∈Vv

(xk − qk)(ek − el)


=

∑
(i,j),(k,l)∈Vv

(ei − ej)TA(ek − el)(xi − qi)(xk − qk)

=
∑

(i,j),(k,l)∈Vv

A(i,j),(k,l)(xi − qi)(xk − qk) ,

Remark 1. All matrices Av, with v ∈ Vn, have the same rank because they repre-
sent, in different basis, the same (non-symmetric) bilinear form BA : Hn×Hn → R,

BA(v, w) := vT Aw.

Proposition 11. Definitions 4.3 and 4.4 are equivalent.

Proof. Given a matrix C with blocks Cαβ = (cij)i∈α,j∈β having equal rows for all

α, β = 1, . . . , p, it is clear that C(i,j),(k,l) = 0 for all pairs of strategies (i, j), (k, l)
in the same group. Hence, by Proposition 10, QC vanishes on Hn.

If (n,A) is conservative in the sense of Definition 4.4 then there are matrices: A0

skew-symmetric, and D positive diagonal of type n, such that (n,A) ∼ (n,A0D). It
follows that (n,AD−1) ∼ (n,A0) and as observed above the matrix C = AD−1−A0

satisfies QC = 0 on Hn. Finally, since A0 is skew-symmetric, we have QAD−1 = 0
on Hn. In other words, (n,A) is conservative in the sense of Definition 4.3.

Conversely, assume that A is conservative in the sense of Definition 4.3. Then
for some positive diagonal matrix D of type n, QAD−1 vanishes on Hn.

Let {v1, . . . , vn} be an orthonormal basis of Rn where the vectors vα = 1√
nα
πα(1),

with α ∈ {1, . . . , p}, form a orthonormal basis of H⊥n , and the family {vp+1, . . . , vn}
is any orthonormal basis of Hn.

Let mij = 〈AD−1vi, vj〉, for all i, j = 1, . . . , n, so that M = (mij)i,j represents
the linear endomorphism AD−1 : Rn → Rn w.r.t. the basis {v1, . . . , vn}. Since
QAD−1 = 0 on Hn, the (n − p) × (n − p) sub-matrix M ′ of M , formed by the last
n− p rows and columns of M , is skew-symmetric.

Let M0 ∈ Matn×n(R) be a skew-symmetric matrix that shares with M its last
n−p rows. Let A0 : Rn → Rn be the linear endomorphism represented by the matrix
M0 w.r.t. the basis {v1, . . . , vn}, and identify A0 with the matrix that represents
it w.r.t. the canonical basis. Because M0 is skew-symmetric, and {v1, . . . , vn}
orthonormal, A0 is skew-symmetric too.
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Then C = AD−1 − A0 is represented by the matrix M −M0 w.r.t. the basis
{v1, . . . , vn}. Since the last n − p rows of M − M0 are zero, the range of C :
Rn → Rn is contained in H⊥n . Hence, by Lemma 2.4, (n,AD−1) ∼ (n,A0), which

implies (n,A) ∼ (n,A0D). Since A0 is skew-symmetric, this proves that (n,A) is
conservative in the sense of Definition 4.4.

Remark 2. For all w ∈ Hn, QD−1A(w) = QAD(D−1w). Hence, because DHn =
Hn for any diagonal matrix D of type n

1. QAD(w) = 0 ∀ w ∈ Hn ⇔ QD−1A(w) = 0 ∀ w ∈ Hn.
2. QAD(w) ≤ 0 ∀ w ∈ Hn ⇔ QD−1A(w) ≤ 0 ∀ w ∈ Hn.

Lemma 4.7. Given A ∈ Matn×n(R), if q is a formal equilibrium of Xn,A, and
D = diag(di) is a positive diagonal matrix of type n, then the derivative of

h(x) = −
n∑
i=1

qi
di

log xi (9)

along the flow of Xn,A satisfies

ḣ(x) = QD−1A(x− q) .

Proof.

ḣ = −
p∑

α=1

∑
i∈α

qi
di

ẋi
xi

= −
p∑

α=1

∑
i∈α

qi
di

(Ax)i −
p∑

β=1

(xα)tAα,βxβ


= −qTD−1Ax+ xTD−1Ax = (x− q)TD−1Ax

= (x− q)TD−1Ax− (x− q)TD−1Aq︸ ︷︷ ︸
=0

= (x− q)TD−1A(x− q) = QD−1A(x− q) .

To explain the vanishing term notice that for all α ∈ {1, . . . , p} and i, j ∈ α,
(Aq)i = (Aq)j , di = dj and

∑
k∈α(xk − qk) = 0.

Proposition 12. If (n,A) is conservative, and q and D = diag(di) are as in

Definition 4.3, then (9) is a first integral for the flow of Xn,A, i.e., ḣ = 0 along the
flow of Xn,A.

Moreover, Xn,A is Hamiltonian w.r.t. a stratified Poisson structure on the prism
Γn, having h as its Hamiltonian function.

Proof. The first part follows from Lemma 4.7 and Remark 2. The second follows
from [1, theorem 3.20].

5. Dissipative Polymatrix Replicators.

Definition 5.1. A polymatrix game (n,A) is called dissipative if it has a formal
equilibrium q, and there exists a positive diagonal matrix D of type n such that
QAD ≤ 0 on Hn.

Proposition 13. If (n,A) is dissipative, and q and D are as in Definition 5.1,
then

h(x) = −
n∑
i=1

qi
di

log xi



14 HASSAN NAJAFI ALISHAH, PEDRO DUARTE AND TELMO PEIXE

is a Lyapunov decreasing function for the flow of Xn,A, i.e., dh
dt ≤ 0 along the flow

of Xn,A.

Proof. Follows from Lemma 4.7, and Remark 2.

Definition 5.2. A polymatrix game (n,A) is called admissible if (n,A) is dissipative
and for some vertex v ∈ Γn the matrix Av is stably dissipative (see Definition 3.4).
We denote by V ∗n,A the subset of vertices v ∈ Vn such that Av is stably dissipative.

Proposition 14. Let q be a formal equilibrium of the polymatrix game (n,A).
Given v ∈ Vn and (i, j) ∈ Vv, then we have the following quotient rule

d

dt

(
xi
xj

)
=
xi
xj

∑
(k,l)∈Vv

A(i,j),(k,l) (xk − qk) . (10)

Proof. Let v be a vertex of Γn, (i, j) ∈ Vv, and q be a formal equilibrium. Using
Lemma 4.5, we have

d

dt

(
xi
xj

)
=

xi
xj

((Ax)i − (Ax)j)

=
xi
xj

(
(A(x− q))i − (A(x− q))j

)
=

xi
xj

∑
(k,l)∈Vv

(ei − ej)TA(ek − el)(xk − qk)

=
xi
xj

∑
(k,l)∈Vv

A(i,j),(k,l)(xk − qk) .

Proposition 15. If the dissipative polymatrix replicator associated to (n,A) has an
equilibrium q ∈ int

(
Γn
)
, then for any state x0 ∈ int

(
Γn
)

and any pair of strategies
i, j in the same group, the solution x(t) of (1) with initial condition x(0) = x0

satisfies
1

c
≤ xi(t)

xj(t)
≤ c , for all t ≥ 0 ,

where c = c(x) is a constant depending on x.

Proof. Notice that the Lyapunov function h in Proposition 13 is a proper function
because q ∈ int(Γn). Given x0 ∈ int

(
Γn
)
, h(x0) = a for some constant a > 0. By

Proposition 13 the compact set K = {x ∈ int(Γn) : h(x) ≤ a} is forward invariant
by the flow of Xn,A. In particular, the solution of the polymatrix replicator with
initial condition x(0) = x0 lies in K. Hence the quotient xi

xj
has a minimum and a

maximum in K.

Proposition 16. Given a dissipative polymatrix game (n,A), if Xn,A admits an
equilibrium q ∈ int(Γn) then there exists a Xn,A-invariant foliation F on int(Γn)
such that every leaf of F contains exactly one equilibrium point.

Proof. Fix some vertex v ∈ Vn. Recall that the entries of Av are indexed in the set
Vv ≡ { i ∈ {1, . . . , n} : vi = 0 }. Given a vector w = (wi)i∈Vv ∈ Rn−p, we denote
by w̄ the unique vector w̄ ∈ Hn such that w̄i = wi for all i ∈ Vv.

Let E ⊂ Rn be the affine subspace of all points x ∈ Rn such that for all α =
1, . . . , p and all i, j ∈ α, (Ax)i = (Ax)j and

∑
j∈α xj = 1. By definition E ∩ int(Rn)
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is the set of interior equilibria of Xn,A. We claim that E = {q + w̄ : w ∈ Ker(Av)}.
To see this it is enough to remark that w ∈ Ker(Av) if and only if

(Aw̄)i − (Aw̄)j = (ei − ej)TAw̄ = 0 ∀ (i, j) ∈ Vv.

Given b ∈ Ker(ATv ), consider the function gb : int(Rn+) → R defined by gb(x) :=∑n
j=1 b̄j log xj . The restriction of gb to Γn is invariant by the flow of Xn,A. Note

we can write

gb(x) =

n∑
l=1

b̄l log xl =
∑

(i,j)∈Vv

bi log

(
xi
xj

)
,

and differentiating gb along the flow of Xn,A, by Proposition 14 we get

ġb(x) = bT Av(xk − qk)k∈Vv = 0 for all x ∈ Γn.

Fix a basis {b1, . . . , bk} of Ker(ATv ), and define g : int(Rn+) → Rk by g(x) :=
(gb1(x), . . . , gbk(x)). This map is a submersion. For that consider the matrix B ∈
Matk×n(R) whose rows are the vectors b̄j , j = 1, . . . , k. We can write g(x) =
B log x, where log x = (log x1, . . . , log xn). Hence Dgx = BD−1

x , where Dx =
diag(x1, . . . , xn), and because B has maximal rank, rank(B) = k, the map g is a
submersion. Hence g determines the foliation F whose leaves are the pre-images
g−1(c) = {g ≡ c} with c ∈ Rk.

Let us now explain why each leaf of F contains exactly one point in E . Consider
the vector subspace parallel to E , E0 := {w̄ : w ∈ Ker(Av)}. Because (n,A) is dissi-
pative, Av ∈ Matd×d(R), d = n−p, is also dissipative, and by Proposition 4, Ker(Av)
and Ker(ATv ) have the same rank. Therefore dim(E0) = k. Let {c1, . . . , cn−k} be
a basis of E⊥0 ⊂ Rn and consider the matrix C ∈ Mat(n−k)×n(R) whose rows are
the vectors cj , j = 1, . . . , n − k. The matrix C provides the following description

E = {x ∈ Rn : C (x − q) = 0}. Consider the matrix U =

[
B
C

]
∈ Matn×n(R),

which is nonsingular because by Proposition 4, Ker(Av) = DKer(ATv ), for some
positive diagonal matrix D.

The intersection g−1(c) ∩ E is described by the non-linear system

x ∈ g−1(c) ∩ E ⇔
{
B log x = c
C(x− q) = 0

.

Considering u = log x, this system becomes{
B u = c
C(eu − q) = 0

.

It is now enough to see that{
B u = c
C(eu − q) = 0

and

{
B u′ = c

C(eu
′ − q) = 0

imply u = u′. By the mean value theorem, for every i ∈ {1, . . . , n} there is some
ũi ∈ [ui, u

′
i] such that

eui − eu
′
i = eũi(ui − u′i),

which in vector notation is to say that

eu − eu
′

= Deũ(u− u′) = eũ ∗ (u− u′).
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Hence {
B (u− u′) = 0

C(eu − eu′) = 0
⇔

{
B (u− u′) = 0
C Deũ(u− u′) = 0

⇔
[

B
C Deũ

]
(u− u′) = 0

⇔ U

[
I 0
0 Deũ

]
(u− u′) = 0 .

Therefore, because

[
I 0
0 Deũ

]
is non-singular, we must have u = u′.

Restricting F to int(Γn) we obtain a Xn,A-invariant foliation on int(Γn). Notice

that the restriction g|int(Γn)
: int(Γn)→ Rk is invariant by the flow of Xn,A because

all its components are.
Since all points in int(Γn) ∩ E are equilibria, each leaf of the restricted foliation

contains exactly one equilibrium point.

Definition 5.3. We call attractor of the polymatrix replicator (1) the following
topological closure

Λn,A := ∪x∈Γnω(x) ,

where ω(x) is the ω-limit of x by the flow {ϕtn,A : Γn → Γn}t∈R.

Proposition 17. Given a dissipative polymatrix replicator associated to (n,A) with
an equilibrium q ∈ int

(
Γn
)

and a diagonal matrix D as in Definition 5.1, we have
that

Λn,A ⊆
{
x ∈ Γn : QD−1A(x− q) = 0

}
.

Proof. By Theorem 3.9 the attractor Λn,A is contained in the region where ḣ = 0.
The conclusion follows then by Lemma 4.7.

Given an admissible polymatrix replicator associated to (n,A) with an equilib-
rium q ∈ int

(
Γn
)
, we say that a strategy i is of type • to mean that the following

inclusion holds Λn,A ⊆ {x ∈ Γn : xi = qi}. Similarly, we say that a strategy i is
of type ⊕ to state that Λn,A ⊆ {x ∈ Γn : Xi

n,A(x) = 0}, where Xi
n,A(x) stands

for the i-th component of the vector Xn,A(x). Given two strategies i and j in the
same group, we say that i and j are related when the orbits on the attractor Λn,A
preserve the foliation { xixj = const. }.

For any v ∈ Vn we will denote by avij the entries of the matrix Av.
With this terminology we have

Proposition 18. Given an admissible polymatrix game (n,A) with an equilibrium
q ∈ int

(
Γn
)

the following statements hold:

(1) For any graph G(Av) with v ∈ V ∗n,A:

(a) if i is a strategy such that vi = 0 and avii < 0, then i is of type •;
(b) if j is a strategy of type • or ⊕ and all neighbours of j but (possibly) l in

G(Av) are of type •, then l is also of type •;
(c) if j is a strategy of type • or ⊕ and all neighbours of j but (possibly) l in

G(Av) are of type • or ⊕, then l is also of type ⊕;
(2) For any graph G(Av) with v ∈ Vn:

(d) if all neighbours of a strategy j in G(Av) are of type • or ⊕, then j is
related to the unique strategy j′, in the same group as j, such that vj′ = 1.
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Proof. The proof involves the manipulation of algebraic relations holding on the
attractor. To simplify the terminology we will say that some algebraic relation
holds to mean that it holds on the attractor.

Choose a positive diagonal matrix D of type n such that QAD ≤ 0 on Hn, and

set Ã := D−1A. By Lemma 3.5, for any v ∈ Vn, the matrices Av and Ãv have the
same dissipative and stably dissipative character. Hence V ∗n,A = V ∗

n,Ã
.

Given v ∈ V ∗n,A, for any solution x(t) of the polymatrix replicator in the attractor,

we have that QÃv (x(t)− q) = 0. Hence, as Ãv is stably dissipative and avii < 0, by

Lemma 3.10 follows that xi(t) = qi on the attractor, which proves (a).

Given v ∈ V ∗n,A we have that Ãv is stably dissipative. By Proposition 17, we
obtain ∑

(k,l)∈Vv

Ã(j,j′),(k,l)(xk − qk) = 0

on the attractor.
Observe that if j is of type •, then xj = qj , and if j is of type ⊕, then avjj =

A(j,j′),(j,j′) = 0, where j′ is the unique strategy in the same group as j such that
vj′ = 1.

Let j, l be neighbour vertices in the graph G(Av).
Let us prove (b). If j is of type • or ⊕ and all of its neighbours are of type •,

except for l, then

Ã(j,j′),(l,l′)(xl − ql) = 0 ,

from which follows that xl = ql because A(j,j′),(l,l′) = djÃ(j,j′),(l,l′) 6= 0 , where l′ is
the unique strategy in the same group as l such that vl′ = 1. This proves (b).

Let us prove (c). If j is of type • or ⊕ and all of its neighbours are of type • or
⊕, except for l, then

A(j,j′),(l,l′)(xl − ql) = c ,

for some constant c. Hence because A(j,j′),(l,l′) 6= 0, xl is constant which proves (c).
Let us prove (d). Suppose all neighbours of a strategy j are of type • or ⊕. By

the polymatrix quotient rule (see Proposition 14),

d

dt

(
xj
xj′

)
=

xj
xj′

∑
(k,l)∈Vv

A(j,j′),(k,l) (xk − qk) .

Since all neighbours of j are of type • or ⊕ we obtain

d

dt

(
xj
xj′

)
=

xj
xj′

C ,

for some constant C. Hence
xj
xj′

= B0 e
Ct ,

where B0 =
xj(0)
xj′ (0) . By Proposition 15 we have that the constant C must be 0.

Hence there exists a constant B0 > 0 such that
xj
xj′

= B0, which proves (d).

Proposition 19. If in a group α all strategies are of type • (respectively of type •
or ⊕) except possibly for one strategy i, then i is also of type • (respectively of type
⊕).
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Proof. Suppose that in a group α all strategies are of type • or ⊕ except for one
strategy i. We have that xk = ck, for some constant ck, for each k 6= i. Thus,

xi = 1−
∑
j∈α
j 6=i

xj = 1−
∑
j=•

xj −
∑
k=⊕

xk = 1−
∑
j=•

qj −
∑
k=⊕

ck .

Hence i is of type ⊕.
If in a group α all strategies are of type •, the proof is analogous.

Proposition 20. Assume that in a group α with n strategies, n− k of them, with
0 ≤ k < n, are of type • or ⊕, and denote by S the set of the remaining k strategies.
If the graph with vertex set S, obtained by drawing an edge between every pair of
related strategies in S, is connected, then all strategies in S are of type ⊕.

Proof. Since all strategies in α \ S are of type • or ⊕, for the strategies in S we
have that ∑

i∈S
xi = 1− C , (11)

where C =
∑
j∈α\S xj .

Let GS be the graph with vertex set S obtained drawing an edge between every
pair of related strategies in S. Since GS is connected we have that it contains a
tree. Considering the k− 1 relations between the strategies in S given by that tree,
we have k − 1 linearly independent equations of the form xi = Cijxj for pairs of
strategies i and j in S, where Cij is a constant. Together with (11) we obtain k linear
independent equations for the k strategies in S, which implies that xi = constant,
for every i ∈ S. This concludes the proof.

Based on these facts we introduce a reduction algorithm on the set of graphs
{G(Av) : v ∈ Vn } to derive information on the strategies of an admissible poly-
matrix game (n,A).

In each step, we also register the information obtained about each strategy in
what we call the “information set”, where all strategies of the polymatrix are rep-
resented.

The algorithm is about labelling (or colouring) strategies with the
“colours” • and ⊕. The algorithm acts upon all graphs G(Av) with v ∈ Vn as
well as on the information set. It is implicit that after each rule application, the
new labels (or colours) are transferred between the graphs G(Av) and the informa-
tion set, that is, if in a graph G(Av) a strategy i has been coloured i = •, then in all
other graphs containing the strategy i, we colour it i = •, as well on the information
set.

Some rules just can be applied to graphs G(Av) such that v ∈ V ∗n,A, while others
can be applied to all graphs.

Rule 1. Initially, for each graph G(Av) such that v ∈ V ∗n,A colour in black (•) any

strategy i such that avii < 0. Colour in white (◦) all other strategies.

The reduction procedure consists in applying the following rules, corresponding
to valid inferences rules. For each graph G(Av) such that v ∈ V ∗n,A:

Rule 2. If i has colour • or ⊕ and all neighbours of i but j in G(Av) are •, then
colour j = •.
Rule 3. If i has colour • or ⊕ and all neighbours of i but j in G(Av) are • or ⊕,
then colour j = ⊕.



DISSIPATIVE POLYMATRIX REPLICATORS 19

For each graph G(Av) such that v ∈ Vn:

Rule 4. If i has colour ◦ and all neighbours of i in G(Av) are • or ⊕, then we put
a link between strategies j and j′ in the “information set”, where j′ is the unique
strategy such that vj′ = 1 and j′ is in the same group as j.

The following rules can be applied to the set of all strategies of the polymatrix
game.

Rule 5. If in a group all strategies have colour • (respectively, •,⊕) except for one
strategy i, then colour i = • (respectively, i = ⊕).

Rule 6. If in a group some strategies have colour • or ⊕, and the remaining strate-
gies are related forming a connected graph, then colour with ⊕ all that remaining
strategies.

We define the reduced information set R(n,A) as the {•,⊕, ◦}-coloring on the set
of strategies {1, . . . , n}, which is obtained by successive applications to the graphs
G(Av), v ∈ Vn, of the reduction rules 1-6, until they can no longer be applied.

Proposition 21. Let (n,A) be an admissible polymatrix game, and consider the
associated polymatrix replicator (1) with an interior equilibrium q ∈ int(Γn).

1. If all vertices of R(n,A) are • then q is the unique globally attractive equilib-
rium.

2. If R(n,A) has only • or ⊕ vertices then there exists an invariant foliation
with a unique globally attractive equilibrium in each leaf.

Proof. Item (1) is clear because if all strategies are of type • then for every orbit
x(t) = (x1(t), . . . , xn(t)) of (1), and every i = 1, . . . , n, one has limt→+∞ xi(t) = qi.

Likewise, if R(n,A) has only • or ⊕ vertices then every orbit of (1) converges to
an equilibrium point, which depends on the initial condition. But by Proposition 16
there exists an invariant foliation F with a single equilibrium point in each leaf.
Hence, the unique equilibrium point in each leaf of F must be globally attractive.

The following definition corresponds to a one-step reduction of the attractor
dynamics.

Definition 5.4. Given a polymatrix game (n,A), a strategy l ∈ α, for some
group α, and a point q ∈ int

(
Γn
)
, we call (q, l)-reduction of (n,A) a new poly-

matrix game (n(l), A(l)) obtained removing the strategy l from the group α, where
n(l) := (n1, . . . , nα−1, nα− 1, nα+1, . . . , np), and the matrix A(l) = (aij(l)) indexed
in {1, . . . , l − 1, l + 1, . . . , n} has the following entries:

aij(l) :=

{
aij − alj if j /∈ α
(aij − alj)(1− ql) + (ail − all)ql if j ∈ α \ {l} . (12)

The map ψl : Γn ∩ {xl = ql} → Γn(l), ψl(x) = x̌l = (xj)j 6=l, defines a natural
identification.

Proposition 22. Let (n,A) be a polymatrix game with an equilibrium q ∈ int
(
Γn
)
.

Given a strategy l ∈ α, for some group α, the (q, l)-reduction (n(l), A(l)) of (n,A)
is such that if x ∈ Γn ∩ {xl = ql} and Xn,A(x) is tangent to {xl = ql}, that is

X l
n,A(x) = 0, then for all j 6= l,

Xj
n,A(x) = Xj

n(l),A(l)(x̌
l) .



20 HASSAN NAJAFI ALISHAH, PEDRO DUARTE AND TELMO PEIXE

Proof. Suppose that for some α ∈ {1, . . . , p} there exists l ∈ α such that x ∈
Γn ∩ {xl = ql} and X l

n,A(x) = 0.

Since
∑
j∈α
j 6=l

xj = 1− ql, considering the change of variables

yj =

{ xj
1−ql if j ∈ α \ {l}
xj if j /∈ α , (13)

we have that
∑
j∈α\{l} yj = 1 .

By Proposition 1, we can assume A = (aij) has all entries equal to zero in row l,
i.e., alj = 0 for all j. Thus we obtain

dxl
dt

= xl

− p∑
β=1

(xα)tAαβxβ

 .

Hence, making xl = ql, the replicator equation (1) becomes

(i) if i ∈ α \ {l},

dxi
dt

= xi

 n∑
j=1
j 6=l

aijxj + ailql −
∑
k∈α
k 6=l

n∑
j=1

akjxkxj

 (14)

(ii) if i ∈ β 6= α, the equation is essentially the same, with xl = ql.

Observe that
∑p
β=1(xα)tAαβxβ = 0 because we are assuming that x ∈ Γn∩{xl =

ql} and X l
n,A(x) = 0.

Hence we can add

− ql
1− ql

p∑
β=1

(xα)tAαβxβ

to each equation for dxi
dt , with i ∈ α \ {l}, without changing the vector field Xn,A

at the points x ∈ Γn ∩ {xl = ql} where Xn,A(x) is tangent to {xl = ql}. So
equation (14) becomes

dxi
dt

= xi

 n∑
j=1
j 6=l

aijxj + ailql −
1

1− ql

∑
k∈α
k 6=l

n∑
j=1

akjxkxj

 (15)

Now, using the change of variables (13), equation (15) becomes

dyi
dt

= yi

fi −∑
k∈α
k 6=l

ykfk

 (i ∈ α) , (16)

where fi =
∑
j∈α\{l} aij(1− ql)yj + ailql +

∑
j /∈α aijyj .

Let α̌ ≡ α \ {l}. Setting ailql = ailql(
∑
j∈α̌ yj),

dyi
dt

= yi

gi −∑
k∈β

ykgk

 , i ∈ β, β ∈ {1, . . . , p} , (17)
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where gi =
∑
j∈α̌(aij(1−ql)+ailql)yj +

∑
j /∈α̌ aijyj , defines a new polymatrix game

in dimension n− 1. In fact, (17) is the replicator equation of the polymatrix game
(n(l), A(l)), where, since we have assumed that alj = 0 for all j, (12) becomes

aij(l) =

{
aij if j /∈ α̌
aij(1− ql) + ailql if j ∈ α̌ .

Remark 3. Under the assumptions of Proposition 22, when nα = 2, considering
for instance that the group α consists of strategies l − 1 and l, xl = ql implies that
xl−1 = 1− ql = ql−1. Hence we can further reduce the polymatrix game (n(l), A(l))
to a new polymatrix game with type (n1, . . . , nα−1, nα+1, . . . , np) and payoff matrix
indexed in {1, . . . , `− 2, l + 1, . . . , n}.

Corollary 1. Let (n,A) be a polymatrix game with an equilibrium q ∈ int
(
Γn
)
.

Given a set Q ⊂ {1, . . . , n} of strategies such that

Λn,A ⊆
⋂
l∈Q

{xl = ql} ,

then there exists a new polymatrix game (m,B), where mα = |α \Q| for every
α = 1, . . . , p, and an identification ψ : Γn ∩

⋂
l∈Q{xl = ql} → Γm such that Xn,A =

Xm,B ◦ ψ on the attractor Λn,A.
In other words, the attractor Λn,A lives on a lower dimension polymatrix repli-

cator of type m.

Proof. Apply Proposition 22 repeatedly.

Lemma 5.5. Given a polymatrix game (n,A) and a diagonal matrix D of type n,
we have

(AD)v = AvDv ,

where Av is given in Definition 4.6 and Dv is the submatrix of D indexed in Vv =
{ i ∈ {1, . . . , n} : vi = 0 }.

Proof. Given indices i, k ∈ Vv, take j, resp. l, in the group of i, resp. k, such that
vj = vl = 1.

Since D is of type n we have dk = dl. By Definition 4.6,

((AD)v)ik = (AD)(i,j),(k,l) = aikdk + ajldl − aildl − ajkdk
= (aik + ajl − ail − ajk) dk

= A(i,j),(k,l) dk = (AvDv)ik .

Lemma 5.6. Let (n,A) be an admissible polymatrix game and D a diagonal matrix
as in Definition 5.1. Given v ∈ V ∗n,A such that vl = 0 and avll < 0 for some l ∈ α
with α ∈ {1, . . . , p}, there exists a positive diagonal matrix Ď of type n(l) such
that (A(l)Ď)v̌ is the submatrix of (AD)v obtained eliminating row and column l.
Moreover

(a) (n(l), A(l)) is admissible, and;
(b) v̌ ∈ V ∗n(l),A(l).
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Proof. By Proposition 1, we can assume A = (aij) has all entries equal to zero in
row l, i.e., alj = 0 for all j.

Since (n,A) is admissible and v ∈ V ∗n,A, (AD)v is stably dissipative.

Consider the set I = {i ∈ {1, . . . , n} : vi = 0 and avii = 0 }. By Proposition 8,
the submatrix Bv = (avij dj)i,j∈I of (AD)v = AvDv is skew-symmetric.

Let Γn(l) be the polytope corresponding to the new polymatrix replicator in lower
dimension, given by Proposition 22 and defined by matrix A(l) = (aij(l))i,j 6=l.

Observing that vi = 0 for all strategies i of the matrix (AD)v, we can choose the
vertex v̌ in the polytope Γn(l) determined by the exact same strategies as v. Notice
that vl = 0 for the removed strategy l.

As in the proof of Proposition 22 the matrix A(l) is defined by

aij(l) =

{
aij if j /∈ α̌
aij(1− ql) + ailql if j ∈ α̌ .

Hence

av̌ij(l) =

{
avij if j /∈ α̌
(1− ql)avij if j ∈ α̌ ,

where av̌ij(l) ≡ (aij(l))
v̌ are the entries of matrix A(l)v̌.

Considering the positive diagonal matrix

Ď = diag

(
I1, . . . ,

1

1− ql
Iα, . . . , Ip

)
,

we have that (A(l)Ď)v̌ is the submatrix Bv of (AD)v obtained by removing the
row and column corresponding to strategy l. By Lemma 5.5, (A(l)Ď)v̌ = A(l)v̌ Ďv̌.
Hence, by Lemma 3.7, A(l)v̌ Ďv̌ is stably dissipative, and consequently, by Lemma 3.5,
A(l)v̌ is also stably dissipative.

Proposition 22 and Lemma 5.6 allows us to generalize [12, Theorem 4.5] about
the Hamiltonian nature of the limit dynamics in admissible polymatrix replicators.

Theorem 5.7. Consider a polymatrix replicator (1) on Γn, and assume that the

system is admissible and has an equilibrium q ∈ int
(
Γn
)
. Then the limit dynamics

of (1) on the attractor Λn,A is described by a Hamiltonian polymatrix replicator in
some lower dimensional prism Γn′ .

Proof. By definition there exists a vertex v ∈ Γn such that Av = (avij) is stably
dissipative. Applying Proposition 22 and Lemma 5.6 we obtain a new polymatrix
replicator in lower dimension that is admissible.

We can iterate this process until the corresponding vertex v̌ in the polytope is
such that, av̌ii = 0 for all i with v̌i = 0.

Let us denote the resulting polymatrix game by (r,A′). By Proposition 8, for
some positive diagonal matrix D′ of type r, (A′D′)v̌ is skew-symmetric. Hence
QA′D′ = 0 on Hr, and by Definition 4.3 the polymatrix game (r,A′) is conservative.
Notice that this polymatrix game has essentially the same formal equilibrium up to
coordinate rescalings. Thus by Proposition 12 the vector field Xr,A′ is Hamiltonian.
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6. An Example. Consider the polymatrix replicator system associated to the
polymatrix game G = ((3, 2), A), where

A =


−1 8 −7 3 −3
−10 −1 11 3 −3
11 −7 −4 −6 6
−3 −3 6 0 0
3 3 −6 0 0

 .
We denote by XG the vector field associated to this polymatrix replicator defined

on the polytope Γ(3,2) = ∆2 ×∆1 .

Figure 1. Four orbits in two different leafs of the polymatrix game G.

In this example we want to illustrate the reduction algorithm on the set of graphs
{G(Av) : v ∈ V(3,2) } to derive information on the strategies of the polymatrix game
G as described in section 5. We will see that this polymatrix game is admissible
and verify the validity of the conclusion of Theorem 5.7 for this example.

v1 = (1, 4) v2 = (1, 5) v3 = (2, 4) v4 = (2, 5) v5 = (3, 4) v6 = (3, 5)

Table 1. Vertex labels.

In this game the strategies are divided in two groups, {1, 2, 3} and {4, 5}. The
vertices of the phase space Γ(3,2) will be designated by pairs in {1, 2, 3} × {4, 5},
where the label (i, j) stands for the point ei + ej ∈ Γ(3,2). To simplify the notation
we designate the prism vertices by the letters v1, . . . , v6 according to table 1.
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Vertex Av G(Av)

v1 ∈ V ∗n,A

 0 27 0
−27 −9 18

0 −18 0



v2 ∈ V ∗n,A

 0 27 0
−27 −9 −18

0 18 0



v3 ∈ V ∗n,A

 0 −27 0
27 −9 18
0 −18 0



v4 ∈ V ∗n,A

 0 −27 0
27 −9 −18
0 18 0



v5 /∈ V ∗n,A

 −9 18 −18
−36 −9 −18
18 18 0



v6 /∈ V ∗n,A

 −9 18 18
−36 −9 18
−18 −18 0


Table 2. Matrix Av and its graph G(Av) for each vertex v.

The point q ∈ int
(
Γ(3,2)

)
given by

q =

(
1

3
,

1

3
,

1

3
,

1

2
,

1

2

)
,

is an equilibrium of our polymatrix replicator XG . In particular it is also a formal
equilibrium of G (see Definition 4.1).

The quadratic form QA : H(3,2) → R induced by matrix A is

QA(x) = −9x2
3 ,

where x = (x1, x2, x3, x4, x5) ∈ H(3,2). By Definition 5.1, G is dissipative.
In table 2 we present for each vertex v in the prism the corresponding matrix Av

and graph G(Av).
Considering vertex v1 = (1, 4) for instance, by Proposition 8, we have that matrix

Av1 is stably dissipative. Hence, by Definition 5.2, G is admissible and v1 ∈ V ∗n,A.
Table 3 represents the steps of the reduction procedure applied to G. Let us

describe it step by step:
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Step Rule Vertex Strategy Group 1 Group 2

1 1 v1, v2, v3, v4 3

2 4 v4 (or v5) 4, 5

3 6 − 4, 5

4 3 v1, v2 1, 2

Table 3. Information set of all strategies (by group) of G, where for each

step, we mention the rule, the vertex (or vertices) and the strategy (or strate-
gies) to which we apply the rule.

(Step 1) Initially, considering the vertices v1, v2, v3 and v4 we apply rule 1 to the
corresponding graphs G(Av1), G(Av2), G(Av3) and G(Av4), and we colour in
black (•) strategy 3. We obtain the graphs depicted in column “Step 1” in
table 4;

(Step 2) In this step we can consider vertex v4 (or v5) to apply rule 4. Hence, we
put a link between strategies 4 and 5 in group 2;

(Step 3) In this step we apply rule 6 to strategies 4 and 5, and we colour with ⊕
that strategies. We obtain the graphs depicted in column “Step 3” in table 4;

(Step 4) Finally, we apply rule 3 to vertices v2 and v3 in the corresponding graphs
of the column “Step 3” in table 4, and we colour with ⊕ the strategy 2.
Analogously we apply rule 3 to vertices v1 and v3 in the corresponding graphs
of the column “Step 3” in table 4, and we colour with ⊕ the strategy 1. We
obtain the graphs depicted in column “Step 4” table 4.

Since G is admissible and has an equilibrium q ∈ int
(
Γ(3,2)

)
, by Theorem 5.7

we have that its limit dynamics on the attractor ΛG is described by a Hamiltonian
polymatrix replicator in a lower dimensional prism. Considering the strategy 3
in group 1, by Definition 5.4 we obtain the (q, 3)-reduction ((2, 2), A(3)) where

Ã := A(3) is the matrix

Ã =


−9 9 9 −9
−9 9 9 −9
−6 6 6 −6
−6 6 6 −6

 .
Consider now the polymatrix replicator associated to the game

G̃ =
(

(2, 2), Ã
)

, which is equivalent to the trivial game ((2, 2), 0). Hence its replica-

tor dynamics on the polytope Γ(2,2) = ∆1×∆1 is trivial, in the sense that all points
are equilibria. In particular the associated vector field XG̃ = 0 is Hamiltonian.
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Vertex Step 1 Step 3 Step 4

Table 4. The graphs obtained in each step of the reduction algorithm for G.

Since the reduced information set R(G) is of type {•,⊕}, by Proposition 21 the
flow of XG admits an invariant foliation with a single globally attractive equilibrium
on each leaf (see Figure 1). Therefore, the attractor ΛG is just a line segment
of equilibria, which embeds in the Hamitonian flow of XG̃ = 0, as asserted by
Proposition 22.
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in progress.
[4] W. Brannath, Heteroclinic networks on the tetrahedron, Nonlinearity, 7 (1994), 1367–1384,

Available from: http://stacks.iop.org/0951-7715/7/i=5/a=006.
[5] L. Brenig, Complete factorisation and analytic solutions of generalized Lotka-Volterra equa-

tions, Phys. Lett. A, 133 (1988), 378–382.
[6] L. Brenig and A. Goriely, Universal canonical forms for time-continuous dynamical systems,

Phys. Rev. A, 40 (1989), 4119–4122.
[7] L. A. Bunimovich, and B. Z. Webb, Isospectral compression and other useful isospectral

transformations of dynamical networks, Chaos: An Interdisciplinary Journal of Nonlinear
Science, 22 (2012), 033118-1–033118-14.

[8] L. A. Bunimovich and B. Z. Webb Isospectral transformations, Springer-Verlag, New York,

(2014).

http://www.ams.org/mathscinet-getitem?mr=MR3370936&return=pdf
http://dx.doi.org/10.3934/jdg.2015.2.33
http://dx.doi.org/10.3934/jdg.2015.2.33
http://arxiv.org/pdf/1411.6227
http://www.ams.org/mathscinet-getitem?mr=MR1294548&return=pdf
http://stacks.iop.org/0951-7715/7/i=5/a=006
http://www.ams.org/mathscinet-getitem?mr=MR970739&return=pdf
http://dx.doi.org/10.1016/0375-9601(88)90920-6
http://dx.doi.org/10.1103/PhysRevA.40.4119
http://www.ams.org/mathscinet-getitem?mr=MR3388612&return=pdf
http://dx.doi.org/10.1063/1.4739253
http://dx.doi.org/10.1063/1.4739253
http://www.ams.org/mathscinet-getitem?mr=MR3237552&return=pdf


DISSIPATIVE POLYMATRIX REPLICATORS 27

[9] T. Chawanya, A new type of irregular motion in a class of game dynamics systems, Progr.
Theoret. Phys., 94 (1996), 163–179.

[10] T. Chawanya, Infinitely many attractors in game dynamics system, Progr. Theoret. Phys.,

95 (1996), 679–684.
[11] P. Duarte, Hamiltonian systems on polyhedra, in Dynamics, games and science. II (Springer

Proc. Math. 2) Springer, Heidelberg (2011), 257–274.
[12] P. Duarte, R. L. Fernandes and Waldyr M Oliva, Dynamics of the attractor in the Lotka-

Volterra equations, J. Differential Equations, 149 (1998), 143–189.

[13] P. Duarte and T. Peixe, Rank of stably dissipative graphs, Linear Algebra Appl., 437 (2012),
2573–2586.

[14] J. Eldering, Normally hyperbolic invariant manifolds, Atlantis Press, Paris, 2013.

[15] Zhi Ming Guo, Zhi Ming Zhou and Shou Song Wang, Volterra multipliers of 3×3 real matrices,
Math. Practice Theory, 1 (1995), 47–54.

[16] B. Hernández-Bermejo and V. Fairén, Lotka-Volterra representation of general nonlinear sys-

tems, Math. Biosci., 140 (1997), 1–32.
[17] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Springer-Verlag, Berlin-New

York, 1977.

[18] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit
sets, SIAM J. Math. Anal., 13 (1982), 167–179.

[19] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II. Con-
vergence almost everywhere, SIAM J. Math. Anal., 16 (1985), 423–439.

[20] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. III.

Competing species, Nonlinearity, 1 (1988), 51–71. Available from: http://stacks.iop.org/

0951-7715/1/51

[21] J. Hofbauer and J. W.-H. So, Multiple limit cycles for three-dimensional Lotka-Volterra equa-

tions, Appl. Math. Lett., 7 (1994), 65–70.
[22] J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation, Nonlinear

Anal., 5 (1981), 1003–1007.

[23] J. Hofbauer, Heteroclinic cycles on the simplex, in Proceedings of the Eleventh International
Conference on Nonlinear Oscillations (Budapest János Bolyai Math. Soc., Budapest, (1987),

828–831.

[24] J. Hofbauer, Heteroclinic cycles in ecological differential equations, Tatra Mt. Math. Publ., 4
(1994), 105–116.

[25] J. Hofbauer and K. Sigmund, Evolutionary games and population dynamics, Cambridge Uni-
versity Press, Cambridge, 1998.

[26] Joseph T., Jr. Howson, Equilibria of polymatrix games, Management Sci., 18 (1971/72),

312–318.
[27] W. Jansen, A permanence theorem for replicator and Lotka-Volterra systems J. Math. Biol.,

25 (1987), 411–422.
[28] G. Karakostas, Global stability in job systems, J. Math. Anal. Appl., 131 (1988), 85–96.
[29] V. Kirk and M. Silber A competition between heteroclinic cycles, Nonlinearity, 7 (1994),

1605–1621, Available from http://stacks.iop.org/0951-7715/7/1605.

[30] J. P. LaSalle, Stability theory for ordinary differential equations, J. Differential Equations, 4
(1968), 57–65.

[31] Alfred J. Lotka, Elements of mathematical biology. (formerly published under the title Ele-
ments of Physical Biology), Dover Publications, Inc., New York, 1958.

[32] J. Maynard Smith, The logic of animal conflicts, Nature, 246 (1973), 15–18.

[33] G. Palm, Evolutionary stable strategies and game dynamics for n-person games, J. Math.

Biol., 19 (1984), 329–334.
[34] M. Plank, Some qualitative differences between the replicator dynamics of two player and n

player games, in Proceedings of the Second World Congress of Nonlinear Analysts, Part 3
(Athens 30 (1996), 1411–1417.

[35] L. G. Quintas, A note on polymatrix games, Internat. J. Game Theory, 18 (1989), 261–272.

[36] R. Redheffer, Volterra multipliers. I, II, SIAM J. Algebraic Discrete Methods, 6 (1985), 592–
611, 612–623.

[37] R. Redheffer, A new class of Volterra differential equations for which the solutions are globally

asymptotically stable J. Differential Equations, 82 (1989), 251–268.
[38] R. Redheffer and W. Walter, Solution of the stability problem for a class of generalized

Volterra prey-predator systems, J. Differential Equations, 52 (1984), 245–263.

http://www.ams.org/mathscinet-getitem?mr=MR1354590&return=pdf
http://dx.doi.org/10.1143/PTP.94.163
http://dx.doi.org/10.1143/PTP.94.163
http://www.ams.org/mathscinet-getitem?mr=MR1388249&return=pdf
http://dx.doi.org/10.1143/PTP.95.679
http://www.ams.org/mathscinet-getitem?mr=MR2883285&return=pdf
http://dx.doi.org/10.1007/978-3-642-14788-3_21
http://www.ams.org/mathscinet-getitem?mr=MR1643678&return=pdf
http://dx.doi.org/10.1006/jdeq.1998.3443
http://www.ams.org/mathscinet-getitem?mr=MR2964708&return=pdf
http://dx.doi.org/10.1016/j.laa.2012.06.015
http://www.ams.org/mathscinet-getitem?mr=MR3098498&return=pdf
http://dx.doi.org/10.2991/978-94-6239-003-4
http://www.ams.org/mathscinet-getitem?mr=MR1341776&return=pdf
http://dx.doi.org/10.1016/j.laa.2012.06.015
http://www.ams.org/mathscinet-getitem?mr=MR1434400&return=pdf
http://dx.doi.org/10.1016/S0025-5564(96)00131-9
http://www.ams.org/mathscinet-getitem?mr=MR0501173&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR647119&return=pdf
http://dx.doi.org/10.1137/0513013
http://www.ams.org/mathscinet-getitem?mr=MR783970&return=pdf
http://dx.doi.org/10.1137/0516030
http://www.ams.org/mathscinet-getitem?mr=MR928948&return=pdf
http://stacks.iop.org/0951-7715/1/51
http://stacks.iop.org/0951-7715/1/51
http://www.ams.org/mathscinet-getitem?mr=MR1340732&return=pdf
http://dx.doi.org/10.1016/0893-9659(94)90095-7
http://www.ams.org/mathscinet-getitem?mr=MR633014&return=pdf
http://dx.doi.org/10.1016/0362-546X(81)90059-6
http://dx.doi.org/10.1016/0362-546X(81)90059-6
http://www.ams.org/mathscinet-getitem?mr=MR933673&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1298459&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1635735&return=pdf
http://dx.doi.org/10.1017/CBO9781139173179
http://www.ams.org/mathscinet-getitem?mr=MR0392000&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR908382&return=pdf
http://dx.doi.org/10.1007/BF00277165
http://www.ams.org/mathscinet-getitem?mr=MR934432&return=pdf
http://dx.doi.org/10.1016/0022-247X(88)90191-6
http://www.ams.org/mathscinet-getitem?mr=MR1304441&return=pdf
http://stacks.iop.org/0951-7715/7/1605
http://www.ams.org/mathscinet-getitem?mr=MR0222402&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0094263&return=pdf
http://dx.doi.org/10.1038/246015a0
http://www.ams.org/mathscinet-getitem?mr=MR754948&return=pdf
http://dx.doi.org/10.1007/BF00277103
http://dx.doi.org/10.1007/BF00277103
http://www.ams.org/mathscinet-getitem?mr=MR1490064&return=pdf
http://dx.doi.org/10.1016/S0362-546X(97)00202-2
http://dx.doi.org/10.1016/S0362-546X(97)00202-2
http://www.ams.org/mathscinet-getitem?mr=MR1024957&return=pdf
http://dx.doi.org/10.1007/BF01254291
http://www.ams.org/mathscinet-getitem?mr=MR800991&return=pdf
http://dx.doi.org/10.1137/0606059
http://www.ams.org/mathscinet-getitem?mr=MR1027969&return=pdf
http://dx.doi.org/10.1016/0022-0396(89)90133-2
http://www.ams.org/mathscinet-getitem?mr=MR741270&return=pdf
http://dx.doi.org/10.1016/0022-0396(84)90179-7


28 HASSAN NAJAFI ALISHAH, PEDRO DUARTE AND TELMO PEIXE

[39] R. Redheffer and Z. M. Zhou, Global asymptotic stability for a class of many-variable Volterra
prey-predator systems, Nonlinear Anal., 5 (1981), 1309–1329.

[40] R. Redheffer and Z. M. Zhou, A class of matrices connected with Volterra prey-predator

equations, SIAM J. Algebraic Discrete Methods, 3 (1982), 122–134.
[41] K. Ritzberger and J. Weibull, Evolutionary selection in normal-form games, Econometrica,

63 (1995), 1371–1399.
[42] T. M. Rocha Filho, I. M. Gléria and A. Figueiredo, A novel approach for the stability problem

in non-linear dynamical systems, Comput. Phys. Comm., 155 (2003), 21–30.

[43] P. Schuster and K. Sigmund, Coyness, philandering and stable strategies, Animal Behaviour ,
29 (1981), 186–192.

[44] P. Schuster, K. Sigmund and R. Wolff, Self-regulation of behaviour in animal societies. II.

Games between two populations without self-interaction, Biol. Cybernet., 40 (1988), 9–15.
[45] M. Shub, Global stability of dynamical systems, Springer-Verlag, New York, 1987.

[46] G. Karakostas, On the differential equations of species in competition, J. Math. Biol., 3

(1976), 5–7.
[47] H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating

species, SIAM J. Appl. Math., 46 (1986), 368–375.

[48] L. B. Taylor and L. B. Jonker, Evolutionarily stable strategies and game dynamics, Math.
Biosci., 40 (1978), 145–156.

[49] P. van den Driessche and M. L. Zeeman, Three-dimensional competitive Lotka-Volterra sys-
tems with no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227–234.
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