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Abstract. For the Standard Map, a well-known family of con-
servative diffeomorphisms on the torus, we construct large basic
sets which fill in the torus as the parameter runs to ∞. Then we
prove that, for a residual set of large parameters, these basic sets
are accumulated by elliptic periodic islands. We also show that
there exists a k0 > 0 and a dense set of parameters in [k0,∞) for
which the standard map exhibits homoclinic tangencies.

1. Introduction

For surface diffeomorphisms the unfolding of a homoclinic tangency is
a fundamental mechanism to understand nonhyperbolic dynamics. In-
finitely many coexisting sinks is one of the surprising phenomena which
occur, for dissipative systems, every time a homoclinic tangency is
generically unfolded. This remarkable fact is due to S. Newhouse: he
proved that arbitrarily close to a surface diffeomorphism with a ho-
moclinic tangency, there are residual subsets of open sets of diffeomor-
phisms whose maps have infinitely many sinks. J. Palis conjectured
that the same should hold for conservative systems with elliptic islands
playing the role of sinks. In the present work we verify this is true in
the context of the standard map family and prove there are ”plenty”
of elliptic islands for a residual set of large parameters. We were moti-
vated by Palis’ conjecture and also by the work in progress of Carleson
and Spencer, as well as by an earlier question of Sinai to Palis about
this family. This family of diffeomorphisms on T2 is given by,

fk(x, y) = (−y + 2x+ k sin(2πx), x) mod Z2.

The orbits (xn, xn−1) of fk correspond to solutions of the difference
equation ∆2xn = xn+1 − 2xn + xn−1 = k sin(2πxn), which is a discrete
version of the pendulum equation ẍ(t) = K sin (2πx(t)). But only for
small values of k is the dynamics of the standard map an approximation
of the pendulum’s phase flow. In fact while the pendulum is always
integrable, for any K, the standard map is integrable for k = 0, mean-
ing T2 is completely foliated by invariant KAM curves. However as k
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grows, all these curves gradually break up and the orbit behavior be-
comes increasingly ”chaotic”. Simple computer experiments may lead
to the conjecture that for large k, in a measure theoretical sense, most
points have nonzero Liapounov exponents. Nevertheless this question
is completely open. There is no single parameter value k for which it is
known that Pesin’s region, of nonzero Liapounov exponents, has posi-
tive Lebesgue measure. Carleson and Spencer have a work in progress
in this direction: they plan to prove this conjecture for parameter val-
ues where no elliptic points exist. They also conjecture that for a set
of parameters with full density at ∞ (in a measure sense), there are
no elliptic points. Our work does not contradict this conjecture, but it
certainly shows how subtle this subject is. It is interesting to point out
that Sinai’s question to Palis, made several years ago, concerned the
possible abundance of elliptic islands in line with our present work.

Notice that, since fk is conjugated to f−k via the translation (x, y) 7→(
x+ 1

2
, y + 1

2

)
, we can restrict our attention to the parameter half line

k ∈ [0,+∞). The following theorems synthesize our main results. We
begin constructing a family of large basic sets for fk.

Theorem A There is a family of basic sets Λk of fk, such that:

(1) Λk is dynamically increasing, meaning for small ε > 0, Λk+ε

contains the continuation of Λk at parameter k + ε.
(2) The thickness of Λk grows to ∞. For all sufficiently large k,

τ sloc(Λk) , τ
u
loc(Λk) ≥

k1/3

9
.

(3) The Hausdorf Dimension of Λk increases up to 2. For large k,

HD(Λk) ≥ 2
log 2

log
(
2 + 9

k1/3

) .
(4) Λk is conjugated to a full Bernoulli shift in 2nk symbols, where

lim
k→∞

2nk
4k

= 1

(5) Λk fills in the Torus, meaning that as k goes to∞ the maximum
distance of any point in T2 to Λk tends to 0. For large k, T2 =
Bδk(Λk), where δk = 4

k1/3
.

Then for this family of basic sets Λk we prove:

Theorem B There exists k0 > 0 and a residual subset R ⊆ [k0,∞)
such that for k ∈ R the closure of the fk’s elliptic periodic points con-
tains Λk.
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Theorem C There exists k0 > 0 such that given any k ≥ k0 and
any periodic point P ∈ Λk, the set of parameters k′ ≥ k at which the
invariant manifolds W s (P (k′)) and W u (P (k′)) generically unfold a
quadratic homoclinic tangency is dense in [k,+∞). P (k′) denotes the
continuation of the periodic saddle P at parameter k′.

We do not claim to be original in Theorem A which is rather a de-
scription of the basic set family Λk mentioned in theorems B and C.
These results are proved through sections 4 to 6. To finish this intro-
duction we present brief ideas of the proofs of theorems A to C. Given
any periodic function ϕ : R→ R with period 1, ϕ(x+ 1) = ϕ(x) + l,
l ∈ Z,

(1)

{
x′ = −y + ϕ(x)
y′ = x

defines an invertible area preserving dynamical system on T2, for which
the following hyperbolicity criterion holds: An invariant set Λ is uni-
formly hyperbolic whenever there exists some constant λ > 2 such that
for all (x, y) ∈ Λ, |ϕ′(x)| ≥ λ. This type of system includes the Stan-
dard Map Family where ϕk(x) = 2x + k sin(2πx). For this family the
critical region {|ϕ′k(x)| < λ}, for some fixed λ > 2, shrinks to a pair of
circles {x = ±1

4
} as k →∞. Thus for all large k the maximal invariant

set
Λk =

⋂
n∈Z

f−n{(x, y) ∈ T2 : |ϕ′k(x)| ≥ λ}

will be a ”big” hyperbolic set. Theorem B follows from theorem C
using a renormalization scheme, showing that arbitrarily close to a
tangency parameter an elliptic point is created through the unfolding
of a saddle-node bifurcation. In order to prove theorem C we use
the following version of Newhouse’s ”gap” lemma: any pair of Cantor
sets Ks, Ku in the circle S1 = R/Z, such that the product of their
thicknesses is τ(Ks)τ(Ku) > 1, must intersect Ks ∩Ku 6= ∅. We apply
this lemma extending the stable and unstable manifolds of Λk to global
transversal foliations F s,Fu of T2. Remark that these foliations will
be f -invariant only if restricted to a small neighborhood of Λk. Using
that the leaves of Fu are almost horizontal, when we push Fu by the
diffeomorphism f , we get a new foliation Gu = (fk)∗Fu which folds
along the circles {y = ±1

4
}, thus making two circles of tangencies

with the almost vertical foliation F s, see Fig (1). The Cantor sets
Ks, Ku are then the projections of Λk to one of these tangency circles
along the foliations F s and Gu. For large k, τ(Ks)τ(Ku) � 1 and
so there will be a tangency between leaves of W s(Λk) and W u(Λk). A
major difficulty is to give rigorous estimates of the thickness τ(Ks) and
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Figure 1. foliations F s,Gu

τ(Ku), for which we must prove that the linear distortion of the one
dimensional dynamical systems induced by the foliations F s and Fu
is bounded uniformly in k. To be able to do this we construct these
globally defined foliations F s, Fu in the following way. We modify the
function ϕk near its critical points into a new function ψk having a pole
for each zero of ϕ′k and such that |ψ′k(x)| � 2. The new system (1) with
ψk in place of ϕk is a singular area preserving diffeomorphism of T2.
Although singular, it is hyperbolic in its maximal invariant domain,
which has total measure, and most importantly it has smooth global
invariant foliations.

Section 2 is dedicated to the construction of the foliations F s and Fu.
In section 3 we estimate the linear distortion of the one dimensional
dynamics induced by these foliations. Section 4 is used to construct
the family of basic sets and prove theorem A. Theorems C and B are
then respectively proved in sections 5 and 6.

This work corresponds to my doctoral thesis under the guidance of
J. Palis. I want to express my gratitude to J. Palis, R. Mane, M. Viana
for their constructive criticism, suggestions and hintful conversations
as well as to many other colleagues at IMPA, this fine mathematical
institution.
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2. Global Foliations

In this section we study the differentiability of the invariant foliations
for a class of singular hyperbolic diffeomorphisms on the torus T2 =
R2/Z2.

2.1. Singular Hyperbolic Diffeomorphisms. Let ψ :R→R ∪ {∞}
be a smooth function satisfying:

(1) ψ is periodic, ψ(x+ 1) = ψ(x) + l (l ∈ Z),
(2) ψ has a finite number of poles ( all of them with finite order )

in each fundamental domain,
(3) For some λ > 2, |ψ′(x)| ≥ λ.

Define f : D ⊆ T2→ T2, f(x, y) = (−y + ψ(x), x) mod Z2. The
domain of f is the complement of a finite union of vertical circles, one
for each pole of ψ, D = {(x, y) mod Z2 : ψ(x) 6=∞}, which is diffeo-
morphically mapped onto D′ = {(x, y) mod Z2 : ψ(y) 6=∞}. We call
such f a singular diffeomorphism.

Now, given a pair ν1<ν2 of consecutive poles of ψ, the vertical cylin-
der C =

{
(x, y) modZ2| ν1 < x < ν2

}
is mapped onto the horizontal

one C ′ ={
(x, y) modZ2| ν1 < y < ν2

}
with both ends infinitely twisted in op-

posite directions. To understand how f acts on C notice it is the com-
position f = T ◦ R of a 90 degree rotation R(x, y) = (−y, x) modZ2,
with T (x, y) = (x+ ψ(y), y) modZ2, a singular map which rotates
each horizontal circle {y = y0} by ψ(y0). A similar description is true
about f−1(x, y) = (y,−x+ ψ(y)) mod Z2, which decomposes as
f−1 = T ′ ◦R′ where R′(x, y) = (y,−x) modZ2 is a 90 degree rota-
tion and T ′(x, y) = (x, y + ψ(x)) modZ2 preserves vertical circles.

The singular diffeomorphism f preserves area since

Df(x,y) =

(
ψ′(x) −1

1 0

)
has determinant 1. Notice that the maximal invariant set

D∞ =
⋂
n∈Z

f−n(D)

has full measure in T2. We are going to see now that f :D∞→D∞ is
uniformly hyperbolic.
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Proposition 1. There are continuous functions αs, αu : T2→R such
that:

(1)

|αs(x, y)|, |αu(x, y)| ≤ 1

λ− 1
< 1

(2)
αs(x, y) = αu(y, x)

(3)

Df−1
(x,y) (αs(x, y), 1) =

1

αsf−1(x, y)

(
αsf−1(x, y), 1

)
∀(x, y) ∈ D′

(4)

Df(x,y) (1, αu(x, y)) =
1

αuf(x, y)
(1, αuf(x, y)) ∀(x, y) ∈ D

Conditions 3 and 4 state that the line fields generated by (αs(x, y), 1)
and (1, αu(x, y) are fixed under the actions of f−1 and f . The existence
of such continuous invariant line fields can be proved applying the Con-
traction fixed point Theorem to the action of f−1, or f , on the space
C0 (T2, [−1, 1]). We remark that 3 and 4 are respectively equivalent to

αs(x, y) =
1

ψ′(x)− αs(f(x, y))
, (1)

αu(x, y) =
1

ψ′(y)− αu(f−1(x, y))
. (2)

Knowing that αs and αu are continuous and bounded a priori by 1,
these expressions give us 1. Symmetry 2 follows from the reversible
character of f . Denote by I : T2→ T2 the linear involution I(x, y) =
(y, x). Then reversibility of f simply means that f(I(x, y)) = I(f−1(x, y)).

Defining the continuous line fields:

Es(x, y) = line spanned by the vector (αs(x, y), 1)

Eu(x, y) = line spanned by the vector (1, αu(x, y))

we have the following obvious consequence:

Corollary 2. For any (x, y)∈T2, R2 =Es(x, y)
⊕

Eu(x, y) and this
is an invariant hyperbolic splitting for f :D∞→D∞.

Denote by F s and Fu the foliations associated to the continuous line
fields Es and Eu. The two invariant foliations have a finite number of
closed leaves, one for each pole of ψ. Since they are symmetric with re-
spect to the linear involution I(x, y) = (y, x) we only describe F s. For
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each pole ν of ψ, since αs(ν, y) ≡ 0, the vertical singular circle {x = ν}
is a leaf of F s. On the other hand given a pair ν1<ν2 of consecutive
poles of ψ, the vertical cylinder C =

{
(x, y) modZ2| ν1 < x < ν2

}
is

foliated by open leaves winding around it with their ends accumulat-
ing on the two opposite boundary circles. This is because αs(x, y) is
nonzero, thus with constant sign, inside C. Notice that

0 <
λ

λ+ 1
≤ αs(x, y)ψ′(x) =

(
1− αsf(x, y)

ψ′(x)

)−1

≤ λ

λ− 1
<∞.

2.2. Differentiability of Foliations. To study the differentiability
of αu and αs we introduce the Lie derivatives along the vector fields
(αs(x, y), 1) and (1, αu(x, y)):

(∂sh)(x, y) = Dh(x,y)(α
s(x, y), 1)

(∂uh)(x, y) = Dh(x,y)(1, α
u(x, y))

We are going to prove that:

(1) αu, αs are C1 functions.
(2) ∂uα

u, ∂sα
s are also C1 functions. It follows that ∂sα

u is contin-
uously differentiable along the vector field (1, αu(x, y)) with

∂u∂sα
u = ∂s∂uα

u + [∂s, ∂u]α
u,

∂uα
s is continuously differentiable along the vector field (αs(x, y), 1)

with

∂s∂uα
s = ∂u∂sα

s + [∂u, ∂s]α
s.

(3) ∂sα
u is Hőlder continuous along the vector field (αs(x, y), 1),

∂uα
s is Hőlder continuous along the vector field (1, αu(x, y)).

Most of the differentiability’ statements above follow in the same way
as in the general theory of invariant foliations for smooth hyperbolic dy-
namical systems. See [HP], see also [HPS]. The main point in redoing
this theory for this specific class of singular hyperbolic diffeomorphisms
is that we need to have explicit bounds for the derivatives and Hőlder
constants mentioned above. These bounds depend on the function ψ,
but we will show that indeed they only depend on the following two
parameters: λ > 2, and ` > 0, such that λ ≥ ` > 0∣∣∣∣ 1

ψ′(x)

∣∣∣∣ ≤ 1

λ
, (3)

∣∣∣∣ψ′′′(x)

ψ′(x)2

∣∣∣∣+ 2

∣∣∣∣ψ′′(x)2

ψ′(x)3

∣∣∣∣ ≤ 1

`
. (4)
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This bound 1/` exists because ψ′′′(x)
ψ′(x)2

and ψ′′(x)2

ψ′(x)3
are bounded functions,

as follows easily from the fact that 1
ψ′(x)

is a periodic C∞ function

(without poles). Also it is straightforward to check that∣∣∣∣( 1

ψ′(x)

)′∣∣∣∣ =

∣∣∣∣ ψ′′(x)

ψ′(x)2

∣∣∣∣ ≤ 1√
2`λ

(5)∣∣∣∣( 1

ψ′(x)

)′′∣∣∣∣ =

∣∣∣∣ψ′′′(x)

ψ′(x)2
+ 2

ψ′′(x)2

ψ′(x)3

∣∣∣∣ ≤ 1

`
. (6)

Notice ∣∣∣∣ ψ′′(x)

ψ′(x)2

∣∣∣∣2 =

∣∣∣∣ψ′′(x)2

ψ′(x)3

∣∣∣∣ ∣∣∣∣ 1

ψ′(x)

∣∣∣∣ ≤ 1

2`

1

λ
.

Finally we will make the following commodious assumption: λ ≥ 10.
Although statements 1, 2 and 3 should be true for any λ > 2 this
assumption of a stronger hyperbolicity forces a stronger contraction of
the derivatives by the action of f on the space C0 (T2, [−1, 1]) which
simplifies the calculations.

Proposition 3. αs, αu are of class C1, and for α = αs, αu

|∂sα(x, y)| ≤
√

2

λ`
|∂uα(x, y)| ≤

√
2

λ`
.

Proposition 4. ∂uα
u and ∂sα

s are of class C1 and

|∂s∂uαu(x, y)| ≤ 2

`
|∂u∂uαu(x, y)| ≤ 2

`
,

|∂s∂sαs(x, y)| ≤ 2

`
|∂u∂sαs(x, y)| ≤ 2

`
.

Propositions (3) and (4) are proved in the spirit of [HPS], using the
Fiber Contraction Theorem to get the existence and continuity of these
derivatives of αs(x, y) and αu(x, y).

Lemma 1. (Fiber Contraction Theorem)
Let X be a topological space and T0 : X → X a map having one

globally attracting fixed point α0 ∈ X . Let Y be a complete met-
ric space and T : X × Y → X × Y be a continuous map of the form
T (α, β) = (T0(α), T1(α, β)) where for all α ∈ X , T1(α, ·) : Y → Y is
a Lipschitz contraction with Lipschitz constant 0 < µ < 1 uniform in
α ∈ X , that is

∀α ∈ X Lip (T1(α, ·)) ≤ µ < 1
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Then if β0 is the unique fixed point of γ 7→ T1(α0, γ), (α0, β0) is a
globally attracting fixed point for T .

See [HP, S] for a proof of this lemma. By symmetry 2 of proposition (1)
we can restrict ourselves to study αu. For instance to prove proposition
(3) take X = C0 (T2, [−1, 1]) acting as the space of ”horizontal” line
fields (1, α) with α ∈ X , take Y = C0 (T2, [−1, 1]2) as a space containing
the derivatives (∂sα, ∂uα) of C1 functions α ∈ X and let T describe the
action of f on the derivatives ∂sα, ∂uα of the C1 line fields (1, α)
with α ∈ X . Now iterating some (α, ∂sα, ∂uα) ∈ X × Y we obtain a
sequence (αn, ∂sαn, ∂uαn) ∈ X ×Y converging uniformly to the unique
attracting fixed point (αu, βs, βu) ∈ X × Y given by lemma (1). This
proves αu is of class C1. Since the proofs are quite standard we leave
the calculations to the reader. We just remark that differentiating (2)
with respect to ∂s, ∂u, ∂s∂u and ∂u∂u, and using the following notation,

α̂(x, y) = α(y,−x+ ψ(y)) = α
(
f−1(x, y)

)
,

we obtain the relations

∂sα
u(x, y) =

1
α̂s(x,y)

∂̂sαu(x, y)− ψ′′(y)(
ψ′(y)− α̂u(x, y)

)2 =

=

(
1− αs(x,y)

ψ′(y)

)
(

1− α̂u(x,y)
ψ′(y)

)2

∂̂sαu(x, y)

ψ′(y)
+

(
1

ψ′(y)

)′
1(

1− α̂u(x,y)
ψ′(y)

)2 ,

∂uα
u(x, y) =

∂̂uαu(x, y)− ψ′′(y)(
ψ′(y)− α̂u(x, y)

)2α
u(x, y) =

=
1(

1− α̂u(x,y)
ψ′(y)

)2

∂̂uαu(x, y)

ψ′(y)2
αu(x, y) +

(
1

ψ′(y)

)′
αu(x, y)(

1− α̂u(x,y)
ψ′(y)

)2

∂s∂uα
u(x, y) =

(
1
α̂s
∂̂s∂uαu − ψ′′′(y)

)
αu

(ψ′(y)− α̂u)2
+

(
∂̂uαu − ψ′′(y)

)
∂sα

u

(ψ′(y)− α̂u)2

−2

(
1
α̂s
∂̂sαu − ψ′′(y)

)(
∂̂uαu − ψ′′(y)

)
αu

(ψ′(y)− α̂u)3
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∂u∂uα
u(x, y) =

(
∂̂u∂uαu − ψ′′′(y)

)
αu(x, y)2

(ψ′(y)− α̂u)2
+

(
∂̂uαu − ψ′′(y)

)
∂uα

u

(ψ′(y)− α̂u)2

−2

(
∂̂uαu − ψ′′(y)

)2

αu(x, y)2

(ψ′(y)− α̂u)3

Remark that by items 3 and 4 of proposition (1) we have

∂sα̂(x, y) =
1

α̂s(x, y)
∂̂sα(x, y) ∂s [ψ′(y)] = ψ′′(y)

∂uα̂(x, y) = αu(x, y)∂̂uα(x, y) ∂u [ψ′(y)] = αu(x, y)ψ′′(y)

Also from (1) it follows that

1

α̂s(x, y)ψ′(y)
= 1− αs(x, y)

ψ′(y)
.

This last equality is used in the first and third relations above. Now
from these equalities, knowing that all the derivatives involved exist
and are a priori bounded by 1, it is easy to deduce the estimations
stated in propositions (3) and (4).

Corollary 5. ∂sα
u is continuously differentiable along the vector field

(1, αu(x, y)) and

|∂u∂sαu(x, y)| ≤ 3

`
,

∂uα
s is continuously differentiable along the vector field (αs(x, y), 1)

and

|∂s∂uαs(x, y)| ≤ 3

`
.

The statements of differentiability follow at once from proposition (4)
and next lemma, whose proof is an easy exercise in Differential Geom-
etry. Once again we will leave the calculations to the reader.

Lemma 2. Let M be a manifold, f :M→R a C1 function and X, Y
C1 vector fields on M . If ∂Xf is of class C1 then ∂Y f is differentiable
along X and

∂X∂Y f = ∂Y ∂Xf + ∂[Y,X]f .
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2.3. Hőlder Continuity. Let us give precise definitions of what we
mean by Hőlder continuity of a function θ :T2→R along the foliations
F s and Fu. Given constants 0 < γ < 1 and C > 0 we say θ is
(C, γ)-Hőlder continuous along F s, respectively Fu, if for (x, y) and
(x′, y′) in the same leaf of F s, respectively Fu, we have

|θ(x, y)− θ(x′, y′)| ≤ C|y − y′|γ,
|θ(x, y)− θ(x′, y′)| ≤ C|x− x′|γ respectively.

Remark that if (x, y) and (x′, y′) belong to the same leaf of F s, resp.
Fu, then

|x− x′| ≤ 1

λ− 1
|y − y′| , resp. |y − y′| ≤ 1

λ− 1
|x− x′| .

Now given any fixed 0 < γ < 1 assume that λ is large enough so that
(λ+ 1)2 < (λ− 1)3−γ and define

C = C(λ, γ) =

(
1− (λ+ 1)2

(λ− 1)3−γ

)−1

. (7)

Proposition 6. ∂sα
u is

(
4

`
C , γ

)
-Hőlder continuous along F s, and

∂uα
s is

(
4

`
C , γ

)
-Hőlder continuous along Fu.

Because of the usual symmetry it is enough to study ∂sα
u along F s.

We have

∂sα
u =

1
α̂s
∂̂sαu − ψ′′(y)

(ψ′(y)− α̂u)2

Define F :T2 × [−1, 1]→R

F (x, y, z) =
1
α̂s
z − ψ′′(y)

(ψ′(y)− α̂u)2

=

(
1− α̂u

ψ′(y)

)−2{
z

ψ′(y)

(
1− αs

ψ′(y)

)
+

(
1

ψ′(y)

)′}
Clearly F is a C1 function. Then we can rewrite the above relation

∂sα
u(x, y) = F

(
x, y, ∂sα

uf−1(x, y)
)

Stating matters in this form we see ∂sα
u is an invariant section of the

trivial fiber bundle T2× [−1, 1] by the fiber preserving map (x, y, z) 7→(
f(x, y), Ff(x,y)(z)

)
. Although the base map f :T2→T2 is singular we
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can adapt the usual proof of Hőlder continuity for the unique invariant
section of F . See [S]. For this we need the following technical lemma.

Lemma 3. The function F satisfies:

(1) For every pole y0 of ψ′(y), |∂sαu(x, y)| ≤ 2

`
|y − y0| ,

(2) |∂sF | ≤
4

`
,

(3)

∣∣∣∣∂F∂z (x, y, z)

∣∣∣∣ |ψ′(y)− αs(x, y)| ≤
(
λ+ 1

λ− 1

)2

.

Proof:
For the proof of item 1 just remark that from (5) and (6), using the
mean value theorem, we have, for any pole y0 of ψ∣∣∣∣ 1

ψ′(y)

∣∣∣∣ ≤ 1√
2λ`
|y − y0|∣∣∣∣( 1

ψ′(y)

)′∣∣∣∣ ≤ 1

`
|y − y0|.

Item 2 is an easy boring calculation. Item 3 follows because∣∣∣∣∂F∂z
∣∣∣∣ |ψ′(y)− αs(x, y)| =

=

∣∣∣1− αs

ψ′(y)

∣∣∣ ∣∣∣ 1
ψ′(y)

∣∣∣ |ψ′(y)− αs(x, y)|(
1− α̂u

ψ′(y)

)2 =

(
1− αs

ψ′(y)

)2

(
1− α̂u

ψ′(y)

)2 .

�

Proof of proposition (6):
Let (x, y) and (x′, y′) be two points in the same leaf of F s. We will use
the following notation: for n ≥ 0,

(xn, yn) = f−n(x, y)

(x′n, y
′
n) = f−n(x′, y′)

θn = ∂sα
u(xn, yn)

θ′n = ∂sα
u(x′n, y

′
n)

Let N be the least integer n ≥ 0 such that the interval [yn, y
′
n] contains

a pole of ψ. Notice that while [yn, y
′
n] contains no pole the difference

yn − y′n grows exponentially with n because f−1 expands the stable
leaves. By the mean value theorem for each n < N there is a point
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(x∗n, y
∗
n), in the same leaf of F s which contains (xn, yn) and (x′n, y

′
n),

such that

y∗n ∈ [yn, y
′
n]∣∣yn+1 − y′n+1

∣∣ = |ψ′(y∗n)− αs(x∗n, y∗n)| |yn − y′n|

Thus writing, for n < N , λ∗n = |ψ′(y∗n)− αs(x∗n, y∗n)| we have

1) |yn − y′n| =

(
n−1∏
i=0

λ∗i

)
|y − y′|

Now, abbreviating a =
(
λ+1
λ−1

)2
, we will prove by induction that for

n ≤ N

2) |θ0 − θ′0| ≤
4

`

n−1∑
k=0

ak∏k−1
i=0 λ

∗
i

|yk − y′k|
γ

+
an∏n−1
i=0 λ

∗
i

|θn − θ′n|

Let n = 0. If |y0 − y′0| ≤ |y0 − y′0|
γ ≤ 1 then

|θ0 − θ′0| ≤
∣∣F(x0,y0)θ1 − F(x′0,y

′
0)θ
′
1

∣∣ ≤
≤

∣∣F(x0,y0)θ1 − F(x∗0,y
∗
0)θ1

∣∣+
∣∣F(x∗0,y

∗
0)θ1 − F(x∗0,y

∗
0)θ
′
1

∣∣
+
∣∣F(x∗0,y

∗
0)θ
′
1 − F(x′0,y

′
0)θ
′
1

∣∣ ≤
≤ 4

`
{|y0 − y∗0|+ |y∗0 − y′0|}+

∣∣∣∣∂F∂z (x∗0, y
∗
0, z
∗
0)

∣∣∣∣ |θ1 − θ′1|

≤ 4

`
|y0 − y′0|

γ
+

a

λ∗0
|θ1 − θ′1| ,

otherwise it can be easily proved that

|θ0 − θ′0| ≤ |θ0|+ |θ′0| ≤
4

`
≤ 4

`
|y − y′0|

γ
.

Remark that |y0 − y′0| = |y0 − y∗0|+ |y∗0 − y′0|, because y∗0 ∈ [y0, y
′
0], and

by item 3 of lemma (3), ∣∣∣∣∂F∂z (x∗0, y
∗
0, z
∗
0)

∣∣∣∣ ≤ a

λ∗0
.

Other steps follow from item 2 of the same lemma. Now assume 2)
holds for n ≤ N − 1. The same argument we used above shows that

|θn − θ′n| ≤
4

`
|yn − y′n|

γ
+

a

λ∗n

∣∣θn+1 − θ′n+1

∣∣ .
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Then

|θ0 − θ′0| ≤
4

`

n−1∑
k=0

ak∏k−1
i=0 λ

∗
i

|yk − y′k|
γ

+

+
an∏n−1
i=0 λ

∗
i

{
4

`
|yn − y′n|

γ
+

a

λ∗n

∣∣θn+1 − θ′n+1

∣∣} ≤
≤ 4

`

n∑
k=0

ak∏k−1
i=0 λ

∗
i

|yk − y′k|
γ

+
an+1∏n
i=0 λ

∗
i

∣∣θn+1 − θ′n+1

∣∣
proving that 2) also holds for n+ 1. From 2) we have

3) |θ0 − θ′0| ≤
4

`

N∑
k=0

ak∏k−1
i=0 λ

∗
i

|yk − y′k|
γ

To see this choose a pole y∗N ∈ [yN , y
′
N ]. By item 1 of lemma (3),

|θN − θ′N | ≤ |θN |+ |θ′N |

≤ 2

`
|yN − y∗N |+

2

`
|y∗N − y′N |

=
2

`
|yN − y′N | ≤

4

`
|yN − y′N | ≤

4

`
|yN − y′N |

γ
.

The last inequality is clear if |yN − y′N | ≤ 1. Otherwise, trivially,

|θN − θ′N | ≤ |θN |+ |θ′N | ≤
4

`
≤ 4

`
|yN − y′N |

γ

This proves 3). Thus using this inequality together with 1) we get

|∂sαu(x, y)− ∂sαu(x′, y′)| = |θ0 − θ′0| ≤

≤ 4

`

N∑
k=0

ak∏k−1
i=0 λ

∗
i

|yk − y′k|
γ

≤ 4

`

N∑
k=0

ak(∏k−1
i=0 λ

∗
i

)1−γ |y − y
′|γ

≤ 4

`

∞∑
k=0

(
a

(λ− 1)1−γ

)k
|y − y′|γ

≤ 4

`

1

1− a

(λ− 1)1−γ

|y − y′|γ �

We finish this section by giving some estimations which will be
needed in the next section. A straightforward calculation upon the
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estimatives of proposition (3) gives,∣∣∣∣∂αs∂x

∣∣∣∣ , ∣∣∣∣∂αs∂y

∣∣∣∣ , ∣∣∣∣∂αu∂x

∣∣∣∣ , ∣∣∣∣∂αu∂y

∣∣∣∣ ≤ 9

8

√
2

λ`
. (8)

Another important Hőlder continuity is, under the same assumptions
and constants of proposition (6),∣∣∣∣∂αs∂x

(x, y)− ∂αs

∂x
(x′, y)

∣∣∣∣ ≤ 6

`
C(λ, γ) |x− x′|γ . (9)

To prove this write ∂αs

∂x
in terms of the derivatives ∂uα

s and ∂sα
s. Then

it is enough to prove for these two that

(1)

|∂uαs(x, y)− ∂uαs(x′, y)| ≤ 5

`
C(λ, `) |x− x′|γ ,

(2)

|∂sαs(x, y)− ∂sαs(x′, y)| ≤ 3

`
|x− x′| .

To prove 1 let (x, y), (x′, y) be points in R2 such that |x− x′| < 1 and
take (x∗, y∗) to be the unique intersection of the unstable leaf by (x, y)
with the stable one by (x′, y). Because (x, y) and (x∗, y∗) are on the

same unstable leaf we have |y − y∗| ≤ 1

λ− 1
|x− x∗|. Because (x∗, y∗)

and (x′, y) are on the same stable leaf we have |x∗ − x′| ≤ 1

λ− 1
|y − y∗|.

Thus

|x− x∗| ≤ |x− x′|+ |x′ − x∗| ≤ |x− x′|+ 1

(λ− 1)2
|x− x∗| ,

|x− x∗| ≤ |x− x′|
(

1− 1

(λ− 1)2

)−1

≤ (λ− 1)2

λ(λ− 2)
|x− x′| ,

|y − y∗| ≤ λ− 1

λ(λ− 2)
|x− x′| ,

and so

|∂uαs(x, y)− ∂uαs(x′, y)| ≤
≤ |∂uαs(x, y)− ∂uαs(x∗, y∗)|+ |∂uαs(x∗, y∗)− ∂uαs(x′, y)| ≤

≤ 4

`
C |x− x∗|γ + |∂s∂uαs| |y∗ − y|

≤ 4

`

(λ− 1)2

λ(λ− 2)
C |x− x′|γ +

3

`

λ− 1

λ(λ− 2)
|x− x′| ≤ 5

`
C |x− x′|γ .
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To prove 2 we choose (x∗, y∗) in the same way. Then

|∂sαs(x, y)− ∂sαs(x′, y)| ≤
≤ |∂sαs(x, y)− ∂sαs(x∗, y∗)|+ |∂sαs(x∗, y∗)− ∂sαs(x′, y)| ≤
≤ |∂u∂sαs| |x− x∗|+ |∂s∂sαs| |y∗ − y|

≤ 2

`

{
(λ− 1)2

λ(λ− 2)
+

λ− 1

λ(λ− 2)

}
|x− x′| ≤ 3

`
|x− x′| .

3. Bounded Distortion

In this section we define the one dimensional dynamics on the circle
SS1 induced by the invariant foliations F s and Fu. These dynamics are
given by singular expansive maps Ψs,Ψu : SS1→ SS1. The reversible
character of f implies Ψs = Ψu which we will simply call Ψ. This
map lifts to a C1 periodic function Ψ :R→R ∪ {∞} having the same
poles as ψ. In fact if λ is large Ψ is close to ψ. Our main goal here
will be to prove a modulus of Hőlder continuity for the map log |Ψ′|
and to deduce from it a bound for the linear distortion of Ψ which
will depend only on the two parameters λ and `. Finally we use the
bound on the distortion to estimate the thickness of a given compact
Ψ-invariant Cantor set containing no poles of Ψ and defined by some
Markov Partition, in terms of the ratios between intervals and gaps of
this Markov Partition.

3.1. The map Ψ. Consider the singular circles Cs = {(x, 0)modZ2|x ∈
R} and Cu = {(0, y)modZ2

| y ∈ R} respectively transversal to the foliations F s and Fu. We
are assuming, where there is no loss of generality, that 0 is a pole
of ψ. Now F s induces on the cylinder T2 − Cs a trivial fibration
πs :T2 − Cs→SS1 ≡ Cs whose fibers are the connected components of
the leaves of F s in the cylinder T2 − Cs. This fibration is invariant by
the action of f . To see this, use the factorization f−1 = T ′◦R′ described
in section 2.1. We see at once that any given fiber π−1

s (x) ⊆ T2 − Cs
when mapped by f−1 splits onto a finite number of complete leaves of
F s in T2, as many as the number of ψ’s poles. See Fig (2). Thus the
f image of every complete leaf of F s in T2 is a piece of some fiber of
πs bounded between two horizontal consecutive singular circles. Also
Fu induces on T2 − Cu a trivial fibration πu : T2 − Cu → SS1 ≡ Cu
which is invariant by the action of f−1. In both cases we have natural
dynamical systems describing the action of f and f−1 on the fibrations
πs : T2 − Cs → SS1 and πu : T2 − Cu → SS1. These are the singular
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Figure 2. Action of f−1 on T2 − Cs

expansive maps Ψs,Ψu :SS1→SS1:

Ψs(x) = πs(f(x, 0)) = πs(ψ(x), x)

Ψu(y) = πu(f
−1(0, y)) = πu(y, ψ(y))

The reversibility of f will imply that Ψs = Ψu, which we simply denote
by Ψ. Using the above expressions for Ψ, we see that each interval
I, bounded by consecutive poles of ψ, is expanded by Ψ onto SS1

winding infinitely many times around it. In fact the restriction map
ΨI : I→SS1 is an infinitely branched covering space of SS1, the sign
of ψ′(x) in I giving the orientation character of ΨI . Over its maximal
invariant domain,

∆∞ =
⋂
n≥0

Ψ−n(D) (10)

where D = {x : ψ(x) 6=∞}, the map Ψ:∆∞→∆∞ is conjugated to a
full shift in infinitely many symbols. Let m be the number of ψ’s poles
in each fundamental domain and denote by I1, · · · , Im ⊆ (0, 1) all the
connected components of (0, 1)−poles ofψ. Then, since ΨIi :Ii→SS1 is
a covering space, Ψ−1

Ii
(0, 1) is a doubly infinite sequence of subintervals

of Ii which we denote by · · · , I−1 i, I0 i, I+1 i, · · · . The set of all these
subintervals Il i, with l ∈ Z and 1 ≤ i ≤ m, forms a Markov Partion
for Ψ. Thus Ψ : ∆∞→∆∞ is conjugated to the full one sided shift in
the infinite alphabet A = Z× {1, · · · m}.

We give now a precise definition of natural liftings for these projec-
tions. Let gs, gu :R2→R be the C1 functions whose graphs {(gs(x, y), y)}
and {(x, gu(x, y))} are liftings of leaves of the foliations F s and Fu.
They can be defined by

1)

 gs(x, 0) = x
∂gs
∂y

(x, y) = αs (gs(x, y), y)
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and

2)

{
gu(0, y) = y
∂gu
∂x

(x, y) = αu (x, gu(x, y))

Then πs and πu are defined implicitly by

3)

{
gs (πs(x, y), y + k(y)) = x
gu (x+ k(x), πu(x, y)) = y,

where k(x) ∈ Z is the only integer such that 0 ≤ x + k(x) < 1.
Notice that 3) is equivalent to (πs(x, y), 0) and (x, y + k(y)) belonging
to the same leaf of F s, and (0, πu(x, y)), (x+ k(x), y) belonging to the
same leaf of Fu. From the definitions 1) and 2) and the symmetry
αs(x, y) = αu(x, y) it follows easily that

gs(x, y) = gu(y, x).

Then from the definition 3) we get

πs(x, y) = πu(y, x). (11)

The projections πs, πu :R2→R are respectively discontinuous along the
horizontal lines { y = k } (k ∈ Z) and the vertical ones {x = k } (k ∈
Z), and everywhere else of class C1. Also they are periodic with period
1 in both variables:

πs(x+ 1, y) = πs(x, y) + 1

πu(x, y + 1) = πu(x, y) + 1

πs(x, y + 1) = πs(x, y)

πu(x+ 1, y) = πu(x, y).

as follows from the periodicity of the functions gs and gu:

gs(x+ 1, y) = gs(x, y) + 1

gu(x, y + 1) = gu(x, y) + 1.

Both sides of these relations solve the same Cauchy problem. We still
have to prove that πs and πu are well defined. By symmetry we may
stick to πs. We can prove the following relation, again by checking that
both sides are solutions of the same Cauchy problem,

∂gs
∂x

(x, y) = exp

{∫ y

0

∂αs

∂x
(gs(x, t), t) dt

}
6= 0. (12)

Thus, by the Implicit Function Theorem, πs is well defined. Then we
define Ψs,Ψu :R→R ∪ {∞} putting

4)

{
Ψs(x) = πs(f(x, 0)) = πs(ψ(x), x)
Ψu(y) = πu(f

−1(0, y)) = πu(y, ψ(y))



ELLIPTIC POINTS OF THE STANDARD MAP 19

Symmetry (11) implies that Ψs = Ψu, which we simply denote by Ψ.
It is a C1 function outside the poles of ψ. By the periodicity of the
projections and also that of ψ it is clear that the function Ψ is periodic
with period 1.

Ψ(x+ 1) = Ψ(x) + l

From definitions 3) and 4) it follows at once that for 0 ≤ x < 1,

gs (Ψ(x), x) = ψ(x)
gu (y,Ψ(y)) = ψ(y).

(13)

These relations show us how close Ψ is to ψ. For large λ, the leaves of
F s are almost vertical because |αs| ≤ 1

λ−1
. Thus ψ(x) = gs (Ψ(x), x) is

close to Ψ(x).

Proposition 7.

(1) |Ψ(x)− ψ(x)| ≤ 1

λ− 1

(2) Ψ′(x) =
ψ′(x)− αs (ψ(x), x)

exp

{∫ x

0

∂αs

∂x
(gs(x, t), t) dt

}
Proof:

|Ψ(x)− ψ(x)| = |Ψ(x)− gs (Ψ(x), x)| = |gs (Ψ(x), 0)− gs (Ψ(x), x)|

≤
∫ x

0

|αs (gs(Ψ(x), t), t)| dt ≤ |x| |αs| ≤ 1

λ− 1

Differentiating the relation ψ(x) = gs (Ψ(x), x), by (12) we get

ψ′(x) =
∂gs
∂x

(Ψ(x), x) Ψ′(x) +
∂gs
∂y

(Ψ(x), x)

=
∂gs
∂x

(Ψ(x), x) Ψ′(x) + αs (gs(Ψ(x), x), x)

= Ψ′(x) exp

{∫ x

0

∂αs

∂x
(gs(Ψ(x), t), t) dt

}
+ αs (ψ(x), x) �

By item 2 of proposition (7) setting

µ = exp

{
9

8

√
2

λ`

}
(14)

we have, recall (8), |Ψ′(x)| ≥ λ− 1

µ
.
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Finally, it is geometrically clear that the projections πs and πu semi-
conjugate f resp. f−1 with the expansive map Ψ, that is πs ◦ f = Ψ ◦ πs
and πu ◦ f−1 = Ψ ◦ πu.

3.2. Distortion Estimates. We prove a modulus of Hőlder continuity
for the function log |Ψ′(x)|, which is the main tool to get the boundness
of Ψ’s linear distortion. Assume that 0 < γ < 1 is fixed and λ > 0 is
large enough so that

(λ+ 1)2 < (λ− 1)3−γ, and µ < λ− 1.

See (14) for the definition of µ. Then set

C0 = C0(λ, `, γ) =
8µ

`
C(λ, γ). (15)

C1 = C1(λ, `, γ) =
µγ

(λ− 1)γ − µγ
C0(λ, `, γ) (16)

where C(λ, γ) was defined (7).

Lemma 4. If [x, y] ⊆ R contains no pole of ψ and |Ψ(x)−Ψ(y)| ≤ 1
then

|log |Ψ′(x)| − log |Ψ′(y)|| ≤ C0 |Ψ(x)−Ψ(y)|γ

Proposition 8. Bounded Distortion Property
Given x, y ∈ R, if for i = 0, 1, · · · , n− 1

(1) [Ψi(x),Ψi(y)] contains no pole of ψ, and
(2) |Ψn(x)−Ψn(y)| ≤ 1, then

exp {−C1 |Ψn(x)−Ψn(y)|γ} ≤
∣∣(Ψn)′ (x)

∣∣∣∣(Ψn)′ (y)
∣∣ ≤ exp {C1 |Ψn(x)−Ψn(y)|γ}
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Proof:

∣∣log
∣∣(Ψn)′ (x)

∣∣− log
∣∣(Ψn)′ (y)

∣∣∣∣ =

∣∣∣∣∣
n−1∑
i=0

log
∣∣Ψ′(Ψi(x))

∣∣− log
∣∣Ψ′(Ψi(y))

∣∣∣∣∣∣∣
≤

n−1∑
i=0

∣∣log
∣∣Ψ′(Ψi(x))

∣∣− log
∣∣Ψ′(Ψi(y))

∣∣∣∣
≤

n−1∑
i=0

C0

∣∣Ψ(Ψi(x))−Ψ(Ψi(y))
∣∣γ

= C0

n∑
i=1

∣∣Ψi(x)−Ψi(y)
∣∣γ

≤ C0

n∑
i=1

(
µ

λ− 1

)γ(n−i)

|Ψn(x)−Ψn(y)|γ

≤ C0
µγ

(λ− 1)γ − µγ
|Ψn(x)−Ψn(y)|γ .

Remark that

|Ψn(x)−Ψn(y)| ≥
(
λ− 1

µ

)n−i ∣∣Ψi(x)−Ψi(y)
∣∣ .

�

Proof of lemma 4:
Consider the expression for Ψ′(x) given on item 2 of proposition (7).
Taking logarithms we have

log |Ψ′(x)| = log |ψ′(x)|+log

(
1− αs(ψ(x), x))

ψ′(x)

)
−
∫ x

0

∂αs

∂x
(gs(Ψ(x), t), t) dt.

Thus

|log |Ψ′(x)| − log |Ψ′(y)|| ≤ ∆0 + ∆1 + ∆2

where

∆0 = |log |ψ′(x)| − log |ψ′(y)||

∆1 =

∣∣∣∣log

(
1− αs(ψ(x), x))

ψ′(x)

)
− log

(
1− αs(ψ(y), y))

ψ′(y)

)∣∣∣∣
∆2 =

∣∣∣∣∫ x

0

∂αs

∂x
(gs(Ψ(x), t), t) dt−

∫ y

0

∂αs

∂x
(gs(Ψ(y), t), t) dt

∣∣∣∣
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From the estimative (8) and the Hőlder continuity relation (9) one can
easily conclude that

∆2 ≤
6.5µ

`
C |Ψ(x)−Ψ(y)|γ .

To estimate ∆1 remark log
(

1− αs(ψ(x),x)
ψ′(x)

)
is of class C1. A simple

computation shows that this function has derivatives smaller than 2
`
.

Thus

∆1 ≤
2

`
|x− y| ≤ 2µ

(λ− 1)`
|Ψ(x)−Ψ(y)| .

Now suppose that the interval [x, y] does not contain any pole of ψ.
Let zt = x+ t(y − x) for t ∈ [0, 1]. By the Mean Value Theorem,

|ψ(x)− ψ(y)| =

∣∣∣∣∫ 1

0

ψ′(zt) dt

∣∣∣∣ |x− y|
=

∫ 1

0

|ψ′(zt)| dt |x− y| .

Notice that, as ψ has no poles inside [x, y], the sign of ψ′(zt) keeps
unchanged for t ∈ [0, 1]. Again by the Mean Value Theorem, using (5),

|log |ψ′(x)| − log |ψ′(y)|| ≤
∫ 1

0

∣∣∣∣ψ′′(zt)ψ′(zt)

∣∣∣∣ dt |x− y|
≤

∫ 1

0

1√
2λ`
|ψ′(zt)| dt |x− y| =

1√
2λ`
|ψ(x)− ψ(y)| .

On the other hand,

|ψ(x)− ψ(y)| ≤ |gs(Ψ(x), x)− gs(Ψ(y), y)|

≤
∣∣∣∣∂gs∂x

∣∣∣∣ |Ψ(x)−Ψ(y)|+
∣∣∣∣∂gs∂y

∣∣∣∣ |x− y|
≤

{
µ+

µ

(λ− 1)2

}
|Ψ(x)−Ψ(y)| ≤ λ2

(λ− 1)2
µ |Ψ(x)−Ψ(y)| ,

because
∣∣∂gs
∂x

∣∣ ≤ µ, see (12), and by definition of gs,
∣∣∣∂gs∂y ∣∣∣ ≤ |αs| ≤ 1

λ−1
.

Thus

∆0 ≤
µ

`
C |Ψ(x)−Ψ(y)| .

Adding all these inequalities we prove the lemma. �
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3.3. Invariant Cantor Sets and Thickness Estimates. Let K be a
closed subset of SS1 or R. The thickness of K can be defined as follows.
See [N 3] and also [PT]. Any bounded component of the complement
of K, SS1 −K or R −K, will be called a gap of K. For every triple
(U1, C, U2) formed by a pair of gaps U1, U2 and a bounded component
C of SS1 − (U1 ∪ U2) resp. R− (U1 ∪ U2) we define

τ (U1, C, U2) = max

{
|C|
|U1|

,
|C|
|U2|

}
,

where |U | denotes the length of U . Then the thickness of K is the
infimum

τ(K) = inf τ (U1, C, U2)

taken over all possible triples (U1, C, U2).
Suppose now we are given a Ψ-invariant Cantor set K ⊆ SS1 defined

as the maximal invariant set,

K =
⋂
n≥0

Ψ−n (∪mi=1Ii)

over a finite disjoint union of closed intervals I1∪̇I2∪̇ · · · ∪̇Im containing
no poles of ψ. Further more we will assume that, P = {I1, I2, · · · , Im}
is a Markov Partition for Ψ : K → K. Our goal here is to give an
estimation for the thickness τ(K) in terms of the easily computable
thickness τ(P) of the Markov Partition P , which we define to be the
minimum,

τ(P) = min
|Ii|
|U |

taken over all Ii ∈ P and over the gaps U of P adjacent to Ii, where a
gap of P simply means a gap of

⋃n
i=1 Ii in SS1. Now under the same

assumptions of proposition (8) which states the Bounded Distortion
Property the following estimation holds.

Proposition 9.

τ(K) ≥ e−C1τ(P)

We now make precise our assumptions on P . Lift the Markov Par-
tition P to R, the universal covering of SS1. We obtain a countable
disjoint union of intervals. These intervals will still be said intervals
of P . Also we keep calling gaps of P to gaps of this countable union.
With this terminology we assume:

(1) The gaps of P contain all the poles of ψ.
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(2) For each interval I of P , Ψ(I) is the convex hull of a finite union
of intervals of P , covering at least one fundamental domain of
SS1.

It follows from 2 that the set ∂P , of all boundary points of the
intervals I1, I2, · · · Im in P , is invariant by Ψ : SS1 → SS1. Thus it
consists of periodic and preperiodic orbits of Ψ.

The proof runs as follows.
Proof:
We begin with some notations, comments and definitions which will be
very useful. Denote by G the set of all gaps of K. Then define order
of a gap. The gaps of P will be said to have order 0. We denote by
G0 the set of all these gaps. Now remark that as these gaps contain
all poles of ψ the restriction of Ψ to any interval which intersects no
gap of order 0 is an expansive diffeomorphism. Thus, by invariance of
K, if U ∈ G is not of order 0 then Ψ(U) is another and longer gap
of K. If U ∈ G − G0 and Ψ(U) ∈ G0 we say U is a gap of order 1.
G1 will denote the set of all gaps with order 1. Notice that Ψ2 is an
expansive diffeomorphism over any interval which intersects no gap of
order ≤ 1. By induction we define the set of all gaps of order n, Gn,
as consisting of those gaps U 6∈ G0 such that Ψ(U) is of order n − 1.
Again by induction we can check that for U ∈ Gn, the restriction of
Ψn+1 to an interval intersecting no gaps of order ≤ n is an expansive
diffeomorphism. As Ψ expands all gaps most have finite order. Thus
G is the disjoint union

G =
∞⋃
n=0

Gn.

Let now (U1, C, U2) be triple formed by a pair of gaps U1 ∈ Gn, U2 ∈ Gm
and the bounded component C of R−(U1 ∪ U2). We have to prove that

τ (U1, C, U2) ≥ e−C1τ(P).

Suppose n ≥ m. If inside C there are gaps of order ≤ n we choose
among them U ′2 to be the one which is closer to U1. Otherwise simply
define U ′2 = U2. Consider the new triple (U1, C

′, U ′2), where C ′ is the
bounded component of R− (U1 ∪ U ′2). Now C ′ ⊆ C and C ′ contains no
gaps of order ≤ n. Since C ′ is bounded by gaps of order ≤ n, Ψn(C ′)
is bounded by points in ∂P and this proves it is an interval of P . Also
Ψn(U1) is a gap of P . By the Mean Value Theorem we pick points
ζ ∈ C ′ and ζ1 ∈ U1 such that

|Ψn(C ′)| =
∣∣(Ψn)′ (ζ)

∣∣ |C ′| ,
|Ψn(U1)| =

∣∣(Ψn)′ (ζ1)
∣∣ |U1| .
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Then by the bound on distortion,

τ (U1, C, U2) ≥ |C|
|U1|
≥ |C

′|
|U1|

=

∣∣(Ψn)′ (ζ1)
∣∣∣∣(Ψn)′ (ζ)
∣∣ |Ψn(C ′)|
|Ψn(U1)|

≥ e−C1
|Ψn(C ′)|
|Ψn(U1)|

≥ e−C1τ(P).

Notice that |Ψn(C ′)| ≤ 1 and |Ψn(U1)| ≤ 1, because they are respec-
tively an interval and a gap of P .

�

Remark that it is easy to construct Markov Partitions P for Ψ, sat-
isfying conditions 1, 2 with arbitrarily large thickness τ(P). The max-
imal invariant domain ∆∞ of Ψ, see (10), is an infinitely thick hyper-
bolic ”Cantor set”, inside which we can find arbitrarily thick compact
invariant Cantor sets.

4. The Basic Set Family

In this section we construct the family of basic sets Λk.

4.1. A Family of Singular Diffeomorphisms. We start adding to
the Standard Map family fk(x, y) = (−y + ϕk(x), x) a singular pertur-
bation (ρk(x), 0) which transforms it into a family of singular hyper-
bolic diffeomorphisms gk(x, y) = (−y + ψk(x), x). The new function
ψk(x) = ϕk(x) + ρk(x) will satisfy the assumptions made in section 2,
and the perturbation ρk(x) will vanish outside small 2

k1/3
-neighborhoods

of the critical points of ϕk. The size of these neighborhoods is chosen
as to the smallest possible provided there exist constants λ � 2 and
0 < ` ≤ λ satisfying (3) and (4) for all ψk. To understand the role of
the exponent ”1/3 ” replace ψ by ϕk in the left hand side of (4) and
remark that the resulting expression, call it Ek(x), becomes unbounded
near −1/4 and 1/4, which up to small errors are the critical points of
ϕk. Now suppose that x, in the expression Ek(x), is close to one of
these ”critical” points, say

∣∣x− 1
4

∣∣ ≤ k−ε for some ε > 0. An easy com-
putation shows that up to a negligible error |Ek(x)| is bounded from
below by

π

k |cos(2πx)|3
− 2π

k |cos(2πx)|
≥ k3ε−1.

If we want to choose ε > 0 the largest possible so that ψk(x) = ϕk(x)
whenever

∣∣x± 1
4

∣∣ ≥ k−ε and still have a uniform bound on (4) for all

ψk, we must have |Ek(x)| ≤ 1
`

whenever
∣∣x± 1

4

∣∣ ≥ k−ε. Thus k3ε−1
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Figure 3. Functions ρk and ψk

must be bounded, implying that ε ≤ 1/3. So the best choice for our
purposes is ε = 1/3.

For an explicit definition of ρk we take an auxiliary C∞ function
β :R→R such that:

β(x) =

{
x−2 if |x| ≤ 1
0 if |x| ≥ 2

and all the derivatives of β are monotonous inside (−∞, 0) and (0,∞).
Define then ρk :R→R ∪ {∞}

ρk(x) =
∑
n∈Z

k1/3β

(
k1/3

(
x− 1

4
+ n

))
− k1/3β

(
k1/3

(
x+

1

4
+ n

))
.

The sum is a well defined C∞ function since it is locally finite, (actually
all summands have disjoint supports for k1/3 ≥ 8) and it is obviously
periodic,

ρk(x+ 1) = ρk(x) .

Setting then ψk :R→R ∪ {∞}, ψk(x) = ϕk(x)+ρk(x), this is a smooth
periodic function,

ψk(x+ 1) = ψk(x) + l,

with two poles of second order −1
4

and 1
4

in
[
−1

2
, 1

2

]
.

All estimatives in the following proposition hold for k1/3 ≥ 20. Items
3 and 4 will be needed in the next section to prove that the invariant
foliations of gk depend on k in a differentiable way.
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Proposition 10. For large k,

(1) |ψ′k(x)| ≥ 32 k2/3,

(2)
|ψ′′′k (x)|
ψ′k(x)2

+
1

2

|ψ′′k(x)|2

|ψ′k(x)|3
≤ 5

(3)

∣∣∣∣∂ψk∂k

∣∣∣∣ ≤ 1

k2/3
|ψ′k|

(4)

∣∣∣∣∂ψ′k∂k

∣∣∣∣ ≤ 3

k4/3
|ψ′k|

2

Two important remarks should be made now. First, inside
[
−1

2
, 1

2

]
the critical points of ϕk(x) = 2x+ k sin(2πx) are very close to −1

4
and

1
4
. Denote them by 0 < ν− < ν+ < 1. Then a simple computation

shows that

i)

∣∣∣∣ν+ −
1

4

∣∣∣∣ ≤ 1

16k
ii)

∣∣∣∣14 + ν−

∣∣∣∣ ≤ 1

16k
.

Second, the derivatives ϕ′k(x)− 2 = k cos(2πx) and ρ′k(x) always have
the same sign. Thus |ψ′k(x)| ≥ |ϕ′k(x)|, except inside [−1

4
, ν−] ∪ [ν+,

1
4
].

Notice these are very small intervals with length (16k)−1. In any case
|ψ′k(x)| ≥ |ρ′k(x)| − 2 always holds.

Proof:
Let us prove 1. Using the inequality∣∣∣cos

(π
2

+ z
)∣∣∣ ≥ |z| − |z|3

6
for |z| ≤ 1

we conclude for
∣∣x± 1

4

∣∣ ≤ 1
2π

,

|ϕ′k(x)| ≥ 2πk |cos(2πx)| − 2

≥ 4π2k

∣∣∣∣x± 1

4

∣∣∣∣− (2π)4k

6

∣∣∣∣x± 1

4

∣∣∣∣3 − 2 .

Consider now two cases i)
∣∣x− 1

4

∣∣ ≥ 1
k1/3

and
∣∣x+ 1

4

∣∣ ≥ 1
k1/3

, ii)∣∣x± 1
4

∣∣ ≤ 1
k1/3

. The minimum value of |ϕ′k(x)| through case i) is at-

tained when
∣∣x± 1

4

∣∣ = 1
k1/3

. Thus if i) is the case

|ψ′k(x)| ≥ |ϕ′k(x)| ≥ 4π2k2/3 − (2π)4

6
≥ 32k2/3 .
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Otherwise in case ii)

|ψ′k(x)| ≥ 2πk |cos(2πx)|+ 2

k1/3
∣∣x± 1

4

∣∣3 − 2

≥ 4π2k

∣∣∣∣x± 1

4

∣∣∣∣+
2

k1/3
∣∣x± 1

4

∣∣3 − (2π)4

6
− 2

≥ 32.8 k2/3 − 265 ≥ 32 k2/3

We have used the following inequality

4π2z +
2

z3
≥ 32.8 for 0 ≤ z ≤ 1

In order to prove 2 we decompose its summands as follows:

ψ′′′k (x)

ψ′k(x)2
=
ϕ′′′k (x)

ψ′k(x)2
+
ρ′′′k (x)

ψ′k(x)2

ψ′′k(x)2

ψ′k(x)3
=

(
ϕ′′k(x)

ψ′k(x)3/2
+

ρ′′k(x)

ψ′k(x)3/2

)2

Using item 1 and the obvious bounds 8π3k and 4π2k for |ϕ′′′k (x)| and

|ϕ′′k(x)| respectively, one can easily see that both summands
ϕ′′′k (x)

ψ′k(x)2
and

ϕ′′k(x)

ψ′k(x)3/2
are very small. Actually the first is arbitrarily small, if k is large,

while the second can only be forced to be smaller than 1
4
. To estimate

the other two summands we consider two cases: i)
∣∣x− 1

4

∣∣ > 1
2k1/3

and∣∣x+ 1
4

∣∣ > 1
2k1/3

and ii)
∣∣x± 1

4

∣∣ ≤ 1
2k1/3

. In the first case, because the

derivatives of β are monotonous, we have |ρ′′k(x)| ≤ k |β′′| ≤ 3 ·25 k and
|ρ′′′k (x)| ≤ k4/3 |β′′′| ≤ 3 · 28 k4/3. In case ii) we have explicit formulas
for ρk(x) and its derivatives so that an estimation is straightforward.
Putting together all these estimations we can prove item 2.

Finally to prove 3 and 4 we consider the same two cases i) and ii)
as above. Remark that, because of item 1, the right hand sides of 3
and 4 are bounded from below by 32 and 3 · 322 respectively. In case
i) the proof is trivial because the left hand sides of 3 and 4 have upper
bounds which are much lesser than the lower bounds mentioned above:∣∣∣∣∂ψk∂k

∣∣∣∣ ≤ 1 +

∣∣∣∣∂ρk∂k
∣∣∣∣ = 1 +O

(
1

k2/3

)
∣∣∣∣∂ψ′k∂k

∣∣∣∣ ≤ 2π +

∣∣∣∣∂ρ′k∂k
∣∣∣∣ = 2π +O

(
1

k1/3

)
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In case ii) we have explicit formulas for
∣∣∂ρk
∂k

∣∣, ∣∣∣∂ρ′k∂k ∣∣∣ and ρ′k(x),∣∣∣∣∂ρk∂k (x)

∣∣∣∣ =
1

3k4/3
∣∣x± 1

4

∣∣2 ,∣∣∣∣∂ρ′k∂k (x)

∣∣∣∣ =
2

3k4/3
∣∣x± 1

4

∣∣3 ,
|ρ′k(x)| = 2

k1/3
∣∣x± 1

4

∣∣3 ,
making it easy to check 3 and 4. �

We can now estimate constant µ = µ(k), see (14),

1 ≤ µ(k) ≤ 1 +
1

3k1/3
(17)

and the distortion constant C1 = C1(k) with γ = 1
2
, see (16).

0 ≤ C1(k) ≤ 9

k1/3
(18)

The distortion C1(k) converges to 0 as k tends to ∞.

4.2. Construction of Λk. Using the same notation of section 3, Ψk

will be the expansive map associated to the singular diffeomorphism
gk. We begin constructing a Cantor set Kk as the maximal invariant
set

Kk =
⋂
n≥0

Ψ−nk ( J0 ∪ J1 mod Z )

over a Markov Partition Pk = {J0, J1} satisfying assumptions 1 and 2
of section 3.3. These intervals are chosen so that

• J0, J1 are inside the region {ρk = 0},
• τ(Pk) is large.

Then we set the basic set Λk to be the square of Kk relative to the
product structure induced on T2 by the projections πs, πu :T2→SS1,

Λk = π−1
s (Kk) ∩ π−1

u (Kk) .

Λk will be a compact invariant basic set for both fk and gk.

Let B−l and B−r be small intervals close to −1
4
, respectively at the

left and right of this point, defined by

B−l =

{
−1

4
− 4

k1/3
< x < −1

4
− 3

k1/3

}
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Figure 4. The Markov Partition Pk

B−r =

{
−1

4
+

3

k1/3
< x < −1

4
+

4

k1/3

}
.

Similarly, close to 1
4
, B+

l and B+
r are the intervals

B+
l =

{
1

4
− 4

k1/3
< x <

1

4
− 3

k1/3

}
B+
r =

{
1

4
+

3

k1/3
< x <

1

4
+

4

k1/3

}
.

We define J0 = [a, b] and J1 = [b′, a′ + 1] by choosing:

a ∈ B−r , s.t. Ψk(a) ≡ a mod Z,
a′ ∈ B−l s.t. Ψk(a

′) ≡ a mod Z,
b ∈ B+

l , b′ ∈ B+
r s.t. Ψk(b) ≡ Ψk(b

′) ≡ a′ mod Z.

Since |Ψ′k(x)| ≥ (32 k2/3 − 1)/µ ≥ 30 k2/3 , see (14), all four intervals
B = B−l , B−r , B+

l , B+
r are expanded by Ψk onto intervals with length

|Ψk (B)| ≥ 30 k1/3 � 1 . Thus it is possible to find a, a′, b and b′

as above. It is clear that such Pk is a Markov Partition satisfying
assumptions 1, 2 of section 3.3. For some positive integers n,m, n′,
and m′, [a, b] is mapped, orientation preserved, onto [a− n, a′ + m]
and [b′, a′+ 1] is mapped, orientation reversed, onto [a−n′, a′+m′] .
Furthermore we can choose a, a′, b and b′ so that n = n′, m = m′, and
so Ψk(J0) = Ψk(J1), and the number of fundamental domains covered
by Ψk(J0) = Ψk(J1) is nk = n+m. Then Kk is conjugated to the full
one sided shift in 2nk symbols. To estimate nk observe that inside J0

we have |Ψk − ϕk| ≤ 1
30k2/3

since ψk = ϕk. Thus

2k ≥ nk ≥ |Ψk(J0)| ≥ |ϕk(J0)| − 1

15k2/3

and estimating |ϕk(J0)| we obtain,

1− 32π2

k2/3
≤ nk

2k
≤ 1.
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Proposition 11. Λk = π−1
s (Kk) ∩ π−1

u (Kk) is a compact invariant
basic set for both fk and gk, conjugated to the full Bernoulli shift in
2nk symbols.

Proof:
Λk is closed in the complement of the discontinuity circles Cs ∪ Cu of
the projections πs, πu. Also it lies inside the compact set

π−1
s (J0 ∪ J1) ∩ π−1

u (J0 ∪ J1)

which is disjoint from Cs ∪ Cu. Thus Λk is compact. Once we see it
is invariant by gk, Λk will obviously be a basic set because it has a
global product structure. It will also be a basic set of fk, because it
follows from the definition of J0, J1, that π−1

s (J0 ∪ J1)∩ π−1
u (J0 ∪ J1)

is inside the region {ρk(x) = 0}. It remains to prove the invariance
of Λk by gk. Let I =

(
−1

4
, 3

4

)
and consider the C1 diffeomorphism

Φk :T2 − (Cs ∪ Cu)→I × I, Φk(x, y) = (πs(x, y), πu(x, y)), mapping Λk

onto Kk×Kk. The singular diffeomorphism on I×I Tk = Φk ◦gk ◦Φ−1
k

can be explicitly defined by

Tk (z, z′) =
(
Ψk(z),Ψ−1

α (z′)
)
, z ∈ Iα, α ∈ A

where {Iα}α∈A denotes the Markov Partition introduced in section 3.1
for the singular expansive map Ψk, and Ψ−1

α stands for the inverse map
of the restriction of Ψk to Iα. For the sake of rigor we should mention
that the components of Tk are to be taken modulus integer translations
otherwise they could be outside of I. Assume for the meanwhile that
we already know that this map Tk satisfies the conjugacy relation,
Tk ◦ Φk = Φk ◦ gk. Then for Λk’s invariance it is enough to prove that
Kk × Kk is invariant by Tk. For any α ∈ A, ΨIα : Iα ∩Kk→Kk is a
diffeomorphism and so Ψk (Iα ∩Kk) = Kk and also Ψ−1

α (Kk) = Iα∩Kk.
Thus Tk (Kk ×Kk) = Kk × Kk. Finally, because Ψk : Kk → Kk is
conjugated to a one sided full shift in 2nk symbols it follows that Tk :
Kk ×Kk → Kk ×Kk, and therefore gk : Λk → Λk, are conjugated to
a full Bernoulli shift in 2nk symbols. Let us now get back to prove
the conjugacy relation. Because the projections πs and πu respectively
semiconjugate gk and g−1

k with Ψk we have

Ψk (πs(x, y)) = πs (g(x, y)) ,

Ψ−1
α πu(x, y) = πu (g(x, y)) whenever πu (gk(x, y)) ∈ Iα .

Thus it is enough to prove that πs (x, y) and πu (gk(x, y)) always belong
to the same interval Iα, α ∈ A. Since πu (gk(x, y)) = πs (x,−y + ψ(x))
we have to see that (x, y) and (x′, y′) = (x,−y + ψ(x)) project, along
F s, into the same interval Iα, or which is equivalent, that gk(x, y+l(y))
and gk(x

′, y′+ l(y′)) also project, along F s, into the same fundamental
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domain m+ I, m ∈ Z. Given z ∈ R, l(z) ∈ Z denotes the only integer
such that −1

4
≤ z + l(z) < 3

4
. Now

l (−y′ − l(y′) + ψk(x
′)) = l (−y′ − ψk(x′)) + l(y′)

= l(y) + l (−y + ψk(x))

= l (−y − l(y) + ψk(x))

shows that gk (x′, y′ + l(y′)) and gk (x, y + l(y)) have their x coordinates
in the same fundamental domain−l+I, l ∈ Z, and so πs (gk(x

′, y′ + l(y′)))
and πs (gk(x, y + l(y))) also belong to the same fundamental domain.
�

For all sufficiently large parameters, say k ≥ ι0, Ψk : SS1 → SS1

is a singular expansive map and gk : T2→ T2 is a singular hyperbolic
diffeomorphism. ι0 = 83 is enough for this to be true, but we can
take ι0 = 203 so that all estimatives in (10) hold. On their maximal
invariant domains,

∆∞(k) =
⋂
n≥0

Ψ−nk {x |ψ(x) 6=∞}

D∞(k) =
⋂
n∈Z

g−nk {(x, y) |ψ(x) 6=∞} ,

these maps are conjugated to full shifts in the infinite alphabet A =
Z × {0, 1}, respectively the one sided full shift σ : Σ+(A)→ Σ+(A),
Σ+(A) = AN, and the two sided full shift σ :Σ(A)→Σ(A), Σ(A) = AZ.
Thus every Cantor set Kk0 and every basic set Λk0 constructed above
has a continuation K̃k0 k or Λ̃k0 k defined all over [ι0,∞). Moreover,
for k ≥ k0 the continuation Λ̃k0 k of Λk0 is always a basic set for the
Standard Map fk. To see this let J0 = [a0, b0], J1 = [b′0, a

′
0 + 1] be the

Markov Partition defining Kk0 . Then the C1 functions a(k), a′(k), b(k)
and b′(k) defined by

Ψk (a(k)) ≡ Ψk (a′(k)) ≡ a(k) mod Z a(k0) = a0, a′(k0) = a′0

Ψk (b(k)) ≡ Ψk (b′(k)) ≡ a′(k) mod Z b(k0) = b0, b′(k0) = b′0
are the boundary points of a family of Markov Partitions J0(k) =
[a(k), b(k)], J1(k) = [b′(k), a′(k) + 1], defining the continuation of Kk0 ,

K̃k0 k =
⋂
n≥0

Ψ−nk (J0(k) ∪ J1(k) mod Z) .

Since |Ψk(x)| grows with k, the boundary points a(k), b(k), a′(k) and
b′(k) slowly move away from the poles ±1

4
. Thus as k → ∞ the
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intervals J0(k) and J1(k) shrink inside the region where ρk vanishes,
which shows that

Λ̃k0 k = π−1
s (K̃k0 k) ∩ π−1

u (K̃k0 k),

the continuation of Λk0 , for k ≥ k0 lies inside {ρk(x) = 0} and so it is
a basic set for the Standard Map fk. Finally remark that for each k
the definitions of the Cantor set Kk and the basic set Λk depend on an
arbitrary choice of a Markov Partition Pk = {J0, J1}. This selection
can easily be made explicit so that these families become dynamically
increasing in the sense of item 1, Theorem A, and continuous with re-
spect to the Hausdorff metric except on a discreet set {k0, k1, k2, · · · },
formed by an increasing sequence of parameters kn→∞, where it is
only right continuous, meaning Λki = lim

k→k+i
Λk.

4.3. Measuring Λk.

Proposition 12. For all sufficiently large k, τ(Kk) ≥ k1/3

9
.

Proof:
By the localization of the extreme points a, a′, b, b′ of the Markov
Partition it is clear that both gaps (a′, a) and (b, b′) have length ≤ 4

k1/3
,

and both intervals J0 = [a, b] and J1 = [b′, a′+1] have length ≥ 1
2
− 8

k1/3
.

Thus, using the distortion estimative (18), it follows that

τ(Kk) ≥ e−C1(k)τ(Pk) ≥
(

1− 10

k1/3

)(
k1/3

8
− 2

)
≥ k1/3

9
�

Lemma 5. The map Φk :T2 − (Cs ∪ Cu)→ I × I, defined by (x, y) 7→
(πs(x, y), πu(x, y)), is a C1 diffeomorphism close to the identity

(1)

|Φk(x, y)− (x, y)| ≤ 1

30 k2/3

(2)

‖DΦk(x, y)− Id ‖ ≤ 1

k1/3

Proof:
To prove that Φk is C1 close to the identity, we only have to see that πs
is C1 close to the vertical projection (x, y) 7→ x, because by symmetry
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πu will then be C1 close to the horizontal projection (x, y) 7→ y. By
definition 3) of section 3.1, for 0 ≤ y < 1, gs (πs(x, y), y) = x. Thus

|πs(x, y)− x| = |gs (πs(x, y), 0)− gs (πs(x, y), y)|

≤
∫ y

0

|αs (gs(πs(x, t), t), t)| dt ≤
1

30 k2/3
.

Differentiating the relation above we get

1 =
∂gs
∂x

∂πs
∂x

0 =
∂gs
∂x

∂πs
∂y

+
∂gs
∂y

=
∂gs
∂x

∂πs
∂y

+ αs

Because αs is small and ∂gs
∂x

is close to 1 we get ∂πs
∂x

and ∂πs
∂y

respectively

close to 1 and 0. The calculations are left to the reader. �

Proposition 13. For all sufficiently large k,

(1) Bδk (Λk) = T2, δk =
4

k1/3

(2) τ sloc(Λk) = τuloc(Λk) ≥
k1/3

9
,

(3) HD(Λk) ≥ 2
log 2

log
(
2 + 9

k1/3

) ,
Proof:
1) The idea is to remark that, by construction, all gaps of Kk have
length < 4

k1/3
. Thus B 2

k1/3
(Kk) = SS1 and also B 2

k1/3
(Kk ×Kk) = T2

, where the second ball is associated to metric defined on T2 by the
max norm |(x, y)| = max {|x| , |y|}. Now because Φk is C1 close to the
identity it has a Lipschitz constant close to one. This is enough to
conclude that B 3

k1/3
(Λk) = T2.

2) The local thickness of a Cantor set K at a point x ∈ K is defined as

τloc(K, x) = lim
δ→0

sup {τ(A) : A ⊆ Bδ(x) ∩K }

where the supremum is taken over by all compact subsets A of K. From
the definition it is clear that always

τloc(K, x) ≥ τ(K).

Another important remark is that local thickness is invariant by dif-
feomorphisms. For surface diffeomorphisms local stable and unstable
thickness of a basic set Λ are defined as follows. See [PT, N 3]. Take
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sections Σs and Σu through the point x ∈ Λ respectively transversal to
the stable and unstable foliations. Then

τ sloc(Λ, x) = τloc (Σs ∩W s(Λ), x)

τuloc(Λ, x) = τloc (Σu ∩W u(Λ), x)

The invariance by diffeomorphisms enables one to prove this definition
is independent of the transversal section. It can also be proved that the
definition is independent of point x ∈ Λ. Thus τ sloc(Λ) and τuloc(Λ) are
two well defined numbers. Because of all remarks above it is obvious,
in our setting that

τ sloc(Λk) = τuloc(Λk) = τloc(Kk) ≥ τ(Kk) ≥
k1/3

9
.

3) For Dynamically defined Cantor sets the following relation holds
between thickness and Hausdorff Dimension.

HD(K) ≥ log 2

log (2 + 1/τ)
τ = τ(K)

See [PT, N 3] . Thus because Λk is diffeomorphic to Kk ×Kk,

HD(Λk) = 2HD(Kk) ≥ 2
log 2

log
(
2 + 9

k1/3

)
�

5. Persistent Tangencies

We prove Theorem C in this section. Push the g-invariant foliation
Fu by the Standard Map f into a new foliation Gu = f∗Fu. Then Gu
and F s have two circles of mutual tangencies. We project the basic set
Λk along the foliations F s and Gu to one of these circles and obtain two
Cantor sets Ks and Ku, respectively. Then applying the gap lemma to
these Cantor sets we conclude that for all sufficiently large k there is
a tangency between stable and unstable leaves of Λk. Finally we show
that all these tangencies unfold generically.

5.1. Circles of tangencies. We begin defining a pair of new foliations
Gu and Gs, respectively the forward and backward images of Fu and
F s by the Standard Map f . These foliations are defined by the vector
fields (βu, 1) and (1, βs), where

(βu(x, y), 1) = Dff−1(x,y)

(
1, αuf−1(x, y)

)
,

(1, βs(x, y)) = Df−1
f(x,y) (αsf(x, y), 1) .
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A simple computation shows then

βu(x, y) = ϕ′(y)− αuf−1(x, y),

βs(x, y) = ϕ′(x)− αsf(x, y).

The set of tangencies between Gu and F s is

{βu = αs} = { (x, y) : ϕ′(y) = αs(x, y) + αu(y,−x+ ϕ(y)) },
and similarly the set of tangencies between Fu and Gs is

{βs = αu} = { (x, y) : ϕ′(x) = αs(−y + ϕ(x), x) + αu(x, y) }.
Both these tangency sets consist of two circles. Denote by ν− and ν+

the critical points of ϕ. A straightforward application of the Implicit
Function Theorem gives

Proposition 14. The set {βu = αs} is the union of two horizontal
circles, {(x, σ+(x)) |x ∈ SS1} and {(x, σ−(x)) |x ∈ SS1}, which are
graphs of C1 functions σ+, σ+ :SS1→SS1 satisfying

(1)

|σ±(x)− ν±| ≤
1

270 k5/3

(2) ∣∣σ′±(x)
∣∣ ≤ 1

12 k4/3

Symmetrically, {βs = αu} consists of two vertical circles which are
graphs, {(%+(x), x) |x ∈ SS1} and {(%−(x), x) |x ∈ SS1}, of C1 func-
tions %± :SS1→SS1 satisfying the same conditions 1 and 2 above.

Fix the critical point ν+ of ϕk near 1
4

and denote by Sh⊆{βu = αs},
respectively by Sv⊆{βs = αu}, the horizontal circle of tangencies near
{(x, ν+) : x ∈ SS1}, respectively the vertical circle near {(ν+, x) : x ∈
SS1}.

Lemma 6.

f(Sv) = Sh .

Proof:
It is geometrically obvious that f maps {βs = αu}, the set of tan-
gencies between (f−1)∗F s and Fu, onto the set of tangencies between
F s and f∗Fu, {βu = αs}. Also f maps {(ν, x) : x ∈ SS1} onto
{(x, ν) :x ∈ SS1} . Thus by continuity f(Sv) = Sh. �
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We define the projection of Λk along F s into Sh as

Ks
h = Sh ∩ π−1

s (K),

and the projection of Λk along Gu into Sh as

Ku
h = Sh ∩ fπ−1

u (K).

Remark that an intersection point x ∈ Ks
h ∩Ku

h is a point of tangency
between one stable and one unstable leaf of Λk. Both Ks

h and Ku
h are

compact sets because π−1
s (K) and fπ−1

u (K) are closed in the comple-
ment of Cs. To get the persistent tangency phenomenon, we estimate
the thickness of the Cantor sets Ks

h and Ku
h .

Proposition 15. For all sufficiently large k,

τ(Ks
h) ≥

k1/3

10
τ(Ku

h ) ≥ k1/3

10

Proof:
We need the following easy fact. Let h :SS1→SS1 be a Lipschitz home-
omorphism with Lip(h) ≤ µ, Lip(h−1) ≤ µ. Then for any compact set
K ⊆ SS1,

1

µ2
≤ τ (h(K))

τ(K)
≤ µ2.

Now if h :SS1→SS1 is a diffeomorphism C1 close to the identity we
can choose µ close to 1 such that Lip(h) ≤ µ and Lip(h−1) ≤ µ to
conclude that τ(K) is close to τ (h(K)). More generally if h :SS1→SS1

is C1 close to an isometric rotation θ : SS1→ SS1 then also τ(K) is
close to τ (h(K)). We just have to remark that θ preserves thickness
and apply the same argument to h ◦ θ−1.

Consider on Sh the metric induced by its natural parametrization
SS1 3 x 7→ (x, σ(x)) ∈ Sh, via which we make the identification Sh ≡
SS1. The projection πs :Sh→SS1 restricted to Sh is a diffeomorphism
C1 close to the identity which maps Ks

h onto K. The order of the C1

closeness is 1
k1/3

. See proposition (5). Thus if k is large we can find a

Lipschitz constant less then
√

10
9

for both the projection and its inverse

which gives us

τ(Ks
h) ≥

9

10
τ(K) ≥ k1/3

10
.

In order to estimate τ(Ku
h ) we remark that by symmetry the same

argument above proves that (eventually for larger k),

τ(Ku
v ) ≥

√
9

10
τ(K) ≥ k1/3

3
√

10
.
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where Ku
v = Sv ∩ π−1

u (K) is the projection of Λk along Fu into Sv.
Again on Sv we consider the metric induced by its parametrization
SS1 3 x 7→ (%(x), x) ∈ Sv, and make the identification Sv ≡ SS1. The
Standard Map f takes Sv onto Sh, mapping Ku

v onto Ku
h ,

f(Ku
v ) = f(Sv) ∩ f

(
π−1
u (K)

)
= Sh ∩ f

(
π−1
u (K)

)
= Ku

h .

By the previous remarks it is enough to prove now that the restriction
diffeomorphism f : Sv → Sh is C1 close to the isometric rotation θ :
SS1→SS1, θ(x) = ϕ(ν)− x. We prove below that so it is with

‖f − θ‖C1 ≤ 1

81 k2
.

Then if k is large f ◦θ−1 and θ◦f−1 have Lipschitz constants ≤ 4

√
10
9

which gives us,

τ(Ku
h ) = τ(f(Ku

v )) ≥
√

9

10
τ(Ku

v ) ≥ k1/3

10
.

To estimate ‖f−θ‖C1 notice that f maps (%(x), x) to (−x+ ϕ(%(x)), %(x)).
Thus, modulus the above identifications Sh ≡ SS1 and Sv ≡ SS1, we
have f(x) = ϕ (%(x))− x, and by proposition (14)

|f(x)− θ(x)| = |(ϕ (%(x))− x)− (ϕ(ν)− x)| = |ϕ (%(x))− ϕ(ν)|

≤ |ϕ′(z)| |%(x)− ν| ≤ 4π2

270 k2/3

1

270 k5/3
≤ 1

1500 k7/3
,

|f ′(x)− θ′(x)| = |ϕ′ (%(x))| |%′(x)| ≤ 4π2

270 k2/3

1

12 k4/3
≤ 1

81 k
. �

5.2. Gap lemma. We now use the following circle version of New-
house’s Gap Lemma to get the persistent tangency phenomenon.

Proposition 16. If K1K2 ⊆ SS1 are compact sets such that τ(K1) τ(K2) >
1 then K1 ∩K2 6= ∅ .

Proof:
It follows easily from the usual Gap Lemma for Cantor sets in the
real line. See [PT]. Lift K1 and K2 to periodic closed Cantor sets
K̃1, K̃2 ⊆ R. It is obvious that τ(K1) = τ(K̃1), τ(K2) = τ(K̃2) and
that none of the Cantor sets K̃1, K̃2 is contained in a gap of the other
because they are both unbounded. Thus we can apply the usual Gap
Lemma to conclude K̃1 ∩ K̃2 6= ∅ and so K1 ∩K2 6= ∅. �

From proposition (15) we get
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Figure 5. f = T ◦ R, R(x, y) = (−y, x) T (x, y) =
(x+ ϕ(y), y).

Corollary 17. For all sufficiently large parameters k there is a tan-
gency in Sh between one stable leaf W s(fk, x) and another unstable
one W u(fk, y) of two points x, y ∈ Λk.

Proof:
Given k large, since τ (Ks

h) τ (Ku
h ) ≥ k2/3

100
� 1, there is some point

Q ∈ Ks
h ∩Ku

h . Q is a tangency point between π−1
s (z) and fπ−1

u (z′) for
some pair (z, z′) ∈ Kk×Kk. Now, π−1

s (z) is a piece of stable leaf of Λk

for both fk and gk, because it lies with all its forward iterates inside
the region {fk = gk}. Similarly, fπ−1

u (z′) is a piece of unstable leaf of
Λk as a basic set of the Standard Map fk, because all backward iterates
of π−1

u (z′) are inside
{
f−1
k = g−1

k

}
. �

5.3. Generic Unfolding. All tangencies in Ks
h ∩Ku

h between stable
leaves in π−1

s (K) and unstable ones in fπ−1
u (K) are quadratic and

unfold generically. We will give complete analytic proofs of these facts.
Even so the following heuristic description should be enough to con-

vince ourselves. We have seen that the leaves in π−1
s (K) are almost

vertical and symmetrical so that those in π−1
u (K) are almost horizon-

tal. Now, the same factorization of section 2.1 holds for the Standard
Map, see fig (5), so when we push π−1

u (K) by f we first rotate 90
degrees counterclockwise to an almost vertical foliation and then slide
along horizontal circles in a way that verticals are folded to a foliation
G of curves parallel to the graph of ϕ, G = {(ϕ(x), x) :x ∈ SS1}. Thus
the tangency circles between F s and Gu are very close to the circles of
tangencies between vertical lines and the foliation G of horizontal dis-
placements of G, which are the critical circles {(x, ν−) :x ∈ SS1} and
{(x, ν+) : x ∈ SS1}. Thus the difference of curvatures at a tangency
point is close to the second derivative ϕ′′(ν±) ≈ 4π2k. The tangencies
are quadratic!

As the parameter k grows the stable leaves in π−1
s (K) become more

and more vertical with very small displacements along Sh and the
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Figure 6. Moving with k

same is true about π−1
u (K) becoming horizontal without moving much

in the vertical direction. When k increases the critical values of ϕk
are pushed apart with velocity one and in the same way fk pushes the
leaves in π−1

u (K) along the circle Sh. Thus as we move the parameter
k, while the leaves of π−1

s (K) are almost still, those in fπ−1
u (K) move

comparatively fast along Sh with velocity close to one. All tangencies
unfold generically!

Fix a point (x0, y0) ∈ Sh and denote by γs ⊆ F s , respectively
γu ⊆ Gu the stable and unstable leaves of these foliations through
(x0, y0). The following proposition shows that the tangency between
γs and γu is quadratic.

Proposition 18. γs and γu are graphs of C2 functions φs, φu :R→R.

γs = { (φs(y), y) : y ∈ R }
γu = { (φu(y), y) : y ∈ R } and

|φ′′u(y0)− φ′′s(y0)| ≥ 4π2k − 3

k1/3
.

Proof:
As gs (πs(x0, y0), y0) = x0, see definition 3) of section 3.1,

γs = {(gs(πs(x0, y0), y), y) : y ∈ R}
is the stable leaf of F s through (x0, y0). Defining φs :R→R , φs(y) =
gs(x

′
0, y) where x′0 = πs(x0, y0), γs is the graph of φs and it is of

class C2 since it solves the C1 differential equation ∂x
∂y

= αs(x, y). In

particular φ′′s(y) = ∂αs

∂x
αs + ∂αs

∂y
, and

|φ′′s(y)| ≤ |αs|
∣∣∣∣∂αs∂x

∣∣∣∣+

∣∣∣∣∂αs∂y

∣∣∣∣ ≤ 1

k1/3
.

Analogously, as gu (y0, πuf
−1(x0, y0)) = −x0 + ϕ(y0) ,

γ̃u =
{(
y, gu(y, πuf

−1(x0, y0))
)

: y ∈ R
}



ELLIPTIC POINTS OF THE STANDARD MAP 41

is the leaf of Fu through f−1(x0, y0) = (y0,−x0 + ϕ(y0)). Thus

γu = f(γ̃u) = {(−gu(y, y′0) + ϕ(y), y) : y ∈ R}
where y′0 = πuf

−1(x0, y0), is the graph of φu : R → R φu(y) =

−gu(y, y′0) + ϕ(y) . In the same way we see that φ̃u(y) = gu(y, y
′
0)

is a function of class C2 with second derivative smaller than k−1/3. An
elementary calculation, using proposition (14), shows that

|ϕ′′(y0)| = |ϕ′′ (σ+(x0))| ≥ 4π2k

(
1− 1

10k2

)
,

and so

|φ′′u(y0)− φ′′s(y0)| ≥ |ϕ′′(y0)| − |φ′′s(y0)| −
∣∣∣φ̃′′u(y0)

∣∣∣
≥ 4π2k

(
1− 1

10k2

)
− 2

k1/3
≥ 4π2k − 3

k1/3
. �

Now in order to prove that these tangencies are generically unfold as
k varies, we analyse the dependence of the invariant foliations on the
parameter k. Consider the Markov Partition {Iα}α∈A, A = Z×{0, 1},
for Ψk : ∆∞(k) → ∆∞(k) defined in section 3.1. The full shift σ :
Σ(A)→Σ(A), Σ(A) = AZ, is conjugated to Ψk : ∆∞(k)→∆∞(k) by
Φk :Σ(A)→∆∞(k),

Φk(a) = the unique point x of ∆∞(k) with itinerary a = (an)n≥0

meaning that ∀n ≥ 0 Ψn
k(x) ∈ Ian(k),

Let ι0 > 0 be as given in section 4.2. Then Φ : Σ(A)×[ι0,∞)→ SS1

defined by Φ (a, k) = Φk(a) is a continuous function and we have

Proposition 19. For each a ∈ Σ(A), k 7→ Φk(a) is differentiable and
∂Φ
∂k

:Σ(A)× [ι0,∞)→SS1 is continuous satisfying∣∣∣∣∂Φ

∂k
(a, k)

∣∣∣∣ ≤ 2

k2/3
. (19)

Proof:
Let S be the space of all sequences x = (xn)n≥0 of real numbers, with
the usual pointwise convergence, and define the open subset U ⊆ R×S ,

U =

{
(k, x) : k ≥ ι0, ∀n ≥ 0, xn 6= −

1

4
mod Z

}
.

For each α ∈ A, consider the map Gα : [ι0,∞)× I → Iα , where
I =

(
−1

4
, 3

4

)
, defined by Ψk (Gα(k, x)) = x mod Z. Up to an inte-

ger translation x 7→ Gα(k, x) is the inverse of ΨIα . Then we define
the continuous map,
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F :Σ(A)×U→S
F (a, k, x) = (xn −Gan(k, xn+1))n≥0 .

Now remark that F (a, k, x) = 0 means that all the following three
equivalent statements are true

1) xn = Gan(k, xn+1), ∀n ≥ 0 ,

2) Ψk(xn) = xn+1 and xn ∈ Ian(k) , ∀n ≥ 0 ,

3) xn = Ψn
k (Φ(a, k)) , ∀n ≥ 0 .

Thus if we define, Φ:Σ(A)×[ι0,∞)→S by

Φ(a, k) = (Ψn
k(Φ(a, k)))n≥0

Φ is a continuous map such that

(k,Φ(a, k)) ∈ X F (a, k,Φ(a, k)) = 0.

We now want to conclude by an implicit function theorem argument
that Φ is differentiable in k and ∂Φ

∂k
is continuous in (a, k), which will

imply the same about Φ . For this to be true we need to know that for
each a ∈ Σ(A), (k, x) 7→ F (a, k, x) is a C1 function with derivatives
depending continuously on (a, k, x). Now the maps Gα : D→ R are
of class C1 because of lemma 7 below, proving Ψ(k, x) = Ψk(x) is
a C1 function of (k, x) . It is easy to prove, after lemma (7), that
∂
∂k
F (a, k, x) and D3F (a, k, x) are continuous functions of (a, k, x).

Remark now that (k, x) 7→ F (a, k, x) is the linear projection (k, x) 7→
x minus a perturbation G(a, k, x) = (Gan(k, xn+1))n≥0 with very small
derivatives,

D3G(a, k, x)u =

(
∂Gan

∂x
(k, xn+1)un+1

)
n≥0

.

∣∣∣∣∂Gα

∂x

∣∣∣∣ =
1

|Ψ′k|
≤ 1

30 k2/3
.

Thus D3F (a, k, x) = I −D3G(a, k, x) is invertible, which shows that
an implicit function theorem argument applies to prove continuity of
∂Φ
∂k

(a, k).

Let us now estimate ∂Φ
∂k

. Assume a ∈ Σ(A) is a fixed point of σ. For
some m ∈ Z we have Ψk (Φ(a, k)) = Φ(a, k) +m . Differentiating this
relation with respect to k we have,

∂Ψk

∂k
(Φ(a, k)) + Ψ′k (Φ(a, k))

∂Φ

∂k
(a, k) =

∂Φ

∂k
(a, k) .
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Thus, using lemma (7) below,∣∣∣∣∂Φ

∂k
(a, k)

∣∣∣∣ ≤
∣∣∂Ψk
∂k

∣∣
|Ψ′k| − 1

≤ 3

2 k2/3

|Ψ′k|
|Ψ′k| − 1

≤ 2

k2/3
.

Consider now the case a ∈ Σ(A) is a prefixed point, meaning that
for some m ∈ Z, σm(a) = σm+1(a). Write xn(k) = Ψn

k (Φ(a, k)) =
Φ (σn(a), k). Differentiating xn+1(k) = Ψk(xn(k)) we get

∂xn+1

∂k
=
∂Ψk

∂k
(xn) + Ψ′k(xn)

∂xn
∂k

(∗)

By regressive induction in n we can prove that

∀ 0 ≤ n ≤ m

∣∣∣∣∂xn∂k
∣∣∣∣ ≤ 2

k2/3
.

In fact this relation holds for n = m, since σm(a) is a fixed point and
∂xn
∂k

= ∂Φ
∂k

(σn(a), k). Assuming it holds for some 0 < n ≤ m , then by
(∗) and lemma 7,∣∣∣∣∂xn−1

∂k

∣∣∣∣ ≤
∣∣∂Ψk
∂k

(xn−1)
∣∣+
∣∣∂xn
∂k

∣∣
|Ψ′k(xn−1)|

≤ 3

2 k2/3
+

2

k2/3

1

30 k2/3
≤ 2

k2/3

and it holds for n− 1 too. Thus it is true for n = 0 which proves∣∣∣∣∂Φ

∂k
(a, k)

∣∣∣∣ =

∣∣∣∣∂x0

∂k

∣∣∣∣ ≤ 2

k2/3
.

Then by continuity of ∂Φ
∂k

, since the prefixed points are dense in Σ(A),

relation
∣∣∂Φ
∂k

(a, k)
∣∣ ≤ 2

k2/3
is always true. �

Lemma 7. The family of expanding maps,

Ψ:[ι0,∞)× I0 ∪ I1→R, Ψ(k, x) = Ψk(x),

where I0 =
(
−1

4
, 1

4

)
, I1 =

(
1
4
, 3

4

)
, is a C1 function in both variables

and satisfies ∣∣∣∣∂Ψ

∂k
(k, x)

∣∣∣∣ ≤ 3

2k2/3
|Ψ′k(x)| .

To prove this lemma we need another one.

Lemma 8. The stable and unstable functions αs(k, x, y) and αu(k, x, y)
are of class C1 in [ι0,∞)×T2 .
Furthermore, ∣∣∣∣∂αs∂k

(k, x, y)

∣∣∣∣ ∣∣∣∣∂αu∂k
(k, x, y)

∣∣∣∣ ≤ 4

k4/3
. (20)
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Proof:
The operator T0 of section 2.1 acts as Lipschitz contraction on the space
X of all continuous functions α : [ι0,∞)×T2→ [−1, 1]. Thus αs(k, x, y)
and αu(k, x, y) are continuous. To prove they are C1 functions we apply
the Fiber Contraction Theorem, lemma (1), as in section 2.1, making
essential use of items 3 and 4 of proposition (10). We omit the proof
of this fact, assuming we already know αs is of class C1 and proceed
to estimate ∂αs

∂k
. Differentiating

αs(k, x, y) =
1

ψ′k(x)− αs(k,−y + ψk(x), x)

with respect to k, we obtain

∂αs

∂k
=

∂αs

∂k
+
∂αs

∂x

∂ψk
∂k
− ∂ψ′k

∂k
(ψ′k − αs)2 .

By items 3 and 4 of proposition (10),∣∣∣∣∂αs∂k

∣∣∣∣ ≤ ∣∣∣∣1− 1

(ψ′k − αs)2

∣∣∣∣−1 1
k2/3

∣∣∂αs
∂x

∣∣ |ψ′k|+ 3
k4/3
|ψ′k|

2

(ψ′k − αs)2

Finally, because

(
1− 1

(ψ′k − αs)2

)−1

and

(
ψ′k

ψ′k − αs

)2

are very close

to 1, and also because

∣∣∣∣∂αs∂x

∣∣∣∣ |ψ′k|
(ψ′k − αs)2

= O

(
1

k

)
is very small, we

obtain

∣∣∣∣∂αs∂k

∣∣∣∣ ≤ 4

k4/3
. �

Proof of lemma (7)
Ψ is implicitly defined by gs (k,Ψ(k, x), x) = ψk(x), for 0 ≤ x ≤ 1 .
So by the Parametric Implicit Function Theorem Ψ is C1. Of course
gs(k, x, y) is C1 since it is the flow of a C1 parametric o.d.e. :{

gs(k, x, 0) = x
∂gs
∂y

(k, x, y) = αs (k, gs(k, x, y), y) .

We have

∂

∂y

(
∂gs
∂k

)
=

∂

∂k

(
∂gs
∂y

)
=

∂

∂k
(αs(k, gs(k, x, y), y)) =

∂αs

∂k
+
∂αs

∂x

∂gs
∂k

so ∂gs
∂k

is solution of a linear equation and by the Gronwall lemma,∣∣∣∣∂gs∂k (k, x, y)

∣∣∣∣ ≤ 4

k4/3
exp

{∫ y

0

∣∣∣∣∂αs∂x

∣∣∣∣ dt} ≤ 4µ

k4/3
.
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Thus, using (17) it follows that

∣∣∣∣∂gs∂k
∣∣∣∣ ≤ 5

k4/3
. Now differentiating

with respect to k the above relation we get
∂gs
∂k

+
∂gs
∂x

∂Ψk

∂k
=
∂ψk
∂k

. So

using item 2 of proposition (7),∣∣∣∣∂Ψ

∂k

∣∣∣∣ ≤
∣∣∂ψk
∂k

∣∣+
∣∣∂gs
∂k

∣∣∣∣∂gs
∂x

∣∣ ≤ µ

(
1

k2/3
|ψ′k|+

5

k4/3

)
≤ µ2

k2/3
|Ψ′k|+O

(
1

k4/3

)
≤ 3

2 k2/3
|Ψ′k| �

We now want to study how the leaves of F s and Gu move along the
tangency circle Sh. Take a stable leaf of F s in T2 − Cs with itinerary
a ∈ Σ(A). The continuation of this leaf is given by

k 7→ π−1
s (Φ(a, k)) .

Call Φs(a, k) to the intersection of π−1
s (Φ(a, k)) with Sh. Similarly

the continuation of an unstable leaf of Gu in f (T2 − Cu) with itinerary
a ∈ Σ(A) is given by

k 7→ fπ−1
u (Φ(a, k)) ,

and we call Φu(a, k) to the intersection of this leaf with Sh . The
genericity of the unfolding of a tangency between two leaves

k 7→ π−1
s (Φ(a, k)) k 7→ fπ−1

u (Φ(b, k)) ,

where a, b ∈ Σ(A) is established by the following proposition:

Proposition 20. For all a ∈ Σ(A) ,

(1)

∣∣∣∣∂Φs

∂k
(a, k)

∣∣∣∣ ≤ 3

k2/3

(2)

∣∣∣∣∂Φu

∂k
(a, k)

∣∣∣∣ ≥ 1− 3

k2/3

Proof:
The projection πs induces a diffeomorphism πs : Sh → SS1 C1 close
to the ”identity”. Denote its inverse by h : SS1 → Sh . Of course
both h and πs depend on k. In the proof of lemma (7) we established∣∣∂gs
∂k

∣∣ ≤ 5
k4/3

. Thus differentiating the relation gs (πs(x, y), y) = x with
respect to k we obtain,
∂gs
∂k

+
∂gs
∂x

∂πs
∂k

= 0, and so

∣∣∣∣∂πs∂k

∣∣∣∣ ≤ ∣∣∣∣∂gs∂k
∣∣∣∣ ∣∣∣∣∂gs∂x

∣∣∣∣−1

≤ 5µ

k4/3
.
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Differentiating πs ◦ h = idSS1 we have
∂πs
∂k

+Dπs
∂h

∂k
= 0 , or equiv-

alently
∂h

∂k
= −h′∂πs

∂k
, and so we get

∣∣∣∣∂h∂k
∣∣∣∣ ≤ 6

k4/3
. Finally, since

Φs(a, k) = h (Φ(a, k)) , we have∣∣∣∣∂Φs

∂k

∣∣∣∣ ≤ ∣∣∣∣∂h∂k
∣∣∣∣+ |h′|

∣∣∣∣∂Φ

∂k

∣∣∣∣ ≤ 6

k4/3
+

5

4

2

k2/3
≤ 3

k2/3
.

Similarly, if h :SS1→Sv is the inverse of the projection diffeomorphism
πu :Sv→SS1 , we can prove∣∣∣∣∂h ◦ Φ

∂k

∣∣∣∣ ≤ 2.5

k2/3
.

To finish the proof notice that Φu(a, k) = fkh (Φ(a, k)) . Using propo-
sition 14 we can show that over the vertical circle Sv,∣∣∣∣∂fk∂k

∣∣∣∣ ≥ 1− 1

10 k2
,

|Dfk| ≤ 1 +
1

6 k2/3
.

Thus,∣∣∣∣∂Φu

∂k

∣∣∣∣ =

∣∣∣∣∂fk∂k +Dfk
∂h ◦ Φ

∂k

∣∣∣∣ ≥ ∣∣∣∣∂fk∂k
∣∣∣∣− |Dfk| ∣∣∣∣∂h ◦ Φ

∂k

∣∣∣∣
≥ 1− 1

10 k2
−
(

1 +
1

6 k2/3

)
2.5

k2/3
≥ 1− 3

k2/3
. �

Now Theorem C is an immediate consequence of corollary 17 and
the fact that in a basic set Λ the stable and the unstable manifolds of
every point in Λ are dense in Λ.

6. Many Elliptic Points

In this last section we conclude our work proving Theorem B. The
basic technique is a renormalization procedure which permits us to
conclude the existence of elliptic periodic points arbitrarily close to a
homoclinic tangency in phase-parameter space.
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6.1. Renormalization. Consider a 1-parameter family of surface dif-
feomorphisms ϕµ : M2 → M2 of class Ck, generically unfolding a
quadratic homoclinic tangency at point Q and at parameter µ = 0 .
Renormalization near the homoclinic tangency (Q, 0) means the fol-
lowing:
For every large n ≥ 0 one finds a small box near (Q, 0) ∈ M×R ,
shrinking to this point as n → ∞ , which is mapped by (x, µ) 7→(
ϕnµ(x), µ

)
near itself. Then in this tiny box one computes adequate

rescaling changes in phase and parameter coordinates,

R3 3 (x, y, a) 7→ (Ψn,a(x, y), µn(a)) ∈M×R

such that in this new coordinates the map ϕnµ ,

i.e. Ψ−1
n,a ◦ ϕnµn(a) ◦Ψn,a ,

converges to a normal form ϕa(x, y) in the Ck topology.
Thus any feature or property of the dynamics of normal form ϕa ,
which is stable under small perturbations, will also be present in the
dynamics of ϕµ for parameter values very close to parameter µ = 0.
For dissipative systems, in fact it is enough to assume the saddle P
associated to the tangency is dissipative |detDϕµ(P )| < 1 , the above
scheme works having as limit the Quadratic Family of Endomorphisms,

ϕa(x, y) = (a− x2, x).

Of course area expansive saddles |detDϕµ(P )| > 1 , reduce to dissipa-
tive ones considering ϕ−1

µ . In the conservative case, that is if all ϕµ
preserve the same area form, it turns out that the same scheme works
having as limit the Henón Conservative Family

ϕa(x, y) = (−y + a− x2, x).

This was recently established by N. Romero [MR]. For the Henón
family we can easily compute that an elliptic fixed point Q is created
through the unfolding of a saddle node bifurcation at parameter a =
−1 . Then as a runs between −1 and 3 the eigenvalues of Q go
through the unit circle from 1 to −1 and at parameter a = 3 Q goes
through a period doubling bifurcation becoming thereafter hyperbolic.
As elliptic points are persistent under conservative perturbations we
arrive at the following conclusion.

Proposition 21. Let ϕµ :M2→M2 be a family of area preserving Ck

diffeomorphisms, P be a hyperbolic saddle of ϕ0 , and assume W s(P )
and W u(P ) generically unfold a quadratic homoclinic tangency at µ =
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0 . Then there is a sequence (Qn, µn)n≥n0
in phase-parameter space

such that:

• (Qn, µn) ∈M × R converges to (P, 0),
• Qn is a generic elliptic periodic point of ϕµn with period n .

A periodic point P of a conservative diffeomorphism f :M2→M2 is
said to be a generic elliptic point if both eigenvalues of DfnP , where
fn(P ) = P , are in the unit circle without resonances of order ≤ 3,
that is λ, λ ∈ SS1, with λ2 6= 1, λ3 6= 1 and the first coefficient of f ’s
Birkhoff normal form at point P is nonzero. This implies KAM Theory
applies and P is a full density point of ”Cantor set” of invariant curves
around P . See [A, Mo].

6.2. Conclusion. Let us prove Theorem B. The shift σ : Σ(A) →
Σ(A) has a countable number of periodic points. Enumerate them P1,
P2, P3, · · · . For each k we will denote by Pn(k) the corresponding
periodic point of gk in D∞ , Pn(k) = Φ (a, k). Consider k0 as in
Theorem C. Then for each n ≥ 0 and m ≥ 0 define Unm as the set
of all parameters k > k0 such that Pn(k) 6∈ Λk or there is a generic
elliptic periodic point Q of fk with |Pn(k)−Q| < 1

m
. We prove that

Unm is an open dense subset of [k0,∞) . The density follows from
Theorem C and proposition (21). Let k ∈ Unm . If Pn(k) 6∈ Λk then
by the right continuity of the family Λk there is a neighborhood of
k in which Pn(k′) 6∈ Λk′ , thus a neighborhood contained in Unm .
If Pn(k) ∈ Λk, because generic elliptic points are persistent under
conservative perturbations, the existence of an elliptic point near Pn(k)
holds in a neighborhood of k, thus a neighborhood contained in Unm .
Defining R =

⋂
n,m≥0 Unm , R is a residual set of parameters k for

which Λk is accumulated by generic elliptic periodic points. The proof
is finished! �
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