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Abstract. We describe some methods used to derive large de-
viation type (LDT) estimates for quantities associated to random
and quasi-periodic linear cocycles. We then explain how such LDT
estimates can be used in an inductive scheme to prove continuity
properties of the Lyapunov exponents as functions of the cocycle.
This is a survey of recent work to appear in a research monograph.
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1. Introduction

This paper surveys the use of certain large deviation type (LDT)
estimates for dynamical systems in the study of continuity properties
of the Lyapunov exponents of linear cocycles. A fully detailed version
of this work will appear in the research monograph [18], see also [15,
14, 16, 17].

A linear cocycle is the dynamical system underlying a skew-product
map acting on a vector bundle. The base dynamics is given by an
ergodic transformation, while the action on the fiber is given by a ma-
trix valued function with a certain regularity. Lyapunov exponents are
quantities that measure the average exponential growth of the iterates
of the cocycle along the fibers (see [1]).

Two classes of general linear cocycles have been extensively studied
so far: the class of random cocycles, where the base dynamics is a
Bernoulli shift, and the class of quasi-periodic cocycles, where the base
dynamics is a torus translation.

We study here the continuity properties of the Lyapunov exponents
for a general class of linear cocycles over a fixed base dynamics. We
identify the cocycle with the matrix valued function that determines
its fiber action. Continuity is meant as a function of the cocycle. Our
method applies to both random and quasi-periodic cocycles and it gives
quantitative results, i.e. a modulus of continuity under appropriate
further conditions.

The main assumptions required by the method described in this pa-
per to prove continuity of the Lyapunov exponents, are the availability
of LDT estimates on the base dynamics for a rich enough class of ob-
servables, and the existence of uniform LDT estimates on the fiber
dynamics. Large deviations in classical probabilities or for multiplica-
tive systems associated to a dynamical system describe the asymptotic
behavior of tail events in terms of a rate function. We require a some-
what different type of large deviations. Instead of a precise rate, only
a good estimate on the decay of the tail event is needed. However,
we require that such estimates hold for all iterates of the system, af-
ter a certain threshold, and that in the case of the fiber dynamics, this
threshold of applicability as well as various other parameters describing
the LDT estimates are stable under small perturbations of the cocycle,
a property we refer to as uniform fiber LDT estimates.

For quasi-periodic models, base LDT estimates are a consequence of
the unique ergodicity of the system, while for the random i.i.d. model,
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base LDT estimates are a consequence of the classical Cramér’s theo-
rem.

Uniform fiber LDT estimates for quasi-periodic models were first ob-
tained by J. Bourgain and M. Goldstein in [8] for Schrödinger cocycles,
and used in their study of spectral properties of discrete quasi-periodic
Schrödinger operators. For random models, fiber LDT estimates follow
from the work of E. Le Page [39] (the Bernoulli case) and P. Bougerol [4]
(the Markov case). However, these estimates lack the uniformity we
require in the proof of continuity of the Lyapunov exponents. We ob-
tain uniform base and fiber LDT estimates for Bernoulli and Markov
cocycles by following a more general and abstract method described in
[29].

Kingman’s subadditive ergodic theorem allows us to describe Lya-
punov exponents as limits, when the number n of iterates grows, of
finite scale Lyapunov exponents, which are defined as the phase space
average of quantities related to the singular values of the n-th iterate
of the cocycle.

The mechanism for obtaining quantitative continuity properties of
the limit objects (i.e. the Lyapunov exponents) is a deterministic result
called the Avalanche Principle which was first established for SL(2,R)
matrices by M. Goldstein and W. Schlag in [24].

Roughly speaking, the avalanche principle (AP) allows us to relate
singular values of a long block (i.e. product) of matrices to certain
averages of singular values of individual components of the block. This
holds provided certain geometric conditions (which we call ”gaps” and
”angles” conditions) on the individual components are satisfied. The
gap condition means that a pattern on the relative sizes of consecutive
singular values holds uniformly for all elements of the block, while
the angle condition ensures that most expanding singular directions
of consecutive elements of the block are not almost orthogonal, hence
they are not canceling each other out.

In order to effectively apply the AP to long blocks made up of iterates
of a cocycle, the geometric conditions need to be satisfied for a large
enough set of phases. This is where the LDT estimates on the fiber
action are used, as they turn estimates on finite scale Lyapunov expo-
nents, which are phase space averages, into pointwise estimates which
hold for a large number of phases, and correspondingly they imply the
geometric conditions of the AP for that large set of phases.

The sharpness of the LDT determines how long a block of matrices in
the AP can be, before running out of phases satisfying the geometric
conditions. This argument is then used repeatedly, in an inductive
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procedure, where the previous long block becomes a typical component
of the next much larger block, and the LDT estimate is used again to
guarantee the geometric conditions for sufficiently many phases, and
hence the applicability of the AP in the next stage of the induction.

This method of proving continuity of Lyapunov exponents was first
introduced by M. Goldstein and W. Schlag in [24] in the context of
quasi-periodic, analytic Schrödinger cocycles, where the base dynamics
is a torus translation by a Diophantine frequency.

Continuity results for Lyapunov exponents of random cocycles sat-
isfying an irreducibility condition go back to H. Furstenberg, Y. Kifer
[22] and E. Le Page [40]. More recently, continuity results for general
random cocycles were obtained in [3, 42], see also M. Viana’s mono-
graph [56] for a more detailed account of these results.

To summarize, this paper presents an introduction to some of the
methods used to derive LDT estimates for quasi-periodic and random
cocycles, and an abstract scheme we have developed to prove continu-
ity of Lyapunov exponents of cocycles satisfying such estimates. This
method is versatile enough to apply to both quasi-periodic models (one
or multivariable Diophantine torus translations) and random models
(Bernoulli and Markov systems), and possibly to other base dynam-
ics; it provides a modulus of continuity (whose strength depends on
the sharpness of the LDT) in the neighborhood of a simple Lyapunov
exponent; it is flexible enough to apply to higher dimensional cocy-
cles; it is general enough to imply and to extend most already known
quantitative continuity results.

This survey is organized as follows. In Section 2 we describe and
compare different types of large deviations for random processes and
dynamical systems; given a linear cocycle, we then introduce our con-
cepts of base and fiber LDT estimates, to be used in this paper. In
Section 3 we explain the use of tools from harmonic analysis (e.g. BMO
estimates) and analytic number theory (e.g. Erdös-Turán inequalities)
in deriving such LDT estimates for quasi-periodic cocycles. In Section 4
we explain the use of functional analysis tools (e.g. perturbation theory
of quasi-compact operators) in deriving such LDT estimates for ran-
dom cocycles. Section 5 describes the abstract continuity theorem of
the Lyapunov exponents assuming the availability of the LDT estimates
introduced in Section 2 and its applicability to quasi-periodic and ran-
dom cocycles; furthermore, we describe the inductive procedure, based
on the Avalanche Principle, leading to its proof. We conclude the paper
by indicating other possible uses of the LDT estimates.
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2. Definitions of LDT estimates

In probability theory and harmonic analysis there are several in-
equalities describing the deviation of a function from its mean. The
most basic result of this kind is Chebyshev’s inequality. We formulate
it in its exponential form. For any t, λ > 0 and any random variable X

P[
∣∣X − E(X)

∣∣ ≥ λ ] ≤ e−λ t E[et |X−E(X)|] . (2.1)

A fundamental result in harmonic analysis, concerning functions
of bounded mean oscillation (BMO), is John-Nirenberg’s inequality.
Given f ∈ L1(T) let

‖f‖BMO := sup
I

〈∣∣f − 〈f〉I∣∣〉I ,
where the sup is taken over all intervals I ⊂ T and 〈f〉I = 1

|I|

∫
I
f .

Then if ‖f‖BMO < +∞, John-Nirenberg’s inequality states that∣∣{x ∈ T :
∣∣f − 〈f〉T∣∣ ≥ λ

}∣∣ ≤ e−c λ/‖f‖BMO , (2.2)

where c is a universal constant.

Let X0, X1, X2, . . . be a real valued random process and denote by
Sn =

∑n−1
j=0 Xj the corresponding sum process. Tail events of this pro-

cess correspond to the deviation of its averages 1
n
Sn from their means

E( 1
n
Sn).

There are several types of large deviation inequalities describing tail
events, such as Chernoff bounds (see [53]), which we formulate for a
random i.i.d. process {Xn}:

P[
∣∣ 1
n
Sn − µ

∣∣ ≥ λ ] < C max{e−(c λ2/σ2)n, e−(λ/K)n} (2.3)

for some universal constants C, c > 0 and where µ = E(X0), σ2 =
var(X0) and K = ‖X0‖∞.

The asymptotic behavior of tail events forms the subject of the the-
ory of large deviations (see [46]). A classical result in this theory is the
following theorem due to Cramér.

Theorem 2.1. If the random process {Xn} is i.i.d. with mean µ =
E(X0) and finite moment generating function M(t) := E[etX0 ] < +∞
for all t > 0, then

lim
n→+∞

1

n
logP

[ ∣∣ 1
n
Sn − µ

∣∣ > ε

]
= −I(ε)

where I(ε) := supt>0(t ε− logM(t) + t µ) is called the rate function.
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We now give a general formulation of the large deviation principle
(see [46]). Given an increasing sequence of integers {rn} and a lower
semi-continuous function I : R → [0,+∞), we say that the random
process {Xn} satisfies a large deviation principle with normalizing se-
quence {rn} and rate function I, if for any closed set F ⊂ R,

lim sup
n→+∞

1

rn
logP

[
1

n
Sn ∈ F

]
≤ − inf

x∈F
I(x) ,

and for any open set G ⊂ R,

lim inf
n→+∞

1

rn
logP

[
1

n
Sn ∈ G

]
≥ − inf

x∈G
I(x) .

We note that the large deviation principle holds under the assump-
tions of theorem 2.1 with rn = n and the rate function specified in
that theorem. For other large deviation principles, including Markov
processes, see for instance [55].

Given a dynamical system (X,µ, T ), any observable ξ : X → R
determines the random process Xn = ξ ◦ T n. Let 〈ξ〉 =

∫
X
ξ dµ be the

mean of this random process, i.e., the space average of the observable,
and let Snξ :=

∑n−1
j=0 ξ ◦ T j be the corresponding sum process, i.e., the

usual Birkhoff sums.
There are many results available regarding large deviations for dy-

namical systems (see for instance [35, 41, 48, 58]).

Starting with work of H. Furstenberg there has been interest in find-
ing analogues of the classical limit theorems in probabilities for non-
commuting random products. Let ν be a probability measure on the
group GL(m,R) of invertible matrices, and let g0, g1, g2, . . . be a matrix
valued i.i.d. process with common distribution ν. We use the nota-
tion g(n) for the product process g(n) := gn−1 . . . g1g0, and refer to this
context as Furstenberg’s setting.

Furstenberg and Kesten (see [21] ) proved that the sequence 1
n

log‖g(n)‖
converges ν-a.s. to the maximal Lyapunov exponent

L1(ν) := lim
n→∞

∫
GL(m,R)

1

n
log‖g‖ νn(dg) ,

where νn stands for the n-th convolution power of ν.
This convergence statement is the analogue of the law of large num-

bers for non-commuting products. The following theorem, due to E.
Le Page (see [5, 39]), is the corresponding large deviation principle.
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Theorem 2.2. Let ν be a measure in GL(m,R) with finite exponential
moment and such that the semigroup Tν generated by the support of
ν is strongly irreducible and contracting. Then there exist constants
c, ε0 > 0 such that for all 0 < ε < ε0 and v ∈ Rm,

lim
n→+∞

1

n
logP

[ ∣∣ 1
n

log ‖g(n) v‖ − L1(ν)
∣∣ > ε

]
= −I(ε) ,

with rate function I(ε) := sup0<t<c(ε t− log λ(t) + t L1(ν)), and where
λ(t) denotes the maximum modulus eigenvalue of a Laplace-Markov
family of operators Qt associated with the distribution ν.

A similar result for Markov processes was obtained by P. Bougerol
(see [4]).

A more general setting for studying products of matrices is provided
by linear cocycles. Given a base dynamical system (X,µ, T ) and a
measurable function A : X → Mat(m,R) we call linear cocycle the
skew-product map F : X × Rm → X × Rm defined by

F (x, v) = (Tx,A(x)v) .

The iterates of this map are given by F n(x, v) = (T nx,A(n)(x)v), where
A(n)(x) := A(T n−1x) . . . A(Tx)A(x). We will fix the base dynamics T
and identify the cocycle F with the function A defining its fiber action.

A cocycle A is said to be integrable if log+‖A‖ ∈ L1(µ).
Given an ergodic system (X,µ, T ) and an integrable cocycle A, by

Kingman’s ergodic theorem the following limits exist for all 1 ≤ j ≤ m,
and µ-a.e. x ∈ X,

Λj(A) = lim
n→+∞

1

n
log‖∧jA(n)(x)‖ = lim

n→+∞

1

n
log

j∑
k=1

sk(A
(n)(x)) ,

where given g ∈ Mat(m,R), ∧jg denotes the j-th exterior power of g,
and the numbers s1(g) ≥ s2(g) ≥ . . . ≥ sm(g) ≥ 0 stand for its sorted
singular values. The Lyapunov exponents of the cocycle A can then be
characterized by

Lj(A) = Λj(A)− Λj−1(A) = lim
n→+∞

1

n
log sj(A

(n)(x)) ,

with the convention that Λ0(A) = 0. The Lyapunov spectrum of a
cocycle A is the sequence of its Lyapunov exponents

L1(A) ≥ L2(A) ≥ · · · ≥ Lm(A) ≥ −∞ .
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We denote by L
(n)
1 (A) :=

∫
X

1
n

log‖A(n)‖ dµ the finite scale Lya-
punov exponent of A, so that by Kingman’s ergodic theorem

L1(A) = lim
n→∞

L
(n)
1 (A) .

We note that Furstenberg’s setting is obtained by choosing the base
dynamics (X,µ, T ) to be a Bernoulli shift, with X = GL(m,R)N, µ =
νN the product Bernoulli measure, T (gn)n≥0 = (gn+1)n≥0 the shift map,
and the fiber action to be A(gn)n≥0 = g0.

Moreover, the quasi-periodic setting refers to a base dynamics con-
sisting of an ergodic finite dimensional torus translation and a fiber
action which depends analytically on the base point.

The large deviation principle for sums of scalar, and respectively for
products of matrix valued random processes, are asymptotic results.
Our study of continuity properties of Lyapunov exponents of linear
cocycles does not require asymptotic statements, but only good upper
bounds on the measure of tail events, for the random processes given
by the base and fiber dynamics. We call these bounds large deviation
type (LDT) estimates.

To describe these LDT estimates we introduce the following formal-
ism. From now on, ε, ι : (0,∞)→ (0,∞) will represent functions that
describe respectively, the size of the deviation from the mean and the
measure of the deviation set. We assume that the deviation size func-
tions ε(t) are non-increasing. We assume that the deviation set measure
functions ι(t) are continuous and strictly decreasing to 0, as t → ∞.
We use the notation εn := ε(n) and ιn := ι(n) for integers n.

Let P be a set of triplets p = (n0, ε, ι), where n0 is an integer and ε
and ι are deviation functions. An element p ∈ P is referred to as an
LDT parameter.

We now define the base and fiber LDT estimates.

Definition 2.1. An observable ξ : X → R satisfies a base-LDT es-
timate w.r.t. a space of parameters P if for every ε > 0 there is
p = p(ξ, ε) ∈ P, p = (n0, ε, ι), such that for all n ≥ n0 we have εn ≤ ε
and

µ {x ∈ X :
∣∣ 1
n
Snξ (x)− 〈ξ〉

∣∣ > εn} < ιn . (2.4)

Note that if an observable ξ satisfies a large deviation principle with
rate function I(ε), then it also satisfies a base-LDT estimate with pa-
rameters ε(t) ≡ ε and ι(t) ≡ e−t I(ε).

Definition 2.2. A measurable cocycle A : X → Mat(m,R) satisfies a
fiber-LDT estimate w.r.t. a space of parameters P if for every ε > 0
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there is p = p(A, ε) ∈ P, p = (n0, ε, ι), such that for all n ≥ n0 we have
εn ≤ ε and

µ {x ∈ X :
∣∣ 1
n

log‖A(n)(x)‖ − L(n)
1 (A)

∣∣ > εn} < ιn . (2.5)

In Furstenberg’s setting, theorem 2.2 implies the fiber-LDT estimate
with parameters ε(t) ≡ ε and ι(t) ≡ e−t I(ε).

We use LDT estimates to prove continuity of the Lyapunov expo-
nents as functions of the cocycle, where the space of cocycles is endowed
with a distance. For this we need a stronger form of the fiber-LDT,
one that is uniform in a neighborhood of the cocycle, in the sense
that estimate (2.5) holds with the same LDT parameter for all nearby
cocycles.

Definition 2.3. A measurable cocycle A satisfies a uniform fiber-LDT
if for all ε > 0 there are δ = δ(A, ε) > 0 and p = p(A, ε) ∈ P,
p = (n0, ε, ι), such that if B is a measurable cocycle with dist(B,A) < δ
and if n ≥ n0 then εn ≤ ε and

µ {x ∈ X :
∣∣ 1
n

log‖B(n)(x)‖ − L(n)
1 (B)

∣∣ > εn} < ιn .

We remark that theorem 2.2 does not provide a uniform fiber LDT
estimate, and hence it can not be employed directly in our scheme for
proving continuity of Lyapunov exponents. The same remark applies to
the Markov case studied in [4]. However, the spectral theory approach
developed in these works can be adapted to derive uniform fiber LDT
estimates.

Proving base and fiber (uniform) LDT estimates for quasi-periodic
cocycles uses harmonic analysis and potential theory tools, along with
the arithmetic properties of the torus translation.

3. Deriving LDT for quasi-periodic cocycles

The goal of this section is to describe some of the methods used for
deriving LDT estimates for quasi-periodic models. Central to these
methods are the use of the subharmoncity of quantities related to the
iterates of the cocycle, and the use of the arithmetic properties of the
frequency defining the base dynamics. We formulate the main assump-
tions on the model. We review relevant previous results. We indicate
the main steps in the invertible case by reducing the proof of fiber
LDT estimates to base LDT estimates on subharmonic functions, with
parameters depending only on certain uniform measurements on the
observable. We give some hints of the machinery behind the proof of
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such base LDT estimates by considering a toy model of subharmonic
functions. We indicate some of the difficulties and the ways to overcome
them in the non-invertible (but not identically singular) case.

3.1. The model. Let Tx = x + ω be the translation on the torus
Td = (R/Z)d, d ≥ 1, by a rationally independent vector ω. This
ergodic map defines the base dynamics, and it is assumed fixed.

Let A : Td → Mat(m,R) be a matrix valued real analytic function,
so A(x) has an extension A(z) to Ad

r = Ar × . . .×Ar, where Ar is the
annulus {z ∈ C : 1− r <

∣∣z∣∣ < 1 + r} of width 2r.

The iterates A(n)(x) := A(x + (n − 1)ω) . . . A(x + ω)A(x) of the
cocycle are also analytic on Ad

r .
In order to treat occurrences of small denominators, the translation

vector will be assumed to satisfy a generic Diophantine condition:

‖k · ω‖ ≥ t

|k|d+δ0
(3.1)

for some t > 0, δ0 > 0 and for all k ∈ Zd \ {0}, where for any real
number x, ‖x‖ := mink∈Z

∣∣x− k∣∣.
For every integer m ≥ 1, let Cω

r (Td,Mat(m,R)) be the vector space
of matrix valued analytic functions on Ad

r , with a continuous extension
up to the boundary. Endowed with the norm ‖A‖r := supz∈Adr ‖A(z)‖,
Cω
r (Td,Mat(m,R)) is a Banach space.
In a previous work (see [13]) we studied GL(m,R)-valued analytic

cocycles. Here we will allow our cocycles to have singularities (i.e.
points of non-invertibility), as long as they are not identically singular
(which in particular ensures that all Lyapunov exponents are finite).

3.2. Literature review. Fiber LDT estimates for quasi-periodic co-
cycles were first obtained in the context of studying spectral proper-
ties of discrete, one-dimensional, quasi-periodic Schrödinger operators.
These operators, denoted by H(x), act on l2(Z,R) 3 ψ = {ψn}n by

[H(x)ψ]n := − (ψn+1 + ψn−1 − 2ψn) + v(T nx)ψn , (3.2)

and describe the Hamiltonian of a quantum particle on the lattice Z.
The term [∆ψ]n := (ψn+1 + ψn−1 − 2ψn) defines the discrete Lapla-

cian, while v(T nx) = v(x+nω) is the potential at site n on the integer
lattice. The potential is defined by a function v : Td → R which is
assumed analytic.

The associated discrete Schrödinger (i.e. eigenvalue) equation

[H(x)ψ]n = E ψn
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for the state ψ = {ψn}n and the energy E is a second order finite
differences equation, which is solved formally by the iterates of the
cocycle:

AE(x) :=

[
v(x) + 2− E −1

1 0

]
∈ SL(2,R)

The cocycle (or rather the one-parameter family of cocycles indexed
by the energy parameter E ∈ R) AE(x) is called a quasi-periodic
Schrödinger cocycle. Properties such as uniformity of the LDT esti-
mates, or continuity of the Lyapunov exponent are understood with
respect to this energy parameter. Note that AE(x) ∈ SL(2,R) so

A
(n)
E (x) ∈ SL(2,R), hence ‖A(n)

E (x)‖ ≥ 1 for all n, x,E.
LDT estimates for quasi-periodic Schrödinger cocycles play an im-

portant role in the study of the spectral properties of the corresponding
operator (see J. Bourgain’s monograph [6]) as well as in the study of
quantitative positivity and continuity properties of the Lyapunov expo-
nent (regarded as a function of the energy E) and of a related physical
quantity called the integrated density of states (see for instance [6, 25]).

The first such estimates were obtained by J. Bourgain and M. Gold-
stein in [8] and used to establish pure point spectrum with exponen-
tially decaying eigenfunctions for the operator (3.2) with potential
vλ(x) = λ v(x) and λ� 1.

Phrased in the language we have introduced in Section 2, the results
obtained in [8] (for both d = 1 ad d > 1) provide fiber LDT estimates
with deviation size function ε(t) ≡ t−a and deviation measure function

ι(t) ≡ e−t
b

for some absolute constants a, b > 0 and threshold of appli-
cability n ≥ n0 depending on the Diophantine condition (3.1), the sup
norm of v(x) and the size of E (which can be taken in a fixed compact).
Therefore, this fiber LDT is uniform in E.

Later, M. Goldstein and W. Schlag (see [24]) proved sharper fiber
LDT estimates in the one variable case d = 1, assuming a stronger
Diophantine condition. Their result was subsequently improved in [57].

LDT estimates for other related models, but with stronger limita-
tions, were proven afterwards, see for instance [10, 9, 7, 36, 37].

Uniform fiber LDT estimates for more general, Mat(2,R)-valued co-
cycles admitting singularities (e.g. points where they are not invertible)
were obtained in the one-frequency torus translation case in [30] (see
also references therein). In our work (see [16, 18]), we obtain uniform
fiber LDT estimates for higher dimensional, Mat(m,R)-valued cocycles
with singularities, for both one and several variables torus translations.

3.3. Main ingredients for proving fiber LDT. We first note that
for a continuous observable ξ, the convergence in Birkhoff’s ergodic
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theorem is uniform, hence the base LDT estimate (2.4) holds automat-
ically with ε(t) ≡ ε, ι(t) ≡ 0 and n0 depending on ε and ξ, but in a
very non-explicit way.

We will show how the proof of fiber LDT estimates can be reduced
to having base LDT estimates for a certain class of observables, with
the LDT parameters depending very explicitly on the observable (thus
ensuring strong uniformity).

Given A ∈ Cω
r (Td,Mat(m,R)), if we denote by

u
(n)
A (z) :=

1

n
log‖A(n)(z)‖ ,

then the fiber LDT estimate (2.5) can be written as∣∣∣{x ∈ Td :
∣∣u(n)
A (x)−

〈
u

(n)
A

〉∣∣ > εn}
∣∣∣ < ιn (3.3)

We will establish such an estimate with εn = n−a and ιn = e−c n
b
, for

some absolute constants a, b, c > 0.

Let d = 1. Since the maps A(n)(z) are holomorphic on Ar, the

maps u
(n)
A (z) are subharmonic on Ar (a good reference on subharmonic

functions is [28]).

When d > 1, the maps u
(n)
A (z) are pluri subharmonic on Ad

r , i.e. they
are subharmonic along any complex line, and in particular, they are
subharmonic in each coordinate.

(Pluri) subharmonicity of the maps u
(n)
A (z) associated with the it-

erates of the cocycles will play a crucial role in deriving fiber LDT
estimates.

Note that these maps always have the trivial upper bound

u
(n)
A (z) ≤ log‖A‖r for all z ∈ Ad

r , n ∈ N .

Moreover, if A(x) ∈ SL(2,R), which is the case of the Schrödinger
cocycles, then we also have the trivial lower bound

u
(n)
A (z) ≥ 0 for all z ∈ Ad

r , n ∈ N .

More generally, using Cramer’s formula, GL(m,R)-valued cocycles
A(x) have the uniform bounds

− log‖A−1‖r ≤ u
(n)
A (z) ≤ log‖A‖r for all z ∈ Ad

r , n ∈ N .

Therefore, if A ∈ Cω
r (Td,GL(m,R)), then the maps u

(n)
A (z) are

pluri subharmonic and uniformly bonded on Ad
r (the latter will not

be the case for singular cocycles, which we discuss separately in sub-
section 3.5).
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Of course, not all function sequences u(n)(x) with a (pluri) subhar-
monic, uniformly bounded extension satisfy an estimate like (3.3).

However, the function sequences u
(n)
A (x) have another crucial feature:

they are almost invariant under the base transformation, in the sense
that ∣∣u(n)

A (x)− u(n)
A (Tx)

∣∣ . 1

n
for all x ∈ Td, n ≥ 1 . (3.4)

This holds provided A(x) ∈ GL(m,R), and can be seen through a
simple computation.

If we apply this almost invariance m � n1−ε times, we get∣∣u(n)
A (x)− 1

m

m−1∑
j=0

u
(n)
A (T jx)

∣∣ . m

n
= n−ε for all x ∈ Td, n ≥ 1 ,

or ∣∣u(n)
A (x)− 1

m
Smu

(n)
A (x)

∣∣ . n−ε for all x ∈ Td, n ≥ 1 .

Therefore, to derive the fiber LDT (3.3), it is enough to prove that∣∣{x ∈ Td :
∣∣ 1

m
Smu

(n)
A (x)−

〈
u

(n)
A

〉∣∣ > m−a}
∣∣ < e−cm

b

, (3.5)

for some absolute constants a, b, c > 0.
In other words, it would be enough to prove base LDT estimates for

the maps u
(n)
A , but in a way that they apply uniformly for all n ≥ 1

and for any cocycle near A. Therefore, uniform fiber LDTs follow
from base LDT for (pluri) subharmonic observables, provided the LDT
parameters depend only on some measurements on the observable (such
as the width r of its domain and its sup norm) and on the base dynamics
(which is assumed fixed).

3.4. Estimates on subharmonic functions. The goal here is to
show that given a (pluri) subharmonic function u(z) or Ad

r ,∣∣{x ∈ Td :
∣∣Snu(x)− n 〈u〉

∣∣ > n1−a}
∣∣ < e−cn

b

(3.6)

for some universal constants a, b, c > 0 and for all n ≥ n0, where n0

may only depend on some uniform measurements on the observable u
(and on the Diophantine condition on ω ).

We describe some ideas used to derive (3.6). To warm up, let d = 1
and consider a very simple (yet relevant) example of a subharmonic
function, u(z) = log

∣∣z− 1
∣∣, whose restriction to T has the form u(x) =

log
∣∣e(x)−1

∣∣, where we use the notation e(x) := e2πix. We will prove the
base-LDT (3.6) for this subharmonic function, following W. Schlag’s
address at the 2003 ICMP in Lisbon (see [51]).
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Applying John-Nirerberg’s inequality (2.2) to the function Snu(x),
we have∣∣{x ∈ T :

∣∣Snu(x)− n 〈u〉}
∣∣ > n1−a∣∣ < e−c n

1−a/‖Snu‖BMO . (3.7)

Therefore, in order to stablish (3.6), it would be enough to derive a
good upper bound on the BMO norm of Snu, namely to prove at least
that ‖Snu‖BMO = o(n) as n→∞.

One should note that u(x) = log
∣∣e(x)−1

∣∣ /∈ L∞(T), and in fact this is
a standard example of a BMO function which is not in L∞. Even if our
subharmonic function u(x) were bounded, so that ‖Snu‖L∞ . n, esti-
mating the BMO-norm by the L∞-norm would only give ‖Snu‖BMO . n
which clearly is not enough for our purposes.

Lemma 3.1. Let u(x) = log
∣∣e(x)− 1

∣∣. Then

‖Snu‖BMO . nδ (3.8)

for some 0 < δ < 1 which depends only on the Diophantine condition
on ω.

Proof. As noted earlier, L∞ is a proper subset of BMO, with u(x) being
a typical BMO but not L∞ function. However, u is the image of an
L∞ function via a singular integral operator, the Hilbert transform.

Informally, we could think of the Hilbert transform H of a function
on T as being given by the boundary values of the harmonic conjugate
of its harmonic extension to the unit disk (see chapter 3 in [44]).

Let

s(x) :=

{
{x} − 1

2
if x /∈ Z

0 if x ∈ Z
be the saw-tooth function, where {x} is the fractional part of x.

An elementary calculation that involves computing arg (e(x)− 1)
shows that

u(x) = log
∣∣e(x)− 1

∣∣ = H(s) (x),

hence, since the Hilbert transform commutes with translations,

Snu(x) =
n−1∑
j=0

log
∣∣e(x+ jω)− 1

∣∣ = H

(
n−1∑
j=0

s(·+ jω)

)
(x)

A deep result in harmonic analysis, due to C. Fefferman, implies
that the Hilbert transform is a bounded operator from L∞ to BMO
(see chapter 6 in [19]). Therefore,

‖Snu‖BMO =
∥∥∥H(n−1∑

j=0

s(·+ jω)

)∥∥∥
BMO

.
∥∥∥n−1∑
j=0

s(·+ jω)
∥∥∥
L∞

. (3.9)
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It turns out that the L∞ norm of
∑n−1

j=0 s(· + jω) has a number the-
oretical meaning: it is comparable to the discrepancy of the sequence
{jω}. A good reference for the discussion following below is [43].

The discrepancy of a sequence {xj}j∈N of points on T measures how
well distributed they are on the torus.

We may define it as

Dn{xj} := sup
α,β

∣∣#{0 ≤ j ≤ n− 1 : xj ∈ [α, β)} − n(β − α)
∣∣

We say that the sequence {xj} is uniformly distributed on the torus
if Dn{xj} = o(n) as n→∞. Clearly

Dn{xj} = sup
α,β

∣∣∣∣∣
n−1∑
j=0

1[α,β)(xj)− (β − α)

∣∣∣∣∣
= sup

α,β

∣∣∣∣∣
n−1∑
j=0

1[0,β−α)(xj − α)− (β − α)

∣∣∣∣∣
where 1I(x) is the indicator function of the interval I.

One can easily verify the following relationship between the indicator
function of an interval and the saw-tooth function s(x):

1[0,α)(x) = s(x− α)− s(x) + α , (3.10)

valid if x 6= 0, x 6= α (mod 1).
Define

∆n{xj} := sup
α

∣∣n−1∑
j=0

s(xj − α)
∣∣.

Using (3.10), one can show that

∆n{xj} ≤ Dn{xj} ≤ 2∆n{xj},

hence ∆n{xj} can be regarded as another kind of discrepancy.
Recall from (3.9) that

‖Snu‖BMO .
∥∥∥n−1∑
j=0

s(·+ jω)
∥∥∥
L∞

= sup
α

∥∥∥n−1∑
j=0

s(jω − α)
∥∥∥

= ∆n {jω} ≤ Dn {jω} .

This shows that in order to get an estimate on the BMO norm of
Snu, we need an estimate on the discrepancy of the sequence {jω}j∈N.
It is an elementary fact that this sequence is uniformly distributed for
any irrational ω, hence Dn{jω} = o(n) as n→∞.
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However, we need a more quantitative estimate, and this is where the
Diophantine condition (which describes the irrationality of ω quantita-
tively) comes into play. We recall the following classical Erdös-Turán
inequality (see [43]): for any sequence {xj} ⊂ T and for any integers
n,K we have:

Dn{xj} ≤
n

K + 1
+ 3

K∑
k=1

1

k

∣∣∣∣∣
n−1∑
j=0

e(kxj)

∣∣∣∣∣ . (3.11)

Apply this inequality to the sequence xj = jω, so the exponential
sum in (3.11) becomes

n−1∑
j=0

e(kxj) =
n−1∑
j=0

e(kjω) =
e(knω)− 1

e(kω)− 1
,

hence, using the Diophantine condition on ω∣∣∣∣∣
n−1∑
j=0

e(kjω)

∣∣∣∣∣ ≤ 1∣∣e(kω)− 1
∣∣ =

1

‖kω‖
.
∣∣k∣∣1+δ0 .

Erdös-Turán’s inequality (3.11) then says

Dn{jω} ≤
n

K + 1
+ 3

K∑
k=1

kδ0 .
n

K
+Kδ0+1 . nδ

provided we choose K � n1/(δ0+2), so δ = δ0+1
δ0+2
∈ (0, 1). �

This proof contains many of the ingredients necessary to derive the
base LDT estimate (3.6) for subharmonic functions: BMO estimates,
John-Nirerberg’s inequality, a quantitative description of the uniform
distribution of the sequence {jω}.

While general subharmonic functions are more complex, and they
require a finer analysis, the difficult part comes from handling certain
sums of functions not unlike log

∣∣z − 1
∣∣. Indeed, standard examples

of subharmonic functions are u(z) = log
∣∣f(z)

∣∣, for some holomorphic
function f(z). If ζ1, . . . , ζN are the zeros of the f(z) in a compact set

Ω, then on that set f(z) = g(z) ·
∏N

j=1(z − ζj), where g(z) is analytic

and free of zeros, hence u(z) = log
∣∣g(z)

∣∣+
∑N

j=1 log
∣∣z − ζj∣∣.

Since g(z) has no zeros on Ω, h(z) := log
∣∣g(z)

∣∣ is harmonic. Putting

dµ(ζ) :=
∑N

j=1 δzj(ζ) to be the sum of the Dirac measures correspond-

ing to the zeros of f(z), we obtain the following representation of u(z)
on Ω:

u(z) = h(z) +

∫
log
∣∣z − ζ∣∣ dµ(ζ) .
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In fact, by the Riesz representation theorem, any subharmonic func-
tion u(z) has such a representation, for some harmonic function h(z)
and some compactly supported measure µ called its Riesz measure.

Most of the time, due to its smoothness, the harmonic part is harm-
less, and the difficult part in obtaining the desired estimates is reduced
to the study of the logarithmic potential

∫
log
∣∣z − ζ∣∣ dµ(ζ).

We keep d = 1 (i.e. the one variable translation case) for now, and
describe some of the steps in the proof of (3.6) for general subharmonic
functions.

We first introduce additional assumptions concerning certain uniform
measurements on the function u(z). One number that will stay fixed
throughout, is the width r of its domain. The other is the “Riesz mass”
of u, i.e. the total mass ‖µ‖ of its Riesz measure.

As noted earlier, in the case of Schrödinger, thus SL(2,R)-valued co-

cycles, the subharmonic functions u
(n)
A (z) corresponding to its iterates

have the trivial bounds

0 ≤ u
(n)
A (z) ≤ log‖A‖r for all z ∈ Ar, n ∈ N ,

and in the case of GL(m,R)-valued cocycles we have the bounds

− log‖A−1‖r ≤ u
(n)
A (z) ≤ log‖A‖r.

In any case, there is a constant C(A) < ∞, which is stable under
perturbations of the cocycle, such that

sup
z∈Ar

∣∣u(n)
A (z)

∣∣ ≤ C(A) for all n ∈ N,

hence the maps u
(n)
A are uniformly bounded on Ar in n and A).

It turns out that the width r of the domain of a subharmonic function
u(z) and its sup norm C over the domain completely determine its Riesz
mass.

Subharmonic functions, however, may not be bounded from below,
and in fact they may attain the value −∞. That will be the case with
the subharmonic functions associated to iterates of a cocycle with sin-
gularities. A quantitative version of the Riesz representation theorem
due to M. Goldstein and W. Schlag (see [26]) implies an estimate on
the Riesz measure under the weaker conditions:

sup
z∈Ar

u(z) ≤ C and sup
x∈T

u(x) ≥ −C (3.12)

Then ‖µ‖ . S, where S is a constant depending only on r and C.

A crucial ingredient in proving (3.6) for an observable u(x) is having
an estimate on the decay of its Fourier coefficients, one that depends
only on some measurements on u(x), thus applying uniformly to all
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maps u
(n)
A (x) corresponding to iterates of the cocycle (or to iterates of

nearby cocycles). One should note that general subharmonic functions
lack smoothness, hence such estimates are nontrivial.

Lemma 3.2. Let u(x) be a function on T with a subharmonic extension
to Ar. Assume that its Riesz mass is bounded by S. Then its Fourier
coefficients have the decay∣∣û(k)

∣∣ . S · 1

|k|
for all k 6= 0 . (3.13)

Proof. We only sketch the proof of this result for the toy model u(x) =
log
∣∣e(x)− 1

∣∣. The general case expands upon this simple example and
uses the Riesz representation theorem (see [6, 16] for details). We use
again the fact that u = H(s), where s(x) is the saw-tooth function.

It is easy to see from its definition that the Hilbert transform is re-

lated to the Fourier transform via the identity Ĥ(f)(k) = −i sign(k)f̂(k),
for all k ∈ Z, k 6= 0. Then∣∣û(k)

∣∣ =
∣∣Ĥ(s)(k)

∣∣ =
∣∣ŝ(k)

∣∣ . 1

|k|
,

where the last inequality follows from a direct elementary calculation
of the Fourier coefficients of the saw-tooth function. �

Proposition 3.3. Let u(x) be a function on T with a subharmonic
extension to Ar. Assume that its Riesz mass is bounded by S. Then for
some explicit constants a, b, c > 0 and for all n ≥ n0, where n0 depends
only on ω, we have:∣∣{x ∈ T :

∣∣∣∣ 1n Snu(x)− 〈u〉
∣∣∣∣ > Sn−a}

∣∣ < e−c n
b

. (3.14)

Proof. We sketch the argument. Expand u(x) into its Fourier series

u(x) = 〈u〉+
∑
k 6=0

û(k) e(kx) .

Then

1

n
Snu(x) =

1

n

n−1∑
j=0

u(x+ jω)

= 〈u〉+
∑
k 6=0

û(k) e(kx)

(
1

n

n−1∑
j=0

e(jkω)

)
= 〈u〉+

∑
k 6=0

û(k) e(kx)Kn(kω)
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where we denoted by Kn(t) the Fejér Kernel

Kn(t) =
1

n

n−1∑
j=0

e(jt) =
1

n

1− e(nt)
1− e(t)

,

which clearly has the bound∣∣Kn(t)
∣∣ ≤ min

{
1,

1

n‖t‖

}
. (3.15)

We write
1

n
Snu(x)− 〈u〉 =

∑
k 6=0

û(k)Kn(kω) e(kx) ,

and the goal is to estimate the above in the L2-norm and then to apply
Chebyshev’s inequality. By Parseval,∥∥∥ 1

n
Snu− 〈u〉

∥∥∥2

L2
=
∑
k 6=0

∣∣û(k)
∣∣2 ∣∣Kn(kω)

∣∣2
=

∑
0<|k|<K

∣∣û(k)
∣∣2 ∣∣Kn(kω)

∣∣2 +
∑
|k|≥K

∣∣û(k)
∣∣2 ∣∣Kn(kω)

∣∣2
The sum above was split into two parts, with the splitting point

chosen to optimize the sum of the estimates. In the second sum we rely
only on the decay (3.13) of the Fourier coefficients (provided K is large
enough), and simply bound the Fejér kernel by 1. In the first sum, the
weakness of the decay of the Fourier coefficients is compensated by the
decay of the Fejér kernel. This is ensured by the Diophantine condition
(3.1) on ω, since from (3.15) we have:∣∣Kn(kω)

∣∣ ≤ 1

n‖kω‖
.
|k|1+δ0

n
.

In the end, for some constant a > 0, we get the following:∥∥∥ 1

n
Snu− 〈u〉

∥∥∥2

L2
. Sn−a

and by Chebyshev,∣∣{x ∈ T :

∣∣∣∣ 1n Snu(x)− 〈u〉
∣∣∣∣ > Sn−a/3}

∣∣ < n−4a/3 . (3.16)

This is an LDT estimate, but of a much weaker form than needed,
since the measure of the exceptional set decays only polynomially in
the scale. We need a way to boost such a weak LDT estimate to a much
stronger one, and this is done again through the use of BMO estimates
and John-Nirenberg’s inequality.
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The following is a crucial result called the splitting lemma (see [6,
26, 51, 16] for full details on its proof).

Lemma 3.4. Let u(x) be a function as in Lemma 3.2. Assume that
the following a priori estimate holds:∣∣{x ∈ T :

∣∣u(x)− 〈u〉
∣∣ > ε0}

∣∣ < ε1 , (3.17)

where ε1 � ε0. Then

‖u‖BMO . ε0 + (S ε1)1/2 .

This lemma is then applied with 1
n
Snu(x) playing the role of u(x),

ε0 := C
r
n−a/3 and ε1 := n−4a/3, hence the assumption (3.17) fol-

lows from the weak LDT (3.16) and it leads to a BMO estimate on
1
n
Snu. Applying John-Nirenberg’s inequality (2.2), we obtain the de-

sired stronger LDT (3.14). �

Let us briefly discuss the multivariable case. For simplicity, let d = 2.

The maps u
(n)
A (z1, z2) are now pluri subharmonic, i.e. subharmonic in

each variable (in fact, along any complex line).
The proof of Proposition 3.3 in the multivariable case follows the

same procedure as in the one variable case. However, pluri subharmonic
functions do not have a representation like the one given by Riesz’
theorem for subharmonic functions. Because of this, proving (3.14)
requires a more delicate analysis that involves applying the technical
results (i.e. Lemma 3.2 on the decay of the Fourier coefficients and
Lemma 3.17, the splitting lemma) in each variable.

In order to do that, we need uniform estimates on the Riesz mass of
the restrictions of u(z1, z2) along each horizontal and vertical line. In
the Schrödinger, SL(2,R), or more generally, GL(m,R)-valued cocycles

cases, this is automatic, as the maps u
(n)
A (z1, z2) to which we need to

apply there estimates are uniformly bounded (in n and A).
We will discuss in the next subsection the singular case, where these

bounds do not hold.

3.5. Singular but non-identically singular case. In this section
we discuss proving uniform fiber LDT estimates for analytic cocycles
A : Td → Mat(m,R), with det[A(x)] 6≡ 0 (see our preprint [16] and
the upcoming monograph [18] for full details). We refer to these as
cocycles with singularities, as they may have points of non-invertibility,
but we assume that they are not identically singular. In particular, by
analyticity, this ensures that the set of singularities of such a cocycle
and of its iterates has zero Lebesgue measure.
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As mentioned earlier, uniform fiber LDT estimates for cocycles with
singularities were obtained in [30] in the one variable case (d = 1) and
for m = 2.

The issue of singularity is especially delicate in the several variables
case. One obstacle, for instance, is the fact that an analytic function of
several variables may vanish identically along some hyperplanes, while
not being globally identically zero. Related to this, a pluri subharmonic
function may be identically −∞ along some hyperplanes, while not
being globally −∞.

A crucial tool in our analysis is a result that shows that the obstacle
described above for an analytic function can be removed with an appro-
priate change of coordinates. Another crucial tool in our analysis is the
observation that while the pluri subharmonic functions corresponding
to iterates of a cocycle may have singularities as described above, these
singularities can be captured by certain analytic functions.

Here are more details regarding this approach.
Let A(x) be a cocycle, A(z) be its complex extension to Ad

r and
denote by fA(z) := det[A(z)] its determinant, which is an analytic
function on Ad

r , assumed non identically zero.
We are going to obtain some bounds on the pluri subharmonic func-

tions u
(n)
A (z) associated with the iterates of the cocycle. The upper

bound u
(n)
A (z) ≤ log‖A‖r < ∞ is trivial. To obtain an estimate from

below, we apply Cramer’s rule: det[M ] ·I = M ·adj(M) to the matrices
M = A(n)(x) and get:

n−1∏
i=0

fA(T iz) · I =
n−1∏
i=0

det[A(T iz)] · I

= A(T n−1z) . . . A(z) · adj(A(z)) . . . adj(A(T n−1z))

= A(n)(z) · adj(A(z)) . . . adj(A(T n−1z)) .

Clearly

‖adj(A(z))‖ . ‖A(z)‖m−1 ≤ ‖A‖m−1
r for all z .

This, together with the trivial upper bound, imply the following:

− C1 +
1

n

n−1∑
i=0

log
∣∣fA(T iz)

∣∣ ≤ u
(n)
A (z) ≤ C1 , (3.18)

for some C1 = C1(A) ∼
∣∣log‖A‖r

∣∣ and for all z ∈ Ad
r .

In other words, while u
(n)
A (z) may fail to be bounded from below,

and in fact it may be identically −∞ along some hyperplanes, these
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singularities are captured by averages of a simpler pluri subharmonic
function, log

∣∣fA(z)
∣∣, where fA(z) is analytic and fA(z) 6≡ 0.

The bounds (3.18) are stable under perturbations, in the sense that
if B ≈ A, then C1(B) ≈ C1(A) and fB ≈ fA.

Let d = 2, for simplicity. Our goal is to ensure that (3.12) hold for

the functions u
(n)
A (z) (uniformly in n and A) along each horizontal and

vertical line, i.e. that:

sup
z2∈Ar

u
(n)
A (z1, z2) ≤ C1 and sup

x2∈T
u

(n)
A (x1, x2) ≥ −C2 (3.19)

hold for all z1 ∈ Ar, all x1 ∈ T, as well as with the roles of the variables
interchanged.

The second bound in (3.19) is obviously wrong along lines where u
(n)
A

is identically −∞.
To circumvent this obstacle, we show that given an analytic function

f on Ad
r with f 6≡ 0, there is a global change of coordinates x′ =

Mx on Td, given by some matrix M ∈ SL(d,Z), such that in the
new coordinates, f does not vanish identically along any horizontal or
vertical lines. Moreover, this applies uniformly in a neighborhood of f .

By replacing u
(n)
A by u

(n)
A ◦M , fA by fA ◦M and ω by M−1ω, we

may assume that in (3.18) the analytic function fA does not vanish
identically along any horizontal or vertical lines, and hence log

∣∣fA(z)
∣∣

is not identically −∞ along any such lines. Using this, but not without
more additional effort, we can ensure that (3.19) hold, and with that,
we can proceed as in the previous subsection to obtain an appropriate
base-LDT for pluri subharmonic functions, applicable uniformly to the

maps u
(n)
A (z).

The only ingredient needed to derive the fiber LDTs from such
strongly uniform base LDT estimates, is an almost invariance prin-
ciple like (3.4). This principle does not necessarily hold for cocycles

with singularities, because when we estimate
∣∣u(n)
A (x) − u(n)

A (Tx)
∣∣, we

end up having to bound a term of the form log‖A−1(x)‖.
An upper bound on ‖A−1(x)‖ is correlated with a lower bound on

fA(x) = det[A(x)]. Therefore, we need to understand quantitatively
the set where fA(x) ≈ 0, which means deriving a  Lojaziewicz-type
inequality.

More precisely, it can be shown (see [24, 36, 37]), that given an
analytic function f on Ad

r with f 6≡ 0, there are constants C <∞ and
b > 0, depending only on f , such that for all ε > 0 we have:∣∣{x ∈ Td :

∣∣f(x)
∣∣ < ε

}∣∣ < C εb . (3.20)
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In fact, we need a uniform statement, in the sense that as we perturb
f , the constants C and b do not change significantly. This was shown
to hold for d = 1 in [30] and it follows easily from the more general and
quantitative approach to  Lojasiewicz inequalities in [36] for d = 1 and
[37] for d > 1.

Applying (3.20) to fA, we ensure that det[A(x)] has a good lower
bound for sufficiently many phases x, hence ‖A−1(x)‖ has a good upper
bound for sufficiently many phases as well. In the end, we obtain an
almost invariance principle with a weaker bound than in (3.4) and valid
only outside an exponentially small set of phases, but that is enough
for our needs and it leads to the following theorem.

Theorem 3.1. Given A ∈ Cω
r (Td,Mat(m,R)) with det[A(x)] 6≡ 0

and ω ∈ Td Diophantine, there are constants δ = δ(A) > 0, n0 =
n0(A, ω) ∈ N, c = c(A) > 0, a = a(ω) > 0 and b = b(ω) > 0 such that
if ‖B − A‖r ≤ δ and n ≥ n0 then∣∣{x ∈ Td :

∣∣ 1
n

log‖B(n)(x)‖ − L(n)
1 (B)

∣∣ > n−a}
∣∣ < e−c n

b

. (3.21)

In fact, this method leads to more than just a fiber LDT for the
top Lyapunov exponent. The norm of a matrix g ∈ Mat(m,R) is its
top singular value s1(g). It can be shown that (3.21) holds with the
norm replaced by any singular value of B(n)(x), thus leading to LDT
estimates corresponding to each individual Lyapunov exponent.

4. Deriving LDT for random cocycles

The goal of this section is to provide LDT estimates for random
cocycles over strongly mixing Markov shifts.

4.1. Literature review. We mention briefly some of the origins of
this subject.

One is the aforementioned Furstenberg’s work, started with the proof
by H. Furstenberg and H. Kesten of a law of large numbers for random
i.i.d. products of matrices [21], and later abstracted by Furstenberg to
a seminal theory on random products in semisimple Lie groups [23]. In
this context, a first central limit theorem was proved by V. N. Tutubalin
in [54]. Since its origin, the scope of Furstenberg’s theory has been
greatly extended by many contributions (see for instance [47, 27]).

Another source is a central limit theorem of S.V.Nagaev for station-
ary Markov chains (see [45]). In his approach Nagaev uses the spectral
properties of a quasi-compact Markov operator acting on some space
of bounded measurable functions. This method was used by E. Le
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Page to obtain more general central limit theorems, as well as a large
deviation principle, for random i.i.d. products of matrices [39]. Later
P. Bougerol extended Le Page’s approach, proving similar results for
Markov type random products of matrices (see [4]).

The book of P. Bougerol and J. Lacroix [5], on random i.i.d. products
of matrices, is an excellent introduction to this subject. More recentely,
the book of H. Hennion and L. Hervé [29] describes a powerful abstract
setting where the method of Nagaev can be applied to derive limit the-
orems. It contains several applications, including to dynamical systems
and linear cocycles, that illustrate the method. In subsection 4.4 we
specialize the setting in [29] to prove an abstract LDT theorem which
is still enough for our purposes.

4.2. The model. Before stating the base and fiber LDT theorems we
need to describe the random cocycle models to which they apply.

Let Σ be a compact metric space and F its Borel σ-field.

Definition 4.1. A Markov kernel is a function K : Σ × F → [0, 1]
such that

(1) for every x ∈ Σ, A 7→ K(x,A) is a probability measure in Σ,
also denoted by Kx,

(2) for every A ∈ F, the function x 7→ K(x,A) is F-measurable.

The iterated Markov kernels are defined recursively, setting

(a) K1 = K,
(b) Kn+1(x,A) =

∫
Σ
Kn(y, A)K(x, dy), for all n ≥ 1.

Each power Kn is itself a Markov kernel on (Σ,F).
A probability measure µ on (Σ,F) is called K-stationary if for all

A ∈ F,

µ(A) =

∫
K(x,A)µ(dx) .

A set A ∈ F is said to be K-invariant when K(x,A) = 1 for all x ∈ A
and K(x,A) = 0 for all x ∈ X \A. A K-stationary measure µ is called
ergodic when there is no K-invariant set A ∈ F such that 0 < µ(A) < 1.
As usual, ergodic measures are the extremal points in the convex set
of K-stationary measures.

Definition 4.2. A Markov system is a pair (K,µ), where K is a
Markov kernel on (Σ,F) and µ is a K-stationary probability measure.

Given some initial probability measure µ on Σ there is a canonical
construction, due to Kolmogorov, of a probability space (X,F ,Pµ) and
a Markov stochastic process {en : X → Σ}n≥0 with initial distribution
µ and transition kernel K, i.e., for all x ∈ Σ and A ∈ F,
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(1) Pµ[ e0 ∈ A ] = µ(A),
(2) Pµ[ en ∈ A | en−1 = x ] = K(x,A).

We briefly outline this construction. Elements in Σ are called states.
Set X+ = ΣN as the space of state sequences x = (xn)n∈N, with xn ∈ Σ
for all n ∈ N, and let F be the product σ-field F = FN generated by
the F-cylinders, i.e., by the sets of the form

C(A0, . . . , Am) := {x ∈ X+ : xj ∈ Aj, for 0 ≤ j ≤ m } ,

where A0, . . . , Am ∈ F are measurable sets. The (topological) product
space X+ can be made a metric space. The σ-field F coincides with
the Borel σ-field of the compact space X+. The following expression
determines a pre-measure

Pµ[C(A0, . . . , Am)] :=

∫
Am

· · ·
∫
A0

µ(dx0)
m∏
j=1

K(xj−1, dxj)

over the semi-algebra of F-cylinders. By Carathéodory’s extension the-
orem this pre-measure extends to a unique probability measure Pµ on
F . It follows from this definition that (1) and (2) hold for the se-
quence of random variables en : X+ → Σ, defined by en(x) := xn for
x = (xn)n∈N. It also follows that the process {en}n≥0 is stationary
w.r.t. (X,F ,Pµ) if and only if µ is a K-stationary measure.

Markov systems are probabilistic evolutionary models, but they can
also be studied in dynamical terms. For that we introduce the shift
mappings. The one-sided shift is the map T : X+ → X+ defined
by T (xn)n≥0 = (xn+1)n≥0. The map T is continuous, and hence F -
measurable. The measure Pµ is preserved by T , i.e., T∗Pµ = Pµ, if and
only if µ is K-stationary. A similar characterization holds on ergodicity.
If µ is a K-stationary measure then Pµ is ergodic w.r.t. T if and only if
µ is ergodic. The process en is dynamically generated by the observable
e0 in the sense that en = e0 ◦ T n, for all n ≥ 0.

The one-sided shift T : X+ → X+ is not invertible but it admits
the two-sided shift T : X → X defined on X = ΣZ by T (xn)n∈Z =
(xn+1)n∈Z, as its natural extension. This means T : X → X is a
homeomorphism which makes the following diagram commutative, and
factors any other homeomorphism with the same property.

X
T−−−→ X

π

y yπ
X+ T−−−→ X+

(4.1)
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The vertical arrows stand for the natural projection π : X → X+,
π(xn)n∈Z = (xn)n∈N. The measure Pµ on X+ can be extended to a
probability measure, still denoted Pµ, on X, which is preserved by both
T and π, i.e., T∗Pµ = Pµ and π∗Pµ = Pµ. We shall refer to these two
measures, respectively on the spaces X and X+, as the Kolmogorov
extensions of the Markov system (K,µ). For the sake of notational
simplicity we use the same letter F to denote the σ-fields generated by
F-cylinders on both spaces X+ and X.

Definition 4.3. Given a Markov system (K,µ) the measure preserving
dynamical system (T,X,F ,Pµ) is called a Markov shift.

Let (L∞(Σ), ‖·‖∞) denote the Banach algebra of complex bounded
F-measurable functions with the sup norm ‖f‖∞ = supx∈Σ

∣∣f(x)
∣∣.

Definition 4.4 (Condition (A1) in [4]). We say that (K,µ) is strongly
mixing if there are constants C > 0 and 0 < ρ < 1 such that for every
f ∈ L∞(Σ), all x ∈ Σ and n ∈ N,∣∣∫

Σ

f(y)Kn(x, dy)−
∫

Σ

f(y)µ(dy)
∣∣ ≤ C ρn ‖f‖∞ .

Remark 4.1. If (K,µ) is strongly mixing then µ is the unique K-
stationary measure and the Markov shift (T,X,F ,Pµ) is mixing.

Examples of strongly mixing systems arise naturally from Markov
kernels satisfying the Doeblin condition (see [12]). We say that K
satisfies the Doeblin condition if there is a positive finite measure ρ on
(Σ,F) and some ε > 0 such that for all x ∈ Σ and A ∈ F,

K(x,A) ≥ 1− ε ⇒ ρ(A) ≥ ε .

Given A ∈ F, define

L∞(A) := { f ∈ L∞(Σ) : f |Σ\A ≡ 0 } ,

which is a closed Banach sub-algebra of (L∞(Σ), ‖·‖∞).

Proposition 4.1. If a Markov kernel K satisfies the Doeblin condition
then there are sets Σ1, . . . ,Σm in F and probability measures ν1, . . . , νm
on Σ such that for all i, j = 1, . . . ,m,

(1) Σi ∩ Σj = ∅ when i 6= j,
(2) Σi is K-forward invariant, i.e., K(x,Σi) = 1 for x ∈ Σi,
(3) νi is K-stationary and ergodic with νi(Σj) = δij,
(4) limn→+∞K

n(x,Σ1∪. . .∪Σm) = 1, with geometric uniform speed
of convergence, for all x ∈ Σ,

(5) ν(Σ1 ∪ . . . ∪ Σm) = 1, for every K-stationary probability ν.
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Moreover, for every 1 ≤ i ≤ m there is an integer pi ∈ N and measur-
able sets Σi,1, . . . ,Σi,pi ∈ F such that

(1) {Σi,1, . . . ,Σi,pi} is a partition of Σi,
(2) K(x,Σi,j+1) = 1 for x ∈ Σi,j and 1 ≤ j ≤ pi, with Σi,pi+1 = Σi,1,
(3) (Σi,j, K

pi) is strongly mixing for all 1 ≤ j ≤ pi.

Proof. See [12, section V-5]. �

We now state the two main theorems on LDT estimates.
Let us begin with the base LDT theorem. Recall that X = ΣZ.

Consider the metric d̃ : X ×X → [0, 1]

d̃(x, x′) := 2− inf{ |k| : k∈Z, xk 6=x′k } ,

for all x = (xk)k∈Z and x′ = (x′k)k∈Z in X. Note that X is not compact

for the topology induced by d̃, unless Σ is finite. Given k ∈ N, α > 0
and f ∈ L∞(X) define

vk(f) := sup{
∣∣f(x)− f(y)

∣∣ : d̃(x, y) ≤ 2−k } ,
vα(f) := sup{ 2αkvk(f) : k ∈ N} ,
‖f‖α := ‖f‖∞ + vα(f) ,

Hα(X) := { f ∈ L∞(X) : vα(f) < +∞} .

The last set, Hα(X), is the space of Hölder continuous functions with

exponent α w.r.t. the distance d̃ on X. In fact it follows easily from
the definition that

vα(f) = sup
x 6=x′

∣∣f(x)− f(x′)
∣∣

d̃(x, x′)α
.

Proposition 4.2. For all 0 ≤ α ≤ 1, (Hα(X), ‖·‖α) is a unital Banach
algebra, and also a lattice.

Proof. See [18, proposition 5.4] or [17, proposition 1.4]. �

We say that a function f : X → C is future independent if f(x) =
f(y) for any x, y ∈ X such that xk = yk for all k ≤ 0. Define

Hα(X−) := { f ∈ Hα(X) : f is future independent } . (4.2)

Clearly Hα(X−) is a closed sub-algebra of Hα(X), and hence a unital
Banach algebra itself.

We can now state the base LDT theorem.

Theorem 4.1. Let (K,µ) be a strongly mixing Markov system. Then
for any 0 < α ≤ 1 and any observable ξ ∈ Hα(X−) there are constants
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C = C(ξ) > 0, k = k(ξ) > 0 and ε0 = ε0(ξ) > 0 such that for all
0 < ε < ε0, x ∈ Σ and n ∈ N,

Pµ

[ ∣∣ 1
n

n−1∑
j=0

ξ ◦ T j − Eµ(ξ)
∣∣ ≥ ε

]
≤ C e−k ε

2 n .

Moreover, the constants C, k and ε0 depend only on K and ‖ξ‖α, and
hence can be kept constant when K is fixed and ξ ranges over any
bounded set in Hα(X−).

For the fiber LDT estimates we introduce spaces of measurable ran-
dom cocycles over a strongly mixing Markov system (K,µ).

Definition 4.5. We define B∞m = B∞m (K) to be the space of bounded
measurable functions A : Σ×Σ→ GL(m,R) with bounded inverse A−1.
This is a metric space with the distance

d∞(A,B) :=‖A−B‖∞ .

Each A ∈ B∞m determines the linear cocycle FA : X×Rm → X×Rm,

FA(x, v) := (Tx,A(x) v) ,

where we identify A with the function A : X → GL(m,R), A(x) :=
A(x0, x1), for all x = (xn)n∈Z ∈ X. The iterates of FA are the maps
F n
A : X × Rm → X × Rm

F n
A(x, v) = (T nx,A(n)(x) v) ,

with A(n) : X → GL(m,R) defined by

A(n)(x) := A(xn−1, xn) . . . A(x1, x2)A(x0, x1) .

Let Gr(Rm) denote the Grassmann manifold of the Euclidean space
Rm. An F-measurable function V : Σ → Gr(Rm) is said to be an
A-invariant family of linear subspaces when

A(xn−1, xn)V (xn−1) = V (xn) for Pµ-a.e. x ∈ X .

The ergodicity of (T,X,Pµ), or that of (K,µ), implies that the sub-
spaces V (x) have constant dimension Pµ-a.e., which we denoted by
dim(V ). We say that this family is proper if 0 < dim(V ) < m. Next
we introduce the concept of irreducible cocycle (see [4, definition 2.7]).

Definition 4.6. A cocycle A ∈ B∞m (K) is said to be irreducible w.r.t.
(K,µ) if it admits no measurable proper A-invariant family of linear
subspaces.

We prove the following uniform fiber LDT theorem.

Theorem 4.2. Given a Markov system (K,µ) and A ∈ B∞m (K) if
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(1) (K,µ) is strongly mixing,
(2) A is irreducible,
(3) L1(A) > L2(A),

then there exists a neighborhood V of A in B∞m (K) and there are con-
stants C > 0, k > 0 and ε0 > 0 such that for all 0 < ε < ε0, B ∈ V

and n ∈ N,

Pµ
[ ∣∣ 1
n

log‖B(n)‖ − L1(B)
∣∣ ≥ ε

]
≤ C e−k ε

2 n .

4.3. Spectral method. The proofs of theorems 4.1 and 4.2 follow
from the spectral method in [29], which was originally due to S.V.
Nagaev. We sketch the strategy, introducing some needed concepts.

Let B be a Banach space, and L(B) denote the Banach algebra of
bounded linear operators T : B → B. Given T ∈ L(B), we denote its
spectrum by σ(T ), and its spectral radius by

ρ(T ) = lim
n→+∞

‖T n‖1/n = inf
n≥0
‖T n‖1/n .

Definition 4.7. The operator T is called quasi-compact if there is a
T -invariant decomposition B = F ⊕ H such that dimF < +∞ and
the spectral radius of T |H is (strictly) less than the absolute value |λ|
of any eigenvalue λ of T |F . T is called quasi-compact and simple when
furthermore dimF = 1. In this case σ(T |F ) consists of a single simple
eigenvalue referred to as the maximal eigenvalue of T .

Definition 4.8. We call observed Markov system any triple (K,µ, ξ),
where (K,µ) is a Markov system and ξ : Σ → R is a measurable
observable.

Define the sum process Sn(ξ) :=
∑n−1

j=0 ξ ◦ ej on (X+,F).

Let Px denote the probability measure Px := Pδx on X+, where δx
is the Dirac measure at a point x ∈ Σ. With this notation we have
Pµ =

∫
Σ
Px µ(dx) for any probability measure µ on Σ. The expectations

Ex and Eµ refer to the probability measures Px and Pµ, respectively.
Consider an observed Markov system (K,µ, ξ).
The linear operator

(Qf)(x) = (QKf)(x) :=

∫
X

f(y)K(x, dy) ,

is called a Markov operator. It operates on F-measurable functions on
Σ, mapping Lp functions to Lp functions, for any 1 ≤ p ≤ ∞. We shall
write Q instead of QK when the kernel K is fixed.
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The linear operator

(Qξf)(x) = (QK,ξf)(x) :=

∫
X

f(y) eξ(y) K(x, dy) ,

is called a Laplace-Markov operator. It also operates on F-measurable
functions on Σ, but the domain of Qξ depends on the observable ξ.

Because (K,µ) is strongly mixing (see definition 4.4), the Markov
operator QK is quasi-compact and simple on L∞(Σ). In fact these
two statements are easily seen to be equivalent. Let B ⊂ L∞(Σ) be
a Banach space where the Markov operator Q = QK : B → B is
still quasi-compact, and the Laplace-Markov operator Qξ : B → B is
bounded. By spectral continuity, if t is small then Qtξ : B→ B is also
quasi-compact and simple. Let 1 denote the constant function, 1(x) =
1. The operator Q has eigenvalue 1 associated to the eigenfunction
1. Thus, for t small the operator Qtξ has a simple eigenvalue λ(t)
associated to some eigenfunction v(t) ∈ B. Under general assumptions,
the functions λ(t) and v(t) are analytic in t, with λ(0) = 1 and v(0) = 1.
We can normalize v(t) so that Eµ[v(t)] = 1 for all t.

Assume now that Eµ[ξ] = 0, or otherwise take ξ = ξ − Eµ[ξ] in-
stead of ξ. A simple calculation shows that Eµ[et Sn(ξ)] = Eµ[Qn

tξ1]

(see lemma 4.8). Thus Eµ[et Sn(ξ)] = Eµ[Qn
tξ1] ≈ Eµ[Qn

tξv(t)] = λ(t)n

(see proposition 4.9). Another simple computation shows that c(t) :=
log λ(t) is a non-negative convex function such that c(0) = 0 and
c′(0) = Eµ[ξ] = 0. Therefore, choosing h > c′′(0), by Chebyshev’s
inequality (see (2.1)) we have

Pµ[Sn(ξ) > nε ] ≤ e−tnεEµ[etSn(ξ)] ≈ e−n (ε t−c(t))

≤ e−n (ε t−h t
2

2
) ,

where this inequality holds for every t ≈ 0. Finally, optimizing t (see
the proof of theorem 4.3) we get the LDT estimate

Pµ[Sn(ξ) > nε ] . e−n
ε2

2h .

The irreducibility assumption is essential to prove theorem 4.2. The
proof exploits the fact that for irreducible cocycles there is a Banach
algebra of measurable functions, independent of the cocycle, where the
associated Laplace-Markov operators act as quasi-compact and simple
operators (see sub-section 4.6). For reducible cocycles this fact could
be true, and lead to fiber LDT estimates, but only with a Banach
algebra tailored to the cocycle. Hence the same scheme of proof would
not provide the required uniformity.



LDT FOR LINEAR COCYCLES 31

4.4. Abstract Setting. We discuss now a setting, consisting of the
assumptions (B1)-(B7) and (A1)-(A4) below, where an abstract LDT
theorem is proved, and from which theorems 4.1 and 4.2 will be de-
duced. The context here specializes a more general setting in [29].

Let Σ be a compact metric space, and X be a set of observed Markov
systems (K,µ, ξ) over Σ, endowed with some distance d.

Besides X, this setting consists of a scale of complex Banach algebras
(Bα, ‖·‖α) indexed in α ∈ [0, 1], where each Bα is a space of bounded
measurable functions on Σ. We assume that there exist seminorms
vα : Bα → [0,+∞) such that for all 0 ≤ α ≤ 1,

(B1) ‖f‖α = vα(f) + ‖f‖∞, for all f ∈ Bα,
(B2) B0 = L∞(Σ), and ‖·‖0 is equivalent to ‖·‖∞,
(B3) Bα is a lattice, i.e., if f ∈ Bα then f,

∣∣f ∣∣ ∈ Bα,
(B4) Bα is a Banach algebra with unity 1 ∈ Bα and vα(1) = 0.

Assume also that this family is a scale of normed spaces in the sense
that for all 0 ≤ α0 < α1 < α2 ≤ 1,

(B5) Bα2 ⊂ Bα1 ⊂ Bα0 ,
(B6) vα0(f) ≤ vα1(f) ≤ vα2(f), for all f ∈ Bα2 ,

(B7) vα1(f) ≤ vα0(f)
α2−α1
α2−α0 vα2(f)

α1−α0
α2−α0 , for all f ∈ Bα2 .

Finally assume there exists an interval [α1, α0] ⊂ (0, 1] with α1 <
α0

2

such that for all α ∈ [α1, α0] the space X satisfies:

(A1) (K,µ,−ξ) ∈ X whenever (K,µ, ξ) ∈ X.
(A2) The Markov operators QK : Bα → Bα are uniformly quasi-

compact and simple, i.e., there exist constants C > 0 and 0 <
σ < 1 such that for all (K,µ, ξ) ∈ X and f ∈ Bα,

‖Qn
Kf − 〈f, µ〉1‖α ≤ C σn ‖f‖α .

(A3) The operators QK,z ξ act continuously on the Banach algebras
Bα, uniformly in (K,µ, ξ) ∈ X and z small. More precisely, we
assume there are constants b > 0 and M > 0 such that for all
i = 0, 1, 2, |z| < b and f ∈ Bα,

QK,z ξ(f ξ
i) ∈ Bα and ‖QK,z ξ(f ξ

i)‖α ≤M ‖f‖α .
(A4) The family of functions X 3 (K,µ, ξ) 7→ QK,z ξ, indexed in

the disk |z| ≤ b, is Hölder equi-continuous in the sense that
there exists 0 < θ ≤ 1 such that for all |z| ≤ b, f ∈ Bα and
(K1, µ1, ξ1), (K2, µ2, ξ2) ∈ X,

‖QK1,z ξ1f −QK2,z ξ2f‖∞ ≤M ‖f‖α d((K1, µ1, ξ1), (K2, µ2, ξ2))θ .

The interval [α1, α0] will be referred to as the range of the scale of
Banach algebras. The reason to work with this range instead of [0, 1]
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is twofold: in the fiber LDT theorem we will need to take α0 small
enough to have contraction in (A2), but at the same time α1 bounded
away from 0 to have uniformity in this contraction.

The necessity of the condition α1 <
α0

2
is explained in remark 4.2.

The positive constants C, σ, M , b and θ above will be referred to as
the setting constants.

An example of a scale of Banach algebras satisfying (B1)-(B7) is
formed by the spaces of α-Hölder continuous functions on Σ w.r.t.
some normalized distance d : Σ × Σ → [0, 1]. The norms on these
spaces are defined as follows: for all α ∈ (0, 1] and f ∈ L∞(Σ), let

‖f‖α := vα(f) + ‖f‖∞, with vα(f) := sup
x,y∈Σ
x6=y

∣∣f(x)− f(y)
∣∣

d(x, y)α
.

Proposition 4.3. The family of normed spaces

Hα(Σ) := { f ∈ L∞(Σ) : vα(f) < +∞}, α ∈ [0, 1]

satisfies (B1)-(B7).

Proof. See for instance [38]. �

Examples of contexts satisfying all assumptions (B1)-(B7) and (A1)-
(A4) are provided by the applications in sections 4.5 and 4.6.

Assumption (A1) allows us to reduce deviations below average to
deviations above average, thus shortening proofs.

(A2) is the main assumption: for (K,µ, ξ) ∈ X all Markov operators
QK : Bα → Bα are quasi-compact and simple, uniformly in (K,µ, ξ).
This will imply that, possibly decreasing b, all Laplace-Markov opera-
tors QK,z ξ : Bα → Bα are also quasi-compact and simple, uniformly in
(K,µ, ξ) and

∣∣z∣∣ < b.
(A3) is a regularity assumption. The operators QK,z ξ act continu-

ously on Bα, uniformly in (K,µ, ξ) and
∣∣z∣∣ < b. Moreover, it implies

that Db 3 z 7→ QK,z ξ ∈ L(Bα), is an analytic function.
Finally (A4) implies that the function (K,µ, ξ) 7→ λK,ξ(z) is uni-

formly Hölder continuous. Here λK,ξ(z) denotes the maximal eigen-
value of QK,z ξ.

These facts follow from the propositions stated below.
Assume the scale (Bα, ‖·‖α) is fixed satisfying (B1)-(B7). Given a

Markov system (K,µ), consider the space

Xα
K,L := { (K,µ, ξ) : ξ ∈ Bα, ‖ξ‖α ≤ L }

of observed Markov systems over (K,µ). We will identify Xα
K,L as a

subspace of Bα and endow it with the corresponding norm distance.
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Proposition 4.4. Given a Markov system (K,µ) and L > 0, if Xα
K,L

satisfies (A2) with setting constants (C, σ) then for any b > 0 there
exists M > 0 such that Xα

K,L satisfies (A1)-(A4) with setting constants
C, σ, M , b and θ = 1. Moreover, the map Xα

K,L → L(Bα), (K,µ, ξ) 7→
QK,ξ, is analytic.

Proof. Since Bα is a Banach algebra, given ξ ∈ Bα, the multiplication
operator Dξ : Bα → Bα, Dξf := ξf , is uniformly bounded for ξ ∈
Xα
K,L. Thus, because QK,ξ = QK ◦Deξ , the map QK,∗ : Bα → L(Bα),

ξ 7→ QK,ξ, is analytic. Condition (A1) holds trivially, and (A3) follows
from the previous considerations. (A3) implies there exists M > 0 such
that for all α1 ≤ α ≤ α0 and all f ∈ Bα,

‖QKf‖α ≤M ‖f‖α .
A simple computation, using that (Bα, ‖·‖α) is a Banach algebra, shows
that for all α1 ≤ α ≤ α0, f ∈ Bα and ξ1, ξ2 ∈ Xα

K,L,

‖QK,ξ1f −QK,ξ2f‖α ≤M eL ‖ξ1 − ξ2‖α ‖f‖α .
This implies (A4). �

It follows from (A3) that QK,zξ ∈ L(Bα), for all z ∈ Db. In particular
the function QK,∗ξ : Db → L(Bα), z 7→ QK,zξ, is well-defined, for every
(K,µ, ξ) ∈ X.

Proposition 4.5. The function QK,∗ξ : Db → L(Bα) is analytic with

d

dz
QK,z ξ(f) = QK,z ξ(f ξ) for f ∈ Bα ,

for all (K,µ, ξ) ∈ X, and α1 ≤ α ≤ α0.

Proof. See [18, proposition 5.10] or [17, proposition 2.3]. �

Next proposition focuses on the quasi-compactness and simplicity of
Qz = QK,z ξ, and can be proved using arguments in [39, 4]. See also [18,
proposition 5.11] or [17, proposition 2.4]

Proposition 4.6. Consider a metric space X of observed Markov sys-
tems satisfying (A1)-(A4) in the range [α1, α0] ⊂ (0, 1] with setting
constants C, σ, M , b and θ.

Given ε > 0 there exist C ′,M ′ > 0 and 0 < b0 < b such that the
following statement holds: for all (K,µ, ξ) ∈ X, z ∈ Db0 and α1 ≤
α ≤ α0 there exist: a one dimensional subspace Ez = EK,z ξ ⊂ Bα, a
hyperplane Hz = HK,z ξ ⊂ Bα, a number λ(z) = λK,ξ(z) ∈ C, and a
linear map Pz = PK,z ξ ∈ L(Bα) such that

(1) Bα = Ez ⊕Hz is a Qz-invariant decomposition,
(2) Pz is a projection onto Ez, parallel to Hz,
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(3) Qz ◦ Pz = Pz ◦Qz = λ(z)Pz,
(4) Qzf = λ(z) f for all f ∈ Ez,
(5) z 7→ λ(z) is analytic in a neighborhood of Db0,
(6)

∣∣λ(z)
∣∣ ≥ 1− ε.

Furthermore, for all f ∈ Bα,

(7) ‖Qn
zf − λ(z)n Pzf‖α ≤ C ′ (σ + ε)n ‖f‖α,

(8) ‖Pz f‖α ≤ C ′ ‖f‖α,
(9) ‖Pz f − P0 f‖α ≤ C ′

∣∣z∣∣ ‖f‖α,

and for all z ∈ Db0 and (K1, µ1, ξ1), (K2, µ2, ξ2) ∈ X,

(10)
∣∣λK1,ξ1(z)− λK2,ξ2(z)

∣∣ ≤M ′ d((K1, µ1, ξ1), (K2, µ2, ξ2))
θ
2 .

Remark 4.2. The condition α1 < α0

2
and the assumption (A4) are

only needed to prove (10).

If the hypothesis of proposition 4.4 are satisfied, with (A2) holding
for one α, then, except for (10), all conclusions of proposition 4.6 hold
for that particular α. Since by proposition 4.4, the mapping ξ 7→ QK,ξ

is analytic, it follows that ξ 7→ λ(ξ) = maximal eigenvalue of QK,ξ, is
also an analytic function. Hence in this case there exists M ′ > 0 such
that for all z ∈ Db0 , and ξ1, ξ2 ∈ Xα

K,L,∣∣λK,ξ1(z)− λK,ξ2(z)
∣∣ ≤M ′‖ξ1 − ξ2‖α .

This statement implies (10). Hence

Remark 4.3. If for some 0 < α ≤ 1 the space Xα
K,L satisfies (A2) with

setting constants (C, σ) then all conclusions of proposition 4.6 hold,
with a Lipschitz modulus of continuity in (10).

Let cK,ξ(t) := log λK,ξ(t), where λK,ξ(t) denotes the maximal eigen-
value of QK,tξ. Note that λK,ξ(t) > 0 because QK,tξ is a positive oper-
ator for all t ∈ R.

We can now state the abstract LDT theorem.

Theorem 4.3. Let (Bα, ‖·‖α) be a scale of Banach algebras satisfying
(B1)-(B7), and X be a space of observed Markov systems for which
assumptions (A1)-(A4) hold.

Consider (K0, µ0, ξ0) ∈ X with h > (cK0,ξ0)
′′(0). Then there exist a

neighborhood V of (K0, µ0, ξ0) ∈ X, C > 0 and ε0 > 0 such that for all
(K,µ, ξ) ∈ V, 0 < ε < ε0, x ∈ Σ and n ∈ N,

Px
[ ∣∣ 1
n
Sn(ξ)− Eµ(ξ)

∣∣ ≥ ε

]
≤ C e−

ε2

2h
n . (4.3)

Remark 4.4. The proof of this theorem shows that conclusion (4.3)
holds for any (K,µ, ξ) ∈ X such that h > (cK,ξ)

′′(0).
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Corollary 4.7. Assume Xα
K,L satisfies (A2).

Given ξ0 ∈ Xα
K,L with h > (cK,ξ0)

′′(0), there exist a neighborhood V

of ξ0 in Xα
K,L, C > 0 and ε0 > 0 such that for all ξ ∈ V, 0 < ε < ε0,

x ∈ Σ and n ∈ N, the inequality (4.3) holds.

Proof. Combine proposition 4.4 with theorem 4.3. �

Remark 4.5. Averaging in x w.r.t. µ the probabilities in theorem 4.3
we get for all 0 < ε < ε0, (K,µ, ξ) ∈ V and n ∈ N,

Pµ
[ ∣∣ 1
n
Sn(ξ)− Eµ(ξ)

∣∣ ≥ ε

]
≤ C e−

ε2

2h
n .

In the rest of this section assume that (A1)-(A4) hold for the space X
of observed Markov, and take 0 < b0 < b according to proposition 4.6.

Lemma 4.8. For all (K,µ, ξ) ∈ X, n ∈ N, z ∈ Db0 and x ∈ Σ,

((QK,zξ)
n1)(x) = Ex

[
ez Sn(ξ)

]
=

∫
Ω

ez Sn(ξ) dPx .

In particular, for all z ∈ Db0,

Eµ((QK,zξ)
n1) = Eµ

[
ez Sn(ξ)

]
.

Proof. In fact,

((QK,zξ)
n1)(x0) =

∫
Σn
ez

∑n
j=1 ξ(xj)

n−1∏
j=0

K(xj, dxj+1)

= Ex0
[
ez Sn(ξ)

]
and averaging this relation in the variable x0 w.r.t. µ we derive the
second identity. �

Proposition 4.9. There exist C1 > 0 and a sequence δn converging
geometrically to 0 such that for all (K,µ, ξ) ∈ X, t ∈ (−b0, b0), x ∈ Σ
and n ∈ N ∣∣logEx

[
et Sn(ξ)

]
− n log λK,ξ(t)

∣∣ ≤ C1

∣∣t∣∣+ δn .

Proof. See [18, proposition 5.12] or [17, proposition 2.8]. �

Proof of theorem 4.3. Denote by H(Db0) the Banach space of analytic
functions on Db0 with a continuous extension to Db0 . By proposi-
tion 4.6(5), λ = λK,ξ ∈ H(Db0) for all (K,µ, ξ) ∈ X. Since h >
(cK,ξ)

′′(0), by proposition 4.6(10) there is a neighborhood V of the
observed Markov system (K0, µ0, ξ0) ∈ X such that h > (cK,ξ)

′′(0)
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for all (K,µ, ξ) ∈ V. Assume Eµ(ξ) = 0. Otherwise work with
ξ′ = ξ − Eµ(ξ) 1, for which Eµ(ξ′) = 0. By proposition 4.9,

1

n
logEx

[
etSn(ξ)

]
≤ cK,ξ(t) +

C1

∣∣t∣∣+ δn

n
,

with δn decreasing to 0 geometrically. Because h > (cK,ξ)
′′(0), using

again the equi-continuity in 4.6(10) there exists a small neighborhood

(−t0, t0), of t = 0 such that cK,ξ(t) ≤ h t2

2
, for all

∣∣t∣∣ < t0 and (K,µ, ξ) ∈
V. Applying Chebyshev’s inequality (2.1), for

∣∣t∣∣ < t0

Px[Sn(ξ) > nε ] ≤ e−tnεEx[etSn(ξ)]

≤ e−(tε−c(t))n+C1 |t|+δn

≤ e−(tε−h t
2

2
)n+C1 |t|+δn .

Define now

C := 2 eC1t0+supn≥0 δn .

Given 0 < ε < ε0 := h t0, pick t = ε
h
∈ (0, t0). This choice of t

minimizes the function g(t) = e−(tε−h t
2

2
). Then

Px[Sn(ξ) > nε ] ≤ e−
ε2

2h
n+C1

ε
h

+δn ≤ 1

2
C e−

ε2

2h
n .

By (A1), we derive the same conclusion for −ξ,

Px[Sn(ξ) < −nε ] = Pµ[Sn(−ξ) > nε ] ≤ 1

2
C e−

ε2

2h
n .

Thus, for all (K,µ, ξ) ∈ V, 0 < ε < ε0 and n ∈ N,

Px[
∣∣Sn(ξ)

∣∣ > nε ] ≤ C e−
ε2

2h
n .

�

4.5. Base LDT estimates. To derive theorem 4.1 from theorem 4.3
we specify the data (Bα, ‖·‖α) and X, and check the validity of the
assumptions (B1)-(B7) and (A1)-(A4).

Consider a strongly mixing Markov system (K,µ) on the compact

metric space Σ. Let X− = ΣZ−0 be the space of sequences in Σ indexed
in Z−0 := { . . . ,−2,−1, 0}. As before, X− is a compact metric space,
and we denote by F its Borel σ-field. The kernel K on Σ induces

another Markov kernel K̃ on X− defined by

K̃( ..., x−1,x0) :=

∫
Σ

δ( ..., x−1,x0,x1) K(x0, dx1) .
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Let P−µ denote the Kolmogorov extension of (K,µ), which is also the

unique K̃-stationary measure. Theorem 4.3 will be applied to the

Markov system (X−, K̃).
The spaces Hα(X−), defined in (4.2), can be regarded as consisting

of F -measurable functions on X−. They form the scale of Banach
algebras satisfying (B1)-(B7), where the Markov operators QK̃ act.

As noted before the spaces Hα(X) are Banach algebras, as well as
lattices, for all α ∈ [0, 1] (see proposition 4.2). For α = 0, the seminorm
v0 measures the variation of f because

v0(f) = sup{ |f(x)− f(x′)| : x, x′ ∈ X } .

Hence H0(X) = L∞(X), while the norm ‖·‖0 is equivalent to ‖·‖∞.
These considerations show that {Hα(X)}α∈[0,1] satisfies the assump-
tions (B1)-(B4). For the remaining ones, (B5)-(B7), see [38]. Because
each Hα(X−) is a sub-algebra (and a sub-lattice) of Hα(X) properties
(B1)-(B7) hold for {Hα(X−)}α∈[0,1] as well.

Let Xα
K̃,L

be the space of observed Markov systems (X−, K̃, ξ) with

ξ ∈ Hα(X−) and ‖ξ‖α ≤ L. This space is identified as a subspace of
Hα(X−), and endowed with the corresponding norm distance.

The Markov operator of the kernel K̃ is QK̃ : L∞(X−)→ L∞(X−),

(QK̃f)( . . . , x−1, x0) :=

∫
Σ

f( . . . , x−1, x0, x1)K(x0, dx1) .

This operator acts continuously on Ha(X
−).

Proposition 4.10. For all f ∈ Hα(X−) and n ∈ N,

(1) ‖(QK̃)nf‖∞ ≤ ‖f‖∞,
(2) vα((QK̃)nf) ≤ max{2 ‖(QK̃)nf‖∞, 2−nαvα(f)}.

Proof. See [18, proposition 5.13] or [17, proposition 3.1]. �

Next proposition shows that Xα
K̃,L

satisfies (A2) with range [α1, 1]

for any given α1 > 0. The setting constants C > 0 and 0 < σ < 1
depend on the number α1.

Proposition 4.11. If (K,µ) is strongly mixing, then given 0 < α1 < 1
there are constants C > 0 and 0 < σ < 1 such that for all α1 ≤ α ≤ 1,
QK̃ : Hα(X−) → Hα(X−) is quasi-compact and simple with spectral
constants C and σ, i.e., for all f ∈ Hα(X−),

‖(QK̃)nf − 〈f,P−µ 〉1‖α ≤ C σn ‖f‖α .

Proof. See [18, proposition 5.14] or [17, proposition 3.2]. �
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Proposition 4.4, and the preceding one, imply that Xα
K̃,L

satisfies all

assumptions (A1)-(A4) in the range [α1, 1], which makes theorem 4.3
applicable.

Proof of theorem 4.1. Consider 0 < α ≤ 1 and ξ ∈ Hα(X−). Take
α1 < α and let L > ‖ξ‖α. Then ξ ∈ Xα

K̃,L
. By proposition 4.11 the

space Xα
K̃,L

satisfies (A2) in the range [α1, 1], and hence, by proposi-

tion 4.4, it satisfies all (A1)-(A4) in the same range.

For δ > 0 small, the function λ̂K : Xα
K̃,δ
→ C, ξ 7→ λ̂K(ξ) = max-

imal eigenvalue of QK,ξ, is well-defined and analytic. The analyticity

follows from proposition 4.4. Decreasing δ we can assume that λ̂ = λ̂K
is bounded. Choose b > 0 small, such that b L < δ, and note that
λK,ξ(z) = λ̂(z ξ) for all z ∈ Db. Hence the family of analytic func-

tions {λK,ξ(z)}ξ∈Xα
K̃,L

is uniformly bounded over Db. Shrinking b, the

derivatives λ′K,ξ(z) and λ′′K,ξ(z) are also bounded. Thus, there exists
h > 0 such that (cK,ξ)

′′(t) < h for all t ∈ [−b, b] and ξ ∈ Xα
K̃,L

. By

theorem 4.3 and remark 4.4 there are constants ε0 and C > 0 such that
for all ξ ∈ Xα

K̃,L
, 0 < ε < ε0 and all n ∈ N,

P−µ
[ ∣∣ 1
n
Sn(ξ)− E−µ (ξ)

∣∣ ≥ ε

]
≤ C e−

ε2

2h
n .

Consider the natural (measure preserving) projection π : X → X−.
Since

π−1

[ ∣∣ 1
n
Sn(ξ)− E−µ (ξ)

∣∣ ≥ ε

]
=

{
x ∈ X :

∣∣ 1
n

n−1∑
j=0

ξ(T j(x))−
∫
X

ξ dPµ
∣∣ ≥ ε

}
all observables ξ ∈ Xα

K̃,L
satisfy a uniform base-LDT estimate.

The constants δ, b, h, ε0 and C depend all on L and λ̂K , i.e., on L
and K. �

4.6. Fiber LDT estimates. Finally, we use theorem 4.3 to establish
the fiber LDT theorem 4.2. For that we specify the data (Bα, ‖·‖α)
and X, and check that (B1)-(B7) and (A1)-(A4) hold.

Consider the space B∞m (K) of random cocycles over a Markov system
(K,µ) introduced in definition 4.5. For each cocycle A ∈ B∞m (K) we
define a Markov kernel on Σ× Σ× P(Rm) by

KA(x, y, p) :=

∫
Σ

δ(y,z,A(y,z)p) K(y, dz) . (4.4)
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Theorem 4.3 will be applied to the Markov systems (Σ×Σ×P(Rm), KA)
with A ∈ B∞m (K). The observables for which we derive fiber LDT es-
timates are the functions ξA : Σ× Σ× P(Rm)→ R defined by

ξA(x, y, p) := log‖A(x, y) p‖ . (4.5)

Next we introduce the scale of Banach algebras satisfying (B1)-(B7).
First we specify a distance on the real projective space P(Rm). Let

δ(p, q) :=
‖p ∧ q‖
‖p‖‖q‖

,

where each point p ∈ P(Rm) is identified with any of its representative
vectors p ∈ Rm \ {0}. Given 0 ≤ α ≤ 1 and a bounded measurable
function f : Σ× Σ× P(Rm)→ C, define

‖f‖α := vα(f) + ‖f‖∞ , (4.6)

vα(f) := sup
x,y,∈Σ
p 6=q

∣∣f(x, y, p)− f(x, y, q)
∣∣

δ(p, q)α
. (4.7)

Let Hα(Σ×Σ×P(Rm)) be the space of functions f ∈ L∞(Σ×Σ×P(Rm))
such that vα(f) < +∞, i.e., the space of measurable functions which
are α-Hölder continuous in the last variable. This is an algebra because:

Proposition 4.12. For 0 ≤ α ≤ 1, the function vα is a seminorm on
Hα(Σ× Σ× P(Rm)) such that for f, g ∈ Hα(Σ× Σ× P(Rm)),

vα(fg) ≤ ‖f‖∞vα(g) + ‖g‖∞vα(f) .

That (Hα(Σ×Σ× P(Rm)), ‖·‖α) is a unital Banach algebra, as well
as a lattice, can be easily checked. Thus, conditions (B1), (B3) and
(B4) follow. For α = 0, the seminorm v0 measures the variation of f
on the projective coordinate

v0(f) = sup{ |f(x, y, p)− f(x, y, p′)| : x, y ∈ Σ, p, p′ ∈ P(Rm) } .
Hence H0(Σ×Σ×P(Rm)) = L∞(Σ×Σ×P(Rm)), while the norm ‖·‖0

is equivalent to ‖·‖∞. This proves (B2). Conditions (B5) and (B6)
hold because the projective metric δ takes values in [0, 1]. Finally (B7)
follows from the equality

∆

dα1
=

(
∆

dα0

)α2−α1
α2−α0

(
∆

dα2

)α1−α0
α2−α0

,

which holds for all ∆ ≥ 0 and d > 0.
Let now Hα(Σ × P(Rm)) be the subspace of functions f(x, y, p) in

Hα(Σ × Σ × P(Rm)) that do not depend on the first coordinate x.
This subspace is clearly a closed sub-algebra of Hα(Σ × Σ × P(Rm)).
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Therefore, the family {(Hα(Σ× P(Rm)), ‖·‖α)}α∈[0,1] is another scale
of Banach sub-algebras satisfying the assumptions (B1)-(B7).

Given a cocycle A ∈ B∞m (K), consider the linear transformation
QA : L∞(Σ× Σ× P(Rm))→ L∞(Σ× Σ× P(Rm)) defined by

(QAf)(x, y, p) :=

∫
Σ

f(y, z, A(y, z)p)K(y, dz) . (4.8)

This is the Markov operator associated with the kernel (4.4).
We can now introduce the metric space of observed Markov systems

X := { (KA, µA,±ξA) : A ∈ B∞m , A irreducible, L1(A) > L2(A) } .
This space is identified with a subspace of B∞m , and endowed with the
distance

dist ((KA, µA, ξA), (KB, µB, ξB)) := d∞(A,B) .

Assumption (A1) is clear from the definition of X.
Since (QAf)(x, y, p) does not depend on the coordinate x, the Markov

operator QA leaves invariant the subspace of functions f(x, y, p) that
are constant in x. Next, we are going to see that QA acts invariantly
on the subspace Hα(Σ× P(Rm)).

Given A ∈ B∞m (K) and 0 < α ≤ 1, define for all n ∈ N,

κnα(A) := sup
x∈Σ,p 6=q

Ex
[(

δ(A(n) p,A(n) q)

δ(p, q)

)α]
∈ [0,+∞] (4.9)

The following lemma highlights the importance of this quantity.

Lemma 4.13. Given A ∈ B∞m (K), f ∈ Hα(Σ× P(Rm)) and n ∈ N,

vα(Qn
Af) ≤ κnα(A) vα(f) .

Proof. See [18, lemma 5.5] or [17, lemma 3.6]. �

Lemma 4.14. The sequence {κnα(A)}n≥0 is sub-multiplicative, i.e.,

κn+`
α (A) ≤ κnα(A)κ`α(A) for n, ` ∈ N .

In particular,

lim
n→+∞

κnα(A)1/n = inf{κnα(A)1/n : n ∈ N } .

Proof. See [18, lemma 5.6] or [17, lemma 3.7]. �

These constants become finite provided α is small enough.

Lemma 4.15. Given A ∈ B∞m (K) and n ∈ N, for all 0 < α ≤ 1
4n

κnα(A) ≤ max{‖A‖∞, ‖A−1‖∞} .

Proof. See [18, lemma 5.7] or [17, lemma 3.8]. �
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From the previous lemma, we see that the operator QA leaves the
subspace Hα(Σ × P(Rm)) invariant, for all small enough α > 0. To
prove that QA is quasi-compact and simple the hypothesis (2)-(3) in
theorem 4.2 are essential. They are used in the following lemma.

Lemma 4.16. Given A ∈ B∞m (K) such that (KA, µA, ξA) ∈ X, for
some n ∈ N, all x ∈ Σ and p 6= q in P(Rm),

Ex
[
log

δ(A(n)p,A(n)q)

δ(p, q)

]
≤ −1 .

Proof. See [18, lemma 5.9] or [17, lemma 3.10]. �

Proposition 4.17. Given A ∈ B∞m (K) such that (KA, µA, ξA) ∈ X,
there exist V, a neighborhood of A in B∞m (K), and there are positive
constants 0 < α1 <

α0

2
< α0, C > 0 and 0 < σ < 1 such that

vα(Qn
Bf) ≤ C σn vα(f) ,

for all B ∈ V, α ∈ [α1, α0], f ∈ Hα(Σ× P(Rm)) and n ∈ N.

Proof. For a fixed cocycle A ∈ B∞m (K) such that (KA, µA, ξA) ∈ X, the
contraction statement, w.r.t. the seminorm vα, follows from proposi-
tion 4.16. The generalization of this property to a neighborhood V of
A follows from the modulus of continuity∣∣κnα(A)− κnα(B)

∣∣ ≤ Cn d∞(A,B) ,

where the constant Cn depends on n.
See also [18, lemma 5.17] or [17, proposition 3.11] for a complete

proof. �

Next proposition implies (A2).

Proposition 4.18. Given A ∈ B∞m (K) such that (KA, µA, ξA) ∈ X,
there exist a neighborhood V of A ∈ B∞m (K), a range 0 < α1 <

α0

2
<

α0 ≤ 1 and there are constants C > 0 and 0 < σ < 1 such that for all
B ∈ V, α ∈ [α1, α0] and f ∈ Hα(Σ× P(Rm)),

‖Qn
Bf − 〈f, µB〉1‖α ≤ C σn‖f‖α ,

where µB denotes the (unique) KB-stationary measure on Σ× P(Rm).

Proof. This proposition follows from the proof of theorem 3.7 in [4],
using the conclusion of proposition 4.17. See also [18, proposition 5.18]
or [17, proposition 3.12] for a complete proof. �

Like the Markov operator QA, the Laplace-Markov operator QA,z of
the observed Markov system (KA, µA, ξA),

(QA,zf)(x, p) =

∫
Σ

f(y, A(x, y) p) ‖A(x, y)‖zK(x, dy) ,
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acts invariantly on the subspaces Hα(Σ × P(Rm)), with small enough
α > 0. Choose 0 < α1 < α0 ≤ 1 according to proposition 4.17.

Assumption (A3) is automatically satisfied because ‖A‖∞ <∞ and
‖A−1‖∞ < ∞ which imply that ξA ∈ Hα(Σ × P(Rm)) for all α > 0.
Note that QA,z = QA ◦ Dez ξa , where Dez ξa denotes the multiplication
operator by ez ξa . This is a bounded operator because Hα(Σ× P(Rm))
is a Banach algebra containing the function ez ξa .

Finally the next lemma proves (A4).

Lemma 4.19. Given A,B ∈ B∞m (K) and b > 0, there is a constant
C2 > 0 such that for all f ∈ Hα(Σ× P(Rm)), and all z ∈ C such that
Re z ≤ b,

‖QA,zf −QB,zf‖∞ ≤ C2 d∞(A,B)α ‖f‖α .

Proof. See [18, lemma 5.10] or [17, lemma 3.14]. �

Proof of theorem 4.2. The space of observed Markov systems X satis-
fies all assumptions (A1)-(A4). Hence, by theorem 4.3, there exist a
neighborhood V of A ∈ B∞m (K) and constants ε0, C, h > 0 such that
for all B ∈ V, 0 < ε < ε0, (x, p) ∈ Σ× P(Rm) and n ∈ N,

Px
[ ∣∣ 1
n

log‖B(n) p‖ − L1(B, µ)
∣∣ ≥ ε

]
≤ C e−

ε2

2h
n ,

and integrating w.r.t. µ we get for all p ∈ P(Rm),

Pµ
[ ∣∣ 1
n

log‖B(n) p‖ − L1(B, µ)
∣∣ ≥ ε

]
≤ C e−

ε2

2h
n .

Choose the canonical basis {e1, . . . , ed} of Rm and consider the following
norm ‖·‖′ on Matd(R), ‖M‖′ := max1≤j≤d‖M ej‖. Since this norm is
equivalent to the operator norm, for all B ∈ V, p ∈ P(Rm) and n ∈ N,

‖B(n) p‖ ≤ ‖B(n)‖ . ‖B(n)‖′ = max
1≤j≤d

‖B(n) ej‖ .

Thus a simple comparison of the deviation sets gives

Pµ
[ ∣∣ 1
n

log‖B(n)‖ − L1(B, µ)
∣∣ ≥ ε

]
. e−

ε2

2h
n

for all B ∈ V, 0 < ε < ε0 and n ∈ N. �
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5. Continuity of Lyapunov Exponents

In this section we describe an abstract, modular approach to proving
continuity of the Lyapunov exponents, which uses an inductive proce-
dure based on the deterministic, general Avalanche Principle. The
main advantage of this approach, besides the fact that it provides
quantitative estimates, is its versatility. This approach applies to quasi-
periodic cocycles (one and multivariable torus translations), to random
cocycles (Bernoulli and Markov systems) and to any other types of base
dynamics as long as appropriate LDT estimates are satisfied. More-
over, compared to other available quantitative continuity results, this
approach allows for weaker assumptions, e.g. for quasi-periodic mod-
els, unlike in [24, 52], we do not have to assume positivity / simplicity
of the Lyapunov exponents, while for the random i.i.d. model, unlike
in [40], we do not have to assume a contraction property.

5.1. Literature review. The problem of continuity of the Lyapunov
exponents for analytic, quasiperiodic cocycles has been widely studied.
The works of M. Goldstein and W. Schlag in [24] and J. Bourgain
and S. Jitomirskaya in [9] are classic papers on the subject. They
refer to Schrödinger cocycles, as defined in Section 3, and continuity is
understood relative to the energy parameter and/or the frequency.

In [9], the authors prove joint continuity in energy E and frequency
ω, at all points (E,ω) with ω irrational.

In [24], for the one frequency case, assuming a strong Diophantine
condition on the frequency, the authors prove a sharp fiber LDT esti-
mate and establish the avalanche principle (AP) for SL(2,R) matrices.
Based on these ingredients, they develop an inductive procedure that
leads to Hölder continuity of the (top) Lyapunov exponent as a func-
tion of the energy E, under the assumption of a positive lower bound
on the Lyapunov exponent. A similar approach is applied to the mul-
tifrequency Diophantine torus translation case, leading to weak-Hölder
continuity of the Lyapunov exponent, the weaker modulus of continu-
ity being due to a weaker version of the fiber LDT estimate available
in this case.

Extensions of the ideas and results in [24] to other related models
were obtained in [10, 36, 37].

J. Bourgain proved in [7] joint continuity in energy and frequency
for the multifrequency torus translation model.

A higher dimensional version of the AP, along with a higher dimen-
sional version of the result in [24], were obtained in [52] for Schrödinger-
like cocycles, under the restrictive assumption that all Lyapunov ex-
ponents are simple. It was also indicated in [52] that this method is



44 P. DUARTE AND S. KLEIN

in some sense modular, a statement that motivated in part our recent
work being surveyed here.

With motivations that are both intrinsic and related to mathematical
physics problems (e.g. spectral properties of Jacobi-type operators),
the study of continuity properties of the Lyapunov exponents has been
extended from Schrödinger cocycles to more general ones, including
higher dimensional cocycles and/or cocycles with singularities. Each
extension comes with significant technical challenges, requiring new
methods.

C. Marx and S. Jitomirskaya proved joint continuity in energy and
frequency (one frequency case) for Mat(2,C)-valued analytic cocycles

(see [31] and references therein). Using a different approach, A. Ávila,
S. Jitomirskaya, C. Sadel extended this result to multidimensional (i.e.
Mat(m,C)-valued) analytic cocycles (see [2]).

We note that both results mentioned above ([31, 2]) treating one
frequency torus translations, rely crucially on the convexity of the top
Lyapunov exponent of the complexified cocycle as a function of the
imaginary variable, by firstly establishing continuity away from the
torus. This approach immediately breaks down in the multifrequency
case.

Our work in [13] presents a geometric, conceptual approach to the
Avalanche Principle, which allows us to generalize it to higher dimen-
sions, namely to blocks of GL(m,R) matrices, and further (see [15, 18]),
to any blocks of nonzero matrices in Mat(m,R). We use this general AP
in [13] to prove Hölder (or weak-Hölder for multifrequency translations)
continuity of the Lyapunov exponents of GL(m,R)-valued analytic co-
cycles in a neighborhood of a cocycle with simple Lyapunov exponents.
Moreover, continuity of all Lyapunov exponents (but without a mod-
ulus of continuity) holds everywhere, regardless of the multiplicity of
the Lyapunov exponents.

Our next goal was to handle cocycles with singularities (i.e. not
necessarily GL(m,R)-valued), which, as explained in Section 3, is es-
pecially delicate in the multifrequency case. We will explain later in
this section how the uniform fiber LDT in Theorem 3.1 leads to con-
tinuity of all Lyapunov exponents and to weak-Höllder continuity of
simple Lyapunov exponents for such cocycles.

While unlike in [31, 2], we do require Diophantine translations, and
the frequency is fixed, our method applies equally to translations on
the one or the higher dimensional torus.
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At the other end of the type of ergodic behavior of the base dynamics
- the random case, continuity results for linear coccycles over Bernoulli
shifts in the generic case go back to H. Furstenberg and Kifer, see [22].

E. Le Page proved in [40] Hölder continuity of the top Lyapunov
exponent for a one-parameter family of cocycles over the Bernoulli shift,
under irreducibility and contraction assumptions, which are assumed
to hold uniformly throughout this family.

Compared with this theorem, our recent results being surveyed here,
do not require any contraction assumption and provide continuity of
all exponents (regardless of the gaps in the Lyapunov spectrum) and
Hölder continuity (in the presence of gaps). The statement is about
continuity in the space of irreducible cocycles and not just for one-
parameter families. It is also more general since we address cocycles
over mixing Markov shifts, and not just over the Bernoulli shifts. We
are not aware of any generalization of Le Page’s theorem, on the con-
tinuity of the top Lyapunov exponent, for irreducible cocycles over
strongly mixing Markov shifts.

C. Bocker-Neto and M. Viana [3] proved continuity of the Lyapunov
exponents for two-dimensional cocycles over Bernoulli shifts without
any irreducibility assumptions (the result does not provide a modulus
of continuity though). A higher dimensional version of this result was

announced by A. Ávila, A. Eskin and M. Viana (see the monograph
[56]). An extension of results from [3] to a particular type of cocycles
over Markov systems (particular in the sense that the cocycle still de-
pends on one coordinate, as in the Bernoulli case) was obtained in [42].
We note, for the interested reader, that a general one-stop reference for
continuity results for random cocycles is M. Viana’s monograph [56].

5.2. Abstract continuity theorem. Let (X,µ, T ) be an ergodic sys-
tem. Before we formulate the abstract continuity theorem (ACT) of the
Lyapunov exponents of a linear cocycle, we need a few more definitions.

Definition 5.1. A space of measurable cocycles C is any class of matrix
valued functions A : X → Mat(m,R), where m ∈ N is not fixed, such
that every A : X → Mat(m,R) in C has the following properties:

(1) A is measurable.
(2) ‖A‖ ∈ L∞(µ).
(3) The exterior powers ∧kA : X → Mat(mk)(R) are in C, for k ≤ m.

Each subspace Cm := {A ∈ C |A : X → Matm(R) } is a-priori
endowed with a distance dist : Cm × Cm → [0,+∞) which is at least as
fine as the L∞ distance, i.e. for all A,B ∈ Cm we have

dist(B,A) ≥ ‖B − A‖L∞ .
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We assume a correlation between the distances on each of these sub-
spaces, namely the map Cm 3 A 7→ ∧k A ∈ C(mk) is locally Lipschitz.

The functions 1
n

log‖A(n)(x)‖ are integrable, and their integrals are
what we called in Section 2 finite scale (top) Lyapunov exponents. We
need stronger integrability assumptions on these functions.

Definition 5.2. A cocycle A ∈ C is called L2-bounded if there is a
constant C < ∞, which we call its L2-bound, such that for all n ≥ 1
we have: ∥∥∥ 1

n
log‖A(n)(·)‖

∥∥∥
L2
< C (5.1)

A cocycle A ∈ Cm is called uniformly L2-bounded, if the above bound
holds uniformly near A.

Given a cocycle A ∈ C and an integer N ∈ N, denote by FN(A)
the algebra generated by the sets {x ∈ X : ‖A(n)(x)‖ ≤ c} or {x ∈
X : ‖A(n)(x)‖ ≥ c} where c ≥ 0 and 0 ≤ n ≤ N .

Let Ξ be a set of measurable functions ξ : X → R, which we call
observables. Let A ∈ C.

Definition 5.3. We say that Ξ and A are compatible if for every in-
teger N ∈ N, for every set F ∈ FN(A) and for every ε > 0, there is an
observable ξ ∈ Ξ such that:

1F ≤ ξ and

∫
X

ξ dµ ≤ µ(F ) + ε . (5.2)

Theorem 5.1. Consider an ergodic system (X,µ, T ), a space of mea-
surable cocycles C, a set of observables Ξ, a set of LDT parameters P

and assume the following:

(1) Ξ is compatible with every cocycle A ∈ C.
(2) Every observable ξ ∈ Ξ satisfies a base LDT w.r.t. P.
(3) Every A ∈ C with L1(A) > −∞ is uniformly L2-bounded.
(4) Every cocycle A ∈ C for which L1(A) > L2(A) satisfies a uni-

form fiber LDT w.r.t. P.

Then all Lyapunov exponents Lk : Cm → [−∞,∞), 1 ≤ k ≤ m,
m ∈ N are continuous functions of the cocycle.

Moreover, given A ∈ C and 1 ≤ k ≤ m, if the Lyapunov exponent
Lk(A) is simple, then locally near A the map Lk has a modulus of
continuity ω(h) := [ι (c log 1

h
)]1/2 for some c = c(A) > 0 and for

some deviation measure function ι = ι(A) corresponding to an LDT
parameter in the set P.
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5.3. Deriving continuity. We describe the applicability of the ACT
to the quasi-periodic and random models, for which we have already
derived LDT estimates in Section 3 and Section 4.

Quasi-periodic models. For every m ≥ 1, let Cm be the set of cocycles
A ∈ Cω

r (Td,Mat(m,R)) with det[A(x)] 6≡ 0. Then Cm is an open set in
Cω
r (Td,Mat(m,R)), which we equip with the induced distance.

Theorem 5.2. For all dimensions m, assuming ω Diophantine, the
maps Lk : Cm → R, 1 ≤ k ≤ m are continuous. Moreover, if A ∈ Cm
is such that Lk(A) is simple, then locally near A the map Lk is weak-
Hölder continuous.

Proof. We explain briefly how the assumptions of the ACT are satisfied
in this setting.

Given A ∈ Cm and N ∈ N, note that the sets {x ∈ Td : ‖A(n)(x)‖ ≤
c} or {x ∈ Td : ‖A(n)(x)‖ ≥ c} for some 1 ≤ n ≤ N and c > 0 are
closed Jordan measurable, so the algebra FN(A) generated by them
consists only of Jordan measurable sets.

Let Ξ := C0(Td) be the set of all continuous observables ξ : Td → R.
By the regularity of the Borel measure, there is an open set U ⊇ F
such that

∣∣U ∣∣ ≤ ∣∣F ∣∣ + ε. By Urysohn’s lemma, there is a continuous

function ξ ∈ Ξ such that 0 ≤ ξ ≤ 1, ξ ≡ 1 on F and ξ ≡ 0 on U {.
Then

1F ≤ ξ and

∫
Td
ξ dx ≤

∣∣U ∣∣ ≤ ∣∣F ∣∣+ ε ,

which shows that Ξ is compatible with every cocycle in C.
The (uniform) L2-boundedness follows from (3.18) and the (uniform)

 Lojasiewicz inequality (3.20). The latter is used to prove that if f is
analytic on Ad

r and f 6≡ 0, then ‖log
∣∣f ∣∣‖L2 ≤ C(f) < ∞, and the

bound C(f) is stable under perturbations.
Finally, base LDTs hold trivially for this model, while uniform fiber

LDTs were established in Theorem 3.1 with deviation functions ε(t) ≡
t−a and ι(t) ≡ e−c t

b
. Therefore, all Lyapunov exponents are continuous.

Moreover, defining P to be the set of triplets (n0, ε, ι) where n0 ∈ N,

ε(t) ≡ t−a and ι(t) ≡ e−c t
b

with a, b, c > 0, a simple calculation shows
that the modulus of continuity locally near simple Lyapunov exponents
is ω(h) = e−c[log(1/h)]b for some c, b > 0. We call such a modulus of
continuity weak-Hölder.

�

Random models. Let (K,µ) be a Markov system. Consider the space
B∞m (K) of random cocycles A : Σ × Σ → GL(m,R) introduced in



48 P. DUARTE AND S. KLEIN

definition 4.5. A cocycle A ∈ B∞m (K) is called totally irreducible if
all its exterior powers are irreducible. Denote by I∞m (K) the space of
totally irreducible cocycles in B∞m (K).

Theorem 5.3. If (K,µ) is strongly mixing then all Lyapunov expo-
nents Lk : I∞m (K) → [−∞,∞), 1 ≤ k ≤ m, are continuous functions
of the cocycle. Moreover, given A ∈ I∞m (K), if the Lyapunov spectrum
of A is simple, then locally near A, all Lyapunov exponents are Hölder
continuous functions of the cocycle.

Proof. We are going to apply theorem 5.1 to the space Cm = I∞m (K)
of totally irreducible measurable cocycles over the Markov dynamical
system (T,X,F ,Pµ). Consider the space P of LDT parameters p =
(n0, ε, ι) with n0 ∈ N, ε(t) ≡ ε and ι(t) ≡ e−c t, for some constants
ε, c > 0.

The chosen set of observables is the Banach algebra Ξ = Hα(X−),
for some α > 0 small enough.

The compatibility condition (1) in Theorem 5.1 is automatic because
Ξ contains all functions 1F with F ∈ FN(A), N ∈ N and A ∈ B∞m (K).

The base-LDT assumption (2) for every observable ξ ∈ Ξ is a con-
sequence of theorem 4.1.

Condition (3) holds because, by the definition of the metric on B∞m (K),
every cocycle in B∞m (K) is uniformly L2-bounded.

Finally, the fiber-LDT assumption (4) follows from theorem 4.2.
Thus, applying theorem 5.1, we see that all Lyapunov exponents are

continuous functions on I∞m (K).
A simple computation shows that the modulus of continuity associ-

ated to the choice P (of the space of LDT parameters) is the modulus
of Hölder continuity. �

The concept of irreducibility extends to linear cocycles depending on
finitely many symbols, over Markov systems of finite order. There is a
standard procedure to reduce them to cocycles in the previous setting.
This reduction corresponds to redefining the space of symbols to be
some product Σk, with large k.

Remark 5.1. Theorem 5.3 (on the continuity of all Lyapunov expo-
nents on the appropriate space of irreducible cocycles) extends to cocy-
cles depending on finitely many symbols, and over Markov systems of
finite order (see [18, theorem 5.5] or [17, theorem 4.1]).

5.4. On the proof of the ACT. We describe the inductive proce-
dure, based on the avalanche principle, which we use to prove the ACT.
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The Avalanche Principle. Consider a long chain of matrices g0, g1, . . . , gn−1

in Mat(m,R). The aim of the AP is to relate the expansion ‖gn−1 . . . g1 g0‖
of the product gn−1 . . . g1 g0 to the product ‖gn−1‖ . . . ‖g1‖ ‖g0‖ of the
individual expansions ‖gj‖.

Given quantities Mn and Nn, with exponential growth Mn, Nn & ena

where a > 0, we say (in rough terms) that they are almost asymptotic,
and write Mn � Nn, when e−n ε ≤Mn/Nn ≤ en ε for some 0 < ε� a.

In general it is not true that ‖gn−1 . . . g1 g0‖ � ‖gn−1‖ . . . ‖g1‖ ‖g0‖,
unless some atypically sharp alignment of the singular directions of the
matrices gj occurs.

Given g0, g1 ∈ Mat(m,R) non-zero matrices, let us call expansion

rift of g0, g1 the number ρ(g0, g1) := ‖g1 g0‖
‖g1‖ ‖g0‖ ∈ [0, 1]. This number

measures the break of expansion in the matrix product g1 g0. More gen-
erally, we define the expansion rift of a chain of matrices g0, g1, . . . , gn−1

in Mat(m,R) to be the number

ρ(g0, g1, . . . , gn−1) :=
‖gn−1 . . . g1 g0‖

‖gn−1‖ . . . ‖g1‖ ‖g0‖
.

We call gap ratio of a matrix g ∈ Mat(m,R) the quotient between its
largest and second largest singular values, which can also be expressed
as

gr(g) :=
‖g‖2

‖∧2g‖
,

where ∧2g denotes the second exterior power of g. Note that gr(g) ≥ 1.
We will say that g has a first singular gap when gr(g) > 1.

With this terminology, the AP says that given any long chain of ma-
trices g0, g1, . . . , gn−1 ∈ Mat(m,R), where the gap ratio of each matrix
is large and the expansion rift of any pair of consecutive matrices is
never too small, then the expansion rift of the product behaves multi-
plicatively, in the (almost asymptotic) sense that

ρ(g0, g1, . . . , gn−1) � ρ(g0, g1) ρ(g1, g2) . . . ρ(gn−2, gn−1) , (5.3)

or, equivalently,

‖gn−1 . . . g1 g0‖ ‖g1‖ . . . ‖gn−2‖
‖g1 g0‖ . . . ‖gn−1 gn−2‖

� 1 .

More precisely, the hypotheses of the AP are, for some ε, κ > 0

κ� ε2 , gr(gj) ≥ κ−1 and ρ(gj−1, gj) ≥ ε for all j . (5.4)

To explain this multiplicative behavior we introduce a geometric
quantity, referred to as the angle between g and g′, that will be com-
pared with the expansion rift ρ(g, g′).
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Consider on P(Rm) the projective distance defined by

δ(û, v̂) :=

√
1− 〈u, v〉2
‖u‖2‖v‖2

=
‖u ∧ v‖
‖u‖ ‖v‖

,

where u and v are non-zero vectors representing û, v̂ ∈ P(Rm). The
complementary quantity

α(û, v̂) :=
|〈u, v〉|
‖u‖ ‖v‖

will be called (with some abuse of terminology) the angle between the
projective points û, v̂ ∈ P(Rm).

Define v(g) ∈ Rm to be the most expanding unit vector of a matrix
g ∈ Mat(m,R), in the sense that ‖g v(g)‖ = ‖g‖. When g has a
first singular gap this vector is unique up to a sign, thus determining a
well-defined projective point v(g) ∈ P(Rm), which represents a singular
direction of g. If gr(g) > 1 then g v(g) = ± v(g∗), where g∗ stands for
the transpose of g.

Given g, g′ ∈ Mat(m,R) with first singular gaps, the angle between
g and g′ is the angle between the most expanding directions v(g∗) and
v(g′), i.e.,

α(g, g′) := α(v(g∗), v(g′)) .

We also set

β(g, g′) :=
√

gr(g)−2 ⊕ α(g, g′)2 ⊕ gr(g′)−2 , (5.5)

where the symbol ⊕ stands for the operation

a⊕ b := a+ b− a b .
With this operation, [0, 1] is a commutative semigroup.

Proposition 5.1. Given g, g′ ∈ Mat(m,R) with gr(g), gr(g′) > 1,

α(g, g′) ≤ ‖g′ g‖
‖g′‖ ‖g‖

≤ β(g, g′) .

Proof. See [18, proposition 2.18] or [15, proposition 2.14]. �

The following inequality

1 ≤ β(g, g′)

α(g, g′)
≤

√
1 +

1

gr(g)2 α(g, g′)2
+

1

gr(g′)2 α(g, g′)2
(5.6)

shows that if gr(g), gr(g′) ≥ κ−1 and α(g, g′) ≥ ε, with κ � ε2, then
the expansion rift ρ(g, g′) is well approximated by the angle α(g, g′).
In fact we have in this case

α(g, g′) ≤ ρ(g, g′) ≤ eκ α(g, g′) . (5.7)
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Given a chain of matrices g0, g1, . . . , gn−1 ∈ Mat(m,R), we use the
notation g(i) := gi−1 . . . g0, for any 1 < i < n. From proposition 5.1, by
induction we get

Proposition 5.2. Given a chain g0, g1, . . . , gn−1 ∈ Mat(m,R), if all
matrices gi and g(i) have first singular gaps then

n−1∏
i=1

α(g(i), gi) ≤
‖gn−1 . . . g1g0‖
‖gn−1‖ . . . ‖g1‖‖g0‖

≤
n−1∏
i=1

β(g(i), gi)

From the assumption (5.4) of the AP and (5.7),

α(gi−1, gi) ≈ ρ(gi−1, gi) ≈ β(gi−1, gi) .

Thus, to infer (5.3), because of proposition 5.2, it is enough to check
that α(g(i), gi) ≈ α(gi−1, gi), for all i. For this, we use a shadowing ar-
gument based on the contracting behavior of the action of the matrices
gj on the projective space P(Rm).

Each matrix g ∈ Mat(m,R) induces the following partial mapping
ϕg : P(Rm)\Kg → P(Rm), ϕgv̂ := ĝ v, for all v̂ /∈ Kg, where Kg denotes
the projective subspace determined by the kernel of g.

Proposition 5.3. Given g ∈ Mat(m,R) and v̂ 6= û in P(Rm) \Kg,

δ(ϕg(v̂), ϕg(û))

δ(v̂, û)
≤ 1

gr(g)α(v̂, v(g))α(û, v(g))
.

Proof. Given v̂ ∈ P(Rm), let v be one of its unit vector representatives.
Since we have v = α(v̂, v(g)) v(g) + w, with w orthogonal to v(g), it
follows that gv = ‖g‖α(v̂, v(g)) v(g)+gw, with gw orthogonal to v(g∗).
Thus ‖gv‖ ≥ ‖g‖α(v̂, v(g)). Similarly, given û 6= v̂, if u is one of its
unit vector representatives, ‖gu‖ ≥ ‖g‖α(û, v(g)). Therefore,

δ(ϕg(û), ϕg(v̂))

δ(û, v̂)
=
‖gu ∧ gv‖
‖gu‖ ‖gv‖

1

‖u ∧ v‖

≤ ‖(∧2g)(u ∧ v)‖
‖u ∧ v‖

1

‖g‖2 α(û, v(g))α(v̂, v(g))

≤ ‖∧2g‖
‖g‖2

1

α(û, v(g))α(v̂, v(g))

=
1

gr(g)α(û, v(g))α(v̂, v(g))
.

�
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The previous proposition and the assumption (5.4) imply that each
map ϕgj is a strong contraction in some neighborhood of v(gj) of the
following form

Σε(gj) := { v̂ ∈ P(Rm) : α(v̂, v(gj)) ≥ ε } .
We have gr(g) = gr(g∗) and α(g, g′) = α(g′∗, g∗). Hence the assump-
tion (5.4) on the chain g0, . . . , gn−1 is also satisfied by the transpose
chain g∗n−1, . . . , g

∗
0. Since for any matrix g, ϕg(v(g)) = v(g∗) and

ϕg∗(v(g∗)) = v(g), we infer from (5.4) that v(g∗j−1) ∈ Σ ε
2
(gj) and

v(gj) ∈ Σ ε
2
(g∗j−1), for all j = 1, . . . , n − 1. The cyclic sequence of

projective points

v(g∗i−1) 7→ . . . 7→ v(g∗0) 7→ v(g0) 7→ . . . 7→ v(gi−1) 7→ v(g∗i−1)

is a pseudo-orbit for the sequence of projective mappings associated to
the chain g∗i−1, . . . , g

∗
0, g0, . . . , gi−1. Because the projective action of the

matrix g(i) (g(i))∗ = (gi−1 . . . g0) (g∗0 . . . g
∗
i−1) fixes the point v(g(i)∗), the

strong contracting behavior of these maps implies that the pseudo-orbit
above is shadowed by the true orbit of v(g(i)∗) under the sequence of
maps ϕg∗i−1

, . . . , ϕg∗0 , ϕg0 , . . . , ϕgi−1
. Therefore v(g(i)∗) ≈ v(g∗i−1), which

in turn proves α(g(i), gi) ≈ α(gi−1, gi).
The sketched argument has other collateral consequences such as the

exponential growth of gr(g(n)) and the proximity relations v(g(n)∗) ≈
v(g∗n−1) and v(g(n)) ≈ v(g0) (see [15, 18]).

We now state the Avalanche Principle.

Theorem 5.4. There exists a constant c > 0 such that given 0 < ε < 1,
0 < κ ≤ c ε2 and g0, g1, . . . , gn−1 ∈ Mat(m,R), if

(a) gr(gi) ≥ κ−1, for 0 ≤ i ≤ n− 1, and
(b) α(gi−1, gi) ≥ ε, for 1 ≤ i ≤ n− 1,

then ∣∣log‖g(n)‖+
n−2∑
i=1

log‖gi‖ −
n−1∑
i=1

log‖gi gi−1‖
∣∣ . n

κ

ε2
.

Next corollary is a practical reformulation of the AP’s assumptions.

Corollary 5.4. There exists c > 0 such that given 0 < ε < 1, 0 < κ ≤
c ε2 and g0, g1, . . . , gn−1 ∈ Mat(m,R), if

(gaps) gr(gi) ≥
1

κ
for all 0 ≤ i ≤ n− 1

(angles)
‖gi gi−1‖
‖gi‖ ‖gi−1‖

≥ ε for all 1 ≤ i ≤ n− 1

then the same conclusion holds.
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The inductive procedure. The proof of the ACT consists of two main
steps: the finite scale continuity - which shows that if the number
of iterates of the cocycle is fixed, then the corresponding finite scale
top Lyapunov exponent depends continuously on the cocycle, and the
inductive step - which shows that this behavior does not change signif-
icantly as we increase the scale.

Let us assume that the finite scale continuity is already available
(this step is not too difficult). This means that for any large enough
but fixed scale n0, if B ≈ A then

L
(n0)
1 (B) = L

(n0)
1 (A) + o(1) . (5.8)

Let n1 � n0 be another, much larger scale. The goal is to prove
something of the form

L
(n1)
1 (B) = L

(n0)
1 (B) +O

(
n0

n1

)
, (5.9)

where the implicit constant in O(n0

n1
) is independent of B, i.e. the

estimate is uniform in a neighborhood of the cocycle A.
Applying (5.9) to both B and A and using (5.8), we would get

L
(n1)
1 (B) = L

(n1)
1 (A) + o(1) +O

(
n0

n1

)
.

Continuing this with another scale n2 � n1, we would get

L
(n2)
1 (B) = L

(n2)
1 (A) + o(1) +O

(
n0

n1

)
+O

(
n1

n2

)
,

and so on. As the sequence {nk} of scales increases fast, the sum
O(n0

n1
) +O(n1

n2
) + . . . will be negligible, hence in the limit we would get

that

L1(B) = L1(A) + o(1) ,

thus proving continuity of the top Lyapunov exponent. A modulus of
continuity in the limit would follow, amid some loss, from having one
at an initial finite scale.

This procedure will not work exactly as described, because (5.9) is
not necessarily true as stated. However, a more complex relation, but
having a similar flavor will hold true.

An estimate in the spirit of (5.9) relates the space average of the
function 1

n1
log‖B(n1)(x)‖ to that of the function 1

n0
log‖B(n0)(x)‖. For

these space averages to be comparable, it would be enough if the cor-
responding functions were pointwise comparable for all but a small set
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of phases, i.e. that

1

n1

log‖B(n1)(x)‖ =
1

n0

log‖B(n0)(x)‖+O
(
n0

n1

)
, (5.10)

for all x outside a set of small measure.
Assume n1 is a multiple of n0, so n1 = nn0, n � 1. Fix a phase

x ∈ X. Then B(n1)(x), which is a block (i.e. a product) of length n1,
can be divided up into n blocks, each of length n0, which we denote by
g0, g1, . . . , gn−1. Hence

gi = gi(x) = B(n0)(T in0x) and g(n) = gn−1 . . . g1 g0 = B(n1)(x) .

Let us assume for a moment that the AP is applicable to these ma-
trices (i.e. for the given phase x). This will imply that

1

n
log‖g(n)‖ = − 1

n

n−2∑
i=1

log‖gi‖+
1

n

n−1∑
i=1

log‖gi gi−1‖+ “error”,

hence

1

n
log‖B(n1)(x)‖ =− 1

n

n−2∑
i=1

log‖B(n0)(T in0x)‖

+
1

n

n−1∑
i=1

log‖B(n0)(T in0x) B(n0)(T (i−1)n0x)‖+ “error” .

Since B(n0)(T n0y) B(n0)(y) = B(2n0)(y), after diving both sides by n0

and remembering that n1 = nn0, we get from the above

1

n1

log‖B(n1)(x)‖ =− 1

n

n−2∑
i=1

1

n0

log‖B(n0)(T in0x)‖ (5.11)

+ 2
1

n

n−1∑
i=1

1

2n0

log‖B(2n0)(T (i−1)n0x)‖+ “error” .

Now let us assume that the AP was in fact applicable for all but
a small set of phases. Hence (5.11) will hold for all x outside a set
of small measure. Averaging in x, using the uniform L2-boundedness
assumption (and skipping some technicalities), we conclude that

L
(n1)
1 (B) = −L(n0)

1 (B) + 2L
(2n0)
1 (B) + “error” . (5.12)

Assuming moreover that the “error” coming from the AP is in this
setting something like O(n0

n1
), estimate (5.12) is in fact not very un-

like (5.9). It relates the finite scale Lyapunov exponent at scale n1,
to its counterparts at scales n0, 2n0. The scales n0 and 2n0 have the
same order of magnitude, hence we may assume that the initial finite
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scale continuity property applies to both of them. The inductive ar-
gument sketched above and based upon (5.9) would work in a similar
manner with (5.12) instead, leading to the continuity of the Lyapunov
exponents.

For all of this to work, the assumptions “gaps” and “angles” of the
AP (say in its formulation from Corollary 5.4) should hold for all but
a small set of phases x. This is where the fiber LDT estimates and the
information carried at the current scale (i.e. the inductive hypothesis)
come into play.

Indeed, by the uniform fiber LDT, if B ≈ A, then for all x outside a
set of small measure, the following hold

1

n0

log‖B(n0)(x)‖ =L
(n0)
1 (B) + o(1)

1

n0

log‖B(n0)(T n0x)‖ =L
(n0)
1 (B) + o(1)

1

2n0

log‖B(2n0)(x)‖ =L
(2n0)
1 (B) + o(1) .

If, moreover

L
(n0)
1 (B)− L(2n0)

1 (B) < η � 1 ,

which follows from the finite scale continuity and the fact that the
initial scale n0 is large enough, then an easy algebraic calculation shows
that for all such phases x we have:

‖B(2n0)(x)‖
‖B(n0)(T n0x)‖ ‖B(n0)(x)‖

> e−2n0 (η+o(1)) .

This will imply the “angle” condition in the AP.

The “gap” condition is a more delicate issue. This point is made
especially difficult by the fact that we are working with higher dimen-
sional (m ≥ 2), and possibly not (everywhere) invertible cocycles.

The treatment of this issue is what makes our inductive procedure
differ most from the one in [24]. Moreover, unlike quasi-periodic mod-
els, fiber LDTs for random models are only available in the presence of
a gap in the Lyapunov spectrum. This approach is also the main rea-
son that random models can be treated in the same inductive scheme
and with fewer restrictions than in [40].

The complete details of this argument can be found in [14, 18]. We
only mention here that a key ingredient of the argument is a type of
uniform upper semicontinuity property of the top Lyapunov exponent.
Such a property was previously established in [20, 32] for uniquely er-
godic systems. Bernoulli or Markov systems are not uniquely ergodic.
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We obtain a weaker statement, sufficient for our needs, that applies to
these models as well. This is where the compatibility condition and
the base large deviation are used, as substitutes for unique ergodicity.
Here is the statement of the “nearly” upper semicontinuity property.

Proposition 5.5. Let A ∈ Cm be a measurable cocycle such that Ξ
and A are compatible and every observable ξ ∈ Ξ satisfies a base LDT.
Assume that L1(A) > −∞ and that A is L2-bounded. Then for every
ε > 0, there are δ = δ(A, ε) > 0, n0 = n0(A, ε) ∈ N and ι = ι(A, ε)
corresponding to an LDT parameter in P, such that if B ∈ Cm with
d(B,A) < δ, and if n ≥ n0, then the upper bound

1

n
log‖B(n)(x)‖ ≤ L1(A) + ε , (5.13)

holds for all x outside of a set of measure < ιn.

Further work

As mentioned before, LDT estimates for Schrödinger cocycles have
also been used to study integer lattice, one-dimensional, quasi-periodic
Schrödinger operators, e.g. to derive lower bounds on Lyapunov ex-
ponents, spectral properties of the operator, continuity properties of
the integrated density of states, estimates on the measure of the spec-
trum etc. The availability of such estimates for more general cocycles,
discussed in this survey, makes it likely that similar kinds of problems
can be approached for more general types of discrete quasi-periodic
operators, such as band-lattice Schrödinger operators (which approxi-
mate higher dimensional lattice Schrödinger operators) or Jacobi type
operators.

We have work in progress dealing with identically singular cocycles
A(x) (i.e. det[A(x)] ≡ 0) in the multivariable case (the one variable
case has been treated in [2]). The completion of this project will have
other immediate consequences, such as criteria for positivity of Lya-
punov exponents and simplicity of the Lyapunov spectrum for higher
dimensional Schrödinger and Jacobi type cocycles. No such results are
currently available in the multivariable case.

Regarding random cocycles, an interesting open problem is prov-
ing (uniform) fiber LDT estimates for reducible cocycles (our current
work requires irreducibility). Moreover, another difficult and interest-
ing open problem is establishing quantitative continuity properties of
the Lyapunov exponents in the vicinity of a reducible cocycle, either
through our scheme involving LDTs or through other means.
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Finally, it would be interesting to see if our scheme for proving con-
tinuity of Lyapunov exponents is applicable to cocycles over different
kinds of base dynamics. As indicated earlier, base LDT estimates are
already available, so the challenge is to prove uniform fiber LDTs for
such models.
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et théorèmes de convergence, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 2, 187–
242. MR 779457 (86h:60126)

[28] W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, Academic
Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976, Lon-
don Mathematical Society Monographs, No. 9. MR 0460672 (57 #665)
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Poincaré (B) Probabilités et Statistiques 25 (1989), no. 2, 109–142.

[41] Artur O. Lopes, Entropy and large deviation, Nonlinearity 3 (1990), no. 2,
527–546. MR 1054587 (91m:58092)

[42] E. Malheiro and M. Viana, Lyapunov exponents of linear cocycles over Markov
shifts, preprint (2014), 1–25.

[43] Hugh L. Montgomery, Ten lectures on the interface between analytic number
theory and harmonic analysis, CBMS Regional Conference Series in Mathe-
matics, vol. 84, Published for the Conference Board of the Mathematical Sci-
ences, Washington, DC; by the American Mathematical Society, Providence,
RI, 1994. MR 1297543 (96i:11002)

[44] Camil Muscalu and Wilhelm Schlag, Classical and multilinear harmonic analy-
sis. Vol. I, Cambridge Studies in Advanced Mathematics, vol. 137, Cambridge
University Press, Cambridge, 2013. MR 3052498

[45] S. V. Nagaev, Some limit theorems for stationary Markov chains, Teor. Veroy-
atnost. i Primenen. 2 (1957), 389–416. MR 0094846 (20 #1355)

[46] Firas Rassoul-Agha and Timo Seppäläinen, A course on large deviations with
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