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Abstract We prove that the boundary of an r-regular
set is a codimension one boundaryless manifold of class
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1 Introduction

The main task of digital image processing is to in-
fer properties of real objects given their digital ima-
ges, i.e., discrete data generated by some simple device,
like a CCD camera. A fundamental question in digi-
tal image processing is: which properties inferred from
discrete representations of real objects, under certain
conditions, correspond to properties of their originals?
Most of the known answers to this question are res-
tricted to a certain class of subsets of Euclidean space
R2 ([5,6,8,9,11,12]), or R3 [10], representing real ob-
jects, called r-regular sets. As can be read in [11], “the
fact that r-regular sets are widely used in the context of
digitalization shows that r-regularity is a fundamental
property”. In [6], conditions were derived relating pro-
perties of regular sets to the grid size of the sampling
device which guarantee that a regular object and its
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digital image are topologically equivalent. To obtain the
topological equivalence it was used that a regular set is
always bounded by a codimension one manifold. This
property was conjectured in [6, p. 145]. Later, in [11],
several properties of r-regular sets, which make them
attractive for image digitization, were proved. In par-
ticular, the author states in [11, Lemma 3.4] that the
boundary of an n-dimensional r-regular set is an (n−1)-
dimensional manifold, but the sketched idea can not be
considered as a mathematical proof.

In this paper we prove, in any dimension, that the
boundary of an r-regular set is a codimension one boun-
daryless manifold of class C1. The proof generalizes, to
the setting of r-regular sets, a classical result on con-
vex sets (see, [4]): the distance function of a point in
an Hilbert space X to a closed convex set K ⊂ X is
always C1, regardless of the boundary behaviour of K.
According to Holmes [4], this fact seems to have first
been established by Moreau in [7].

The authors’ motivation in proving this theorem
comes from the study of smooth nondeterministic dy-
namical systems, that is the dynamics of ‘smooth’ point-
set maps on a compact manifold, where r-regular sets
can appear as dynamically invariant sets. See [3].

2 Geometry of Convex Projections

Let K ⊂ Rn be a compact convex set.

Proposition 1 Given x ∈ Rn, there is a unique point
z ∈ K such that

(1) ‖x− z‖ = d(x,K),
(2) 〈x− z, y − z〉 ≤ 0, for all y ∈ K.
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Condition (2) just says that the point z ∈ K which
minimizes the distance to x is contained in the half-
space bounded by the hyperplane through x normal to
the vector x− z,

K ⊆ { y ∈ Rn : 〈x− z, y − z〉 ≤ 0 } .

We define π : Rn → K to be the map that to each
x ∈ Rn assigns the unique point z = π(x) ∈ K which
minimizes the distance to x.

Proposition 2 The mapping π : Rn → K is a Lips-
chitz projection. More precisely, π ◦ π = π, and given
x, y ∈ Rn, ‖π(x)− π(y)‖ ≤ ‖x− y‖.

Proof It is clear that π ◦ π = π. Consider the vectors
u = x − π(x), v = y − π(y) and w = π(x) − π(y),
which satisfy 〈v, w〉 ≤ 0 and 〈u, w〉 ≥ 0. Notice that
u− v + w = x− y. We have

‖u− v + w‖2

= ‖u− v‖2 + ‖w‖2 + 2 〈u− v, w〉

= ‖u− v‖2 + ‖w‖2 + 2 〈u, w〉 − 2 〈v, w〉︸ ︷︷ ︸
≥0

≥ ‖w‖2
,

and hence ‖y − x‖2 ≥ ‖π(y)− π(x)‖2. ut

Define now f : Rn → R by f(x) = ‖x− π(x)‖2.

Proposition 3 The mapping f : Rn → R is of class
C1 with derivative Dfx(v) = 2 〈x− π(x), v〉.

Proof Given x, v ∈ Rn, let y = x + v. We have

‖y − π(y)‖2 ≤ ‖y − π(x)‖2 = ‖v + x− π(x)‖2

= ‖v‖2 + ‖x− π(x)‖2 + 2 〈x− π(x), v〉

and hence

f(x + v)− f(x)− 2 〈x− π(x), v〉 ≤ ‖v‖2
. (1)

Conversely, interchanging the roles of x and y we get

‖x− π(x)‖2 ≤ ‖v‖2 + ‖y − π(y)‖2 − 2 〈y − π(y), v〉 .

Noticing that

〈x−π(x), v〉 − 〈y − π(y), v〉
= 〈π(y)− π(x)− v, v〉

= 〈π(y)− π(x), v〉 − ‖v‖2

≤ ‖π(y)− π(x)‖ ‖v‖ − ‖v‖2 ≤ 0

we get from the previous inequality

‖x− π(x)‖2 ≤ ‖v‖2 + ‖y − π(y)‖2 − 2 〈x− π(x), v〉 ,

and therefore

f(x + v)− f(x)− 2 〈x− π(x), v〉 ≥ −‖v‖2
. (2)

Combining (1) and (2) we get

|f(x + v)− f(x)− 2 〈x− π(x), v〉| ≤ ‖v‖2
,

proving that f is of class C1 with the specified deriva-
tive. ut

Remark 1 Assuming π : Rn → ∂U is any Lipschitz
projection such that ‖x− π(x)‖ = d(x, ∂U), for some
open set U ⊂ Rn with regular compact boundary, the
argument of the previous proposition can be adapted to
prove that

|f(x + v)− f(x)− 2 〈x− π(x), v〉| ≤ C ‖v‖2
,

where C is the Lipschitz constant for π.

3 Geometry of r-Convex Projections

The class of r-regular sets was independently intro-
duced in [8] and [9]. This class is also referred in [1,
2,5,6,10–12]. Although the details of the definitions in
these papers are different, the described class is essen-
tially the same and can be defined as follows. Fix a po-
sitive number r > 0 and define Ur as the set of all con-
nected unions of Euclidean open balls of radius r > 0.
Note that, as any ball of radius greater than r is itself
a union of balls of radius r, any set in Ur is a union of
balls of radius r.

Definition 1 An open set U ⊆ Rn is said to be r-
regular if and only if U ∈ Ur and U

c ∈ Ur.

A set C ⊆ Rn is called r-convex if and only if it
is an intersection of any number of r-ball complements
Br(a) = {x ∈ Rn : d(x, a) ≥ r} where a runs through
some possible infinite set. Notice that complements of
open sets in Ur are r-convex sets.

The aim of next results is the proof of

Theorem 1 Let U ⊆ Rn be an r-regular set. Then ∂U

is a codimension one boundaryless manifold of class C1.
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From now on we assume that U ⊆ Rn is an r-regular
set.

Proposition 4 Given x ∈ ∂U , there is a unique vector
η(x) ∈ Rn such that:

(1) ‖η(x)‖ = r,
(2) x + η(x) ∈ U ,
(3) { y ∈ Rn : ‖x + η(x)− y‖ < r } ⊆ U ,
(4) { y ∈ Rn : ‖x− η(x)− y‖ < r } ⊆ U

c
.

The mapping η : ∂U → Rn is a normal vector field
along ∂U with constant norm equal to r.

Consider the following picture.

Fig. 1 Assumptions of Lemma 1

The assumptions of the following lemma say that v

and w are vectors of some fixed length r, u is a small
vector, and the two specified diagonals have length grea-
ter than 2 r. This means the radius r circles centered at
the diagonal endpoints B1 and B2 do not intersect the
interiors of the radius r circles centered at the diagonal
endpoints C1 and C2.

Lemma 1 Assume we have

(a) ‖v‖ = ‖w‖ = r,
(b) ‖u + (v + w)‖ > 2r, and
(c) ‖u− (v + w)‖ > 2r.

Then

(1) ‖v − w‖ ≤ ‖u‖,
(2) |〈v + w, u〉| ≤ 1

2 ‖u‖
2,

(3) |〈v, u〉| ≤ 3
4 ‖u‖

2,

(4) |〈v − w, u〉| ≤ ‖u‖2, and
(5) |〈v, v − w〉| ≤ 1

2 ‖u‖
2.

Proof Using the parallelogram identity, we derive that

8 r2 < ‖u + (v + w)‖2 + ‖u− (v + w)‖2

= 2 ‖u‖2 + 2 ‖v + w‖2
,

(3)

and

‖v + w‖2 + ‖v − w‖2 = 2 ‖v‖2 + 2 ‖w‖2 = 4 r2 .

Hence plugging

‖v + w‖2 = 4 r2 − ‖v − w‖2 (4)

in (3) we get

8 r2 < 2 ‖u‖2 + 2 ‖v + w‖2

= 8 r2 + 2 ‖u‖2 − 2 ‖v − w‖2

⇔ ‖v − w‖2 ≤ ‖u‖2 ⇔ ‖v − w‖ ≤ ‖u‖ .

This proves item (1).

From (b) and (c), plugging (4) in, we have

4 r2 < ‖u‖2 + ‖v + w‖2 ± 2 〈u, v + w〉

= ‖u‖2 + 4 r2 − ‖v − w‖2 ± 2 〈u, v + w〉

which implies

∓2 〈u, v + w〉 < ‖u‖2 − ‖v − w‖2 ≤ ‖u‖2
.

Hence

|〈u, v + w〉| ≤ 1
2
‖u‖2

,

which proves item (2).

Items (3) and (4) follow because

|〈u, v〉| ≤ 1
2

(|〈u, v − w〉|+ |〈u, v + w〉|)

≤ 1
2

(
‖u‖ ‖v − w‖+

1
2
‖u‖2

)
≤ 1

2

(
‖u‖2 +

1
2
‖u‖2

)
=

3
4
‖u‖2

,

and

|〈u, v − w〉| ≤ ‖u‖ ‖v − w‖

≤ ‖u‖2
.
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Finally,

‖v − w‖2 = 〈v − w, v − w〉
= 2 〈v, v − w〉 − 〈v + w, v − w〉

= 2 〈v, v − w〉 − (‖v‖2 − ‖w‖2)︸ ︷︷ ︸
=0

Hence

〈v, v − w〉 =
1
2
‖v − w‖2 ≤ 1

2
‖u‖2

,

and this proves item (5). ut

Lemma 2 Under the same assumptions of the previous
lemma consider vectors v′ and w′ colinear with v and
w respectively such that ‖v′‖ < δ and ‖w′‖ < δ. Then

‖u‖ ≤
√

2 r
2 r−3δ ‖u + w′ − v′‖.

Notice that the coefficient
√

2 r
2 r−3δ gets close to 1

as δ → 0.

Fig. 2 Assumptions of Lemma 2

Proof By item (3) of previous lemma we have

|〈u, v′〉| = ‖v′‖
r

|〈u, v〉| < 3 δ

4 r
‖u‖2

.

Because the vectors v and w play the same role we also
have

|〈u, w′〉| = ‖w′‖
r

|〈u, w〉| < 3 δ

4 r
‖u‖2

,

and, therefore,

|〈u, v′〉|+ |〈u, w′〉| < 3 δ

2 r
‖u‖2

.

Thus

‖u + w′ − v′‖2 = ‖w′ − v′‖2 + ‖u‖2 + 2 〈u, w′ − v′〉

≥ ‖u‖2 − |〈u, w′〉| − |〈u, v′〉|

≥ ‖u‖2 − 3 δ

2 r
‖u‖2

=
(

1− 3 δ

2 r

)
‖u‖2

which implies that

‖u‖2 ≤
(

1− 3 δ

2 r

)−1

‖u + w′ − v′‖2

=
2 r

2 r − 3 δ
‖u + w′ − v′‖2

,

and proves the lemma. ut

Proposition 5 The normal vector field η : ∂U → Rn

is Lipschitz continuous, with Lip(η) ≤ 1,

‖η(x)− η(y)‖ ≤ ‖x− y‖ .

Proof Given x, y ∈ ∂U we have

B(x + η(x), r) ∩B(y − η(y), r) = ∅

which is equivalent to ‖x− y + η(x) + η(y)‖ > 2r. Ana-
logously,

B(x− η(x), r) ∩B(y + η(y), r) = ∅

which is equivalent to ‖x− y − η(x)− η(y)‖ > 2r. The
Lipchitz inequality follows by applying Lemma 1 (1) to
the vectors u = x− y, v = η(x) and w = η(y). ut

Define π : Rn → ∂U as the minimizing projection
‖x− π(x)‖ = d(x, ∂U).

Proposition 6 The mapping π : Rn → ∂U is a Lip-
chitz projection. More precisely, π ◦ π = π, and given
x, y ∈ Rn and δ > 0 such that d(x, ∂U) < δ and

d(y, ∂U) < δ, ‖π(x)− π(y)‖ ≤
√

2 r
2 r−3 δ ‖x− y‖.

Proof Just apply Lemma 2 to the vectors u = π(y) −
π(x), v = η(π(x)), w = η(π(y)), v′ = x − π(x) and
w′ = y − π(y). Notice that u + w′ − v′ = y − x. ut



Smoothness of boundaries of regular sets 5

Combining the two Lipschitz maps η and π we define
a Lipschitz function f : Rn → R by

f(x) = 〈x− π(x), η(π(x)) 〉 .

Although we did not prove η and π to be of class
C1, it happens that

Proposition 7 Function f is of class C1 with diffe-
rential given by

Dfx(v) = 〈 v, η(π(x)) 〉 .

Proof It’s enough to prove that for some constant C >

0,

|f(y)− f(x)− 〈y − x, η(πx)〉| ≤ C ‖y − x‖2
.

We shall apply the inequalities in Lemma 1 (3), (4), and
(5) with u = π(y)− π(x), v = η(πx) and w = η(πy).

|f(y)− f(x)− 〈y − x, η(πx)〉| =
= |〈y − πy, η(πy)〉 − 〈x− πx, η(πx)〉 − 〈y − x, η(πx)〉|
= |〈y − πy, η(πy)〉 − 〈y − πx, η(πx)〉|
≤ |〈y − πy, η(πy)〉 − 〈y − πx, η(πy)〉|

+ |〈y − πx, η(πy)〉 − 〈y − πx, η(πx)〉|
= |〈πx− πy, η(πy)〉|+ |〈y − πx, η(πy)− η(πx)〉|
= |〈πx− πy, η(πy)〉|+ |〈y − x, η(πy)− η(πx)〉|

+ |〈x− πx, η(πy)− η(πx)〉|

= |〈u, w〉|+ |〈y − x,w − v〉|+ ‖x− πx‖
r

|〈v, w − v〉|

≤ 3
4
‖u‖2 + ‖y − x‖ ‖v − w‖+

‖x− πx‖
2 r

‖u‖2

≤ 3
4
‖πy − πx‖2 + ‖y − x‖ ‖πy − πx‖+

δ

2 r
‖πy − πx‖2

≤ C ‖y − x‖2
,

where in the last step we use that π is Lipschitz in any
neighbourhood Nδ = {x ∈ Rn : d(x, ∂U) < δ }, and
the constant C = Cδ is given explicitely by

Cδ =
3
4

2 r

2 r − 3 δ
+

√
2 r

2 r − 3 δ
+

δ

2 r

2 r

2 r − 3 δ
.

ut

Because function f has gradient η 6≡ 0 along ∂U it
follows that ∂U = f−1(0) is a codimension one boun-
daryless manifold of class C1, which proves Theorem 1.

We note that Theorem 1 can not be improved to
higher smoothness classes, as simple examples like the
union of a family of radius r balls with centre in some
closed interval show (see Fig. 3).

Fig. 3 An r-regular set with C1 but not C2 boundary
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tien. Bulletin de la S. M. F., 93, 273–299 (1965)

8. Pavlidis, T.: Algorithms for Graphics and Image Pro-
cessing. Computer Science Press (1982)

9. Serra, J.: Image Analysis and Mathematical Morphology.
Academic Press (1982)

10. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological
Equivalence between a 3D Object and the Reconstruction
of its Digital Image. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence 29(1), 126–140 (2007)

11. Stelldinger, P.: Image Digitization and its Influence on
Shape Properties in Finite Dimensions. IOS Press, Ger-
many (2007)
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