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1 Introduction

The main task of digital image processing is to in-
fer properties of real objects given their digital ima-
ges, i.e., discrete data generated by some simple device,
like a CCD camera. A fundamental question in digi-
tal image processing is: which properties inferred from
discrete representations of real objects, under certain
conditions, correspond to properties of their originals?
Most of the known answers to this question are res-
tricted to a certain class of subsets of Euclidean space
R? ([5,6,8,9,11,12]), or R3 [10], representing real ob-
jects, called r-regular sets. As can be read in [11], “the
fact that r-reqular sets are widely used in the context of
digitalization shows that r-regularity is a fundamental
property”. In [6], conditions were derived relating pro-
perties of regular sets to the grid size of the sampling
device which guarantee that a regular object and its
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digital image are topologically equivalent. To obtain the
topological equivalence it was used that a regular set is
always bounded by a codimension one manifold. This
property was conjectured in [6, p. 145]. Later, in [11],
several properties of r-regular sets, which make them
attractive for image digitization, were proved. In par-
ticular, the author states in [11, Lemma 3.4] that the
boundary of an n-dimensional r-regular set is an (n—1)-
dimensional manifold, but the sketched idea can not be
considered as a mathematical proof.

In this paper we prove, in any dimension, that the
boundary of an r-regular set is a codimension one boun-
daryless manifold of class C'. The proof generalizes, to
the setting of r-regular sets, a classical result on con-
vex sets (see, [4]): the distance function of a point in
an Hilbert space X to a closed conver set K C X is
always C*, regardless of the boundary behaviour of K.
According to Holmes [4], this fact seems to have first
been established by Moreau in [7].

The authors’ motivation in proving this theorem
comes from the study of smooth nondeterministic dy-
namical systems, that is the dynamics of ‘smooth’ point-
set maps on a compact manifold, where r-regular sets
can appear as dynamically invariant sets. See [3].

2 Geometry of Convex Projections

Let K C R™ be a compact convex set.

Proposition 1 Given x € R™, there is a unique point
z € K such that

(1) [lz = 2]l = d(z, K),
(2) (x —z,y—2) <0, forally e K.
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Condition (2) just says that the point z € K which
minimizes the distance to x is contained in the half-
space bounded by the hyperplane through 2 normal to
the vector x — z,

KC{yeR": (x—2zy—2 <0}.

We define 7 : R® — K to be the map that to each
x € R™ assigns the unique point z = 7(z) € K which
minimizes the distance to x.

Proposition 2 The mapping m : R® — K is a Lips-
chitz projection. More precisely, mom = mw, and given
2,y € R, [[w(z) —w(y)|| < [l —yll-

Proof 1t is clear that m o m = 7. Consider the vectors
w=zx—mn(x)v=y-n(y) adw = x(z) - 7(y),
which satisfy (v,w) < 0 and {(u,w) > 0. Notice that
u—v+w=x—y. We have
v+ wl?
2 2
= llu—ol" + lwl]” + 2 (v — v, w)
2 2 2
= [lu=vlI” + [[wl]” + 2 (u, w) =2 (v, w) = [Jw]|”,

>0

and hence ||y —z|* > ||7(y) — =(x)|*. 0
Define now f : R™ — R by f(z) = ||z — 7(2)||*.

Proposition 3 The mapping f : R™ — R is of class
C* with derivative Df,(v) =2 (z — m(z),v).

Proof Given x,v € R", let y = x + v. We have
2 2 2
ly =m@)II” < lly = 7(@)[I” = llv+ 2z — 7 (2)]|
2 2
= vl +llz = x(@)[]" + 2 (z — 7(x),v)

and hence

flz+v) = fz) = 2(z —7(2),v) < [lv]* . (1)
Conversely, interchanging the roles of z and y we get
lz = m(@)|* < [oll* + lly = 7()[I* = 2y — 7 (y), 0) -
Noticing that
(z—m(x),v) = (y = 7(y),v)
= (7(y) —7(x) —v,v)

= (n(y) — w(2),v) = [[v]’
< |lw(y) = m(@)|| lloll = [lol|* < 0

we get from the previous inequality
lz = w(@)|* < [[ol* + lly = 7 ()II* = 2 (z = 7(2),v) ,
and therefore
fl@+v) = f@) = 2(z —7(@),v) = — o] . (2)
Combining (1) and (2) we get
[f(@+v) = f(z) =2 (@ = x(2),0)| < o],

proving that f is of class C'' with the specified deriva-
tive. a

Remark 1 Assuming m : R® — QU 1is any Lipschitz
projection such that ||z — w(z)|| = d(z,dU), for some
open set U C R™ with reqular compact boundary, the
argument of the previous proposition can be adapted to
prove that

|f(@+v) = f(z) =2 (@ = 7(2),0)| < C |lv]*

where C' is the Lipschitz constant for .

3 Geometry of r-Convex Projections

The class of r-regular sets was independently intro-
duced in [8] and [9]. This class is also referred in [1,
2,5,6,10-12]. Although the details of the definitions in
these papers are different, the described class is essen-
tially the same and can be defined as follows. Fix a po-
sitive number r > 0 and define U,. as the set of all con-
nected unions of Euclidean open balls of radius r» > 0.
Note that, as any ball of radius greater than r is itself
a union of balls of radius r, any set in U, is a union of
balls of radius 7.

Definition 1 An open set U C Rj 18 said to be r-
regular if and only if U € U, and U’ el,.

A set C C R" is called r-conver if and only if it
is an intersection of any number of r-ball complements
B.(a) = {z € R" : d(x,a) > r} where a runs through
some possible infinite set. Notice that complements of
open sets in U, are r-convex sets.

The aim of next results is the proof of

Theorem 1 Let U C R™ be an r-reqular set. Then OU
is a codimension one boundaryless manifold of class C*.
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From now on we assume that U C R" is an r-regular
set.

Proposition 4 Given x € U, there is a unique vector
) € R™ such that:

n(x
(1) ()| =r,
(2) z+n(z) e,
B) {yeR" ¢ [z +n(z) —y| <r}CU,
4) {yeR" : o —n(z) —y| <r}cT".

The mapping 1 : OU — R”™ is a normal vector field
along OU with constant norm equal to 7.

Consider the following picture.

Fig. 1 Assumptions of Lemma 1

The assumptions of the following lemma say that v
and w are vectors of some fixed length r, u is a small
vector, and the two specified diagonals have length grea-
ter than 2 7. This means the radius r circles centered at
the diagonal endpoints B; and Bs do not intersect the
interiors of the radius r circles centered at the diagonal
endpoints C7 and Cs.

Lemma 1 Assume we have

(@) |Jvll = [lw] =,
®) Jlu+ (v+w)| > 2r, and
() Jlu— (v+w)| > 2r.

Then

(1) o —wll < IIUII

(2) v +wu)| < 5 [lul?,

Proof Using the parallelogram identity, we derive that

812 < |lu+ (v +w)|* + u— (v +w)|®

3)
2 2
=2 Jlull” + 2 [lv + w|

and
2 2 2 2
lv + wll® + lv = w]|* = 2 [[ol|° + 2 [lw]|* = 47*.
Hence plugging
lo+wl|* = 47> — o - w]|® (4)

in (3) we get

812 < 2 |ul® +2 v+ wl|?
=877 +2 [[u)* - 2 |jv — w|?

& v —wl® < ul* & |jv—wl < |ul .
This proves item (1).
From (b) and (c¢), plugging (4) in, we have
47 < ull® + |lv 4+ w||* £ 2 (u, v + w)
= [lul|® + 47 — |jv — w|]* £ 2 (u, v + w)
which implies
F2(u, v+ w) < [Jul® = [lv — w]|* < [Jul®

Hence

2
[{u, v +w)| < o ull
which proves item (2).

Items (3) and (4) follow because

1
)] < & (v — )]+ [0+
1
<3 (bl o= i+ 5 1ul?)
1 2 2
<= - _
< (Bt + 5 ) =3
and
0= w)] < Jul o~ w]

2
< ]l
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Finally, and, therefore,
2 - 36
o= wl® = (v = w,v — w) o, 0|+ [t 0] < o2 [
=2(v,v —w) — (v+w,v—w) "
2 2 Thus
=2(v,v —w) = (lv]” = llwl]")
—_———
=0 a1’ = o |* = " = o[+ [l + 2 (0 = o)
Hence > J[ull* = |(u, w')] = [(u, )|
30
1 2 1 2 > lul? = 22 2
(0.0 —w) = 3 v —wl® < 3 Jul® 2 [lull” = 5 lul
_ 36 9
and this proves item (5). O ={1- brS [l

Lemma 2 Under the same assumptions of the previous
lemma consider vectors v' and w' colinear with v and
w respectively such that |[v'|| < § and |w'|] < §. Then

lull < 4/ 5755

lu +w — .

Notice that the coefficient ﬂ/27~2j3 5 gets close to 1

as 6 — 0.

-~ -

1
1
i
1
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1
1
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Fig. 2 Assumptions of Lemma 2

Proof By item (3) of previous lemma we have

ny_ I 36 12
=" [(u,v)| < — :

) = T )] < L

Because the vectors v and w play the same role we also
have

39

[[w] 2
[(u,w)f = == Wu,w)] < = Jlull”

which implies that

-1
2 36 2
ol < (1-22) futw - v

_ 2r , 2
_27”735 Hu—i—w U” )

and proves the lemma. a

Proposition 5 The normal vector field n : OU — R"
is Lipschitz continuous, with Lip(n) <1,

In(z) =n(y)ll < llz =yl

Proof Given z,y € U we have
B(z +n(x),r) N By —n(y),r) =0

which is equivalent to ||z — y + n(x) + n(y)|| > 2r. Ana-
logously,

B(:]C - TI(I)J") N B(y + U(y)ﬂ”) =0
which is equivalent to |z —y — n(z) — n(y)|| > 2r. The

Lipchitz inequality follows by applying Lemma 1 (1) to
the vectors u =z — y, v = n(z) and w = n(y). O

Define 7 : R® — OU as the minimizing projection
| —m(z)|| = d(xz,0U).

Proposition 6 The mapping 7w : R — 0U is a Lip-
chitz projection. More precisely, wom™ = mw, and given
z,y € R® and 6 > 0 such that d(z,0U) < § and

d(y,0U) <6, |In(z) = w(W)] < /57755 e =yl

Proof Just apply Lemma 2 to the vectors u = 7(y) —
ﬂ—(x)v v = 77(”(95))» w = U(W(Z/))v V=2 — 7T({L‘) and
w’ =y — 7(y). Notice that u + w' —v' =y — x. O
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Combining the two Lipschitz maps 1 and 7 we define
a Lipschitz function f: R™ — R by

f(x) = (2 —m(x), n(m(z))) -

Although we did not prove 1 and 7 to be of class
C', it happens that

Proposition 7 Function f is of class C' with diffe-
rential given by

Dfe(v) = (v, n(w(x))) .

Proof Tt’s enough to prove that for some constant C' >
0,

1f(y) = f(@) = (y =, n(mx)| < C lly — | .

We shall apply the inequalities in Lemma 1 (3), (4), and
(5) with u = 7(y) — w(x), v = n(rz) and w = n(7y).

|f(y) — f(z) = (y — z,n(7z))| =

= [{y = my,n(ry)) — (z — mz,n(7z)) — (y — z,n(rz))|

= [{y — my,n(ry)) — {y — ma,n(7z))|

< Ky — my, n(ry)) — (y — 7z, n(ry))
+ y — 7z, n(ry)) — (y — ma, n(7w))|

= [(mz — 7y, n(my))| + [(y — 7z, n(ry) — n(7z))|

= [(mz — my,n(my))| + [y — z, n(7y) — n(rz))|
+ [z — mz,n(7y) — n(72))|

o = mall |

= [{w, W)+ [y — 2,0 —v)| + — )]

" (v, w

2 [l — ma|
[all™ + lly = =[] lv = wl]| + =—=—— lu

<
- 27

: &
4
3 2 4] 2
< 5wy = mzl|” +ly — || lmy — w2l + o= [lmy — 7wa|
4 2r
2
<Cly—=|,
where in the last step we use that 7 is Lipschitz in any

neighbourhood Ny = {z € R" : d(x,0U) < §}, and
the constant C' = Cj is given explicitely by

L e
2r—36 2r2r—36"°

Because function f has gradient n # 0 along OU it
follows that U = f~1(0) is a codimension one boun-
daryless manifold of class C', which proves Theorem 1.

7% 2r
42r—36

Cs

We note that Theorem 1 can not be improved to
higher smoothness classes, as simple examples like the
union of a family of radius r balls with centre in some
closed interval show (see Fig. 3).
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Fig. 3 An r-regular set with C! but not C? boundary
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