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Abstract. Polygonal slap maps are piecewise affine expanding
maps of the interval obtained by projecting the sides of a poly-
gon along their normals onto the perimeter of the polygon. These
maps arise in the study of polygonal billiards with non-specular re-
flections laws. We study the absolutely continuous invariant prob-
abilities of the slap maps for several polygons, including regular
polygons and triangles. We also present a general method for con-
structing polygons with slap maps having more than one ergodic
absolutely continuous invariant probability.

1. Introduction

Piecewise expanding maps of the interval are one-dimensional dy-
namical systems with a rich dynamics. The ergodic properties of these
maps are well understood. Under proper conditions, they admit finitely
many ergodic absolutely continuous invariant probabilities (acip’s), and
each ergodic component decomposes into a finite number of mixing
components cyclically permuted by the map [2]. In this paper we are
interested in a class of piecewise expanding maps which we call polygo-
nal slap maps, appearing in the study of polygonal billiards. We focus
on the analysis of the acip’s of these maps for triangles and regular
polygons, determining in particular the exact number of their ergodic
and mixing components.

Denote by Pd the set of d-gons that are not self-intersecting. Con-
sider a polygon P ∈ Pd with perimeter L, and let s ∈ [0, L] be the arc
length parameter of ∂P . Let ρ be the ray directed inside P and orthog-
onal to ∂P at s, and let s′ be the closest point to s among the points in
ρ∩P (see Fig. 1a). The map ψP defined by s 7→ s′ is a piecewise affine
map, called the slap map of P . If P does not have parallel sides, then
ψP is a piecewise affine expanding map of the interval (see Fig. 1b).

Slap maps have been introduced in [7] as a tool to study billiards with
a strongly contracting reflection law (see also [1]). In fact, slap maps
can be thought of as a billiard for which the reflection angle measured
with respect to the normal is always zero. In [4], the study of slap
maps was key in establishing the existence of hyperbolic attractors
with finitely many Sinai-Ruelle-Bowen measures for polygonal billiards
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Figure 1. (A) Slap map ψP . (B) Graph of ψP .

with strongly contracting reflection laws. The aim of this paper is to
study the ergodic properties of polygonal slap maps, which will be used
in future work to derive ergodic properties of polygonal billiards [5].

The following are the main results of this paper. The first one deals
with regular polygons and answers negatively a question formulated by
Markarian, Pujals and Sambarino in [7, Section 5.1].

Theorem 1.1. Let P be a regular polygon with an odd number d
of sides. Then ψP has a unique ergodic acip if d = 3 or d = 5,
and exactly d ergodic acip’s if d ≥ 7. Every acip’s has 2m(d) mix-
ing components for every odd d ≥ 3, where m(d) is the integer part
of − log2(− log2 cos(π/d)). In particular, m(3) = 0, m(5) = 1 and
m(7) = 2.

Our second main result concerns slap maps of general triangles.

Theorem 1.2. The slap map ψP of a triangle P has a unique ergodic
acip. If P is acute, then the acip is mixing and is supported on the
whole interval. Otherwise, the acip has an even number of mixing
components.

From the previous theorems, it emerges that the uniqueness of the
acip is not a typical property among polygonal slap maps. To further
explore this fact, we present a procedure for constructing polygons with
a number of sides greater than three whose slap map has several ergodic
acip’s. In particular, we show that for any n ≥ 2 there exists a convex
3n-gon whose slap map has n ergodic acip’s with even mixing period.
Moreover, we study a bifurcation of certain periodic orbits yielding a
mechanism for the creation of ergodic components. We apply it to
show that there exist quadrilaterals with a mirror symmetry that have
at least two acip’s.

The paper is organized as follows. In section 2 we review several
results on piecewise expanding maps of the interval concerning the
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existence of acip’s and their spectral decomposition. Since slap maps
of regular polygons are extensions of certain Lorenz maps, in section 2,
we also briefly review the main results concerning the renormalization
of Lorenz maps. The proof of Theorems 1.1 and 1.2 is contained in
sections 3 and 4, respectively. Finally, in section 5, we describe in
detail a method to construct polygons with more than one ergodic
acip’s.

2. Piecewise Expanding Interval Maps

Let I be a closed interval. A map f : I → I is called piecewise
expanding if there exist a constant σ > 1 and closed intervals I0, . . . , Im
such that

(1) I =
⋃m
i=0 Ii and int(Ii) ∩ int(Ij) = ∅ for i 6= j,

(2) f |int(Ii) is C1, and |f ′|int(Ii)| ≥ σ for each i,
(3) 1/|f ′| is a function of bounded variation on each int(Ii).

Throughout the paper, we will use the standard abbreviation acip
for an invariant probability measure of f that is absolutely continuous
with respect to the Lebesgue measure of I.

2.1. Spectral decomposition. In the following theorem, we summa-
rize well known results on ergodic properties of piecewise expanding
maps (for example, see [2, Theorems 7.2.1, 8.2.1 and 8.2.2]).

Theorem 2.1. Let f be a piecewise expanding map. Then

(1) f has exactly j ergodic acip’s ν1, . . . , νj for some 1 ≤ j ≤ m,
(2) the density of each νi has bounded variation, and its support Λi

consists of finitely many intervals,
(3) for each i, there exist an integer ki ≥ 1 and disjoint measurable

sets such that Λi = Σi,1 ∪ · · · ∪ Σi,ki, the sets Σi,1, . . . ,Σi,ki are
cyclically permuted by f , and (fki|Σi,1

, νi|Σi,1
) is exact.

The sets Σi,j and the constant ki are called the mixing components
of f , and the mixing period of the cycle Σi,1, . . . ,Σi,ki , respectively.

2.2. Lorenz maps.

Definition 2.2. A map f : [0, 1]→ [0, 1] is called a Lorenz map if f has
a unique discontinuity point 0 < c < 1 such that f(c−) = 1, f(c+) = 0,
and f is monotonic increasing in both intervals [0, c) and (c, 1].

A Lorenz map f : [0, 1]→ [0, 1] is renormalizable if there exist `, r > 1
and a proper subinterval [a, b] ⊂ [0, 1] such that the transformation
g : [a, b]→ [a, b] defined by

g(x) =

{
f `(x) if x ∈ [a, c)
f r(x) if x ∈ (c, b]

is also a Lorenz map. We call [a, b] a renormalization interval. If f is
not renormalizable it is said to be prime.
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A renormalization g = (f `, f r) of f is minimal if for any other renor-
malization g′ = (f `

′
, f r

′
) of f we have `′ ≥ ` and r′ ≥ r. For every

renormalizable Lorenz map f we define Rf to be its minimal renormal-
ization. Finally, we say that a Lorenz map f is m-times renormalizable
with 0 ≤ m ≤ ∞ if Rkf is renormalizable for 0 ≤ k < m and Rmf is
prime.

Let f : [0, 1]→ [0, 1] be a piecewise expanding Lorenz map.

Theorem 2.3 (Glendinning and Sparrow [6]). If f is prime then it
admits a unique mixing acip with support equal to the interval [0, 1].

Consider now the family of piecewise affine Lorenz maps fa : [0, 1]→
[0, 1] with 1 < a ≤ 2 given by

fa(x) = a(x− 1/2) (mod 1).

We call fa a centrally symmetric map. Let m = m(a) be the unique
nonnegative integer such that

22−m−1

< a ≤ 22−m

.

A centrally symmetric interval is a subinterval of [0, 1] centered at 1/2.
From the results of W. Parry [8] we get

Theorem 2.4. fa is m-times renormalizable with Rkfa = f 2k

a |Jk for
k = 0, 1, . . . ,m, where the renormalization intervals Jk form a nested
sequence of centrally symmetric intervals,

1/2 ∈ Jm ⊂ Jm−1 ⊂ · · · ⊂ J1 ⊂ J0 = [0, 1].

As an immediate consequence of Theorems 2.3 and 2.4 we have the
following result.

Corollary 2.5. fa has a unique ergodic acip and 2m mixing compo-
nents.

Remark 2.6. When
√

2 < a ≤ 2, we have m(a) = 0. Thus fa is
mixing.

2.3. Polygonal slap maps.

Definition 2.7. We say that a polygon P ∈ Pd has parallel sides facing
each other if P contains a segment intersecting orthogonally two of its
sides and having no other intersections with ∂P .

If a polygon P ∈ Pd does not have parallel sides facing each other,
then the polygonal slap map ψP introduced in Section 1 is piecewise
expanding (see Fig. 1). On the other hand, if P has parallel sides facing
each other, then ψP is not expanding, because the restriction of ψ2

P to
a subinterval of the domain of ψP is equal to the identity (i.e. ψP has
a continuous family of periodic points of period two).



ERGODICITY OF SLAP MAPS 5

Corollary 2.8. Suppose that P ∈ Pd does not have parallel sides facing
each other. Then the map ψP has exactly j ergodic acip’s for some
1 ≤ j ≤ d. Moreover, every acip of f is supported on finitely many
intervals.

Proof. Since ψP is piecewise expanding, the claim follows from Theo-
rem 2.1. �

Remark 2.9. The above maximum number of acip’s cannot be im-
proved. Indeed, in Theorem 3.11 we show that if P ∈ Pd is regular and
d ≥ 7 is odd, then ψP has exactly d ergodic acip’s.

3. Regular Polygons

In this section we characterize the ergodicity of slap maps on regular
polygons with an odd number of sides.

Denote by Pd the regular d-gon, d ≥ 3. Suppose that the sides of
Pd have unit length. The slap map ψPd

is a one dimensional piecewise
affine map of the interval [0, d] with d points of discontinuity. The
symmetries of the regular d-gon imply that

ψPd
(x+ 1)− 1 = ψPd

(x) (mod d) .

Passing to the quotient we obtain the reduced slap map φPd
: [0, 1]→

[0, 1] given by

φPd
(x) =

{
− 1
βd

(
x− 1

2

)
(mod 1) if d is odd

1− x otherwise
,

where βd = cos(π
d
) is an algebraic number. A detailed derivation of the

reduced slap map can be found in [4, Section 6]. Clearly, when d is
even, the slap map is an involution, i.e. every point is periodic of period
two. On the other hand, when d is odd, the slap map is expanding.
Since it has d points of discontinuity, by Corollary 2.8, ψPd

has at most
d ergodic acips, each supported on a union of finitely many intervals.

For the remaining part of this section we shall assume that d is an
odd number and to simplify the notation we shall write φd and ψd for
the reduced slap map and slap map of Pd, respectively.

The following lemma explains the relation between the slap map and
its reduced slap map. Let Zd = Z/dZ be the group of integers modulo
d.

Lemma 3.1. The slap map ψPd
is conjugated to the skew-product map

Fd : [0, 1]× Zd → [0, 1]× Zd defined by Fd(x, s) = (φd(x), σx(s)) where

σx(s) = s+

[
d

2

]
δ(x) and δ(x) =

{
−1 x < 1/2

1 x > 1/2
.
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Proof. Let H : [0, 1] × Zd → [0, d] be the map defined by H(x, s) =
x + s. Then a simple computation shows that the following diagram
commutes.

[0, 1]× Zd
Fd−−−→ [0, 1]× ZdyH yH

[0, d]
ψd−−−→ [0, d]

�

Remark 3.2. The reduced slap map is a factor of the slap map, i.e.
π ◦ FPd

= φPd
◦ π where π : [0, 1] × Zd → [0, 1] is the projection

π(x, s) = x.

Let µ be an acip of the slap map ψd. We denote by µ̂ the pushforward
measure by H−1, i.e. µ̂ := (H−1)∗µ, where H is the conjugation in
Lemma 3.1. Clearly, µ̂ is an invariant measure for the skew-product
Fd. It follows from Theorem 2.1 and Remark 3.2 that

Lemma 3.3. The reduced slap map φd has a unique ergodic acip νd.
Moreover, π∗µ̂ = νd for any acip µ of the slap map ψd.

Let ϕd = ϕ◦φd where ϕ : [0, 1]→ [0, 1] is the involution ϕ(x) = 1−x.
Also, let m = m(d) be the unique nonnegative integer such that

22−m−1

< 1/βd ≤ 22−m

.

Lemma 3.4. The following holds:

(1) ϕd is a centrally symmetric piecewise affine Lorenz map,
(2) (ϕd)∗νd = νd,
(3) there exist centrally symmetric intervals

Jm ⊂ Jm−1 ⊂ · · · ⊂ J1 ⊂ J0 = [0, 1]

such that ϕ2k

d |Jk is a Lorenz map for k = 0, . . . ,m and ϕ2m

d |Jm
is mixing.

Proof. The first assertion of the lemma is a simple computation, so we
omit it. To prove the second assertion, note that the reduced slap map
is ϕ-symmetric, i.e. ϕ ◦ φd = φd ◦ ϕ, which implies that ϕ∗νd is also
an acip of φd. By uniqueness of νd we conclude that ϕ∗νd = νd. Thus,
(ϕd)∗νd = (ϕ ◦ φd)∗νd = ϕ∗νd = νd. Finally, the last assertion follows
from Theorem 2.3 and Theorem 2.4. �

Remark 3.5. By Corollary 2.5, the Lorenz map ϕd has 2m mixing
components. Taking into account that φd = ϕd ◦ ϕ and ϕ2 = id, we
conclude that the reduced slap map φd also has 2m mixing components.

For every integer n ≥ 0 we write F n
d (x, s) = (φnd(x), σnx(s)) where

σnx(s) := σφn−1
d (x) ◦ · · · ◦ σx(s). Note that σnx is a translation on Zd, i.e.
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σnx(s) = s+ αn(x) where

αn(x) :=

[
d

2

] n−1∑
i=0

δ(φid(x)) .

Lemma 3.6. For k = 0, . . . ,m, the following holds:

(1) F 2k

d (π−1(Jk)) = π−1(Jk),
(2) α2k(x) = akδ(x) for every x ∈ Jk, where a0 = [d/2], a1 = −1

and
ak = 0, k = 2, . . . ,m .

Proof. Item (1) follows from (3) of Lemma 3.4. Now we prove (2). Let

J−k = Jk∩[0, 1/2) and J+
k = Jk∩(1/2, 1]. Since φ2k

d is continuous on J±k ,
there exists a±k ∈ Zd such that α2k(x) = a±k for every x ∈ J±k . A simple
computation shows that α2k = −α2k ◦ϕ, which implies that a+

k = −a−k .
Thus, α2k(x) = akδ(x) where ak := a+

k . Clearly, α1(x) = [d/2] δ(x). So
a0 = [d/2]. The remaining ak can be computed recursively from the

equation α2k+1(x) = α2k(x) + α2k(φ2k

d (x)). This concludes the proof of
the lemma. �

We now study each regular polygon separately. Given any interval
I ⊂ [0, 1] let Is = I × {s}.
3.1. Equilateral triangle. Since m(3) = 0, the reduced slap map φ3

of the equilateral triangle is mixing. It is easy to see that the same is
true for the slap map ψ3.

Theorem 3.7. The slap map of the equilateral triangle has a unique
mixing acip with support equal to the interval [0, 3].

Proof. Note that φ3([0, 1/2−]) = φ3([1/2+, 1]) = [0, 1]. Since F3(x, s) =
(φ3(x), s + δ(x)) we have that F3(Is) = Is−1 ∪ Is+1 for every s ∈ Z3.
This implies that ψ3 is Markov with irreducible and aperiodic transition
matrix. The claim follows. �

3.2. Regular pentagon.

Theorem 3.8. The slap map of the regular pentagon has a unique
ergodic acip with two mixing components.

First note that m(5) = 1. By Lemma 3.4, ϕ5 is 1-time renormaliz-
able. In fact, a simple computation shows that ϕ5 is renormalizable on
J = [e, ϕ(e)] where e = (3−

√
5)/2. Since ϕ2

5|J is an expanding Lorenz
map, there exists a unique b ∈ [e, 1/2) such that ϕ2

5(b) = 1/2. In fact,
b = (9 −

√
5)/16. By ϕ-symmetry, ϕ2

5(ϕ(b)) = 1/2. Let B = [b, ϕ(b)].
It is easy to see that ϕ2

5 has a unique periodic orbit Op = {p, ϕ(p)} of
period two contained in B (see Fig. 2).

Lemma 3.9. For any interval I ⊂ [0, 1] such that I ∩ Op 6= ∅, there
exists an integer n ≥ 1 such that Js ⊂ F 4n

5 (Is) for every s ∈ Z5.



8 DEL MAGNO, LOPES DIAS, DUARTE, AND GAIVÃO
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Figure 2. (A) Graph of ϕ2
5. The centered dashed

square is J2
1 . (B) Graph of ϕ4

5 on the interval J1. The
points represent the periodic orbit Op of ϕ2

5.

Proof. By Lemma 3.6, α2(x) = −δ(x) for every x ∈ J . Using equation
α4(x) = α2(x)+α2(φ2

5(x)) as in the proof of Lemma 3.6, we get α4(x) =
−2δ(x)χJ\B(x) for every x ∈ J . Thus, α4(x) = 0 for every x ∈ B. This
implies that

F 4
5 (Bs) = Js for every s ∈ Z5 . (3.1)

Let B− = [b, 1/2−] and B+ = ϕ(B−). Note that B = B− ∪ B+. Now
let I ′ = [p − δ, p + δ] and δ > 0 arbitrary small such that I ′ ⊂ B−.
Since φ4

5 is expanding and p is a fixed point of φ4
5, I ′ is a local unstable

manifold of p. By iteration of the map φ4
5, the length of φ4n

5 (I ′) will
increase until it is no longer strictly contained in B−. Taking into
account that α4|B = 0, we conclude that there exists an integer j ≥ 1
such that B−s ⊂ F 4j

5 (I ′s) for every s ∈ Z5. A simple computation
shows that φ4

5(1/2−) > ϕ(p). Thus ϕ(p) ∈ φ4
5(B−). So, we can repeat

the same argument starting with any small interval containing ϕ(p).
Hence, there exists an integer n ≥ j such that Bs ⊂ F 4n

5 (Is) for every
s ∈ Z5 and for every interval I intersecting Op. By equation (3.1) we
get the desired result.

�

Let µ be an ergodic acip of the slap map ψ5 and Λ the support of µ.
By Theorem 2.1, we may decompose Λ in mixing components,

Λ = Σ1 ∪ · · · ∪ Σk ,

such that ψk5 |Σi
is mixing. Since φ2

5|J is mixing, the mixing period k
must be even. Let H be the conjugation in Lemma 3.1.

Lemma 3.10. H(π−1(J)) is a mixing component of µ.

Proof. By Lemma 3.3, there exists a mixing component Σ of µ which
satisfies H−1(Σ) ∩ Op 6= ∅. Note that Σ is a union of finitely many
intervals. This fact follows from (2) of Theorem 2.1 applied to the map
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Figure 3. (A) One ergodic component of the slap map
on the heptagon. (B) Graph of φ7 and an orbit on the
support of ν7.

ψk|Λ. Thus, we can decompose H−1(Σ) as follows

H−1(Σ) = I1,s1 ∪ · · · ∪ Ir,sr
where Ij,sj = Ij × {sj}, sj ∈ Z5 and Ij is a subinterval of [0, 1]. By a
previous observation we conclude that Ij ∩Op 6= ∅ for some 1 ≤ j ≤ r.
Applying Lemma 3.9 we get Jsj ⊂ H−1(Σ). Now, by Lemma 3.6 we
have α2(x) = −δ(x) for every x ∈ J . Thus,

F 2
5 (Jsi,j) ∩ (Op × {si,j ± 1}) 6= ∅ .

Applying again Lemma 3.9, we obtain Jsi,j+i ⊂ H−1(Σ) for i = −1, 0, 1.
Repeating the argument for Jsi,j±1 we conclude that π−1(J) ⊂ H−1(Σ).

By (1) of Lemma 3.6, F k
5 (π−1(J)) = π−1(J). So we get equality and

the proof is complete.
�

Proof of Theorem 3.8. By Lemma 3.10, any ergodic acip µ has a mixing
component Σ which is equal to H(π−1(J)). Therefore, the slap map
ψ5 has at most one ergodic acip. Finally, since F 2

5 (π−1(J1)) = π−1(J1),
we conclude that ψ5 has mixing period two.

�

3.3. Regular polygon Pd with odd d ≥ 7.

Theorem 3.11. If d ≥ 7 and d is odd then the slap map of Pd has d
ergodic acips with 2m(d) mixing components.

Proof. When d ≥ 7 and d is odd we have m(d) ≥ 2. Since, by (2) of
Lemma 3.6, α2m(x) = 0 for every x ∈ Jm we conclude that

F 2m

d (x, s) = (φ2m

d (x), s) , ∀ (x, s) ∈ Jm × Zd . (3.2)

Therefore, the slap map has at least d ergodic acips. However, the
number of ergodic acips cannot be greater than d, the number of points
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of discontinuity of ψd. Thus, ψd has exactly d ergodic acips. Moreover,
since φd has 2m mixing components, by (3.2) the same is true for the
slap map (see Fig. 3).

�

4. Triangles

In this section we prove that the slap map of every triangle has a
unique ergodic acip.

Let ∆ denote a triangle.

Theorem 4.1. The slap map ψ∆ has a unique ergodic acip. Moreover,
if ∆ is acute then ψ∆ is mixing, and its acip is supported on the whole
interval. Otherwise, ψ∆ has a even number of mixing components.

Proof. We split the proof in two cases: (a) ∆ acute, and (a) ∆ not
acute.

Case (a). Arguing as in the proof of Theorem 3.7, we see that the
slap map of an acute triangle is a Markov map with irreducible and
aperiodic transition matrix. Therefore, ψ∆ has a unique mixing acip.

Case (b). Let I0, I1, I2 be the sides of ∆. We assume that I0 is the
longest side. The sets I0 and I1∪I2 are both forward invariant under the
second iterate of the slap map. Moreover, ψ2

∆|I0 and ψ2
∆|I1∪I2 are both

piecewise affine expanding maps with a single point of discontinuity.
So, by Theorem 2.1, ψ2

∆|I0 and ψ2
∆|I1∪I2 have a unique ergodic acip, ν0

and ν12, respectively. Let µ be an acip of the slap map ψ∆. Clearly
µI0 = ν0 and µI1∪I2 = ν12, by uniqueness. To prove that µ is ergodic
we argue as follows. Let J be an invariant subset of I0 ∪ I1 ∪ I2 for
ψ∆. We can write J = A ∪ B with A ⊂ I0 and B ⊂ I1 ∪ I2. Then
ψ−2

∆ (A) ∪ ψ−2
∆ (B) = ψ−2

∆ (J) = J = A ∪ B. Since I0 and I1 ∪ I2 are
invariant under ψ2

∆, it follows that ψ−2
∆ (A) = A and ψ−2

∆ (B) = B. But
ψ2

∆|I0 and ψ2
∆|I1∪I2 are ergodic so that µI0(A) = µI1∪I2(B) = 1. Thus

µ(J) = 1, which proves that ψ∆ is ergodic but not mixing with respect
to µ. From previous observation, the number of mixing components
has to be even. �

Remark 4.2. When ∆ is a right triangle, the slap map ψ∆ is a Markov
map with a transition matrix that is irreducible and periodic of period
two. Thus, ψ∆ has two mixing components.

5. More examples of non-ergodic slap maps

In the previous section we proved that every regular polygon with an
odd number d ≥ 7 of sides has exactly d ergodic acip’s. In this section
we provide more examples of polygons whose slap map has more than
one ergodic acip’s. For brevity, we will refer to these polygons as ‘non-
ergodic polygons’.
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It is quite easy to construct examples of non-ergodic polygons with
more than five sides. For example, by intersecting two obtuse triangles,
we obtain an hexagon with two ergodic acip’s of even mixing period.
This can be inferred immediately from Fig. 4. The same construction
permits to obtain a more general result.

Figure 4. A non-ergodic hexagon.

Proposition 5.1. For every integer n ≥ 2 there exists a convex 3n-gon
whose slap map has n ergodic components with even mixing period.

It is much harder to construct examples of non-ergodic quadrilaterals
and pentagons. In the rest of this section, we explain how to construct
non-ergodic quadrilaterals. The basic idea behind our construction is
to generate a kind of bifurcation for periodic orbits of the slap map
implying the implosion, and hence the localization, of an ergodic com-
ponent.

Definition 5.2. The orbit of a vertex c of P ∈ Pd is called a doubling
orbit of type (k,m) with k ≥ 1 and m ≥ 1 if

(1) ψkP (c−) = ψkP (c+) = p,
(2) ψmP (p) = c,
(3) ψiP (c±) is not a vertex for i = 1, . . . , k +m− 1,

where ψkP (c±) := limx→c± ψ
k
P (x).

The itinerary of this doubling orbit is a triple (γ+, γ−, η) where γ±
are itineraries of {c±, ψP (c±), . . . , ψkP (c±) = p}, and η is the itinerary
of {p, ψP (p), . . . , ψmP (p)}.
Definition 5.3. Given a finite itinerary γ, let ψγP denote the compo-
sition of the branches of ψP along γ.

Definition 5.4. Consider a doubling orbit O starting at a vertex c
with itinerary (γ+, γ−, η). Let us denote by cP ′ the continuation of the
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vertex c for a nearby polygon P ′. We say that O is generic if and only
if the map Π: U → R2 defined in a neighborhood U of P by

Π(P ′) =
(
ψ
γ+
P ′ (cP ′)− (ψηP ′)

−1(cP ′), ψ
γ−
P ′ (cP ′)− (ψηP ′)

−1(cP ′)
)

has derivative DΠP of rank 2 (i.e., maximal rank).

Proposition 5.5. Given polygon P ∈ Pd with a generic doubling orbit
O of type (k,m), there exists a codimension 2 submanifold ΣP ⊂ Pd
passing through P consisting of polygons with a doubling orbit of type
(k,m) that is a continuation of O.

Proof. Define ΣP = {P ′ ∈ U : Π(P ′) = (0, 0) }. ΣP is a codimension
2 submanifold because O is generic. �

Proposition 5.6. Given a generic doubling orbit O of type (k,m) for
a polygon P ∈ Pd, and a surface S ⊂ Pd transversal to ΣP at P , there
is a neighborhood U of P and cone Γ ⊂ S with apex P such that for
every P ′ ∈ Γ ∩ U , the ergodic component of ψP ′ containing the vertex
in O is a periodic attractor Λ of period k + m. If k + m is even, then
Λ is bounded between two periodic orbits of the same period. If k + m
is odd, then Λ is bounded by a single periodic orbit of period 2(k+m).

Proof. Denote by Π+ and Π− the components of the map Π : U→ R2

introduced in Definition 5.4. We study separately the two cases: 1)
n+ k even and 2) n+ k odd.

Case 1. Define the cone

Γ = {P ′ ∈ S : Π+(P ′) < 0, Π+(P ′) > 0 } .
This cone is non-empty, because O is generic and the surface S is
transversal to Σ at P . Given P ′ ∈ Γ consider the iterate of the slap
map TP ′ := ψm+k

P ′ restricted to a neighborhood of the point x(P ′) :=
(ψηP ′)

−1(cP ′). The map TP ′ is piecewise increasing because m + k is
even. At the bifurcation, TP is continuous at x(P ), while for P ′ ∈ Γ
one has first kind discontinuities at x = x(P ′) (see Fig. 5)

lim
t→x+

TP ′(t) < TP ′(x) < lim
t→x−

TP ′(t).

Because the slopes of the branches of TP ′ are uniformly strictly greater
than 1, if P ′ is close to P then the oscillation at the discontinuity point
x = x(P ′) is very small, and the map TP ′ has exactly two fixed points
near x, t = x−(P ′) and t = x+(P ′) such that x−(P ′) < x(P ′) < x+(P ′).
Clearly [x−(P ′), x+(P ′)] is invariant under TP ′ , and the restriction of
TP ′ to this interval is a Lorenz map. The fixed points x±(P ′) determine
two periodic points of ψP ′ with period m+k, and the invariant interval
[x−(P ′), x+(P ′)] determines an ergodic component of the slap map ψP ′
which has mixing period m+ k.

Case 2. Define the cone

Γ = {P ′ ∈ S : Π+(P ′) > 0, Π+(P ′) < 0 }.
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Figure 5. The parameter space around a doubling orbit
bifurcation of even period.

This cone is not empty for the same reason the cone Γ in Case 1 was not
empty. Given P ′ ∈ Γ consider the iterate of the slap map TP ′ := ψm+k

P ′

restricted to a neighborhood of the point x(P ′) := (ψηP ′)
−1(cP ′). Now

the map TP ′ is piecewise decreasing because m + k is odd. At the
bifurcation, TP is continuous at x(P ), while TP ′ has a discontinuity of
the first kind at x = x(P ′),

lim
t→x−

TP ′(t) < TP ′(x) < lim
t→x+

TP ′(t).

Because the slopes of the branches of TP ′ are uniformly strictly lesser
than −1, if P ′ is close to P then the oscillation at the discontinuity
point x = x(P ′) is very small, and the map TP ′ has exactly one periodic
orbit of period 2 near x. In other words there are x− = x−(P ′) and
x+ = x+(P ′) near x such that TP ′(x−) = x+, TP ′(x+) = x− and x− <
x < x+. Clearly [x−, x+] is invariant under TP ′ , and the restriction of
T 2
P ′ to this interval is a Lorenz map. The orbit {x−, x+} determines a

periodic orbit of ψP ′ with period 2(m+ k), while the invariant interval
[x−, x+] determines an ergodic component of the slap map ψP ′ which
has mixing period 2(m+ k). �

5.1. Doubling orbits on kites. In order to get two ergodic compo-
nents we need two disjoint doubling orbits simultaneously bifurcating.
In this subsection, we explain how to obtain this phenomenon in kites,
i.e. quadrilaterals with a mirror symmetry.

We consider a family of kites determined by two angles α, β such that
0 < β < π

4
< α and α+ β < π

2
. They measure half of the quadrilateral

angles bisected by the fixed unit diagonal. We label the edges of a kite
from 0 to 3 according to Fig. 6(A). Pairs of mirror symmetric edges
have labels with the same parity.
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ΒΒ

ΑΑ

0 2

31

(a) (b)

Figure 6. (A) Family of kites. (B) Asymmetric dou-
bling orbit O.

Let K = Kα,β be any member of this family. The half-perimeter of
K is easily checked to be

` = `(α, β) :=
sinα + sin β

sin(α + β)
.

By symmetry we can reduce the slap map ψK to the union of the

edges labelled 0 and 1. The reduced map ψ̃K : [0, `] → [0, `] is the
composition of the slap map ψK with the reflexion around the given
mirror. The common vertex between the edges 0 and 1 has coordinate

c = c(α, β) :=
sinα

sin(α + β)
,

and the orthogonal projection of the common vertex between the edges
2 and 3 onto the side 0 has coordinate

d = d(α, β) :=
cos(2β) sinα

sin(α + β)
.

To simplify the notation we simply write ψ for the reduced map ψ̃K .
The reduced map ψ has the following three branches:

(i) The branch that maps side 0 to side 2, which by reflexion is
mapped to side 0 again. This branch is the one-to-one map
ψ00 : [0, d]→ [0, c] defined by

ψ00(x) =
x

cos(2β)
.

(ii) The branch that maps maps side 0 to side 3, which by reflexion
is mapped to side 1. This branch is the one-to-one map ψ01 :
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[d, c]→ [c, e] defined by

ψ01(x) =
x

cos(α− β)
+

(
1− cos(2β)

cos(α− β)

)
sinα

sin(α + β)
,

where

e :=
1 + cos(α− β)− cos(2β)

cos(α− β)

sinα

sin(α + β)
.

(iii) Finally, the branch that maps side 1 to side 2, which by reflexion
is mapped to side 0. This branch is the one-to-one map ψ10 :
[c, `]→ [p, q] defined by

ψ10(x) =
x− c(α, β)

cos(α− β)
+

cos(α + β)

cos(α− β)

sinα

sin(α + β)
,

where

p :=
cos(α + β) sinα

sin(α + β) cos(α− β)
and q :=

cosα

cos(α− β)
.

We say that an orbit of the slap map ψK is asymmetric if the cor-
responding trajectory on K is asymmetric with respect to the vertical
diagonal of K. We claim that there exists a kite K such that the slap
map ψK has an asymmetric doubling orbit O. We do not give an ana-
lytic proof of this claim. Instead, we provide strong numerical evidence
of the existence of such orbits. We believe that using interval arith-
metic our numerical computations can be transformed into a computer
assisted proof.

In the following, we are going to exhibit an asymmetric doubling
orbit of type (4, 2) with itinerary

(γ+, γ−, η) = ( (1, 2, 0, 2, 0), (0, 3, 0, 3, 0), (0, 2, 0) ) .

Define the R2-valued function Π(α, β) := (Π+(α, β),Π−(α, β)), where
the components Π± are given by

Π+(α, β) := ψ3
00 ◦ ψ10(c)− ψ−2

00 (c) ,

Π−(α, β) := (ψ10 ◦ ψ01)2(c)− ψ−2
00 (c) .

We consider the branch mappings ψ00, ψ01, ψ10 and its inverses with
the domains specified in items (i)-(iii) above. The domain of the map
Π, which we denote by DΠ, is the set of all (α, β) ∈ R2 such that
0 < β < π

4
< α, α + β < π

2
, and all compositions in the definition of

Π±(α, β) are meaningful, i.e.

0 < ψ−1
00 (c) < c , 0 < ψi00 ◦ ψ10(c) < d , i = 0, 1, 2 ,

c < ψ01(c) < ` , d < ψ10 ◦ ψ01(c) < c ,

c < ψ01 ◦ ψ10 ◦ ψ01(c) < ` and d < (ψ10 ◦ ψ01)2(c) < c .

Then any solution to the system of trigonometric polynomial equations

Π(α, β) = (0, 0) , (α, β) ∈ DΠ (5.1)
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corresponds to a kite whose slap map possesses a doubling orbit O with
the prescribed type and itinerary.

Using a computer algebra system to implement Newton’s Method
one can check that this problem has indeed a solution (α0, β0) whose
entries are approximately

α0 = 1.021264 . . . and β0 = 0.520719 . . . .

We can also verify that detDΠ(α0,β0) = −24.321933 . . . is non-zero.
Hence, for the kite K0 associated with the pair (α0, β0), the doubling
orbit O is generic (see Fig. 6(B)). Denoting by O′ the mirror image
of O, O′ is another generic doubling orbit with the given type and
symmetric itinerary. It follows that the orbits O and O′ are disjoint.
Thus, by Proposition 5.6, there are arbitrarily small perturbations of
K0, within the given family of kites, for which the slap maps have
ergodic components inside disjoint neighborhoods of the periodic orbits
O and O′. This shows that there are kites whose slap map has at least
two ergodic components.
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