
Perron-Frobenius Theorem

1 Hilbert Distance

Let (V, ‖·‖) be a normed vector space. A subset C ⊂ V is called a convex cone if C+C ⊂ C
and λC ⊂ C for all λ ≥ 0. If furthermore C ∩ (−C) = {0} then C is said to be a pointed
convex cone. When C is closed in the topology of V we say that C is a closed convex cone.
Given a convex cone C ⊂ V , the set E = C + (−C) is a linear subspace of V , referred
to as the linear span of C. The interior of a convex cone, denoted by C◦, is by definition
the topological interior of C in its linear span. Similarly, we denote by ∂C the topological
boundary of C in V .

Given a pointed closed convex cone C ⊂ V , we now introduce a pseudo distance
θC : C◦ × C◦ → [0,+∞) with the property that θC(x, y) = 0 if there exists λ > 0 such
that y = λx. This means that θC is really a distance between rays contained in C and
for that is called a projective distance in C.

Given a pointed closed convex cone C ⊂ V with linear span V we define the following
order relation in V : x �C y if y − x ∈ C. This relation partially orders V .

(1) The order �C is reflexive, i.e., x �C x, because 0 ∈ C.

(2) The order �C is antisymmetric, i.e., x �C y and y �C x ⇒ x = y, because
C ∩ (−C) = {0}.

(3) Finally the order �C is transitive, i.e., x �C y and y �C z ⇒ x �C z, because
C + C ⊂ C.

Moreover the convexity of C implies that the partial order �C is compatible with the
linear structure of V in the sense that for all x, y, z ∈ V

(4) x �C y ⇒ x+ z �C y + z;

(5) x �C y and λ ≥ 0 ⇒ λx �C λ y;

Finally, because C is closed, the partial order �C is also closed.

(6) If xn �C yn, x = limn→∞ xn and y = limn→∞ yn ⇒ x �C y.

Remark 1. Given points x, y ∈ C◦, since they are interior points there exists δ > 0 small
enough such that y − δ x ∈ C and x− δ y ∈ C. These two relations imply that

δ y �C x �C δ−1 y.
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Define now the functions α, β : C◦ × C◦ → [0,+∞)

α(x, y) := inf{λ > 0 : x �C λ y},
β(x, y) := sup{µ > 0 : µ y �C x}.

By the previous remark, the sets where these infimum and supremum are taken are always
non-empty. Hence the functions α and β are well-defined with positive and finite values.

Given a closed pointed convex cone C ⊂ V , with linear span V , we define the Hilbert
distance θC : C◦ × C◦ → [0,+∞)

θC(x, y) := log
α(x, y)

β(x, y)
.

Proposition 1. The Hilbert distance θC is a projective pseudo-metric on C◦.

(1) θC(x, y) ≥ 0,

(2) θC(x, y) = 0 ⇔ x = λ y for some λ > 0,

(3) θC(x, y) = θC(y, x),

(4) θC(x, z) ≤ θC(x, y) + θC(y, z).

Proof. For item (1) notice that
β y �C x �C α y (1)

with α = α(x, y) and β = β(x, y). Hence α ≥ β and θC(x, y) = log α
β ≥ 0.

If θC(x, y) = 0 then α = β and by (1) α y �C x �C α y, which implies x = α y.
Conversely, if x = λ y then α(x, y) = β(x, y) = λ, which implies θC(x, y) = 0.

Relation (1) is equivalent to

α−1 x �C y �C β−1 x,

from which
α(y, x) = β(x, y)−1 and β(y, x) = α(x, y)−1.

Hence

θC(y, x) = log
β−1

α−1
= log

α

β
= θC(x, y).

For the triangle inequality let us write α = α(x, y), β = β(x, y), α′ = α(y, z) and
β′ = β(y, z). Then by (1)

β y �C x �C α y and β′ z �C y �C α′ z.

These relations imply that
β β′ z �C x �C αα′ z.

Therefore β β′ ≤ β(x, z) ≤ α(x, z) ≤ αα′ and

θC(x, z) = log
α(x, z)

β(x, z)
≤ log

αα′

β β′
= log

α

β
+ log

α′

β′
= θC(x, y) + θC(y, z).
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Proposition 2. Let T : V1 → V2 be a bounded linear map between normed spaces V1

and V2 and for i = 1, 2 let Ci ⊂ Vi be pointed closed convex cones with linear span Vi. If
T (C◦1 ) ⊂ C◦2 then for all x, y ∈ C◦1 ,

θC2
(Tx, Ty) ≤ θC1

(x, y).

Moreover, if T is an isomorphism such that T (C◦1 ) = C◦2 then for all x, y ∈ C◦1 ,

θC2(Tx, Ty) = θC1(x, y).

Proof. Since the Hilbert distances θCi
are defined in terms of the partial orders �Ci

, it is
enough to remark that if T (C1) ⊂ C2 then

x �C1
y ⇒ Tx �C2

Ty,

and if T (C1) = C2 then
x �C1

y ⇔ Tx �C2
Ty.,

The Hilbert distance between two points is a 2d measurement. Given two vectors
x, y ∈ C◦ consider the subspace E generated by {x, y} and apply the following proposition.

Proposition 3. Let V be a normed space. Given a pointed closed convex cone C ⊂ V with
linear span V and any subspace E ⊂ V , then (C ∩ U)

◦
= C◦∩E and for all x, y ∈ C◦∩E,

θC(x, y) = θC∩E(x, y).

Proof. Just notice that for all x, y ∈ E,

x �C y ⇔ x �C∩E y.

Given four (ordered) points A,X, Y,B on a straight line ` in some Euclidean space,
their cross-ratio is the quotient

(A,X, Y,B) :=
|AY | |XB|
|AX| |Y B|

.

This number equals 1 when X = Y and otherwise it is greater than 1.

Proposition 4. Let V be a normed space. Given a pointed closed convex cone C ⊂ V
with linear span V and two points x, y ∈ C◦ let a, b ∈ ∂C be such that a, x, y, b form an
ordered sequence of points in the line joining x to y. Then

θC(x, y) = log(a, x, y, b).
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Proof. By Proposition 4 we just need to check this formula for two-dimensional cones.
By Proposition 2 we can pick any such cone, say C = R2

+ ⊂ R2. Given x = (x1, x2), y =
(y1, y2) ∈ C◦ = (0,+∞)2, rescaling these vectors we can assume that x1+x2 = 1 = y1+y2.
Assume for instance that x1

x2
≥ y1

y2
so that the points a = (1, 0), x, y and b = (0, 1) are

collinear and ordered with a, b ∈ ∂C. A simple calculation shows that

α(x, y) = max{x1

y1
,
x2

y2
} =

x1

y1
,

β(x, y) = min{x1

y1
,
x2

y2
} =

x2

y2
.

Hence, because ‖x− a‖ =
√

2 (1 − x1), ‖x− b‖ =
√

2x1, ‖y − a‖ =
√

2 (1 − y1) and
‖x− b‖ =

√
2 y1,

θC(x, y) = log
x1

y1
· y2

x2
= log

x1

y1
· 1− y1

1− x1

= log
‖y − a‖ ‖x− b‖
‖x− a‖ ‖y − b‖

= log(a, x, y, b).

Figure 1: The vectors x− β y and α y − x lie on the boundary of C.

Theorem 1 (G. Birkhoff). Let T : V1 → V2 be a bounded linear map between normed
spaces V1 and V2 and for each i = 1, 2 let Ci ⊂ Vi be pointed closed convex cones with
linear span Vi. If T (C1) ⊂ C◦2 and the diameter of T (C1) in C◦2 w.r.t. θC2

is ≤ ∆ then
for all x, y ∈ C◦1 ,

θC2(Tx, Ty) ≤ (1− e−∆/2) θC(x, y).

In particular the map T : C1 → C◦2 is a strict contraction w.r.t. θC1
and θC2

.
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Proof. Take two points x, y ∈ C◦1 and let α = α(x, y) and β = β(x, y) so that relations (1)
hold. Then, because C1 is closed the vectors x − β y and α y − x lie on the boundary of
the cone C1 (see Figure 1). Hence θC2

(T (α y−x), T (x−β y)) ≤ ∆. This means there are
positive numbers λ ≥ µ such that log(λ/µ) ≤ ∆ and

µT (x− β x) �C2
T (αy − x) �C2

λT (x− β x).

These relations imply that

α+ β λ

1 + λ
T (y) �C2 T (x) �C2

α+ β µ

1 + µ
T (y).

Therefore

θC2
(T (x), T (y)) ≤ log

(
α+ β µ

1 + µ
· 1 + λ

α+ β λ

)
= log

(αβ + µ) (1 + λ)

(1 + µ) (αβ + λ)

= log

(
α

β
+ µ

)
− log(1 + µ)− log

(
α

β
+ λ

)
+ log(1 + λ)

=

∫ log(α/β)

0

[
ex

ex + µ
− ex

ex + λ

]
dx =

∫ log(α/β)

0

(λ− µ) ex

(ex + λ) (ex + λ)
dx

≤ log

(
α

β

)
max
x≥0

(λ− µ) ex

(ex + λ) (ex + λ)
= log

(
α

β

)
(λ− µ)

√
λµ

(
√
λµ+ λ) (

√
λµ+ λ)

= log

(
α

β

) √
λ−√µ
√
λ+
√
µ

= log

(
α

β

) (
1−

2
√
µ

√
λ+
√
µ

)

≤ θC1
(x, y)

(
1−

√
µ

λ

)
≤ θC1

(x, y)
(

1− e−∆/2
)

which concludes the proof. Above we have made use of the integral relation

log(K + λ)− log(1 + λ) =

∫ logK

0

ex

ex + λ
dx.

Notice also that the function ϕ(x) := ex

(ex+λ) (ex+µ) has derivative

ϕ′(x) =
ex (µλ − e2x)

(ex + λ)2 (ex + µ)2

which explains that the global maximum of ϕ(x) is attained when ex =
√
λµ.

Given any subset A ⊂ V of a normed space V let

dist(x,A) := inf{‖x− a‖ : a ∈ A}.

Given subsets A,B ⊂ V let

dist(A,B) := inf{‖x− y‖ : x ∈ A, y ∈ B}.
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Proposition 5. Let V be a normed space and C ⊂ V a pointed closed convex cone with
linear span V . Let H ⊂ V be a subspace such that C ∩ H is bounded in norm1, i.e.,
‖x‖ ≤ L for all x ∈ C ∩ H. Then for all x, y ∈ C◦ ∩ H with dist(x, ∂C) ≥ ε and
dist(y, ∂C) ≥ ε ≥ 0

1

L
‖x− y‖ ≤ θC(x, y) ≤ 2

ε
‖x− y‖.

In particular convergence in the Hilbert distance θC implies norm convergence.

Proof. Given vectors x, y ∈ C◦ ∩H find vectors a, b ∈ ∂C such that a, x, y, b are ordered
points in some line ` ⊂ H. Because these four points are in C ∩ H, ‖x− a‖ ≤ L and
‖y − b‖ ≤ L. Therefore

θC(x, y) = log(a, x, y, b) = log
‖y − a‖ ‖x− b‖
‖x− a‖ ‖y − b‖

= log
(‖x− a‖+ ‖x− y‖) (‖x− y‖+ ‖y − b‖)

‖x− a‖ ‖y − b‖

= log

(
1 +
‖x− y‖
‖x− a‖

)
+ log

(
1 +
‖x− y‖
‖y − b‖

)
≥ 2 log

(
1 +
‖x− y‖

L

)
≥ ‖x− y‖

L
.

In the last step we have used that log(1 + x) ≥ x
2 for all 0 ≤ x ≤ 1. For the converse

inequality we use instead that log(1 + x) ≤ x for all x > 0. Since a and b lie in the
boundary of C, ‖x− a‖ ≥ dist(x, ∂C) > ε and ‖y − b‖ ≥ dist(y, ∂C) > ε. Hence

θC(x, y) = log

(
1 +
‖x− y‖
‖x− a‖

)
+ log

(
1 +
‖x− y‖
‖y − b‖

)
≤ 2 log

(
1 +
‖x− y‖

ε

)
≤ 2 ‖x− y‖

ε
.

Corollary 6. If V is a Banach space and H is closed in V then C◦ ∩H is complete with
respect to the metric θC .

Proof. To prove that (C◦ ∩H, θC) is complete take a Cauchy sequence {xn} ⊂ C◦ ∩H.
By Proposition 5, {xn} is a Cauchy sequence in H w.r.t. the norm distance. Because V
is a Banach space and H is closed in V , the limit x = limn→∞ xn exists with x ∈ C ∩H.

Given x, y ∈ C◦ ∩H we can not have x �C y, nor y �C x, for otherwise C ∩H would
contain a ray. Hence β(x, y) ≤ 1 ≤ α(x, y) for all x, y ∈ C◦ ∩H.

Given ε > 0, since {xn} ⊂ C◦ ∩H is a Cauchy sequence, there exists n0 ∈ N such that
for all n,m ≥ n0,

max{logα(xn, xm),− log β(xn, xm)} ≤ θC(xn, xm) < ε.

1This condition expresses the transversality between H and C because it prevents rays in C from being
contained in H.
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Hence
βn,m xm �C xn �C αn,m xm

for some e−ε ≤ βn,m ≤ 1 ≤ αn,m ≤ eε. Fix now n ≥ n0 and let m tend to +∞. Then xm
converges to x and we can choose a subsequence mk → +∞ such that αn,mk

→ αn and
βn,mk → βn. Taking the limit, because the cone C is closed we get

βn x �C xn �C αn x

with e−ε ≤ βn ≤ 1 ≤ αn ≤ eε, which implies that θC(xn, x) ≤ 2 ε for all n ≥ n0. Hence
x ∈ C◦ and the sequence {xn} converges to x w.r.t. θC .

Corollary 7. Given a norm compact subspace K ⊂ C◦ ∩H, the metric θC induces the
norm topology in K. In particular K has finite diameter w.r.t. θC .

Proof. Because K is compact and K ⊂ C◦ we have dist(K, ∂C) > 0. Then by Proposi-
tion 5 the metric θC and the norm distance are equivalent over K.

2 Perron-Frobenius Theorem

A matrix A ∈ Matk(R) with non-negative entries is called primitive if there exists m ≥ 1
such that all entries of Am are strictly positive.

Theorem 2 (Perron-Frobenius). Given a matrix A ∈ Matk(R) with non-negative entries,
if A is primitive then

(a) there exists λ > 0 and v ∈ Rk with strictly positive entries such that Av = λ v;

(b) λ is a simple eigenvalue, i.e., dim Ker(A− λ I) = 1;

(c) λ is a dominant eigenvalue, i.e., |α| < λ for every other eigenvalue α of A;

(d) The limit Q = limn→+∞ λ−nAn exists and every column of Q is a λ-eigenvector.

Proof. The cone C = Rk+ is pointed, closed and convex. Any matrix A with non-negative
entries leaves the cone C invariant, i.e., AC ⊂ C. If A is primitive and m ≥ 1 is such
that all entries of Am are strictly positive then AmC ⊂ C◦. By Theorem 1 there exists
0 < κ < 1 such that for all x, y ∈ C◦ and q ≥ 0, θC(Aqmx,Aqmy) ≤ κq θC(x, y). On the
other hand, by Proposition 2, for all x, y ∈ C◦ and i ≥ 0, θC(Aix,Aiy) ≤ θC(x, y). Thus
dividing any given integer n ≥ 1 by m, n = qm+ i for some 0 ≤ i < m and

θC(Anx,Any) = θC(Aqn+ix,Aqn+iy) ≤ θC(Aqnx,Aqny)

≤ κn θC(x, y) ≤ L (κ1/m)n θC(x, y)

with L = κ−m, i.e., the projective action of A on C◦ is contractive.
By the Banach fixed point theorem there exists v ∈ C◦ such that for all x ∈ C◦,

limn→+∞ θC(Anx, v) = 0. Thus θC(Av, v) = 0 and there exists λ > 0 such that Av = λ v,
which proves (a).
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Item (b) follows because there exists a unique ray in {0} ∪ C◦ fixed by the projective
action of A on C.

Let H denote the direct sum of all eigenspaces associated with eigenvalues of A distinct
from λ. Since AH ⊂ H and λ−1Av = v, the linear map Â(x) = λ−1Ax leaves invariant
H as well as the affine subspace v+H. The convex set K = C∩(v+H) is compact (prove
it). The set K is also Â-invariant. By Proposition 5, for all x ∈ K◦ = C◦ ∩ (v +H),

‖λ−nAnx− v‖ . θC(Ân(x), v) = θC(An(x), v) ≤ Lκ n
m .

This implies (prove it) that for all n ≥ 1 and x ∈ H

‖λ−nAnx‖ . κ
n
m . (2)

Hence, for any vector x ∈ Rk, if x = µ v + h, with h ∈ H, then limn→∞ λ−nAnx = µ v,
which proves (d). Finally item (c) holds because the bound (2) for vectors in H implies
that |α| ≤ λκ1/m < λ for every other eigenvalue α of A.

3 Mixing property of the Gauss Map

In this section we prove the mixing property of the Gauss map T : [0, 1)→ [0, 1), defined
by Tx := 1

x − b
1
xc. This map preserves the measure µ = 1

log 2
dx

1+x .

Theorem 3. The Gauss map (T, µ) is mixing.

We can conjugate the Gauss map (T, µ) to a piecewise expanding map f : [0, 1)→ [0, 1)
preserving the Lebesgue measure m = dx on the interval [0, 1). For this consider the

orientation preserving diffeomorphism h : [0, 1]→ [0, 1], h(x) := log(1+x)
log 2 . Because

µ([0, x)) =
1

log 2

∫ x

0

dt

1 + t
=

log(1 + x)

log 2
= h(x) = m([0, h(x))) = m(h[0, x))

the map h : [0, 1) → [0, 1) is a measure preserving transformation from ([0, 1), µ) onto
([0, 1),m). Hence, the map f := h◦T ◦h−1 is a piecewise expanding map which preserves
the the Lebesgue measure, and (f,m) is conjugated to (T, µ).

The map f is given by

f(x) =
1

log 2
log

(
1

2x − 1
− (n− 1)

)
for all an+1 ≤ x < an

where a0 = 1 and an = h(1/n) if n ≥ 1. The map f is piecewise expanding, in fact
|f ′(x)| ≥ 2 for all x ∈ [0, 1).

Theorem 3 reduces to prove that:

Proposition 8. The system (f,m) is mixing.

8



Figure 2: Graphs of h (left) and f (right).

We analyze the adjoint U∗f of the Koopman operator Uf : L2([0, 1),m)→ L2([0, 1),m),
Uf (ϕ) := ϕ ◦ f . To make U∗f explicit we need the inverse branches of f : [0, 1) → [0, 1),
which are the diffeomorphisms gn : [0, 1]→ [an−1, an] given by

gn(x) :=
log(2x + n)

log 2
− log(2x + n− 1)

log 2
.

Proposition 9. The inverse branches of f satisfy for all n ≥ 1 and all x ∈ [0, 1],

(1) g′n(x) =
2x

2x + n
− 2x

2x + n− 1
< 0;

(2) |g′1(x)| ≤ 1
2 ;

(3) |g′n(x)| ≤ (
√
n+
√
n− 1)−2 ≤ 1

2 when n ≥ 2;

(4)
∑∞
n=1 |g′n(x)| = 1;

(5) g′′n(x) =
2x (n2 − n− 4x) log 2

(2x + n)2 (2x + n− 1)2
;

(6) |(log |g′n(x)|)′| = |g
′′
n(x)|
|g′n(x)| ≤ 1.

Proof. The proof is left as an exercise.

Proposition 10. The adjoint U∗f of the Koopman operator is given by

U∗f (ψ)(x) =

∞∑
n=1

ψ(gn(x)) |g′n(x)| =
∑

y∈f−1(x)

ψ(y)

|f ′(y)|

for all ψ ∈ L2([0, 1),m) .
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Proof. Take L2 observables ϕ and ψ on [0, 1], decompose the integral on [0, 1] over the
subintervals [an+1, an] and perform the changes of variables x = gn(y) with 0 ≤ x ≤ 1.

〈Uf (ϕ), ψ〉 =

∫ 1

0

ϕ(f(x))ψ(x) dx =

∞∑
n=1

∫ an

an+1

ϕ(f(x))ψ(x) dx

=

∞∑
n=1

∫ 0

1

ϕ(y)ψ(gn(y)) g′n(y) dy

=

∫ 1

0

ϕ(y)

( ∞∑
n=1

ψ(gn(y)) |g′n(y)|

)
dy.

Given a = (a1, . . . , an) ∈ Nn, with the convention that N = {1, 2, . . . }, the map
ga := ga1 ◦ · · · ◦ gan is a diffeomorphism which maps [0, 1] onto the interval bounded
between the h images of the values of the finite continued fractions with coefficients
[a1, . . . , an−1, an] and [a1, . . . , an−1, an + 1], respectively. The images of these maps, for
a ∈ Nn, partition the interval [0, 1] mod 0.

Proposition 11. The iterates of U∗f are given by

(U∗f )n(ψ)(x) =
∑
a∈Nn

ψ(ga(x)) |g′a(x)| .

Proof. The proof is left as an exercise.

Proposition 12. For all a ∈ Nn and x, y ∈ [0, 1],

e−2 |x−y| ≤ |g
′
a(x)|
|g′a(y)|

≤ e2 |x−y|.

Proof. Given x, y ∈ [0, 1], define x0 = x, y0 = y, xj = (gan−j+1 ◦ . . . ◦ gan)(x) and
yj = (gan−j+1 ◦ . . . ◦ gan)(y) for all 1 ≤ j ≤ n, so that |xj − yj | ≤ 2−j |x− y|. Then∣∣∣∣log

g′a(x)

g′a(y)

∣∣∣∣ = |log |g′a(x)| − log |g′a(y)|| ≤
n−1∑
j=0

∣∣∣log
∣∣∣g′aj+1

(xj)
∣∣∣− log

∣∣∣g′aj+1
(yj)

∣∣∣∣∣∣
≤
n−1∑
j=0

|xj − yj | ≤
n−1∑
j=0

2−j |x− y| ≤ 2 |x− y|

which proves the proposition.

The previous statement is usually referred to as the bounded distortion of f , which
can be reformulated as follows: Given two points x, y ∈ [0, 1), if f j(x) and f j(y) lie on
the same branch of f for all j = 0, 1, . . . , n− 1, then

e−2 |x−y| ≤ |(f
n)′(x)|

|(fn)′(y)|
≤ e2 |x−y|.
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Lemma 1. Given ψ ∈ C1([0, 1]) and an interval J ⊂ [0, 1],

max
J
|ψ| ≤

∫
J

|ψ′| dm+
1

m(J)

∫
J

|ψ| dm

Proof. The maximum value of |ψ(x)| on J is bounded by its mean value over J plus the
total length of the curve traced by the ψ(x).

Proposition 13. The adjoint U∗f : L2([0, 1),m)→ L2([0, 1),m) of the Koopman operator
satisfies the following properties:

(a) ‖U∗f (ψ)‖∞ ≤ ‖ψ‖∞ for all ψ ∈ C0([0, 1]);

(b) It is a positive operator, i.e., ψ ≥ 0 ⇒ U∗f (ψ) ≥ 0;

(c)
∫ 1

0
U∗f (ψ) dm =

∫ 1

0
ψ dm;

(d) It fixes the constant functions, i.e., U∗f (1) = 1;

(e) It preserves continuity, i.e., it maps C0([0, 1]) to C0([0, 1]);

(f) It preserves C1 regularity, i.e., it maps C1([0, 1]) to C1([0, 1]);

(g) ‖((U∗f )nψ)′‖∞ ≤ 1+e2

2n ‖ψ′‖∞ + e4
∫ 1

0
|ψ| dm for all ψ ∈ C1([0, 1]).

Proof. Having the explicit formula for the adjoint operator U∗f , items (a)-(d) become the
matter of a simple verification. These properties are valid for the adjoint of the Koopman
operator of any measure preserving transformation, whose proof we leave as an exercise.

Let us prove items (e), (f) and (g). Given ψ ∈ C0([0, 1]), the compositions |g′n(y)| ψ(gn(y))
are continuous functions. Thus, by Weierstrass M-test and property (4) of Proposition 9,
U∗f (ψ) ∈ C0([0, 1]), which proves (e).

For each a ∈ Nn, by the mean value theorem the interval Ja = ga([0, 1]) has length
m(Ja) = |g′a(ξa)| for some ξa ∈ (0, 1). By Proposition 12, for all x, y ∈ [0, 1],

|log |g′a(x)| − log |g′a(y)|| =
∣∣∣∣log
|g′a(x)|
|g′a(y)|

∣∣∣∣ ≤ 2 |x− y|

which implies that for all x ∈ [0, 1],

|g′′a(x)|
|g′a(x)|

= |(log |g′a(x)|)′| ≤ e2.

Given ψ ∈ C1([0, 1]), the function |g′a(y)| ψ(ga(y)) is of class C1 and by Lemma 1 we
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obtain the following bound on its derivative∣∣∣∣ ddy |g′a(y)| ψ(ga(y))

∣∣∣∣ = ψ′(ga(x)) |g′a(x)|2 + |ψ(ga(x))| |g′′a(x)|

≤ 1

2n
‖ψ′‖∞ |g′a(x)|+ sup

Ja

|ψ| |g
′′
a(x)|
|g′a(x)|

|g′a(x)|

≤ 1

2n
‖ψ′‖∞ |g′n(x)|+ e2 sup

Ja

|ψ| |g′a(x)|

≤ 1

2n
‖ψ′‖∞ |g′n(x)|+ e2 |g′a(x)|

(∫
Ja

|ψ′| dm+
1

m(Ja)

∫
Ja

|ψ| dm
)

≤ 1

2n
‖ψ′‖∞ |g′n(x)|+ e2

2n

∫
Ja

|ψ′| dm+ e2 |g′a(x)|
|g′a(ξa)|

∫
Ja

|ψ| dm

≤ 1

2n
‖ψ′‖∞ |g′n(x)|+ e2

2n

∫
Ja

|ψ′| dm+ e4

∫
Ja

|ψ| dm.

By Weierstrass M-test, the function (U∗f )nψ is of class C1 with a derivative satisfying

∣∣((U∗f )nψ)′(x)
∣∣ ≤ ∑

a∈Nn

∣∣∣∣ ddy |g′a(y)| ψ(ga(y))

∣∣∣∣
≤ 1

2n
‖ψ′‖∞ +

e2

2n

∫ 1

0

|ψ′| dm+ e4

∫ 1

0

|ψ| dm

≤ 1 + e2

2n
‖ψ′‖∞ + e4

∫ 1

0

|ψ| dm.

This proves item (g).

Lemma 2. For every ψ ∈ C0([0, 1]), if ∫10 ψ dm = 1 and ψ ≥ 0 then there exist N ∈ N
and δ > 0 such that (U∗f )nψ ≥ δ 1.

Proof. Since ψ ≥ 0 and ∫10 ψ dm = 1, there exists an open interval I ⊂ [0, 1], say with
length m(I) ≥ ε > 0, where ψ(y) ≥ δ0 for all x ∈ I.

Since the diffeomorphism h : [0, 1] → [0, 1] has derivative |h′(x)| ≤ 1/ log 2 < 2,
if a finite set D ⊂ [0, 1] is ε

2 -dense then h(D) is ε-dense in [0, 1]. Take m ∈ N such
that 1

m < ε
4 and n ∈ N such that 1

2n−1 < ε
4 . Given a = (a1, . . . , an) ∈ {1, . . . ,m}n,

let [a] = [a1, . . . , an] denote the finite continued fraction with coefficients aj . The set
D := {[a] : a ∈ {1, . . . ,m}n} is ε

4 -dense in [0, 1] (check this fact), and hence h(D) =
{h([a]) : a ∈ {1, . . . ,m}n} is ε

2 -dense in [0, 1].
Notice that h([a]) = ga(0) for each a ∈ {1, . . . ,m}n, and pick a ∈ {1, . . . ,m}n such

that the distance between h([a]) and the middle point of I is < ε
2 . Since the range ga([0, 1])

has length less than 2−n < ε
2 it follows that ga([0, 1]) ⊂ I.

Finally, because ψ ≥ 0, using Proposition 11 we have

((U∗f )nψ)(x) ≥ |g′a(x)| ψ(ga(x)) ≥ δ0 min
a∈{1,...,m}n

min
t∈[0,1]

|g′a(t)| > 0

for all x ∈ [0, 1].

12



Proposition 14. Given ψ ∈ C1([0, 1]), ψ ≥ 0,

lim
n→+∞

(U∗f )n(ψ) =

∫ 1

0

ψ dm

with uniform convergence.

Proof. C1([0, 1]) is dense in the space of Lipschitz functions. Denote by Lip(ψ) the Lips-
chitz seminorm of a function ψ : [0, 1]→ R

Lip(ψ) := sup
x,y∈[0,1]

|ψ(x)− ψ(y)| .

A function ψ : [0, 1] → R is Lipschitz iff Lip(ψ) < +∞. By the mean value theorem, if
ψ : [0, 1]→ R is of class C1 then ψ is Lipschitz with Lip(ψ) = ‖ψ′‖∞.

Consider now the family of sets

Ca := {ψ ∈ C0([0, 1]) : ψ ≥ 0, Lip(ψ) ≤ a
1

∫
0
ψ dm}

with of a > 0. Each Ca is a pointed, closed and convex cone in the Banach space
(C0([0, 1]), ‖·‖∞). We claim that (U∗f )N (Ca) ⊂ C◦a for all large enough a > 0 and some
some N = N(a) ≥ 1.

From item (g) of Proposition 13, we get for all ψ ∈ C1([0, 1]) ∩ Ca

‖(U∗f )n(ψ)′‖∞ ≤
1 + e2

2n
‖ψ′‖∞ + e4

∫ 1

0

|ψ| dm

=
1 + e2

2n
Lip(ψ) + e4

∫ 1

0

|ψ| dm

≤
(

(1 + e2) a

2n
+ e4

) ∫ 1

0

|ψ| dm

=

(
(1 + e2) a

2n
+ e4

) ∫ 1

0

∣∣(U∗f )nψ
∣∣ dm.

Thus if we take a > 150 and n ≥ 6, given ψ ∈ Ca of class C1

‖(U∗f )n(ψ)′‖∞ ≤
(

1 + e2

2n
a+ e4

) ∫ 1

0

∣∣(U∗f )nψ
∣∣ dm ≤ a

2

∫ 1

0

∣∣(U∗f )nψ
∣∣ dm.

Because class C1 functions are dense in the space of Lipschitz functions and the functionals
ψ 7→ Lip(ψ) and ψ 7→ ∫10 |ψ| dµ are continuous on C0([0, 1]), it follows that for any ψ ∈ Ca,

Lip((U∗f )nψ) ≤ a

2

∫ 1

0

∣∣(U∗f )nψ
∣∣ dm.

This proves that (U∗f )nψ ∈ C a
2
⊂ Ca.

Consider now the hyperplane H := {ψ ∈ C0([0, 1]) :
∫ 1

0
ψ dm = 1} and the convex set

Ka := Ca∩H. By Arzelà-Ascoli’s theorem, since Lip(ψ) ≤ a for all ψ ∈ Ka, the closed set

13



Ka is compact in C0([0, 1]). By Lemma 2, for every ψ ∈ Ka there exists N = N(ψ) ∈ N
and δ = δ(ψ) > 0 such that (U∗f )N (ψ) ≥ 2 δ 1. Denoting by U(ψ) the ball of radius

δ/2 around ψ in C0([0, 1]), we have (U∗f )N (ϕ) ≥ δ 1 for all ϕ ∈ U(ψ). By property (b)
of Proposition 13, we also have (U∗f )n(ϕ) ≥ δ 1 for all ϕ ∈ U(ψ) and every n ≥ N(ψ).
By compactness of Ka, there are functions ψ1, . . . , ψm ∈ Ka such that Ka ⊂ U(ψ1) ∪
. . . ∪ U(ψm). Hence, defining N = max1≤j≤mN(ψj) ∈ N and δ = min1≤j≤m δ(ψj) > 0,
we have (U∗f )n(ψ) ≥ δ 1 for all n ≥ N and ψ ∈ Ka. Thus, given ψ ∈ Ca, ψ 6= 0,

(U∗f )N (ψ) ≥ δ (
∫ 1

0
ψ dm)1 but also Lip((U∗f )Nψ) ≤ a

2

∫ 1

0
|ψ| dm = a

2

∫ 1

0

∣∣∣(U∗f )Nψ
∣∣∣ dm,

which proves that (U∗f )Nψ ∈ C◦a. Therefore (U∗f )N (Ca) ⊂ C◦a.

Since Ka is compact then so is (U∗f )N (Ka). Because this image is contained in C◦a∩H,

by Corollary 7, (U∗f )N (Ka) has finite diameter w.r.t. the Hilbert metric θCa
. Hence, by

Theorem 1, the bounded linear operator (U∗f )N acts as a strict contraction on Ka w.r.t.
θCa

. Since U∗f 1 = 1 (property (d) of Proposition 13) by Proposition 5,

‖(U∗f )n(ψ)− 1‖∞ . θCa
((U∗f )n(ψ),1)

converges to 0 at some geometric rate.
To finish the proof, consider any non-zero observable ψ ∈ C1([0, 1]), ψ ≥ 0. Then

ψ ∈ Ca for some large enough a. By the previous argument the iterates (U∗f )n(ψ̄) of the

normalized observable ψ̄ = (
∫ 1

0
ψ dm)−1 ψ converge uniformly to the constant function 1.

Therefore

lim
n→+∞

(U∗f )n(ψ) =

∫ 1

0

ψ dm

with uniform (and geometric) rate of convergence.

Proof of Proposition 8. Given ϕ,ψ ∈ L2(X,m), and ε > 0, consider non-negative func-
tions ψ+

0 , ψ
−
0 ∈ C1([0, 1]) such that

‖ψ+ − ψ+
0 ‖2 <

ε

4 ‖ϕ‖2
and ‖ψ− − ψ−0 ‖2 <

ε

4 ‖ϕ‖2
.

Notice that

|〈(Uf )nϕ, ψ〉 − 〈ϕ,1〉 〈ψ,1〉| =
∣∣〈ϕ, (U∗f )nψ〉 − 〈ϕ,1〉 〈ψ,1〉

∣∣
=
∣∣〈ϕ, (U∗f )nψ〉 − 〈ϕ,1〉 〈ψ,1〉

∣∣
≤
∣∣〈ϕ, (U∗f )nψ+〉 − 〈ϕ,1〉 〈ψ+,1〉

∣∣+
∣∣〈ϕ, (U∗f )nψ−〉 − 〈ϕ,1〉 〈ψ−,1〉

∣∣ .
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On the first summand we have∣∣〈ϕ, (U∗f )nψ+〉 − 〈ϕ,1〉 〈ψ+,1〉
∣∣ ≤ ∣∣〈ϕ, (U∗f )nψ+〉 − 〈ϕ, (U∗f )nψ+

0 〉
∣∣

+
∣∣〈ϕ, (U∗f )nψ+

0 〉 − 〈ϕ,1〉 〈ψ
+
0 ,1〉

∣∣
+
∣∣〈ϕ,1〉 〈ψ+

0 ,1〉 − 〈ϕ,1〉 〈ψ+,1〉
∣∣

≤
∣∣〈Unf 〈ϕ), ψ+ − ψ+

0 〉
∣∣+ ‖ϕ‖1 ‖(U∗f )nψ+

0 − 〈ψ
+
0 ,1〉‖∞

+ |〈ϕ,1〉|
∣∣〈ψ+ − ψ+

0 ,1〉
∣∣

≤ 2 ‖ϕ‖2 ‖ψ+ − ψ+
0 ‖2 + ‖ϕ‖1 ‖(U∗f )nψ+

0 −
1

∫
0
ψ+

0 dm‖∞

≤ ε

2
+ ‖ϕ‖1 ‖(U∗f )nψ+

0 −
1

∫
0
ψ+

0 dm‖∞.

By Proposition 14 this summand is < ε for all large enough n. A similar bound shows

that
∣∣∣〈ϕ, (U∗f )n(ψ−)〉 − 〈ϕ,1〉 〈ψ−,1〉

∣∣∣ < ε for all sufficiently large n. Together these two

bounds prove that (f,m) is mixing.
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