Data: 20-06-2003 Código: 1C

Nome:

Número: Curso:

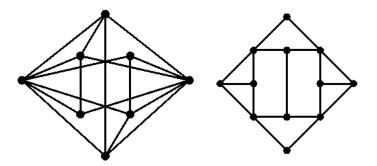
• O exame que vai realizar tem a duração de três horas.

- As respostas às perguntas do grupo I não necessitam de justificação. Deve assinalá-las preenchendo os campos respectivos.
- As respostas erradas a perguntas de escolha múltipla pontuam negativamente.
- A ausência de resposta não será pontuada.
- O grupo I é eliminatório para quem não obtiver pelo menos 3 valores.
- Nos grupos II, III e IV, deve justificar cada uma das suas respostas.

Grupo	Nota
I	
II-1	
II-2	
II-3	
II-4	
III-1	
III-2	
III-3	
III-4	
IV-1	
IV-2	
IV-3	
IV-4	
Nota Final	

(1v.)

(1v.) 1. Considere os grafos G_1 e G_2 em baixo, respectivamente à esquerda e à direita.



Assinale as afirmações correctas.

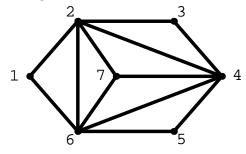
- G_1 tem cadeias abertas eulerianas.
- G_1 tem ciclos hamiltonianos.
- G_2 tem ciclos hamiltonianos.
- G_2 tem cadeias abertas eulerianas.

\sin	Não
_	

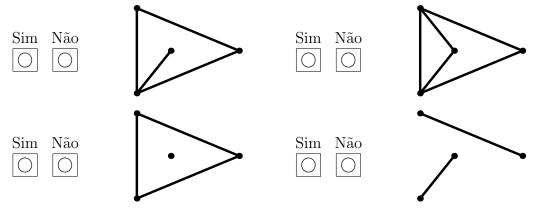
\bigcirc	
\bigcirc	

\bigcirc	0
\bigcirc	

2. Considere o seguinte grafo G.

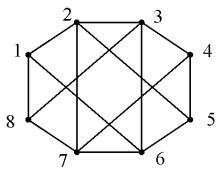


Assinale com uma cruz quais dos grafos de ordem 4 em baixo são isomorfos a subgrafos de G.



3.	Escolha a resposta correcta.	Um poliedro convexo com 13 arestas pode ter	(1v.)
o segi	uinte número de faces:		

4. Complete a demonstração de não planaridade do seguinte grafo G. (1v.)



Suponhamos por absurdo que o grafo G é planar, isto é que G admite uma representação planar toplógica. Numa tal representação o ciclo hamiltoniano $\gamma = \{1 \mapsto 2 \mapsto 3 \mapsto 4 \mapsto 5 \mapsto 6 \mapsto 7 \mapsto 8 \mapsto 1\}$ corresponde a uma curva simples fechada. Suponhamos que, nesta representação, a aresta $\{2,7\}$ é interior à curva γ . Partindo da hipótese contrária pode-se inferir um absurdo análogo.

- (1) $\{2,7\}$ é interior a γ , por hipótese;
- (2) $\{1,6\}$ é exterior a γ , por (1);
- (4) e a γ , por (5) é a γ , por (5)
- (6) $\stackrel{\circ}{\text{e}}$ $\stackrel{\circ}{\text{a}}$ $\stackrel{\circ}{\text{v}}$, por ;
- (7) $e^{-\alpha \gamma}$, por $e^{-\alpha \gamma}$, por

As conclusões, e contradizem-se. Logo G não é planar.

5. Um grafo planar topológico conexo G tem f=8 faces e a=15 arestas. (1v.) Todos os vértices de G têm grau 3 ou 4. Sejam x o número de vértices de grau 3 e y o número de vértices de grau 4. Então

6. Seja G um grafo de ordem 13 e $\mathcal{C} = \{V_1, \cdots, V_k\}$ uma coloração de vértices de G num número mínimo de k (= ao número cromático) cores. Suponhamos que todo o subgrafo de G com ordem 5 tem pelo menos uma aresta.

O maior número de vértices de cada cor que a coloração ${\mathcal C}$ pode ter é _____ .

O número cromático de G é pelo menos maior ou igual a ____ .

(1v.)

(1v.)

(1v.)

(1v.)

(1v.)

(1v.)

(1v.)

(1v.)	7.	Há 6 dis	stribuições	de um	conjunto	de n	bolas	iguais	por trê	s sacos,	que
	deixan	n pelo me	nos duas l	oolas em	ı cada sac	o. De	termir	ne o val	onumber onumber) .	

- 8. Quantos amigos têm em conjunto três irmãos: o António, o Beto e o Carlos, sem contar com os próprios, sabendo que:
 - a) o António tem 4 amigos,
 - b) o Beto tem 4 amigos,
 - c) o Carlos tem 4 amigos,
 - d) o António e o Beto têm 2 amigos em comum,
 - e) o António e o Carlos têm 2 amigos em comum,
 - f) o Beto e o Carlos têm 2 amigos comuns,
 - g) o António, o Beto e o Carlos têm 1 amigo comum (aos três).

Nº amigos dos três irmãos =

II

Seja G um grafo planar toplógico com 1 vértice e n arestas, a que chamaremos um $bouquet\ de\ n\ lacetes.$

- 1. Prove que G tem n+1 faces, e use este facto para mostrar que o dual de G é uma árvore (i.e. um grafo conexo sem ciclos).
 - **2.** Qual o número cromático do dual de *G*?
- **3.** Dê exemplos de dois *bouquets de 3 lacetes*, cujos duais não sejam isomorfos, como grafos.
- 4. Prove que não existe nenhum grafo simples de ordem 6 com 3 vértices de grau 4, 2 vértices de grau 1, e 1 vértice de grau 2.

III

Seja G um grafo planar topológico simples, não necessariamente conexo, com f = 9 faces, tendo a face ilimitada grau 8 e todas as restantes grau 3. Suponhamos ainda que todos os vértices de G têm grau ≥ 3 .

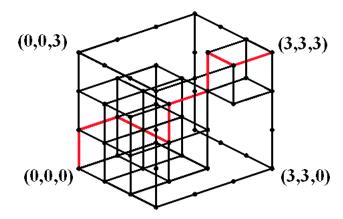
- 1. Mostre que cada componente conexa de G tem pelo menos 3 faces limitadas, e que G não pode ter mais de duas componentes conexas.
- **2.** Calcule o número de arestas do grafo G.
- (1v.) 3. Relacione o número de vértices com o número de componentes conexas e

mostre que G tem 9 ou 10 vértices.

4. Dê um exemplo de um grafo planar topológico nas condições acima, de (1v.) ordem 10.

IV

Uma sequência de pontos $\{(x_i, y_i, z_i) \in \mathbb{N}^3 : 0 \le i \le n \}$ diz-se um caminho no reticulado \mathbb{N}^3 sse para cada $i = 1, \dots, n$, a diferença $(x_i, y_i, z_i) - (x_{i-1}, y_{i-1}, z_{i-1})$ coincidir com um dos três vectores (1, 0, 0), (0, 1, 0) ou (0, 0, 1). O inteiro n diz-se o comprimento do caminho. Os pontos (x_0, y_0, z_0) e (x_n, y_n, z_n) dizem-se, respectivamente, as extremidades inicial e final do caminho.



- 1. Quantos caminhos de comprimento 7 existem em \mathbb{N}^3 a começar em (0,0,0)? (1v.)
- **2.** Quantos elementos tem o conjunto das extremidades finais dos caminhos (1v.) na alínea anterior?
- 3. Encontre uma fórmula que dê para cada inteiro $n \ge 3$ o número de elementos (1v.) do conjunto

$$A_n = \{(x, y, z) \in \mathbb{N}^3 : x + y + z = n \text{ e } \max\{x, y, z\} \le n - 2 \}$$
.

Enumere os seis elementos de A_4 .

4. Calcule a proporção de caminhos que passam por um ponto de A_4 no conjunto de todos os caminhos que começam em (0,0,0) e terminam em (2,2,2).