
A Note on Frobenius’ theorems

1 Some Multilinear Algebra

Let V be a real vector space with finite dimension n = dimV .

Proposition 1. Given a basis {e1, . . . , en} of V let {λ1, . . . , λn} ⊂ V ∗ be its dual basis,

which is characterized by λi(ej) = δij for 1 ≤ i, j ≤ n. Given ξ ∈
∧k

(V ),

ξ =
∑

1≤i1<···<ik≤n

ξ(ei1 , . . . , eik) λi1 ∧ · · · ∧ λik .

Proof. Exercise. Proved in class.

Proposition 2. Given linear forms θ1, . . . , θ` ∈ V ∗ and v ∈ V ,

iv(θ1 ∧ · · · ∧ θ`) =
∑̀
j=0

(−1)j−1 θj(v) θ1 ∧ · · · ∧ θ̂j ∧ · · · ∧ θ`.

Proof. See [3, Proposition 20.7].

Proposition 3. Given ξ ∈
∧k

(V ), η ∈
∧`

(V ) and v ∈ V ,

iv(ξ ∧ η) = iv(ξ) ∧ η + (−1)kξ ∧ ivη.

Proof. See [3, Proposition 20.8(ii)]. See also Exercise 5.13.

Definition 1. Given a k-form ξ ∈
∧k

(V ) we define its kernel to be

Ker(ξ) := {v ∈ V : ivξ = 0}.

This kernel is a linear subspace because the map V 3 v 7→ ivξ ∈
∧k−1

(V ) is linear. This
concept (of kernel of ξ) is not a standard definition in the bibliography.

Definition 2. Given k ≥ 1, a k-form ξ ∈
∧k

(V ) is said to be decomposable if there exist

1-forms θ1, . . . , θk ∈ V ∗ =
∧1

(V ) such that ξ = θ1 ∧ · · · ∧ θk.

It follows from this definition that every 1-form is decomposable.

1



Proposition 4. Given θ1, . . . , θk ∈ V ∗ such that ξ = θ1 ∧ · · · ∧ θk 6= 0,

Ker(ξ) =

k⋂
j=1

Ker(θj) has dimension n− k.

Proof. Since ξ = θ1, . . . , θk 6= 0, the 1-forms {θj : 0 ≤ j ≤ k} are linearly independent.

It follows that the (k − 1)-forms {θ ∧ · · · ∧ θ̂j ∧ · · · ∧ θk : 1 ≤ j ≤ k} are also linearly
independent. By Proposition 2,

v ∈ Ker(ξ) ⇔ ivξ = 0 ⇔ θj(v) = 0 ∀j ⇔ v ∈
k⋂
j=1

Ker(θj)

which implies that Ker(ξ) = ∩kj=1Ker(θj). To compute the dimension of this kernel

consider the linear map θ : V → Rk, θ(v) := (θ1(v), · · · , θk(v)), whose kernel is equal to
Ker(ξ). Since

k∑
j=1

cj θ
j = 0 ⇔ (c1, . . . , ck) · θ(v) ∀ v ∈ V ⇔ (c1, . . . , ck) ∈ θ(V )⊥

the linear independence of {θj : 0 ≤ j ≤ k} implies that θ(V )⊥ = {0} and hence that
θ(V ) = Rk. Therefore

dimKer(ξ) = dim Ker(θ) = dimV − dim θ(V ) = n− k.

Proposition 5. Given two decomposable k-forms ξ, ξ′ ∈
∧k

(V ) \ {0},

Ker(ξ) = Ker(ξ′) ⇔ ∃κ ∈ R \ {0} such that ξ′ = κ ξ.

Proof. Assume that Ker(ξ) = Ker(ξ′) and let {v1, . . . , vn} be a basis of V such that
{vk+1, . . . , vn} is a basis of Ker(ξ). Let {λ1, . . . , λn} be the dual basis of V ∗, which is
characterized by the relations λj(vi) = δij for all 1 ≤ i, j ≤ n. By Proposition 1 we have

ξ =
∑

1≤i1<···<ik≤n

ξ(vi1 , . . . , vik)λi1 ∧ · · · ∧ λik = ξ(v1, . . . , vk)λ1 ∧ · · · ∧ λk.

The second equality holds because ξ(vi1 , . . . , vik) = 0 for every (i1, . . . , ik) 6= (1, . . . , k).
In fact, if (i1, . . . , ik) 6= (1, . . . , k) then iα > k for some index α which implies that
viα ∈ Ker(ξ) and hence that ξ(vi1 , . . . , vik) = ± iviα ξ(· · · ) = 0. In the same way

ξ = ξ′(v1, . . . , vk)λ1 ∧ · · · ∧ λk.

Because ξ and ξ′, are non-zero k-forms we have ξ(v1, . . . , vk) 6= 0 and ξ′(v1, . . . , vk) 6= 0.
Thus ξ′ = κ ξ where κ is the ratio between these two non-zero numbers.

The converse implication is obvious.
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Exercise 1. Given ξ ∈
∧k

(V ), show that ξ is decomposable if and only if Ker(ξ) has
dimension ≥ n− k.
Hint: Use the argument in the proof of Proposition 5.

Exercise 2. Prove that every 2-form ξ ∈
∧2

(R3) is decomposable.
Hint: There exists a skew-symmetric matrix A ∈ R3×3 such that ξ(u, v) = uT Av. Con-
clude that dim Ker(ξ) = 1 when ξ 6= 0.

Exercise 3. Prove that the 2-form ξ = dx dy + dz dw ∈
∧2

(R4) is not decomposable.
Hint: Prove that Ker(ξ) = {(0, 0, 0, 0)}.

The following picture from wikipedia (https://en.wikipedia.org/wiki/Exterior_
algebra) helps to visualize the kernels of decomposable forms in R3. The picture depicts
several level sets of the 1-forms ε, η and ω.

2 A couple of formulas

Let M be some n-dimensional manifold and denote by X(M) the space of all smooth
vector fields on M . Let Ωk(M) be the space of k-differential forms on M .

Proposition 6. Given ω ∈ Ω1(M), X,Y ∈ X(M),

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]).

Proof. See [3, Proposition 20.13].

Proposition 7 (Cartan’s Formula). Given ω ∈ Ωk(M) and X ∈ X(M),

LXω = d iXω + iX dω.

Proof. See [3, Proposition 20.10 (iii)].

3 Frobenius Theorems, statements and proofs

A partitioned manifold is a pair (M,P) where M is a manifold and P is a partition of
M . We say that two partitioned manifolds (M,P) and (N,Q) are diffeomorphic if there
exists a diffeomorphism f : M → N that induces a bijective map F 7→ f(F ) between the
partitions P and Q. Given an open set U ⊂ M , we denote by P|U the restriction of the
partition P to U .
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Definition 3. A k-dimensional foliation of M is any partition F of M such that (M,F)
is locally diffeomorphic to (Rn,Ekn), where Ekn := {Rk × {c} : c ∈ Rn−k}. This means that
for every p ∈ M there are open sets U ⊂ M , V ⊂ Rn with p ∈ U and a diffeomorphism
f : (U,F|U )→ (V,Ekn|V ) between the partitioned manifolds (U,F|U ) and (V,Ekn|V ).

Given a foliation F of M , the elements of the partition F are called the leaves of F.
The leaf of F that contains a point x ∈M is denoted by F(x). The tangent space TxF(x)
is abbreviated by TxF.

Proposition 8. If f : M → N is a submersion then F = {f−1(c) : c ∈ N} is a foliation
of M with dimension k = dim(M)− dim(N).

Proof. Exercise.

Definition 4. A k-dimensional distribution on M is a smooth function M 3 x 7→ Dx that
to each point x ∈M associates a k-dimensional subspace Dx ⊂ TxM . It can be defined as
a smooth section of the Grassmannian bundle Grk(TM). Alternatively, the map x 7→ Dx

is smooth if for every p ∈ M there exists an open set U ⊂ M with p ∈ U and there are
smooth vector fields X1, . . . , Xk ∈ X(U) such that {X1(x), . . . , Xk(x)} form a basis for
Dx, for all x ∈ U .

Definition 5. A k-dimensional distribution D on M is said to be completely integrable
if for every p ∈M there exists an open set U ⊂M with p ∈ U and there exists a foliation
F on U such that Dx = TxF for all x ∈ U .

Proposition 9. Every 1-dimensional distribution on M is completely integrable.

Proof. Given a 1-dimensional distribution D, for every p ∈M there is an open set U ⊂M
containing p and there exists a non-zero smooth vector field X ∈ X(U) such that X(x) ∈
Dx for all x ∈ U . The integral 1-dimensional foliation F follows from the existence of
solutions of the ordinary differential equation x′(t) = X(x(t)) on M . The leaves of F are
the trajectories of the vector field X.

Given a distribution D, we define now the subspace of vector fields X ∈ X(M) which
are tangent to D:

V(D) := {X ∈ X(M) : X(x) ∈ Dx, ∀x ∈M }

We will write X ∈ D to mean that X ∈ V(D).
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Remark 1. V(D) is a linear subspace of X(M).

Proof. Exercise.

Theorem 1 (Frobenius). Given a k-dimensional distribution D on M , D is completely
integrable if and only if V(M) is a Lie subalgebra of X(M), i.e., [X,Y ] ∈ V(D) whenever
X,Y ∈ V(D).

Proof. See [2, Theorem 5.1]. We present here a geometric sketch of the argument.
If D is completely integrable, let F be a foliation on some open set U ⊂M such that

p ∈ U and Dx = TxF for all x ∈ U . Applying Exercise 3.17 to the submanifold F(x), we
see that for any X,Y ∈ V(D), [X,Y ](p) ∈ TpF = Dp. Hence [X,Y ] ∈ V(D), which proves
that V(D) is a sub-algebra of X(M).

The proof of the converse implication goes by induction in the dimension of the dis-
tribution. For k = 1, Frobenius’ Theorem reduces to Proposition 9.

Assume now that this theorem holds for any (k − 1)-dimensional distribution F such
that V(F ) is a Lie algebra and let D be a k-dimensional distribution such that V(F ) is a
Lie algebra. Because ‘complete integrability’ is a local concept, given p ∈M we can take
an open set U ⊂ M with p ∈ U and choose vector fields X1, . . . , Xn ∈ X(U) such that
{X1(x), . . . , Xn(x)} is a basis of TxM , while {X1(x), . . . , Xk(x)} is a basis of Dx for all
x ∈ U . By Exercise 3.13 (flow-box theorem) we can assume that X1 = e1 = (1, 0, . . . , 0).
Define Y1 = X1 and Yi = Xi−(Xi ·X1)X1 for i = 2, . . . , n. The vector Yi is the orthogonal
projection of Xi onto the hyperplane X⊥1 . We still have that {Y1(x), . . . , Yn(x)} is a basis
of TxM , while {Y1(x), . . . , Yk(x)} is a basis of Dx for all x ∈ U , but these new vector
fields satisfy for all 2 ≤ i ≤ n and x ∈ U :

(a) Y1(x) · Yi(x) = 0,

(b) first component of Yi(x) = Yi(x1) = 0,

(c) [Y1, Yi](x) = 0.

Because V(D) is a Lie algebra, [Yi, Yj ] ∈ V(D) for any 2 ≤ i, j ≤ n. Hence there are
smooth functions c`ij ∈ C∞(U), with 1 ≤ ` ≤ k, such that

[Yi, Yj ] =

k∑
`=1

c`ij Y`.

From item (b) a simple calculation shows that the first component of [Yi, Yj ] is also zero,
which implies that c1ij = 0. Therefore

[Yi, Yj ] =

k∑
`=2

c`ij Y`

and the vector fields Y2, . . . , Yk span a (k − 1)-distribution F such that V(F ) is a Lie
algebra. By induction hypothesis this distribution integrates to a foliation F that we
will assume to be defined on the same neighborhood U . By item (c) and Exercise 3.11
the flows of the vector fields Yi commute with the flow of Y1. Hence the leaves of F
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are invariant under the flow of Y1. In other words, the leaves of F are invariant under
translations along the direction e1. Thus we can define a new foliation G, with leaves

G(x) = U ∩ (R e1 + F(x))

which integrates the distribution D. See the figure below.

Define the linear subspace I(D) := ⊕nk=0I
k(D) where

Ik(D) := {ω ∈ Ωk(M) : ωx(v1, . . . , vk) = 0, ∀x ∈M, ∀ v1, . . . , vk ∈ Dx }.

We will say that ω vanishes on D to mean that ω ∈ I(D).

Remark 2. I(D) is an ideal of the graded algebra Ω∗(M) := ⊕nk=0Ωk(M).

Proof. Exercise.

Theorem 2 (Frobenius). Given a k-dimensional distribution D on M , D is completely
integrable if and only if d(I(D)) ⊂ I(D), i.e., dω ∈ I(D) whenever ω ∈ I(D).

Proof. Since the theorem’s content is local we can assume that there exist vector fields
X1, . . . , Xn ∈ X(M) such that {X1(x), . . . , Xn(x)} is a basis of TxM for all x ∈ M .
Moreover, by Definition 4 we can assume that {X1(x), . . . , Xk(x)} is a basis of Dx, for
all x ∈ M . Consider the dual 1-forms ω1, . . . , ωn ∈ Ω1(M) which are characterized by
ωi(Xj) = δij . Then for all x ∈M ,

Dx =

n⋂
j=k+1

Ker(ωj(x)). (1)

Lemma 1. Any form ω ∈ I`(D) can be represented as

ω =
∑

1≤i1<...<i`≤n
i`≥k+1

hi1,··· ,i` ω
i1 ∧ · · · ∧ ωi` (2)

with hi1,··· ,i` ∈ C∞(M).
In particular, I(D) is generated (as an ideal) by the monomials ωk+1, . . . , ωn.
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Proof. It is clear that ωk+1, . . . , ωn ∈ I1(D). Hence, since I(D) is an ideal, it must contain
all k- forms (2).

Conversely, any k-form ω ∈ Ωk(M) can be written as

ω =
∑

1≤i1<...<i`≤n

hi1,··· ,i` ω
i1 ∧ · · · ∧ ωi`

with hi1,··· ,i` ∈ C∞(M). In fact we have hi1,··· ,i` = ω(Xi1 , . . . , Xi`) because of Proposi-
tion 1. But if ω ∈ I`(D) and i` ≤ k then Xi1 , . . . , Xi` ∈ D and

hi1,··· ,i` = ω(Xi1 , . . . , Xi`) = 0.

This proves that ω takes the form (2).

Remark 3. In the previous setting d(I(D)) ⊂ I(D) ⇔ dωj ∈ I2(D) ∀ k + 1 ≤ j ≤ n.

Proof. Exercise.

By Proposition 6, given r ≥ k + 1 and i, j ≤ k

dωr(Xi, Xj) = Xi(ω
r(Xj)︸ ︷︷ ︸
=0

)−Xj(ω
r(Xi)︸ ︷︷ ︸
=0

)− ωr([Xi, Xj ]) = −ωr([Xi, Xj ]). (3)

Hence each of the following statements is equivalent to the next one:

• D is completely integrable;

• V(D) is a Lie sub-algebra of X(M); (by Theorem 1)

• [Xi, Xj ] ∈ D for all 1 ≤ i < j ≤ k; (because D = 〈X1, . . . , Xk〉)

• ωr([Xi, Xj ]) = 0 for all 1 ≤ i < j ≤ k and k + 1 ≤ r ≤ n; (by (1))

• dωr(Xi, Xj) = 0 for all 1 ≤ i < j ≤ k and k + 1 ≤ r ≤ n; (by (3))

• dωr ∈ I2(D) for all k + 1 ≤ r ≤ n; (by definition of I(D))

• d(I(D)) ⊂ I(D). (by Remark 3)

Theorem 3. Given 1-forms ωk+1, . . . , ωn ∈ Ω1(M) and a k-distribution D such that

Dx = Ker(ωk+1(x)) ∩ . . . ∩Ker(ωn(x)) ∀x ∈M

consider the form Ω = ωk+1 ∧ · · · ∧ ωn. Then the following statements are equivalent:

(a) D is completely integrable;

(b) dωr =
∑

1≤α<β
k<β≤n

hkα,β ω
α ∧ ωβ with hkα,β ∈ C∞(M);

(c) dωr ∧ Ω = 0, for all k < r ≤ n.
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Proof. The assumption implies that ωk+1(x), . . . , ωn(x) are linearly independent for all
x ∈M . Hence, working locally we can take 1-forms ω1, . . . , ωk such that {ω1(x), . . . , ωn(x)}
is a basis of (TxM)∗ for all x. Consider then the dual vector fields X1, . . . , Xn ∈ X(M)
which satisfy ωi(Xj) = δij for all 1 ≤ i, j ≤ n.

Assuming (a) we have by Theorem 2, for all r > k, and i < j ≤ k, dωr(Xi, Xj) = 0.
On the other hand by Proposition 1

dωr =
∑

1≤α<β≤n

hkα,β ω
α ∧ ωβ

with hkα,β = dωr(Xα, Xβ). This implies (b).

Assuming (b), in each summand ωα∧ωβ of dωr we have k < β. Hence ωα∧ωβ∧Ω = 0
because the factor ωβ is present in Ω. This implies (c), that is dωr ∧ Ω = 0.

To finish we prove that (c) ⇒ (a). By Proposition 4, for all x ∈M ,

Dx =

n⋂
r=k+1

Ker(ωr(x)) = Ker(Ω(x)).

Thus, given 1 ≤ j ≤ k, iXjΩ = 0. For any r > k, since dωr ∧ Ω = 0, by Proposition 3 we
have (iXjdω

r) ∧ Ω = 0. We can write

iXjdω
r =

n∑
s=1

hs ω
s

for some functions hs ∈ C∞(M). Since

0 = (iXjdω
r) ∧ Ω =

k∑
s=1

hs ω
s ∧ Ω +

n∑
s=k+1

hs ω
s ∧ Ω︸ ︷︷ ︸
=0

=

k∑
s=1

hs ω
s ∧ Ω

where the forms {ωs ∧Ω}s≤k are linearly independent we must have hs = 0 for all s ≤ k.
Therefore

iXjdω
r =

n∑
s=k+1

hs ω
s.

Hence for all 1 ≤ i, j ≤ k,

dωr(Xj , Xi) = iXjdω
r(Xi) =

n∑
s=k+1

hs ω
s(Xi) = 0

which implies that dωr ∈ I(D). The complete integrability (a) follows by Theorem 2 .
We have shown that

(a) ⇒ (b) ⇒ (c) ⇒ (a).

Exercise 4. Under the assumptions of Theorem 3 prove that dΩ = 0 is sufficient for the
complete integrability of the distribution Ker(Ω).
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Exercise 5. Prove that the kernel of the 1-form

ω = cos z dx+ sin z dy ∈ Ω2(R3)

is not an integrable 2-distribution in R3. See the figure below.

Exercise 6. Let U = {(x, y, z) ∈ R3 : z > 0} and consider the vector fields X,Y ∈ X(U),
X(x, y, z) = (0,−z, y), Y (x, y, z) = (z, 0,−x). Prove that these two vector fields span a
completely integrable 2-distribution and determine the corresponding integral foliation.

Exercise 7. Given a submersion f : Mn → Nm, let Ω be volume form on Nm. Prove
that the kernel of f∗Ω is a completely integrable (n − m)-distribution and identify the
corresponding integral foliation.
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