A Note on Frobenius' theorems

1 Some Multilinear Algebra

Let V be a real vector space with finite dimension $n=\operatorname{dim} V$.
Proposition 1. Given a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V let $\left\{\lambda^{1}, \ldots, \lambda^{n}\right\} \subset V^{*}$ be its dual basis, which is characterized by $\lambda^{i}\left(e_{j}\right)=\delta_{i j}$ for $1 \leq i, j \leq n$. Given $\xi \in \bigwedge^{k}(V)$,

$$
\xi=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \xi\left(e_{i_{1}}, \ldots, e_{i_{k}}\right) \lambda^{i_{1}} \wedge \cdots \wedge \lambda^{i_{k}}
$$

Proof. Exercise. Proved in class.
Proposition 2. Given linear forms $\theta_{1}, \ldots, \theta_{\ell} \in V^{*}$ and $v \in V$,

$$
i_{v}\left(\theta_{1} \wedge \cdots \wedge \theta_{\ell}\right)=\sum_{j=0}^{\ell}(-1)^{j-1} \theta_{j}(v) \theta_{1} \wedge \cdots \wedge \widehat{\theta_{j}} \wedge \cdots \wedge \theta_{\ell}
$$

Proof. See [3, Proposition 20.7].
Proposition 3. Given $\xi \in \bigwedge^{k}(V), \eta \in \bigwedge^{\ell}(V)$ and $v \in V$,

$$
i_{v}(\xi \wedge \eta)=i_{v}(\xi) \wedge \eta+(-1)^{k} \xi \wedge i_{v} \eta
$$

Proof. See [3, Proposition 20.8(ii)]. See also Exercise 5.13.
Definition 1. Given a k-form $\xi \in \bigwedge^{k}(V)$ we define its kernel to be

$$
\operatorname{Ker}(\xi):=\left\{v \in V: i_{v} \xi=0\right\}
$$

This kernel is a linear subspace because the map $V \ni v \mapsto i_{v} \xi \in \bigwedge^{k-1}(V)$ is linear. This concept (of kernel of ξ) is not a standard definition in the bibliography.

Definition 2. Given $k \geq 1$, a k-form $\xi \in \bigwedge^{k}(V)$ is said to be decomposable if there exist 1 -forms $\theta^{1}, \ldots, \theta^{k} \in V^{*}=\bigwedge^{1}(V)$ such that $\xi=\theta^{1} \wedge \cdots \wedge \theta^{k}$.

It follows from this definition that every 1-form is decomposable.

Proposition 4. Given $\theta^{1}, \ldots, \theta^{k} \in V^{*}$ such that $\xi=\theta^{1} \wedge \cdots \wedge \theta^{k} \neq 0$,

$$
\operatorname{Ker}(\xi)=\bigcap_{j=1}^{k} \operatorname{Ker}\left(\theta^{j}\right) \text { has dimension } n-k
$$

Proof. Since $\xi=\theta^{1}, \ldots, \theta^{k} \neq 0$, the 1 -forms $\left\{\theta^{j}: 0 \leq j \leq k\right\}$ are linearly independent. It follows that the $(k-1)$-forms $\left\{\theta \wedge \cdots \wedge \widehat{\theta^{j}} \wedge \cdots \wedge \theta^{k}: 1 \leq j \leq k\right\}$ are also linearly independent. By Proposition 2,

$$
v \in \operatorname{Ker}(\xi) \Leftrightarrow i_{v} \xi=0 \Leftrightarrow \theta^{j}(v)=0 \forall j \Leftrightarrow v \in \bigcap_{j=1}^{k} \operatorname{Ker}\left(\theta^{j}\right)
$$

which implies that $\operatorname{Ker}(\xi)=\cap_{j=1}^{k} \operatorname{Ker}\left(\theta^{j}\right)$. To compute the dimension of this kernel consider the linear map $\theta: V \rightarrow \mathbb{R}^{k}, \theta(v):=\left(\theta^{1}(v), \cdots, \theta^{k}(v)\right)$, whose kernel is equal to $\operatorname{Ker}(\xi)$. Since

$$
\sum_{j=1}^{k} c_{j} \theta^{j}=0 \Leftrightarrow\left(c_{1}, \ldots, c_{k}\right) \cdot \theta(v) \forall v \in V \Leftrightarrow\left(c_{1}, \ldots, c_{k}\right) \in \theta(V)^{\perp}
$$

the linear independence of $\left\{\theta^{j}: 0 \leq j \leq k\right\}$ implies that $\theta(V)^{\perp}=\{0\}$ and hence that $\theta(V)=\mathbb{R}^{k}$. Therefore

$$
\operatorname{dim} \operatorname{Ker}(\xi)=\operatorname{dim} \operatorname{Ker}(\theta)=\operatorname{dim} V-\operatorname{dim} \theta(V)=n-k
$$

Proposition 5. Given two decomposable k-forms $\xi, \xi^{\prime} \in \bigwedge^{k}(V) \backslash\{0\}$,

$$
\operatorname{Ker}(\xi)=\operatorname{Ker}\left(\xi^{\prime}\right) \quad \Leftrightarrow \quad \exists \kappa \in \mathbb{R} \backslash\{0\} \text { such that } \xi^{\prime}=\kappa \xi
$$

Proof. Assume that $\operatorname{Ker}(\xi)=\operatorname{Ker}\left(\xi^{\prime}\right)$ and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V such that $\left\{v_{k+1}, \ldots, v_{n}\right\}$ is a basis of $\operatorname{Ker}(\xi)$. Let $\left\{\lambda^{1}, \ldots, \lambda^{n}\right\}$ be the dual basis of V^{*}, which is characterized by the relations $\lambda^{j}\left(v_{i}\right)=\delta_{i j}$ for all $1 \leq i, j \leq n$. By Proposition 1 we have

$$
\xi=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \xi\left(v_{i_{1}}, \ldots, v_{i_{k}}\right) \lambda^{i_{1}} \wedge \cdots \wedge \lambda^{i_{k}}=\xi\left(v_{1}, \ldots, v_{k}\right) \lambda^{1} \wedge \cdots \wedge \lambda^{k}
$$

The second equality holds because $\xi\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)=0$ for every $\left(i_{1}, \ldots, i_{k}\right) \neq(1, \ldots, k)$. In fact, if $\left(i_{1}, \ldots, i_{k}\right) \neq(1, \ldots, k)$ then $i_{\alpha}>k$ for some index α which implies that $v_{i_{\alpha}} \in \operatorname{Ker}(\xi)$ and hence that $\xi\left(v_{i_{1}}, \ldots, v_{i_{k}}\right)= \pm i_{v_{i_{\alpha}}} \xi(\cdots)=0$. In the same way

$$
\xi=\xi^{\prime}\left(v_{1}, \ldots, v_{k}\right) \lambda^{1} \wedge \cdots \wedge \lambda^{k}
$$

Because ξ and ξ^{\prime}, are non-zero k-forms we have $\xi\left(v_{1}, \ldots, v_{k}\right) \neq 0$ and $\xi^{\prime}\left(v_{1}, \ldots, v_{k}\right) \neq 0$. Thus $\xi^{\prime}=\kappa \xi$ where κ is the ratio between these two non-zero numbers.

The converse implication is obvious.

Exercise 1. Given $\xi \in \bigwedge^{k}(V)$, show that ξ is decomposable if and only if $\operatorname{Ker}(\xi)$ has dimension $\geq n-k$.
Hint: Use the argument in the proof of Proposition 5.
Exercise 2. Prove that every 2 -form $\xi \in \bigwedge^{2}\left(\mathbb{R}^{3}\right)$ is decomposable.
Hint: There exists a skew-symmetric matrix $A \in \mathbb{R}^{3 \times 3}$ such that $\xi(u, v)=u^{T} A v$. Conclude that $\operatorname{dim} \operatorname{Ker}(\xi)=1$ when $\xi \neq 0$.

Exercise 3. Prove that the 2 -form $\xi=d x d y+d z d w \in \bigwedge^{2}\left(\mathbb{R}^{4}\right)$ is not decomposable.
Hint: Prove that $\operatorname{Ker}(\xi)=\{(0,0,0,0)\}$.
The following picture from wikipedia (https://en.wikipedia.org/wiki/Exterior_ algebra) helps to visualize the kernels of decomposable forms in \mathbb{R}^{3}. The picture depicts several level sets of the 1 -forms ε, η and ω.

$\varepsilon \wedge \eta$

$\varepsilon \wedge \eta \wedge \omega$

2 A couple of formulas

Let M be some n-dimensional manifold and denote by $X(M)$ the space of all smooth vector fields on M. Let $\Omega^{k}(M)$ be the space of k-differential forms on M.

Proposition 6. Given $\omega \in \Omega^{1}(M), X, Y \in \mathcal{X}(M)$,

$$
d \omega(X, Y)=X(\omega(Y))-Y(\omega(X))-\omega([X, Y])
$$

Proof. See [3, Proposition 20.13].
Proposition 7 (Cartan's Formula). Given $\omega \in \Omega^{k}(M)$ and $X \in \mathcal{X}(M)$,

$$
\mathcal{L}_{X} \omega=d i_{X} \omega+i_{X} d \omega
$$

Proof. See [3, Proposition 20.10 (iii)].

3 Frobenius Theorems, statements and proofs

A partitioned manifold is a pair (M, \mathcal{P}) where M is a manifold and \mathcal{P} is a partition of M. We say that two partitioned manifolds (M, \mathcal{P}) and (N, Q) are diffeomorphic if there exists a diffeomorphism $f: M \rightarrow N$ that induces a bijective map $F \mapsto f(F)$ between the partitions \mathcal{P} and \mathcal{Q}. Given an open set $U \subset M$, we denote by $\left.\mathcal{P}\right|_{U}$ the restriction of the partition \mathcal{P} to U.

Definition 3. $A k$-dimensional foliation of M is any partition \mathcal{F} of M such that (M, \mathcal{F}) is locally diffeomorphic to $\left(\mathbb{R}^{n}, \mathcal{E}_{n}^{k}\right)$, where $\mathcal{E}_{n}^{k}:=\left\{\mathbb{R}^{k} \times\{c\}: c \in \mathbb{R}^{n-k}\right\}$. This means that for every $p \in M$ there are open sets $U \subset M, V \subset \mathbb{R}^{n}$ with $p \in U$ and a diffeomorphism $f:\left(U,\left.\mathcal{F}\right|_{U}\right) \rightarrow\left(V,\left.\mathcal{E}_{n}^{k}\right|_{V}\right)$ between the partitioned manifolds $\left(U,\left.\mathcal{F}\right|_{U}\right)$ and $\left(V,\left.\mathcal{E}_{n}^{k}\right|_{V}\right)$.

Given a foliation \mathcal{F} of M, the elements of the partition \mathcal{F} are called the leaves of \mathcal{F}. The leaf of \mathcal{F} that contains a point $x \in M$ is denoted by $\mathcal{F}(x)$. The tangent space $T_{x} \mathcal{F}(x)$ is abbreviated by $T_{x} \mathcal{F}$.

Proposition 8. If $f: M \rightarrow N$ is a submersion then $\mathcal{F}=\left\{f^{-1}(c): c \in N\right\}$ is a foliation of M with dimension $k=\operatorname{dim}(M)-\operatorname{dim}(N)$.

Proof. Exercise.
Definition 4. $A k$-dimensional distribution on M is a smooth function $M \ni x \mapsto D_{x}$ that to each point $x \in M$ associates a k-dimensional subspace $D_{x} \subset T_{x} M$. It can be defined as a smooth section of the Grassmannian bundle $\operatorname{Gr}_{k}(T M)$. Alternatively, the map $x \mapsto D_{x}$ is smooth if for every $p \in M$ there exists an open set $U \subset M$ with $p \in U$ and there are smooth vector fields $X_{1}, \ldots, X_{k} \in \mathcal{X}(U)$ such that $\left\{X_{1}(x), \ldots, X_{k}(x)\right\}$ form a basis for D_{x}, for all $x \in U$.

Definition 5. $A k$-dimensional distribution D on M is said to be completely integrable if for every $p \in M$ there exists an open set $U \subset M$ with $p \in U$ and there exists a foliation \mathcal{F} on U such that $D_{x}=T_{x} \mathcal{F}$ for all $x \in U$.

Proposition 9. Every 1-dimensional distribution on M is completely integrable.
Proof. Given a 1-dimensional distribution D, for every $p \in M$ there is an open set $U \subset M$ containing p and there exists a non-zero smooth vector field $X \in \mathcal{X}(U)$ such that $X(x) \in$ D_{x} for all $x \in U$. The integral 1-dimensional foliation \mathcal{F} follows from the existence of solutions of the ordinary differential equation $x^{\prime}(t)=X(x(t))$ on M. The leaves of \mathcal{F} are the trajectories of the vector field X.

Given a distribution D, we define now the subspace of vector fields $X \in \mathcal{X}(M)$ which are tangent to D :

$$
\mathcal{V}(D):=\left\{X \in X(M): X(x) \in D_{x}, \forall x \in M\right\}
$$

We will write $X \in D$ to mean that $X \in \mathcal{V}(D)$.

Remark 1. $\mathcal{V}(D)$ is a linear subspace of $\mathcal{X}(M)$.
Proof. Exercise.
Theorem 1 (Frobenius). Given a k-dimensional distribution D on M, D is completely integrable if and only if $\mathcal{V}(M)$ is a Lie subalgebra of $X(M)$, i.e., $[X, Y] \in \mathcal{V}(D)$ whenever $X, Y \in \mathcal{V}(D)$.

Proof. See [2, Theorem 5.1]. We present here a geometric sketch of the argument.
If D is completely integrable, let \mathcal{F} be a foliation on some open set $U \subset M$ such that $p \in U$ and $D_{x}=T_{x} \mathcal{F}$ for all $x \in U$. Applying Exercise 3.17 to the submanifold $\mathcal{F}(x)$, we see that for any $X, Y \in \mathcal{V}(D),[X, Y](p) \in T_{p} \mathcal{F}=D_{p}$. Hence $[X, Y] \in \mathcal{V}(D)$, which proves that $\mathcal{V}(D)$ is a sub-algebra of $\mathcal{X}(M)$.

The proof of the converse implication goes by induction in the dimension of the distribution. For $k=1$, Frobenius' Theorem reduces to Proposition 9 ,

Assume now that this theorem holds for any $(k-1)$-dimensional distribution F such that $\mathcal{V}(F)$ is a Lie algebra and let D be a k-dimensional distribution such that $\mathcal{V}(F)$ is a Lie algebra. Because 'complete integrability' is a local concept, given $p \in M$ we can take an open set $U \subset M$ with $p \in U$ and choose vector fields $X_{1}, \ldots, X_{n} \in X(U)$ such that $\left\{X_{1}(x), \ldots, X_{n}(x)\right\}$ is a basis of $T_{x} M$, while $\left\{X_{1}(x), \ldots, X_{k}(x)\right\}$ is a basis of D_{x} for all $x \in U$. By Exercise 3.13 (flow-box theorem) we can assume that $X_{1}=e_{1}=(1,0, \ldots, 0)$. Define $Y_{1}=X_{1}$ and $Y_{i}=X_{i}-\left(X_{i} \cdot X_{1}\right) X_{1}$ for $i=2, \ldots, n$. The vector Y_{i} is the orthogonal projection of X_{i} onto the hyperplane X_{1}^{\perp}. We still have that $\left\{Y_{1}(x), \ldots, Y_{n}(x)\right\}$ is a basis of $T_{x} M$, while $\left\{Y_{1}(x), \ldots, Y_{k}(x)\right\}$ is a basis of D_{x} for all $x \in U$, but these new vector fields satisfy for all $2 \leq i \leq n$ and $x \in U$:
(a) $Y_{1}(x) \cdot Y_{i}(x)=0$,
(b) first component of $Y_{i}(x)=Y_{i}\left(x_{1}\right)=0$,
(c) $\left[Y_{1}, Y_{i}\right](x)=0$.

Because $\mathcal{V}(D)$ is a Lie algebra, $\left[Y_{i}, Y_{j}\right] \in \mathcal{V}(D)$ for any $2 \leq i, j \leq n$. Hence there are smooth functions $c_{i j}^{\ell} \in C^{\infty}(U)$, with $1 \leq \ell \leq k$, such that

$$
\left[Y_{i}, Y_{j}\right]=\sum_{\ell=1}^{k} c_{i j}^{\ell} Y_{\ell}
$$

From item (b) a simple calculation shows that the first component of $\left[Y_{i}, Y_{j}\right]$ is also zero, which implies that $c_{i j}^{1}=0$. Therefore

$$
\left[Y_{i}, Y_{j}\right]=\sum_{\ell=2}^{k} c_{i j}^{\ell} Y_{\ell}
$$

and the vector fields Y_{2}, \ldots, Y_{k} span a $(k-1)$-distribution F such that $\mathcal{V}(F)$ is a Lie algebra. By induction hypothesis this distribution integrates to a foliation \mathcal{F} that we will assume to be defined on the same neighborhood U. By item (c) and Exercise 3.11 the flows of the vector fields Y_{i} commute with the flow of Y_{1}. Hence the leaves of \mathcal{F}
are invariant under the flow of Y_{1}. In other words, the leaves of \mathcal{F} are invariant under translations along the direction e_{1}. Thus we can define a new foliation \mathcal{G}, with leaves

$$
\mathcal{G}(x)=U \cap\left(\mathbb{R} e_{1}+\mathcal{F}(x)\right)
$$

which integrates the distribution D. See the figure below.

Define the linear subspace $\mathcal{J}(D):=\oplus_{k=0}^{n} \mathcal{J}^{k}(D)$ where

$$
\mathrm{J}^{k}(D):=\left\{\omega \in \Omega^{k}(M): \omega_{x}\left(v_{1}, \ldots, v_{k}\right)=0, \forall x \in M, \forall v_{1}, \ldots, v_{k} \in D_{x}\right\}
$$

We will say that ω vanishes on D to mean that $\omega \in \mathcal{J}(D)$.
Remark 2. $\mathcal{J}(D)$ is an ideal of the graded algebra $\Omega^{*}(M):=\oplus_{k=0}^{n} \Omega^{k}(M)$.
Proof. Exercise.
Theorem 2 (Frobenius). Given a k-dimensional distribution D on M, D is completely integrable if and only if $d(\mathcal{J}(D)) \subset \mathcal{J}(D)$, i.e., d $\omega \in \mathcal{J}(D)$ whenever $\omega \in \mathcal{J}(D)$.
Proof. Since the theorem's content is local we can assume that there exist vector fields $X_{1}, \ldots, X_{n} \in X(M)$ such that $\left\{X_{1}(x), \ldots, X_{n}(x)\right\}$ is a basis of $T_{x} M$ for all $x \in M$. Moreover, by Definition 4 we can assume that $\left\{X_{1}(x), \ldots, X_{k}(x)\right\}$ is a basis of D_{x}, for all $x \in M$. Consider the dual 1-forms $\omega^{1}, \ldots, \omega^{n} \in \Omega^{1}(M)$ which are characterized by $\omega^{i}\left(X_{j}\right)=\delta_{i j}$. Then for all $x \in M$,

$$
\begin{equation*}
D_{x}=\bigcap_{j=k+1}^{n} \operatorname{Ker}\left(\omega^{j}(x)\right) \tag{1}
\end{equation*}
$$

Lemma 1. Any form $\omega \in \mathcal{J}^{\ell}(D)$ can be represented as

$$
\begin{equation*}
\omega=\sum_{\substack{1 \leq i_{1}<\ldots<i_{\ell} \leq n \\ i_{\ell} \geq k+1}} h_{i_{1}, \cdots, i_{\ell}} \omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{\ell}} \tag{2}
\end{equation*}
$$

with $h_{i_{1}, \cdots, i_{\ell}} \in C^{\infty}(M)$.
In particular, $\mathcal{J}(D)$ is generated (as an ideal) by the monomials $\omega^{k+1}, \ldots, \omega^{n}$.

Proof. It is clear that $\omega^{k+1}, \ldots, \omega^{n} \in \mathcal{J}^{1}(D)$. Hence, since $\mathcal{J}(D)$ is an ideal, it must contain all k - forms (2).

Conversely, any k-form $\omega \in \Omega^{k}(M)$ can be written as

$$
\omega=\sum_{1 \leq i_{1}<\ldots<i_{\ell} \leq n} h_{i_{1}, \cdots, i_{\ell}} \omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{\ell}}
$$

with $h_{i_{1}, \cdots, i_{\ell}} \in C^{\infty}(M)$. In fact we have $h_{i_{1}, \cdots, i_{\ell}}=\omega\left(X_{i_{1}}, \ldots, X_{i_{\ell}}\right)$ because of Proposition 1. But if $\omega \in \mathcal{J}^{\ell}(D)$ and $i_{\ell} \leq k$ then $X_{i_{1}}, \ldots, X_{i_{\ell}} \in D$ and

$$
h_{i_{1}, \cdots, i_{\ell}}=\omega\left(X_{i_{1}}, \ldots, X_{i_{\ell}}\right)=0
$$

This proves that ω takes the form (2).
Remark 3. In the previous setting $d(\mathcal{J}(D)) \subset \mathcal{J}(D) \Leftrightarrow d \omega^{j} \in \mathcal{J}^{2}(D) \forall k+1 \leq j \leq n$.
Proof. Exercise.
By Proposition 6, given $r \geq k+1$ and $i, j \leq k$

$$
\begin{equation*}
d \omega^{r}\left(X_{i}, X_{j}\right)=X_{i}(\underbrace{\omega^{r}\left(X_{j}\right)}_{=0})-X_{j}(\underbrace{\omega^{r}\left(X_{i}\right)}_{=0})-\omega^{r}\left(\left[X_{i}, X_{j}\right]\right)=-\omega^{r}\left(\left[X_{i}, X_{j}\right]\right) \tag{3}
\end{equation*}
$$

Hence each of the following statements is equivalent to the next one:

- D is completely integrable;
- $\mathcal{V}(D)$ is a Lie sub-algebra of $X(M)$; (by Theorem 1)
- $\left[X_{i}, X_{j}\right] \in D$ for all $1 \leq i<j \leq k ;$ (because $D=\left\langle X_{1}, \ldots, X_{k}\right\rangle$)
- $\omega^{r}\left(\left[X_{i}, X_{j}\right]\right)=0$ for all $1 \leq i<j \leq k$ and $k+1 \leq r \leq n$; (by (1) $)$
- $d \omega^{r}\left(X_{i}, X_{j}\right)=0$ for all $1 \leq i<j \leq k$ and $k+1 \leq r \leq n$; (by (3))
- $d \omega^{r} \in \mathcal{J}^{2}(D)$ for all $k+1 \leq r \leq n$; (by definition of $\left.\mathcal{J}(D)\right)$
- $d(\mathcal{J}(D)) \subset \mathcal{J}(D) . \quad($ by Remark 3$)$

Theorem 3. Given 1 -forms $\omega^{k+1}, \ldots, \omega^{n} \in \Omega^{1}(M)$ and a k-distribution D such that

$$
D_{x}=\operatorname{Ker}\left(\omega^{k+1}(x)\right) \cap \ldots \cap \operatorname{Ker}\left(\omega^{n}(x)\right) \quad \forall x \in M
$$

consider the form $\Omega=\omega^{k+1} \wedge \cdots \wedge \omega^{n}$. Then the following statements are equivalent:
(a) D is completely integrable;
(b) $d \omega^{r}=\sum_{\substack{1 \leq \alpha<\beta \\ k<\beta \leq n}} h_{\alpha, \beta}^{k} \omega^{\alpha} \wedge \omega^{\beta}$ with $h_{\alpha, \beta}^{k} \in C^{\infty}(M)$;
(c) $d \omega^{r} \wedge \Omega=0$, for all $k<r \leq n$.

Proof. The assumption implies that $\omega^{k+1}(x), \ldots, \omega^{n}(x)$ are linearly independent for all $x \in M$. Hence, working locally we can take 1-forms $\omega^{1}, \ldots, \omega^{k}$ such that $\left\{\omega^{1}(x), \ldots, \omega^{n}(x)\right\}$ is a basis of $\left(T_{x} M\right)^{*}$ for all x. Consider then the dual vector fields $X_{1}, \ldots, X_{n} \in \mathcal{X}(M)$ which satisfy $\omega^{i}\left(X_{j}\right)=\delta_{i j}$ for all $1 \leq i, j \leq n$.

Assuming (a) we have by Theorem 2, for all $r>k$, and $i<j \leq k, d \omega^{r}\left(X_{i}, X_{j}\right)=0$. On the other hand by Proposition 1

$$
d \omega^{r}=\sum_{1 \leq \alpha<\beta \leq n} h_{\alpha, \beta}^{k} \omega^{\alpha} \wedge \omega^{\beta}
$$

with $h_{\alpha, \beta}^{k}=d \omega^{r}\left(X_{\alpha}, X_{\beta}\right)$. This implies (b).
Assuming (b), in each summand $\omega^{\alpha} \wedge \omega^{\beta}$ of $d \omega^{r}$ we have $k<\beta$. Hence $\omega^{\alpha} \wedge \omega^{\beta} \wedge \Omega=0$ because the factor ω^{β} is present in Ω. This implies (c), that is $d \omega^{r} \wedge \Omega=0$.

To finish we prove that $(c) \Rightarrow(a)$. By Proposition 4, for all $x \in M$,

$$
D_{x}=\bigcap_{r=k+1}^{n} \operatorname{Ker}\left(\omega^{r}(x)\right)=\operatorname{Ker}(\Omega(x))
$$

Thus, given $1 \leq j \leq k, i_{X_{j}} \Omega=0$. For any $r>k$, since $d \omega^{r} \wedge \Omega=0$, by Proposition 3 we have $\left(i_{X_{j}} d \omega^{r}\right) \wedge \Omega=0$. We can write

$$
i_{X_{j}} d \omega^{r}=\sum_{s=1}^{n} h_{s} \omega^{s}
$$

for some functions $h_{s} \in C^{\infty}(M)$. Since

$$
0=\left(i_{X_{j}} d \omega^{r}\right) \wedge \Omega=\sum_{s=1}^{k} h_{s} \omega^{s} \wedge \Omega+\sum_{s=k+1}^{n} h_{s} \underbrace{\omega^{s} \wedge \Omega}_{=0}=\sum_{s=1}^{k} h_{s} \omega^{s} \wedge \Omega
$$

where the forms $\left\{\omega^{s} \wedge \Omega\right\}_{s \leq k}$ are linearly independent we must have $h_{s}=0$ for all $s \leq k$. Therefore

$$
i_{X_{j}} d \omega^{r}=\sum_{s=k+1}^{n} h_{s} \omega^{s} .
$$

Hence for all $1 \leq i, j \leq k$,

$$
d \omega^{r}\left(X_{j}, X_{i}\right)=i_{X_{j}} d \omega^{r}\left(X_{i}\right)=\sum_{s=k+1}^{n} h_{s} \omega^{s}\left(X_{i}\right)=0
$$

which implies that $d \omega^{r} \in \mathcal{J}(D)$. The complete integrability (a) follows by Theorem 2 .
We have shown that

$$
(a) \Rightarrow(b) \Rightarrow(c) \Rightarrow(a)
$$

Exercise 4. Under the assumptions of Theorem 3 prove that $d \Omega=0$ is sufficient for the complete integrability of the distribution $\operatorname{Ker}(\Omega)$.

Exercise 5. Prove that the kernel of the 1-form

$$
\omega=\cos z d x+\sin z d y \in \Omega^{2}\left(\mathbb{R}^{3}\right)
$$

is not an integrable 2-distribution in \mathbb{R}^{3}. See the figure below.

Exercise 6. Let $U=\left\{(x, y, z) \in \mathbb{R}^{3}: z>0\right\}$ and consider the vector fields $X, Y \in X(U)$, $X(x, y, z)=(0,-z, y), Y(x, y, z)=(z, 0,-x)$. Prove that these two vector fields span a completely integrable 2-distribution and determine the corresponding integral foliation.

Exercise 7. Given a submersion $f: M^{n} \rightarrow N^{m}$, let Ω be volume form on N^{m}. Prove that the kernel of $f^{*} \Omega$ is a completely integrable $(n-m)$-distribution and identify the corresponding integral foliation.

References

[1] John M. Lee, Introduction to smooth manifolds, second ed., Graduate Texts in Mathematics, vol. 218, Springer, New York, 2013. MR 2954043
[2] Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
[3] Loring W. Tu, An introduction to manifolds, second ed., Universitext, Springer, New York, 2011. MR 2723362

