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In this paper, we prove the Saint-Venant compatibility conditions in L? for p € (1, +00), in a simply connected domain of
any space dimension. As a consequence, alternative, simple, and direct proofs of some classical Korn inequalities in LP are
provided. We also use the Helmholtz decomposition in LP to show that every symmetric tensor in a smooth domain can be
decomposed in a compatible part, which is the symmetric part of a displacement gradient, and in an incompatible part,
which is the incompatibility of a certain divergence-free tensor. Moreover, under a suitable Dirichlet boundary condition,
this Beltrami-type decomposition is proved to be unique. This decomposition result has several applications, one of which
being in dislocation models, where the incompatibility part is related to the dislocation density and where 1 < p < 2.
This justifies the need to generalize and prove these rather classical results in the Hilbertian case (p = 2), to the full range
p € (1, 4+00). Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

1.1. Intrinsic and displacement-based approaches in elasticity

The classical variational formulation of three-dimensional finite elasticity problems can be formulated as follows. Let @ < R3 be a
domain, that is, an open, bounded, connected, and Lipschitz set, which is the reference configuration of a hyperelastic and homoge-
neous body. We say that © is a smooth domain if its boundary is C*. Let ¢ : @ — R3 be a deformation, that is, a sufficiently smooth
map (e.g., ¢ is in the Sobolev space H' (22, R?)), globally injective on £ and which preserves the orientation, that is, detV¢ > 0 almost
everywhere in Q. The set ¢ () is the current configuration of the body.

The minimization problem of three-dimensional elasticity consists in looking for a solution for

min (), (1.1)
where A is a family of deformations and
I(p) == / W(V¢)dx — / f-¢dx (1.2)
Q Q

is the potential energy. Here, W : Mﬂ_ = {A € M3 : detA > 0} — R is the density of the elastic energy and f : @ — R3 is the density
of the volume force applied to 2. If the energy W is polyconvex and satisfies some growth conditions, a classical result due to J. Ball
([1]; see also [2] and [3]) shows the existence of minimizers for the functional /.

An alternative way to study this problem, sometimes referred to in literature as the intrinsic approach (e.g., [4]), consists in choosing
as problem unknown the Green-Saint-Venant tensor E instead of the deformation ¢. This physical quantity is the change of metric
from the reference to the current configuration. By a constitutive law, it is also related to the strain, which, being measured in the
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current configuration, turns out to be an intrinsic quantity. We can write E in the function of the displacement field u := ¢ — Id as

E=Vu+ %VUTVU, where V3u := %(Vu + Vu') is the symmetric part of the Jacobian matrix Vu. The issue of passing from one
description to the other can be formulated as follows: given two functional spaces B and C and given E € 15, a prescribed symmetric

tensor, is there any u € C such that
1
E=vm+ivwvm (1.3)

Equivalently, given two functional spaces B and C and given g € 3, a symmetric and positive definite tensor in €2 (i.e., a Riemannian
metric), is there any ¢ € C such that

g= (V) Vg2 (1.4)

If B is the space of smooth functions C°°, then (1.4) is true if and only if the Riemann curvature tensor Rjj; of the manifold 2 is zero,
and in this case, we say that the metric is compatible. The result is still valid if B = C' or B = W*° (for a proof, we refer to [5] and [6]).
The case B = C2, which states the Strong Saint-Venant compatibility conditions, is recalled in Theorem 3.13.

In linearized elasticity, one can also pass from a displacement-based approach to an intrinsic approach. More precisely, let D be a
family of displacements, and let

1
mm=7/waV%M—/fum (1.5)
2 ) Q

be the linearized functional associated to the potential energy / defined in (1.2), where C := D?W(J) is the elasticity tensor. Our aim is
to minimize j on set D. For example, if D = H'(Q,R?), f € L2(2,R?),and [, f-rdx = 0 for every rigid displacement r, then there exists
a unique minimizer of j. If we want to study this Neumann problem from another point of view, by using an intrinsic approach, the new
unknown will be the strain tensor

e:=C o,

with o the Cauchy stress tensor. In order to pass from one description to the other, the question in this simpler setting is whether e is
the linearized part of the Green-Saint-Venant tensor E, that is, given two functional spaces 13 and C and a symmetric tensor e € B, is
there any displacement u such that

e=Vu? (1.6)

Observe that the problem to establish when e is the symmetric part of the gradient of a displacement u is in some sense similar to
determining whenever a vector field h € C'(R2, R3) is conservative. Indeed, Poincaré lemma tells us that if Q is simply connected, there
exists a scalar function p € C2(Q2) such that h = Vpif and only if his irrotational, that is, Curl h = 0. Let S” be the space of all symmetric
matrices of order n. Then, Ph. G.Ciarlet and P. Ciarlet in [4] proved that if B = [2(R, S?), then (1.6) is true if and only if

Riji(e) := B,Bkej, + 8,'3/6,'/( — 8/'3/(8;/ — B;B,ejk =0in H_Z(Q, 83). (1.7)
These are exactly the weak Saint-Venant compatibility conditions in linearized elasticity.

1.2. Article outline and main results

This article is organized as follows. In Section 2.2, we recall the classical problem of reconstructing a displacement from a given smooth
symmetric tensor. An easy computation shows that the displacement (and the rotation) can be rewritten as recursive line integrals
depending on the strain tensor e, and its curl Curl e. In Proposition 2.2, we observe that this integral is well defined if and only if the
incompatibility tensor inc e of the strain e, viz

ince := Curl (Curl e)T, (1.8)

is zero. From this fact, we easily deduce in Corollary 2.4 the strong Saint-Venant compatibility conditions in linearized elasticity in the
well-known smooth case.

In Section 3.2, we give a geometrical interpretation of the concept of incompatibility in linearized elasticity. If, for > 0, we define
the metric

g" =1+ 2ne,

then Proposition 3.11 shows that Rji(e) is exactly the first-order term of the Taylor expansion at = 0 of the Riemannian curvature
tensors R,';k, associated to g”. This geometric linearization justifies the definition of Rjy(e) as the Riemann curvature tensor in linearized
elasticity. Moreover, it is seen that Ry (e) = ejsexr(inc e, so that it vanishes if and only if inc e vanishes (Remark 3.12). This observation
allows us to rewrite the weak Saint-Venant compatibility tensor of Ciarlet in terms of the incompatibility tensor inc e (Theorem 3.14).
The new contributions of our work are found in Section 3. The first main result of our work is Theorem 3.17, about (1.6), which extends
the result of Ph. Ciarlet when e € [P, with 1 < p < +4o00. This extension may be interesting if the body presents some defects such
as dislocations, because the involved energies are not quadratic [7] and one must consider exponents in the range 1 < p < 2.In Ph.
Ciarlet’s proof, the most important tool is the weak Poincaré lemma, which basically states that every irrotational field h € H=1(,R3) is
|
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conservative. This theorem was proved in an elegant manner by Kesavan in [8]. Its proof relies substantially on the existence of solution
for the Stokes equations if the force f belongs to the space H~'(2, R3). In order to prove the same kind of result in the non-Hilbertian
case, that is, with p possibly different from 2, other techniques have to be used. Our main idea is to define a tensor T as a sum of e and
of a skew-symmetric tensor @ constructed, in a general form, from the curl of e (Lemma 3.15). Then, we conclude by noticing that T is
irrotational and applying the weak Poincaré Lemma in LP. Let us recall that the pioneer work about this topic is due to E. Cesaro [9].

Our second main result is the structure Theorem 3.19, which contains a decomposition of a symmetric tensor e € LP, with p €
(1, 400) in a sum of the type

e= Vu+incF, (1.9)

where u € W'P(Q,R3) is a Sobolev vector field and F € [P(2, M3) is a divergence-free tensor field with appropriate boundary con-
ditions. We call V3u the compatible part of the decomposition and inc F its incompatible part. Here, a crucial lemma will consist in
exhibiting those symmetric gradients, which write also as the incompatibility of a tensor (Lemma 3.17). Such a decomposition has
potentially many applications. In particular, it was used in [10] to study the mathematical properties of countable families of dislocation
lines.

Such a decomposition is often named after E. Beltrami for his pioneer article [11]. Let us precise that at the best of our knowledge,
such a decomposition, though regularly mentioned in the physical literature since [12], was not given a mathematical proof. Here, the
proof holds not only for the Hilbertian case p = 2 but for the whole range p € (1, +00).

1.3. Application to Korn inequality in LP

A related issue is the Korn inequality, whose study is the object of Section 4. By using the same argument as in [4], we show in an
alternative way two classical Korn inequalities in L? (Theorems 4.2 and 4.3) in a simply connected domain. Korn inequalities are of
utmost importance in linear and nonlinear theories of elasticity. Let us recall that Korn inequality basically asserts that if Q2 is a bounded
domain and p € (1, +00), there exists a constant C > 0 such that

I ullwe=<C Il Vu ||, (1.10)

forallu € Wg'p(Q,R3). Forp = 1 orp = 0o, some counterexamples show that this result does not hold. However, Korn inequality
is very important in elasticity not only in the case p = 2, where it allows one to show that the functional (1.5) is coercive but also for
an exponent p different from 2. For example, it is essential to prove a geometric rigidity estimate (e.g., [13]) asserting that there exist a
constant C > 0 and a rotation Q € SO(n) such that

[ Vo —Qll-= C |l dist(Ve,SO(n)) |l (1.11)

for every deformation ¢ € W'P(Q,R").

There exist several proofs of Korn inequality in the literature for p = 2. The most classical one (e.g., [3]), valid in a domain Q € R",
is based on the J. -L. Lions lemma, which says that every distribution v, whose derivatives are in L2(R2), belongs to the Sobolev space
H'(R2). Another proof of (1.10) for p = 2 was provided for open sets with cone property by Nitsche in [14]. Here, the idea is to construct
an extension operator from € to the whole space R”, which preserves the strain. If p # 2, the proof is more complicated. If @ € R?,
that is, Q2 is a plane domain, a Korn inequality type was proved by Wang [15] in a quite simple way. The proof is based on the existence
of solutions ¢ € Wg’p(Q,]R?) for the equation div ¢o = f, where f € LP(Q2) with null average. For a general proof in L in arbitrary
dimension, we refer to [16] (see also [17] in the case of C2 domains). In the present paper we propose a simple and direct proof of Korn
inequality in L?, which is a direct consequence of our results (cf. Theorem 3.19 and in particular, Theorem 3.17).

2. Preliminaries

2.1.  Notations and conventions

Assumption 2.1
Unless otherwise specified, the considered domain R is a open connected and bounded subset of R3 with Lipschitz boundary and
outward unit normal N.

Smoothness of the boundary is not a too strong assumption for this problem, as discussed in Remark 3.5.

The space of the square matrices of order n is denoted by M". Let B € M" be a square matrix. Then, B® := B'E—BT is the symmetric
part of B, while B := B_TBT is its skew-symmetric part of B. Moreover, S” is the space of all symmetric matrices of order n, while A" is
the space of all skew-symmetric matrices of order n.

Here, §; is the Kronecker symbol, while € is the Levi-Civita symbol. We will use the relation
€iik€kim = 8iSjm — Sim ;.
Let 2 C R" be an open set. We will use the following functional spaces:

e CK(Q2,R") is the space of continuous function whose derivative up to order k are continuous.
o [P(Q,R") with 1 < p < 400, and the usual norm || . ||;» is the usual Lebesgue space.
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Wm™P(Q,R") with 1 < p < 400, m € N, and the usual norm | . ||wm» is the usual Sobolev space.

D(2,R") is the topological vector space of indefinitely differentiable functions with compact support on €.
D’(R) is the space of distributions on €.

W&"’(Q, R"), where 1 < p < 400 is the closure of D(£2, R") with respect to the usual Sobolev norm.
W—m4(Q,R") == (W *(Q,R")), where 1 <p < +ooandq = 527, is the dual of the usual Sobolev space.

W%'p(BQ, R") denotes the set of all Sobolev functions, which are trace of a function u € W'P(Q,R").

The divergence of a vector v and of a tensor T are defined componentwise as follows:
o (divv) := djv; (div T); := 9;Ty,

where sum is intended on the repeated indices. The curl of a vector v and of a tensor T are defined componentwise as follows:
o (Curlv); := €iwdivy; (Curl T)jj := €y 0k Ty

The incompatibility of a tensor E is defined componentwise as follows:
e (incE); := (Curl (Curl E)");j = €ikmejin Ok iEpmn-

Moreover, we will use the following spaces:

L (2, R¥3) := {F e [P(Q,M?) st divF =0}
= adhp{F € C>(Q,M?) st divF =0},

XL,(Q) = {V e 5,(Q,M?) st.Curl V € [P(Q,M?)}, 22)
V(Q) = {Ve AL (Q)st.VxN=00ndQ}, ’

VP(Q) = {V € A% () st. VN = 0on I} . (2.3)

Let (M, (gj)) be a Riemannian manifold, and let V be a Levi-Civita connection on M. We denote by I‘g the Christoffel symbols and
with symbol Rjjs the Riemannian curvature tensor, with the convention that Iy := F,’jgk,.

2.2. Aclassical result: Michell-Cesaro-Volterra decomposition

As a first step, let us recall the problem of reconstructing a displacement from a given symmetric tensor. In linearized elasticity, if all the
functions involved are smooth enough, we prove that the displacement field u is completely defined in terms of the linearized strain
tensor e by a recursive integral formula (cf. (2.5)), which we compute explicitly.

Lete € C*°(Q, M?3) be a symmetric tensor field such thatinc e = 0 on Q. Let us fix xo,x € Q,and let y € C'([0, 1], Q) be a curve in
Q such that y(0) = xo and y(1) = x. We define the following quantities:

wi(x;y) == wi(xo) —|—/ €ipn0pemn (Y)dYm (2.4)
y

ui(x; y) = ui(xo) + / (ei(y) — €W (y)) dy;. (2.5)
y

Let us now prove that the quantities w(x) and u(x) defined in (2.4) and (2.5) do not depend on the choice of the path from xq to x.
We will show that this is a consequence of the fact that inc e = 0. In such a case, the quantities w and u define two C°® functions on
Q that will be called the rotation and the displacement vectors associated to the strain e, respectively. In order to prove this fact, we
compute the jump of w and u between two arbitrary curves with the same endpoints, and observe that this quantity is zero if and only
if the incompatibility tensor vanishes. These are exactly the well-known Saint-Venant compatibility relations.

The rotation and displacement jumps are defined as

[wil(x;: xo0) := wi(x; y) — wi(x; 7). (2.6)

[uil(x; o) == ui(x; y) — ui(x; ¥), 2.7)
respectively.

Proposition 2.2
Let @ < R3 be a simply connected domain, let x, € Q be prescribed, and let w,u € C> (2, R?) be the functions defined in (2.4) and
(2.5), respectively. Then, the following formulae hold:

[wil(x; x0) = /

. ______________________________________________________________________________________________________|
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016630 = [ O = Xo)imu(inc e9)edSy ), 29)
Sy—v
forall x € €2, and where S,,_; is a surface enclosed by the closed path y — 7. In particular,
[wi] = [ui] = 0 for each couple of curves y, y <= ince =0.

Remark 2.3
As a consequence of ince = 0, (2.4) and (2.5) do not depend on the choice of the curve y € C'([0, 1], ) connecting X, to x. In particular,
X

the vector fields w € C*°(2, R3) and u € C*° (2, R?) are uniquely defined. Thus, in (2.4) and (2.5), one can use the notation / =
v Xo

Proof

Let us first compute [w;]. The domain being simply connected, there is always a surface S := S,,_5 in Q, which has as boundary the

closed path y —y (here, =7 : [0, 1] — Q2 is the curve defined by —y (t) := y(1—t) forall t € [0, 1]). Then, by Stokes formula, it results that

[wil (6 x0) = /Semq,e;pnaqapemdsm(y) = /S(inc e(y)imdSm(y).

This proves the formula for [w;]. Because the closed path y — 7 is arbitrary and the domain simply connected, it results that [w;] = 0 if
andonlyifince = 0.
Now, observe first that (2.5) rewrites by part integration as

Ui(X; Yxon) = / (€ (y) + Ym — 0)m)€imkOwi(¥)) dyi  — €imkWi (X) (Xm — (Xo)m)- (2.10)
V4

For [u;], apply again Stokes formula to deduce that

[ulCGxo) = /Séqplap [ei(y) + (Ym — (X0)m)€imk QWi (¥)] dSq(y) — €imk [wi] (¥) (Xm — (X0)m)
= /S(qulapei/(y) + €gmi€imk Wi (y)

+ (ym — (xo)m)eqp,eikapB,wk(y)dSq(y) — fimk(Xm — (Xo)m) /S(inc e(y))kquq.

We have already proved that w;(x;y) = w;(X;Xo) := fx); €ipnOpemn (¥)dym in the simply-connected domain €2, and hence, the relation
0iwg(X) = €gpidpeir(x) holds. Because d;w; = 0,

Eqmi€imk Wk = (8qiik — Sqk0ii) OWi = 8gidiw) — djwg = —0;Wy,

and hence, by identity d,wx = €n0,€/, and the fact that (inc €)qx = €gpi€kmdpd e, it holds

|[UI]I(X;X0) = /S(Ym - (XO)m)éimquplekmapareln(y)dsq(y) - Eimk(Xm - (Xo)m)
X /(inc e(y))kqdSq(y) = /(ym — Xm)é€imk(inC e(y)) gkdSq (¥).
S S

This achieves the proof that [w;], [u;] = 0if and only ifince = 0. O
Now, it is straightforward to prove the following result:

Corollary 2.4 (Saint-Venant compatibility conditions in C°°)
Let Q be a simply connected and bounded open set in R3, and let e € C>° (2, M?) be a symmetric tensor field. Then, there exists
u € C°(Q,R3) (given by (2.5)) such that e = V*uy, if and only if

ince =0. (2.11)

. ______________________________________________________________________________________________________|
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Proof
If e is the symmetric gradient of a displacement, it is straightforward that its incompatibility vanishes. Then, let us prove the converse.
Therefore, assume inc e = 0 and define the vector fields w and v as in (2.4) and (2.5). Proposition 2.2 shows that w and u are independent
of the path y, so that we can write

wix) = wixo) + / eomdpen(£)dE,
" (2.12)
U = uixo) + / (e3(6) — egomwic(®)) .

Thus, 0jw; = €jpndpejn and dju; = e — €Wy, from which the thesis follows because e is symmetric, and € wy skew-symmetric. O

The LP counterpart of Corollary 2.4 will be proven in Theorem 3.17 with other techniques. It represents the cornerstone of the proof
of Korn inequality in LP. Now, the following classical quantities can be introduced:

Definition 2.5
Let u: © — R3 be a smooth displacement field. Let us introduce the following quantities:

(i) ej:= % (Bju,- + 8,-u,-) is said strain tensor (it is the linear part of Green-Saint-Venant tensor E;; := e + 0juydxu;) .
(i) wj:= 3 (d;u; — du;) is said rotation tensor.

(iii) w; == 3 ey is said rotation vector.

Remark 2.6

A simple computation allows us to express the rotation tensor w;; in terms of the rotation vector w;, because

1 1 1

€jjkWk = Efijkekmnwnm = 5 (5im8jn - 5in5jm) Wpm = E ((Uji - a)u) = —wj.

3. Decomposition of a symmetric tensor in LP

3.1.  Some preliminary results
Let us recall some results and remarks, which will be used in the sequel.

Lemma 3.1 (Helmholz-Weyl-Hodge-Yanagisawa) y
Let 1 < p < oo, and let Q be a smooth domain in R3. Forevery F € LP(Q2, M), there exist uy € Wg'p(Q,]R3) and a solenoidal V € VP (),
such that

F = Duo + Curl V, (LP(Q,M3) = VWP (Q,R3) & Curl f}P(sz)) . (3.1)
Alternatively, there exist u € W'P(R2,R?) and a solenoidal V, € VP(R2), such that
F=Du+Curl Vo, (LP(Q,M?) = VW"(Q,R? @ Curl VP(Q)). 3.2)

Moreover, the decompositions are unique, in the sense that ug, V, V, are uniquely determined, while u is unique up to a constant, and
it holds ||Dug||p, ||Dull, < C||F||,, respectively.

Remark 3.2
When F is smooth with compact support, decompositions such as (3.1) and (3.2) are classically given [18, 19] by explicit formulae
involving the divergence and the curl of F. Notice that no boundary data for F are here given.

Remark 3.3

Let F € C'. In the particular case Curl F = 0, the Helmholtz decomposition is trivial when € is a simply connected domain. Indeed, a
well-known consequence of the Stokes theorem is that in such a case there exists u € C2(Q2, R3) satisfying F = Du. This result extends
for F € [P with 1 < p < 400 as shown in [20]. See [21] for a complete treatment of Helmholtz decomposition in LP, relying on the
pioneer paper [22].

Remark 3.4
Let 2 be a smooth simply connected domain, and let F € LP with 1 < p < +oo.If divF = 0, then, by Lemma 3.1, f = Curl V with
V € VP(2). Remark that for smooth functions F, this result holds for any simply connected domain.

Remark 3.5

Smoothness of the boundary is a strong requirement, which is needed for the following reason: (3.1) and (3.2) require solving a Poisson
equation Au = div F with the right-hand side in some distributional (i.e., Sobolev-Besov) space for which smoothness of the boundary
|
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is needed. It is known [23] that for a Lipschitz boundary, the solution holds for3/2 — ¢ < p < 3 + ¢, where ¢ = €(2) > 0. Note that for
p = 2, aLipschitz boundary would be sufficient.

Lemma 3.6
Let Q be a domain and H be a function in LP(2) with [, Hdx = 0. Then, there exists a function h € WP (2, R3) solution of

divh=H inQ,
h =0 ondQ, (33)
satisfying ||h|lwir < ||H||p.
A proof of this Lemma can be found in [20, Theorem [I1.3.3]. Moreover, it also holds that if H € CZ°(2), then
[hllce < CillHll i, (3.4)
for every k € Ny [20, Theorem 1I1.3.5]. The following estimate can be found in [21].
Lemma 3.7 (Kozono-Yanagisawa)
Let F € VP(Q) or F € VP(R). Then, F € W'P (2, R3*3), and it holds
IVFllp < C(lICurl Fllp + [IFllp) - (3.5)

This shows that V?(2) and VP(2) are closed subspaces in W'P(2, M3). By virtue of Lemma 3.7 and for simply connected and
bounded domains, a better estimate, found in [18], reads as follows. Again, this classical result for smooth functions with compact
support is less standard in our setting.

Lemma 3.8 (von Wahl)
Let F € VP(R2) or F € VP(R2). Then, it holds

IVFll, < ClICurl Flp. (3.6)

As a direct consequence, the following result holds.

Lemma 3.9 _
Let F € VP(R2) or F € VP(2).Then,CurlF =0 < F=0.

Let us now state the linear elasticity problem in LP. Let @ < R3 be a smooth domain, let 1 < p < +o00, and let e := V>u be the

linearized strain tensor and f € LP(£2, R?) a volume force. The elasticity system reads

divCe+f =0 on %,
u = U ondg,

with U € W'/PP(3Q) the prescribed boundary datum. Alternatively, the Neumann problem is associated with the boundary condition
((C Vsu) N = gon 3, withg € W™ 1/PP(32) the exerted boundary force. If the material is homogeneous and isotropic and its reference
configuration is a natural state, it is well known that the constitutive relations depend only on the Lamé constants of the material A and
1 and are given by the formula Ce = 2ue + A( tr e)l. These two Lamé constants satisfy the relations > 0 and 34 + 21 > 0:in this
case, C is a coercive tensor, that is, there exists & > 0 such that CA-A > « || A ||? for all symmetric 3 x 3 matrix A. Therefore,

divCe = div (2ue + A(tre)l) =2udive+ AV itre

Vu+ vd' Vu+ Vd'
— 2u div (%) -I—)tVtr(%) = (A + )V divu + pAu,

and the Dirichlet problem in this particular case reads

{(/\—i-u)levu—}—uAu—l—f:Oan (3.7)

u = U ondQ.

By the regularity theory for partial differential elliptic equations, this problem admits a strong solution u € W?P(Q) in Q. The same fact
also holds for the Neumann problem.

3.2. Geometrical view of compatibility in nonlinear and linearized elasticity
Definition 3.10
Let @ € R3 be an open subset, and let 7 > 0 be a real number. Then, a family of elastic metrics on Q is given by

g7 =1+ 2ne, (3.8)

where [ is the identity matrix and e a smooth symmetric tensor.

Now let us compute the Riemannian curvature tensor of an elastic metric.
|
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Proposition 3.11
Let @ € R3 be an open set, n > 0 be a real number, and g” a family of elastic metrics in Q2. Then, the Riemann curvature tensor R;’k,
associated to the elastic metrics g” is given in terms of e by the formula

R,';Zk/ = nejser(inc e)sr + o(n). (3.9)

Proof
Let g% be the inverse matrix of g” = (gj). It is given by

gij.n = §i_ 277e’7 + o(n). (3.10)
The Christoffel symbols of the Riemannian metric 9,7 reads
F,ﬁ = n(0jex + diex — dxey) + o(n). (3.11)
Thus, ;T = 1(didjew + d;dke; — didjei) + o(n), and T, T = o(n). Hence,
R;’k, = 1(0;0kej + 0;0s€i — 0j0kei — 0;0sei) + o(n). (3.12)
Let us finally rewrite R,;.’k, in terms of the incompatibility tensor inc e:

Rilt = N€ijmemab(dadkes — dadienk) 4 0(n)

. (3.13)
= neijm€mab€kln€ncdaaacebd +o(n) = N€ijm€kin (ince)s, + o(n).

This concludes the computations and the proof. O
The previous result suggests the following definition.

Remark 3.12
Let 2 € R3 beadomain,and lete € LP(2, M?) be atensor. Then, it follows from (1.7) that the Riemann curvature tensor is a distribution
fourth-order tensor whose components are given by

Rii(e) = €jimein(inC &)mn. (3.14)

Therefore, (3.9) reads
R™ = nR + o(n).

Itis clear that ince = 0 if and only if Rji(e) = 0. In fact, it is easy to rewrite the incompatibility tensor in terms of Rjy(e) as (ince); =
€iki€jmnRiimn (€). Observe that inc e is a second-grade tensor, whereas R(e) is fourth grade.

We conclude this section recalling two classical results about Saint-Venant compatibility conditions in finite and in linearized elastic-
ity.
Theorem 3.13 (Saint-Venant compatibility conditions in finite elasticity [24].)

Let @ C R3 be an open and simply connected domain, let C = (g;) € C*(2,S2) be a symmetric and positive definite tensor, and let
E:= %(C — ). Then, the following conditions are equivalent:

(1) There exists amap ® € C3(Q,R3) with det V& > 0 on Q such that
C=Va'Vo.
(2) There exists a vector field u € C3(2, R3) such that
E= %(Vu +Vvu') + Vu'vu.

(3) The Riemann curvature tensor vanishes, that is, Rjiy = 0.

Lemma 3.11 has shown that inc e is the counterpart for linearized elasticity of the Riemann curvature tensor. Formula (3.14) allows
us to rewrite the weak Saint-Venant compatibility conditions in L2, proven in [4], in the following way:

Theorem 3.14 (Saint-Venant compatibility conditions in linearized elasticity)

Let @ € R3 be a simply connected domain, and let e € L2(R2,S?) be a symmetric tensor. Then, there exists a displacement field
u € H'(2,R3) such thate = Viuifand only ifince = 0in H=2(£2, S®). Moreover, u is unique up to rigid displacements.
|
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3.3.  First main result: Saint-Venant compatibility conditions in LP

We want to extend Theorem 3.14 for p # 2. As we said, if p = 2, the proof is based on the existence of solutions for the Stokes equations
when the external force f is in H~'(£2, R3). If we want to extend its result in LP, we have to use other techniques. The following lemma
is essential to the proof of our first main result. No smoothness of the boundary is assumed.

Lemma 3.15
Let @ C R3 be asimply connected domain, and let G € LP(2, M?) be such thatincG = 0in D’ (2, M3). Then, there exists w € LP(2, R?)
such that Vw = (Curl G)" in D’(Q, M3).

Proof
Let w be defined by

(Wr (ﬂ) = _((Curl G)Tl K”)l (315)

for every test function ¢ € D(R2,R?), where ¢ € C$° (2, M3) is a solution of (3.3) with H = ¢ — @, ¢ being the mean value of ¢ on
Q. Let us prove that w is well defined as a distribution. First of all, fix ¢, and let us check that (w, ¢) does not depend on the choice of
Y. f Y, ¥y € CS°(R2, M) are such that div ¥y = divy, = ¢ — @, then div(y — ¥2) = 0 and there exists { € C2° (2, M) such that
Curl ¢ = ¥y — ¥, (Remark 3.4). Hence, by assumption,

((Curl G)T, ¥y — ¥2) = (inc G,{) = 0.

Moreover, w is clearly linear, while if ¢, — 0in D(R,R?), then, denoting by v, a solution of (3.3) with H = ¢ — ¢, we have that ¥, — 0
in D(2, M3), thanks to estimate (3.4). This proves that w is a distribution. Now, for every test function v, —(Vw, ¥) = (w,div ) =
—((Curl G)T, ¥), by (3.15), so the thesis will follow as soon as we prove that w € LP(Q,R3). Let ¢ € L9(R,R3) be a function with zero
average such that |l¢|; < 1, where % =1- !1). By Lemma 3.6 there exists v € W"9(Q, M?3) with [|¢/[lwe < Cllpllq < C such that
divy = ¢.Thus,

[{w, 9)| = (G, (Curl y)T)| < CllgllqlIGllp,

and the Lemma is proven, observing that the linear functional w vanishes on the finite dimensional subspace of L9(£2, R?) of constant
functions.
O

Remark 3.13
The distributional gradient Vw of Lemma 3.15 generalizes in the LP case the gradient found in the path integral of (2.4) for smooth
fields. Moreover, w is divergence free.

With this lemma, we are now ready to state and prove our first main result.

Theorem 3.17 (Saint-Venant compatibility conditions in LP)
Let @ € R? be a simply connected domain, let 1 < p < 400, and lete € LP(Q, S?) be a symmetric tensor. Then,

ince=0in W 2P(Q,S%) <= e=Vu

for some u € W'P(Q,R?). Moreover, u is unique up to rigid displacements.

Proof

Let us assume that inc e = 0. Let w be defined by Lemma 3.15 with G = e and define also wj; := —ejwy. Using the relation ejexm =
8i18jm — 8im8j and the fact that e is symmetric, we compute Curl o = —Curle,sothat T := e+ w € [P(2, M) satisfies Curl T = 0. Hence,
by Lemma 3.1 and Remark 3.3, it results that T = Vu for some u € W'?(Q, R3). Observing that w is skew-symmetric and recalling that
Vv = 0ifand only if v is a rigid displacement [3] conclude the proof. O

3.4. Second main result: structure theorem — Beltrami decomposition
The second main result of this work stands on the following lemma:

Lemma 3.18
Let © be a domain and up € W'/P?(3Q, R3), and let u be the solution of the system

Vdivu+ Au =0inQ,
u = Uy on JdN. (3.16)

Then, there exists F € LP(2, M3) with Curl F € [P(§2, M3), div F = 0in Q, and FN = 0 on 9%, and such that

VSu = incF. (3.17)
. ______________________________________________________________________________________________________|
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Proof
From (3.16), we see that V*u is divergence free. By Remark 3.4, there exists a divergence-free G such that

Viu = Curl G ((VSU),’j = ej,kB,G,-k) . (3.18)

Let H be the zero-average solution of

s~ oy omim 619
and let h be the solution of the problem (3.3). We then define G’ := G + Vh. We obviously have
Viu = Curl G/ ((Vsu),-,- - e,,ka,G;k) . (3.20)
Since V*u is symmetric and divergence free, we have also
0 = 3;(V'u)ji = €indid;Gj. (3.21)
Moreover, by the definition of G, H, and by (3.19), we have
B,Bjij, = 0;0;Gj + 0;0;0;h; = AH = 0. (3.22)
Equation 3.19 implies also
N,-ajGji = N;0,Gj + oyH = 0, (3.23)

so that from (3.21), (3.22), and (3.23), we see that F = F; := BJ-G;,. is the solution of the system Curl F = div F = 0 of Lemma 3.9, and then
it holds BJ-G;, = 0in €. From Remark 3.4 again, we entail the existence of F satisfying div F = 0in €2 and FN = 0 on 92 such that

G} = €idifjk (@ = (curlF)T),
and the thesis follows by (3.20). O

We are now ready to state and prove our second main result.

Theorem 3.19 (Structure theorem - Beltrami decomposition)
Let @ < R3 be a simply connected domain with smooth boundary, let p € (1, +00) be a real number, and let e € LP(£2,S?) be a
symmetric tensor. Then,

(1) there exist a vector field & € W'P (2, R?) and a tensor F° € LP(2, S3) with Curl FO € [P(,S?),inc F® € [P(R,S?), div F° = 0, and
F°N = 0 on 0L such that

e = Vi +incF°and (3.24)

(2) forany U € W'/PP(3Q), there exists u € W'P(,R3) withu = Uon 3 and F € LP(R2,S3) with Curl F € LP(Q,M3),incF ¢
[P(R,S3),and div F = 0 and FN = 0 on 9L such that

e = Viu+incF. (3.25)
This pair {u, F} is unique.

We call V3u the compatible part and inc F the incompatible part of the decomposition (3.24) and (3.25).

Proof
(1) By Helmholtz decomposition (3.2), there exist two vector fields & € W'?(Q,R3) and v € VP(Q) such that

e = Vi + Curly,
or componentwise
ej = 0;l; + €0k Vir.
Apply again Helmholtz decomposition to v/ to deduce the existence of W € W'P(2, R?) and W € VP(R) such that
Vi = vii = W, + €ipg0pWig.

Moreover, by the decomposition in symmetric and skew-symmetric parts, it holds that

1
Wig = Wiy + Wig = Wiy + > €igmém;Wi.
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Because the rotation vector is given by w,, = %emﬁW,-j, then
WS A _ S
Wig = Wy, + W = W}, — €lgmm.

Let us define V := W>. Therefore,
€ipgIpWig = €ipg9pVig — €ipg€igmIpwm
= 6ipqap‘/lq + (8i15pm - 8im5pl)apwm
= €quapV/q + 8 divw — 0jw;.
Now, we want to show that there exists ¢ € W?P(Q,R3) such that the tensor F,% = Vig + 3(3i9pq + dq¢hr) satisfies Curl FO € [P(Q,S?),

FON = 0 0on 8%, and div F° = 0 on Q. The first requirement on the Curl holds by definition of Fy. Because V € W'?(R, S?) by Remark
3.7, the Neumann problem

divVi¢ = Vdivg + Ap = —divV inQ,

(V*¢)N = —VN on 9%, (3.26)

admits a strong solution ¢ € W?P(Q,R3?) a.e. in Q by Remark 3.7 (here, A = 0 and u = 1). This solution is unique up to rigid
displacements. Hence, FO satisfies all the conditions required. Therefore, it results that

ej = Ol + €jdkviy = ;U + ejk/ak(ajW[ + €ipg0pWiq)
= Qi + €0k (W) + €1pgdpVig + 81 div @ — ;)
= Qi + €0k W) + €€ipgdkdpVig + €k (div )
= 0l + €judkdW) + €eipgdkdpFry + €jidi( div w)
- %ejkleipqakapaq‘;bl - %ejkleipqakapal‘pq

= 8}&,‘ + €jk/aka,'W/ + ijle,'pqakapf:,% + E,‘jkak( div w).
Because e is symmetric, then inc e is also symmetric. Thus,

ej + eji _ Bj&; + Bi&j
2 2

1 = 1 ~
ej = + (inc Fo)ij + Eéjk[aka,'W/ + Ee,k,akajW,. (3.27)

Let us define the vector field u = (;); € W'P(R,R?) as
U= u; + e,-k,BkW,.

Therefore,
diui + diuj
6 = — > 4 (inc F0);,
proving (1). -

Let us now prove (2). Let w be the solution of (3.16) with boundary datum~uo = u — U. Then, Lemma 3.18 provides F such that
Vw = inc F. So that setting u := U — w, we find e = V*u + inc F with F := F + F°, and the sought decomposition follows. To see
uniqueness of such u, consider another { and another F satisfying e = V0 + inc Fand i = U on 3. Then, its difference v := u-— u
satisfies (3.16) wi:ch ug = 0 on 3R, and hence, u = 0. Let us now prove that F is unique. Assume that there exists another such F and
define G := F — F. It holds inc G = 0. By virtue of Theorem 3.17 and taking the divergence of G = V3¢, it holds A¢ 4 Vdiv¢ = 0in Q
and (V3¢)N = 0 on 9dR2. Thus,  is a rigid displacement and G = 0. O

Remark 3.20

It is easily verified that taking inc e = 0 in (3.24) and because F is divergence free yields the PDE AAF = 0. The issue of finding
appropriate, well-posed boundary conditions for this problem can be addressed by recalling the classical theory by Agmon, Douglis,
and Nirenberg [25] (see also [26]) of complementary boundary conditions. For instance, it results from this analysis that the following
system is well posed (see [27] for detail):

A’F =f in Q
F =¢"on 3R
divF =g on 0Q, (3.28)
oydivF =h on 099
OvFxN =¢? on 0Q
. ______________________________________________________________________________________________________|
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with f divergence free and ¢? such that 2 - N = 0. Moreover, taking f = ince, h = g = 0, it is immediately seen that such F is
divergence free, because div F is the solution of the homogeneous Dirichlet problem with vanishing right-hand side (RHS).

4. Application to the Korn inequalities in LP

Our first main result allows us to deduce an alternative proof of Korn inequalities, which are crucial in elasticity. We follow the same
procedure as of P. Ciarlet and Ph. G. Ciarlet in [4]. Let ©2 be a domain and define the spaces

FP(Q) := {e € [P(Q,S%) :ince = 0},
R(Q) :={ux) =Ax +b:Ac A3 beR3,
W' (Q,R?) == W'(Q,R?)/re),

where R(Q) is the closed subspace of W'?(2, R?) consisting of rigid displacements. W/'?($2, R3) turns out to be a Banach space if
endowed with the norm

ullprp = inf ||U" + rllyie,
lullins i= inf '+l

where ' is a representative of the class of u.
Theorem 3.17 has the following consequence:

Corollary 4.1
Let Q € R3 be a simply connected domain, and let p € (1, +00). Let us define the linear application

Fp EP(Q) — W'P(Q,R?)
given by
Fp(e) = uforalle € EP(S),

where (1 € W”’(Q, R3) is the unique element such that V°i = e. Then, F, is bijective continuous, and its inverse is continuous.

Proof
First of all, we recall that E,(2) is a closed subspace of L?(2), therefore a Banach space. Moreover, F is a bijection by Theorem 3.17. If
we prove that .7-"p_1 is continuous, the thesis follows from open mapping theorem. But

S— . S. .
I Fp @) =1 VZa llw<Il & lljro;
then, 77! is continuous. 0

Now, it is trivial to prove a Korn inequality in the quotient space W'?(Q, R?), where p € (1, +0c). Remark that no smoothness of the
boundary is required.

Theorem 4.2 (Korn inequality in W'#))
Let Q < R? be a simply connected domain, and let p € (1, 4+-00). Then, there exists C > 0 such that

I G llire< Cll V3G ||1» forall i € W'P(2,R?). (4.1)

Proof
By Corollary 4.1 F, is a continuous map. Then, there exists C > 0 such that

I Fo@) lipo =1l & lljno < C | V¥U lup -

O

Now, we want to prove another useful Korn inequality. Let Ty € R3 be a subset of 9Q with #2(I3) > 0, where 7?2 denotes the
two-dimensional Hausdorff measure. Let us define the spaces

WP (Q,R?) = {u e W' (Q,R?),u=0on Ty},
L (Q) = {e:= Viu:u e W (QR?)},
the latter being a closed subspace of EP(Q2) because the trace operator is continuous on W'? (€2, R3). The linear application
Fp B () —> WD(Q,R?),

given by

]:'p (e =u,
. ______________________________________________________________________________________________________|
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foreverye e E%O(Q), is well defined by Theorem 3.17, because there is a unique u € Wr,"P(2, R?) such that V°u = e. Indeed, suppose
Viu; = Viu, = e, then V3(u; — up) = 0, and hence, u; and u, differ by a rigid displacement, which is well known to be zero by the
assumption that u = 0 on Iy with #2(Iy) > 0. Thus, u; — u; = 0 on Q. Moreover, it is straightforward that ﬁp is a bijection. The
continuity of .73;‘ readily follows from the fact that

e lle=Il Viull <[l u llww -

Then, the open mapping theorem implies the following result:

Theorem 4.3 (Korn inequality in W}f
Let @ € R3 be a simply connected domain, and let p € (1, +00). Then, there exists C > 0 such that

| ullwe<Cl Véullpr forevery ue Wr,""(Q,R3?). (4.2)

These proofs of Korn inequalities are valid in simply connected domains. It is easy to extend them to the case of more general
domains. For instance, Theorem 4.3 is valid for domains that are finite union of simply connected open sets (each one with a nonneg-
ligible part of the boundary intersecting I'y). For a path-connected and locally simply connected domain, we can argue as follows: we
first split the domain in a countable union of disjoint simply connected open sets ; (plus a negligible set), and then obtain the Korn
inequality for each one of them by an approximation argument. This can be performed by adding to €2; a small open neighborhood of
a path connecting it to 'y, and then letting the width of it go to zero. Korn inequalities are classical results already proven for general
domains with other methods (e.g., [16, Theorem 8] or [17], Section 7).

5. Concluding remarks

The aim of this paper was to be on the one hand to write a brief survey on the intrinsic approach in elasticity, emphasizing the role of
the incompatibility operator in linearized elasticity. On the other hand, our aim was to provide and prove new results on general and
incompatibility-free symmetric tensors in LP for p € (1, 4+00). The obvious mechanical interpretation of these tensors are the strain
tensors, related to the stress tensor by a constitutive law, a linear law in most cases, providing the deformation of the elastic body
under analysis.

Saint-Venant-type relations are well known in the mechanical literature, and the Hilbertian case was long established. However, to
the knowledge of the authors, it had not been demonstrated in LP for any space dimension. Therefore, generalizations to p € (1, 4-00)
was the first motivation of the present work. The structure theorem is also a new contribution of this paper, and might be seen as a
generalization of Saint-Venant result in LP. Remark that both results are intimately related, but none follows directly from the other
in our setting. Let us observe that the first main result holds for any simply connected domain, whereas the structure theorem was
proven with an additional smoothness assumption of the domain boundary. In a second stage, the first main result has been applied to
suggest another proof of certain Korn inequalities in LP. From an application viewpoint, it should be stressed that the structure theorem
is useful in dislocation models because it can be proven (e.g., [10, 28]) that in the presence of dislocations, inc e is related to the curl of
the dislocation density «, and hence, the field F is a dislocation-induced tensor satisfying inc inc F = f(Curl k), whereas u is related to
the mechanical equilibrium equations and f a certain material-dependent function.

It should in fact be emphasized that in dislocation models, first, it is not true that the strain e = C~'o equals a symmetric gradient
everywhere. Second, the structure theorem would split e = C~'o into two contributions, each with a clear physical interpretation.
Indeed, u is identified with a displacement provided by equilibrium of Newtonian forces, while F is a defect variable obeying specific
transport-diffusion-reaction equations for the dislocation density. Moreover, in a complete elastoplastic model, this incompatible part
is undoubtedly related to plasticity. This also justifies the interest of our structure theorem with a view to modeling. To conclude, let
us justify the study of the case p # 2 by recalling that dislocations are singularities that prohibit for intrinsic physical reasons the
use of quadratic energies [7,29]. Indeed, in [27], simple approach based on linear PDEs is suggested, where the classical Lamé system
of elasticity is solved, though with a variable u that is not primarily the displacement field, rather originating from a Beltrami-strain
decomposition that also provides a dislocation-dependent field F. This latter field solves an incompatibility-based PDE, as given in
Remark 3.20. Specifically, being f, g, and U the body and surface forces, and the prescribed boundary load, the following result will is
proven in [27]: there exists u € W'P(Q2) with 1 < p < 3/2 such that

—div(AV'u) = f+F in Q
(AVSuyN = g on Iy , (5.1)
u = U on Ty,

where F is a dislocation-induced body force in W=P(2,R3),, with 1 < p < 3/2, depending on F and vanishing as soon as the
dislocation density vanishes.
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